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History — Consensus protocols

« 1980 until 2000: Theory research — many theorems, no systems, no prototypes
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History — Consensus protocols
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« 1980 until 2000: Theory research — many theorems, no systems, no prototypes
« 2000 until 2010: Systems research — many prototypes, no products

The Next 700 BFT Protocols
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BFTW3: Why? When? Where?
Workshop on Theory and Practice of Byzantine Fault
Tolerance

Affiliated with DISC 2009

September 22, 2009
Elche, Spain

The workshop gathers researchers from both theory and systems communities and aims at
understanding why the impressive research activity in the area of Byzantine fault-tolerance is not yet
instantiated in practice. Has the moment for a wide deployment of BFT systems arrived, and if so,
where BFT systems should be deployed in the first place?

Format
The workshop will consist of invited contributions. No published proceedings, the presentations may

contain results that appeared or are going to appear elsewhere, work-in-progress reports, surveys
and tutorials. A submission is expected to be a short (around two pages) abstract of the presentation.



b

u

b
UNIVERSITAT
BRERN

BFTW3: Why? When? Where?
Workshop on Theory and Practice of Byzantine Fault
Tolerance

Affiliated with DISC 2009

September 22, 2009
Elche, Spain

However, there are few visible instantiations of these results in practical systems. Industrial software
tends to ignore the BFT-related research and heads for less consistent but (apparently) simpler and more
efficient solutions (e.g., [5, 16, 11]).

In this workshop, we discussed the state of the art in BFT systems, and tried to understand why BFT

systems have not seen a widespread adoption, and what we could do to increase the chances of deploying
BFT systems.
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« 1985 until 2000: Theory research — many theorems, no systems, no prototypes
« 2000 until 2010: Systems research — many prototypes, no products
« 2010 onward: Practice — deployment with cryptocurrencies

« Today: More theory research, more systems research, actual products, and
practical deployment
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 Nine

« Explore

« Concurrently, answer your questions
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Nine models for consensus



1 — Threshold trust (BFT)

e Trust by numbers
— n nodes total
— { faulty (Byzantine) nodes

« Nodes are identified
— Proof-of-Authority (PoA)

« Homogeneous and symmetric

« Requires
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Introducti

Reliable and
Secure Distributed
Programming

Second Edition

@ Springer
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— Set of nodes

— Fail-prone sets consisting of .
possibly Byzantine nodes
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e Trust by generalized quorums .__.-..
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« Heterogeneous and symmetric

« Requires .s
— Any 3 fail-prone sets must not cover

— But in distributed cryptography (Coinbase Vault)
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« Subjective generalized quorums

* 0

« Every node has its own fail-prone /",'
sets and quorum system on

- Requires 9.
- any fail-prone set of p with any' IR
set of p' and any of both must not cover
— Consistent across nodes quorum systems




4 — Unstructured, probabilistic voting
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« Random sampling of peers

“~ .® #
« Exchange information and votes ‘,{,’1,':' !
s’ ¢ S
. &~ v :' Y.
« Often coupled with a DAG ‘ \ ! *‘
(directed acyclic graph) Rx N
on transactions }/ ' :'
. vy
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 Stake determines voting power
— Including delegated stake (DPoS)

 Protocols generalized from
symmetric voting (BFT)

» Slashing of invested stake
upon detection of misbehavior




6 — Stake-based probabilistic choice
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« Lottery according to stake

« Probabilistic leader election

- Cryptographic sortition using a ‘ 0 ‘
verifiable random function (VRF) hﬂ

o o




7 — Hybrid prob. choice and stake voting
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 Stake determines probability
or voting power

e Mix of random choice
with voting

» Slashing of invested stake
upon detection of misbehavior




8 — Proof-of-space and proof-of-delay
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- Storage space as resource ‘
o

« Cryptographic ZK proofs for

storage at particular time
« Time delay to prove storage @ ) .
|

iInvestment over time




9 — Proof-of-work
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- Demonstrate invested computation ‘

« Nakamoto consensus
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« Network of n nodes
e Tolerate nodes

« BFT protocols use Byzantine quorums: any set of nodes
- messages per node
- messages in the network

« With 1000s of nodes, this becomes infeasible!
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« Gossip messages logically

— Communicate with nodes, but send logical messages
— Tendermint/CometBFT ...
- Still logical steps per node

 Actually gossip messages (probabilistic broadcast)
— Bitcoin, Ethereum ...
- or messages per node
— Only probabilistic delivery guarantees
— Cost of higher latency
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« Randomly chose a committee

— Select committee of k among n nodes with unbiasable randomness (= how?)
— w.h.p. about nodes in committee are faulty

— Let committee run consensus on block/transaction
— Disseminate the result (= how?)
— Repeat! (Pick a fresh committee for next block ...)

— Set , then communication per node

— Unbiasable randomness? E.g., cryptographic Verifiable Random Functions (VRFs)
— Disseminate decisions? = Gossip
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« Random polls others and interactive updates

— Ask a few others for their opinion (cf. committee)
— Update opinion based on answers from others
— Repeat this until "most" nodes have stabilized and converged on same opinion

— Consensus Dynamics: How a group of agents — such as robots, sensors, or decision-
makers — interacting over a network can reach a common decision. [Wikipedia]

— Avalanche Consensus



Snow and Avalanche consensus

Recent results with Ignacio Amores-Sesar &
Philipp Schneider & Enrico Tedeschi
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. Is a prominent layer-1 blockchain
- cryptocurrency

— Smart-contract platform

— AVAX is in the by market cap

 Novel approach to consensus

- of protocols:
Slush = Snowflake = Snowball = [Snowman — ] Avalanche

— Introduced in a white paper 2019:
Scalable and Probabilistic Leaderless BFT Consensus through Metastability (Yin, Sekniqi,
van Renesse, Sirer)

— Based on random sampling of peer nodes
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— Analysis of the consensus dynamics
— Proofs for safety and liveness of (idealized) Snow protocols
— consensus

— Detailed pseudocode of

— First independent analysis

— Illustrated some problems and provided a solution
— (not quite )
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— X-chain: eXchange (AVAX currency, other tokens)
— P-chain: Platform (validator node management, staking)
— C-chain: smart Contracts (EVM-compatible), with application-specific subnets

« n validator nodes

— Each validator stakes (= 50'000 USD, Febh. 2025)
— (Feb. 2025)
— Throughput: = 10 tps (on average); 50-100 tps (max. recorded); 4500 tps (max. claimed)

— Tolerates faulty (Byzantine) nodes
— Secure "only" against corruption of up to Vi nodes
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— All nodes propose O or
— All correct nodes have stabilized on the same value — or — they decide the same value

 Protocol operates in

— Number of rounds
— Security parameter

— Every node sends and receives about messages per round, k small

— All correct nodes terminate after T rounds, except with probability negligible in
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e Fix  as small constant
- messages overall

« Number of rounds

— should be logarithmic in
— should be polynomial in

« Related to the literature on
— Overview by Becchetti, Clementi, Natale (SIGACT News, 2020)
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Stabilization for consensus: Slush
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. // consensus on a bit

 for do

— pick k random parties, query them for their bit
— if at least o answers are b* then //

« decide(b) /| after a fixed number of T rounds



Stabilization for consensus: Slush
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// consensus on a bit

. for do
— pick k random parties, query them for their bit
— if at least o answers are b* then //
« decide(h)
k=3 a=2

O O O



Stabilization for consensus: Slush
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// consensus on a bit

. for do
— pick k random parties, query them for their bit
— if at least o answers are b* then //
« decide(h)
k=3 a=2 k=50a=3
1 0

O O © OOOOO



Stabilization for consensus: Slush
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// consensus on a bit

- for do
— pick k random parties, query them for their bit
— if at least o answers are b* then //
- decide(b)
k=3 a=2 hk=5a=3 k=5 a=4
1 0

O O O OOOOO LQOOOO
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How does Slush perform?
e Let pi be fraction of nodes with opinion 1 in round
e Let be the expected "progress" towards consensus on
« For fixed k and q, progress ko
Is a function of pi: 8; = 8(p;) = Z (f) lpf(l—pi)k”l (=p)'pk ],
=
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How does Slush perform?
e Let pi be fraction of nodes with opinion 1 in round
e Let be the expected "progress" towards consensus on
« For fixed k and a, progress L
: H . k f k—£+1 f, k—t+1
Is a function of i ; 8 = 8(pi) = Z (f) [pi(l—pi) ~ (1-p)°p! .
=
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How does Slush perform?
« Let pi be fraction of nodes with opinion 1 in round
e Let be the expected "progress" towards consensus on
- For fixed k and o, progress ko ﬁ
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Results on stabilization for Slush
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e Theorem 1: For and , Slush reaches stable consensus in

rounds, with all but negligible probability in A and up to corrupted nodes.

e Theorem 2: For and , the expected number of rounds for Slush
rounds to reach a stable consensus is

with up to corrupted nodes.
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Decide after a stable period: Snowflake
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. // consensus on a bit

« while do

— pick k random parties, query them for their bit
— if at least 0 answers are then // Snowflake reset condition (+)

—else

« decide(b) /| after [2 consecutive rounds with a-maj. for
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Decide more robustly: Snowflake+
. // consensus on a bit
- while do
— pick k random parties, query them for their bit
—if at least a1l answers are then // , reset with simple majority
— if at least a2 answers are b then // , count a strong majority
— else
« decide(h) /| after [3 consecutive rounds with a”-maj. for

Snowball is an earlier variant of Snowflake+



Some practical numbers
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« Number of nodes:

« Number of faulty nodes:

« Number of sampled nodes:
« Simple majority:

« Strong majority:

 Practical insights [BBLOS24]:

— Desired failure probability:
— Required stabilization period:



Insight on Snowflake+
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« Theorem 3: In Snowflake+ (and Snowball), even with a weak adversary, these
two properties are mutually exclusive:

1) Consensus holds with all but negligible probability (in [3);

2) Correct parties decide after polynomially many (in 3) rounds.
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A better tradeoff for consensus: Blizzard
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« Blizzard changes the termination rule by considering more history

counts number of rounds ever with an a-majority for
counts number of rounds ever with an c-majority for

« Blizzard termination rule in Snowflake (+): stop when difference larger than
— if then ...

« Theorem 4: Blizzard reaches consensus with all but negligible probability
(in ) and terminates in up to rounds.



Showman++

UNIVERSITAT



From consensus to (atomic) broadcast
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« Consensus

— Every node, once:
— Every node, once:

« Reliable broadcasts

— Every node, an arbitrary number of times:
— Every node, an arbitrary number of times:

« Atomic broadcast
— All correct nodes all messages in the same order (i.e., output the same sequence)

« Generic broadcast
— All correct nodes at least conflicted messages in the same order
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« Snowflake provides binary consensus
« Atomic broadcast on blocks of transactions

« Folklore idea (works in model)

— Proceed in (asynchronous) rounds

— One consensus instance per round (all nodes propose, needs multivalued consensus)
— Decides on a block for the round

« A simpler idea (requires model)

— Operate in synchronized time slots

— One node per slot proposes a block

— One binary consensus decides on accepting slot of the proposer
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e Live on Avalanche mainnet since ca. 2021

« Divide time into (30 seconds, initially), decide one block per slot
— Divide slot into

 Select one node pseudo-randomly™ for each

e Run binary Snowflake+ consensus on
— If all proposers stay silent, any node may propose a block

* Statically derived from seed in genesis block



Back to another Avalanche
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DAG-ledger consensus in early Avalanche

« Was used in of Avalanche until 2023
— Extends consensus to a broadcast protocol

« Transactions form a , a directed acyclic graph @.@

« Transactions without dependencies (T2 and T3)
may be delivered (accepted) in any order

- parameterized by a conflict
relation and weaker than atomic broadcast

 Transactions that conflict must be ordered

T2 and T2
independent

« Every transaction is decided with a Snowball-/Snowflake+ protocol



Avalanche DAG-ledger consensus

« while TRUE do

— select some transaction
— pick k random parties and query them about

— if more than o positive results then
update DAG: for every ancestor 7' of T,

increment for acceptance
— else
update DAG: for every ancestor T’ of
reset (to 0) for acceptance
—if ( that is not conflicting A )V
( that is conflicting A ) then

deliver (output)

b
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Conflicting tx
can come to
exist in the
DAG.

Referencing
them cleverly
can delay
acceptance
of innocent tx.
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 Detailed pseudocode of Avalanche protocol

« Identified a liveness problem

— Adversary A may delay acceptance of a victim transaction arbitrarily
— DAG makes acceptance of transactions depend on each other
— Subsequent transactions may delay acceptance of already existing (correct) transactions

 For other reasons, Avalanche abandoned the DAG protocol on the X-chain in
March '23



A liveness issue in DAG-ledger consensus
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. may delay acceptance of
a victim transaction arbitrarily
— A submits conflicting transactions, e.g.,
T4and T5

— Waits until T4 is preferred and both
referenced by other transactions

— To attack victim transaction T8, A submits
transactions that reference T8 and T5

— T4 is preferred, but T8 and T5 conflict
with T4

— Causes counterof T8 to be resetto 0
arbitrarily often

—Then T8 is delayed forever
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« Byzantine-tolerant consensus protocols are here to stay
— Models are more important than protocols

« Avalanche: Efficient probabilistic protocols with novel ideas
— Interesting consensus dynamics

e Links
— Web: https://crypto.unibe.ch/
— Blog: https://cryptobern.github.io/

— Bluesky: @cryptobern.bsky.social
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