UNIVERSITAT

Consensus: Theory and Practice

Christian Cachin
University of Bern

ICBC, June 2025

UNIVERSITAT

Some history

u

b
UNIVERSITAT

History — Consensus protocols

« 1980 until 2000: Theory research — many theorems, no systems, no prototypes

Unreliable Failure Detectors for Reliable Distributed Systems 255
The Byzantine Generals Problem - 38

COMMANDER clock synchronization

Set of problems solvable in:

‘Impossibility of Distributed Consensus with One Faulty Process

Synchronous systems e

Asynchronous systems using

TRB
non-blocking atomic commit

“attack”’

Consensus o .
“ e X 1 2
_ he said 'retreat / Atomic Broadcast
- // Asynchronous systems using OW
@ FIGURE 1
Fig. 1. Lieutenant 2 a traitor. Asynchronous systems
\ ’
\ 7/
\ ’
FiG. 9. Problem solvability in different distributed computing models. Se g
g2 '\ V!

7

MMANDER

234 T. D. CHANDRA AND S. TOUEG
“‘attack “‘retreat’’
Accuracy
Completeness || Strong | Weak Eventual Strong Eventual Weak

. L Strong Perfect | Strong | Eventually Perfect | Eventually Strong
. he said ‘retreat’ P %) o o

Weak Weak Eventually Weak
3 W 2 oW

Fig. 2. The commander a traitor.

FiG. 1. Eight classes of failure detectors defined in terms of accuracy and completeness.

History — Consensus protocols

UNIVERSITAT

« 1980 until 2000: Theory research — many theorems, no systems, no prototypes
« 2000 until 2010: Systems research — many prototypes, no products

The Next 700 BFT Protocols

2 - o S Zyzzyva (batching)
408 . M. Castro and B. Liskov 2 P

zzzzzzzzz

Mg, i<PRE-PREPAHE,v,n,D(m)>GO§ <PHEPAHE,v,n,D(m)>ai§ <COMMIT,V,N > <REPLY,*>u;.

clientc ‘
| i i | iy
: : ‘ ‘ hy
=N N KL)]
: 1 ; 0 20 40 60 % 100
repllca 1 \\ \\l ' W ! 7% i / / Number of clients
replica 5 \ \ M 3 m : / Fig. 8. Throughput for the 0/0 benchmark (f=1).

replica 3

b

u

b
UNIVERSITAT
BRERN

BFTW3: Why? When? Where?
Workshop on Theory and Practice of Byzantine Fault
Tolerance

Affiliated with DISC 2009

September 22, 2009
Elche, Spain

The workshop gathers researchers from both theory and systems communities and aims at
understanding why the impressive research activity in the area of Byzantine fault-tolerance is not yet
instantiated in practice. Has the moment for a wide deployment of BFT systems arrived, and if so,
where BFT systems should be deployed in the first place?

Format
The workshop will consist of invited contributions. No published proceedings, the presentations may

contain results that appeared or are going to appear elsewhere, work-in-progress reports, surveys
and tutorials. A submission is expected to be a short (around two pages) abstract of the presentation.

b

u

b
UNIVERSITAT
BRERN

BFTW3: Why? When? Where?
Workshop on Theory and Practice of Byzantine Fault
Tolerance

Affiliated with DISC 2009

September 22, 2009
Elche, Spain

However, there are few visible instantiations of these results in practical systems. Industrial software
tends to ignore the BFT-related research and heads for less consistent but (apparently) simpler and more
efficient solutions (e.g., [5, 16, 11]).

In this workshop, we discussed the state of the art in BFT systems, and tried to understand why BFT

systems have not seen a widespread adoption, and what we could do to increase the chances of deploying
BFT systems.

b

History — Consensus protocols u

b
UNIVERSITAT

« 1985 until 2000: Theory research — many theorems, no systems, no prototypes
« 2000 until 2010: Systems research — many prototypes, no products
« 2010 onward: Practice — deployment with cryptocurrencies

« Today: More theory research, more systems research, actual products, and
practical deployment

UNIVERSITAT

Consensus protocols today

Overview

UNIVERSITAT
ERN

 Nine

« Explore

« Concurrently, answer your questions

UNIVERSITAT

Nine models for consensus

1 — Threshold trust (BFT)

e Trust by numbers
— n nodes total
— { faulty (Byzantine) nodes

« Nodes are identified
— Proof-of-Authority (PoA)

« Homogeneous and symmetric

« Requires

—h >
i
N N

b

u

b
UNIVERSITAT
BRERN

Introducti

Reliable and
Secure Distributed
Programming

Second Edition

@ Springer

b

2 — Generalized trust u

b
UNIVERSITAT
BRERN

— Set of nodes

— Fail-prone sets consisting of .
possibly Byzantine nodes

4
4
’
1
L}
|}
|)
A

e Trust by generalized quorums .__.-..
§~‘~

« Heterogeneous and symmetric

« Requires .s
— Any 3 fail-prone sets must not cover

— But in distributed cryptography (Coinbase Vault)

b

3 — Asymmetric trust u

b
UNIVERSITAT
BRERN

« Subjective generalized quorums

* 0

« Every node has its own fail-prone /",'
sets and quorum system on

- Requires 9.
- any fail-prone set of p with any' IR
set of p' and any of both must not cover
— Consistent across nodes quorum systems

4 — Unstructured, probabilistic voting

UNIVERSITAT

« Random sampling of peers

“~ .® #
« Exchange information and votes ‘,{,’1,':' !
s’ ¢ S
. &~ v :' Y.
« Often coupled with a DAG ‘ \ ! *‘
(directed acyclic graph) Rx N
on transactions }/ ' :'
. vy

5 — Stake-based voting

UNIVERSITAT
RN

 Stake determines voting power
— Including delegated stake (DPoS)

 Protocols generalized from
symmetric voting (BFT)

» Slashing of invested stake
upon detection of misbehavior

6 — Stake-based probabilistic choice

UNIVERSITAT

« Lottery according to stake

« Probabilistic leader election

- Cryptographic sortition using a ‘ 0 ‘
verifiable random function (VRF) hﬂ

o o

7 — Hybrid prob. choice and stake voting

UNIVERSITAT

 Stake determines probability
or voting power

e Mix of random choice
with voting

» Slashing of invested stake
upon detection of misbehavior

8 — Proof-of-space and proof-of-delay

UNIVERSITAT

- Storage space as resource ‘
o

« Cryptographic ZK proofs for

storage at particular time
« Time delay to prove storage @) .
|

iInvestment over time

9 — Proof-of-work

UNIVERSITAT

- Demonstrate invested computation ‘

« Nakamoto consensus

UNIVERSITAT

Communication complexity

Communication in consensus protocols

UNIVERSITAT

« Network of n nodes
e Tolerate nodes

« BFT protocols use Byzantine quorums: any set of nodes
- messages per node
- messages in the network

« With 1000s of nodes, this becomes infeasible!

b

How to reduce communication (1) u

UNIVERSITAT
BRERN

« Gossip messages logically

— Communicate with nodes, but send logical messages
— Tendermint/CometBFT ...
- Still logical steps per node

 Actually gossip messages (probabilistic broadcast)
— Bitcoin, Ethereum ...
- or messages per node
— Only probabilistic delivery guarantees
— Cost of higher latency

b

How to reduce communication (2) u

UNIVERSITAT
BRERN

« Randomly chose a committee

— Select committee of k among n nodes with unbiasable randomness (= how?)
— w.h.p. about nodes in committee are faulty

— Let committee run consensus on block/transaction
— Disseminate the result (= how?)
— Repeat! (Pick a fresh committee for next block ...)

— Set , then communication per node

— Unbiasable randomness? E.g., cryptographic Verifiable Random Functions (VRFs)
— Disseminate decisions? = Gossip

b

How to reduce communication (3) u

UNIVERSITAT
BRERN

« Random polls others and interactive updates

— Ask a few others for their opinion (cf. committee)
— Update opinion based on answers from others
— Repeat this until "most" nodes have stabilized and converged on same opinion

— Consensus Dynamics: How a group of agents — such as robots, sensors, or decision-
makers — interacting over a network can reach a common decision. [Wikipedia]

— Avalanche Consensus

Snow and Avalanche consensus

Recent results with Ignacio Amores-Sesar &
Philipp Schneider & Enrico Tedeschi

“~"‘¢YJ*I
PN 4

Y SR

¢ S

~

1 e
Lot
1

b

Avalanche u

b
fai= | UNIVERSITAT
| RERN

b

Avalanche u

b
UNIVERSITAT
BRERN

. Is a prominent layer-1 blockchain
- cryptocurrency

— Smart-contract platform

— AVAX is in the by market cap

 Novel approach to consensus

- of protocols:
Slush = Snowflake = Snowball = [Snowman —] Avalanche

— Introduced in a white paper 2019:
Scalable and Probabilistic Leaderless BFT Consensus through Metastability (Yin, Sekniqi,
van Renesse, Sirer)

— Based on random sampling of peer nodes

b

Recent results [ACT22, ACT24] u

b
UNIVERSITAT
BRERN

— Analysis of the consensus dynamics
— Proofs for safety and liveness of (idealized) Snow protocols
— consensus

— Detailed pseudocode of

— First independent analysis

— Illustrated some problems and provided a solution
— (not quite)

b

Avalanche network model u

b
UNIVERSITAT
BRERN

— X-chain: eXchange (AVAX currency, other tokens)
— P-chain: Platform (validator node management, staking)
— C-chain: smart Contracts (EVM-compatible), with application-specific subnets

« n validator nodes

— Each validator stakes (= 50'000 USD, Febh. 2025)
— (Feb. 2025)
— Throughput: = 10 tps (on average); 50-100 tps (max. recorded); 4500 tps (max. claimed)

— Tolerates faulty (Byzantine) nodes
— Secure "only" against corruption of up to Vi nodes

b

Problem statement u

b
UNIVERSITAT
BRERN

— All nodes propose O or
— All correct nodes have stabilized on the same value — or — they decide the same value

 Protocol operates in

— Number of rounds
— Security parameter

— Every node sends and receives about messages per round, k small

— All correct nodes terminate after T rounds, except with probability negligible in

b

Goals u

b
UNIVERSITAT
BRERN

e Fix as small constant
- messages overall

« Number of rounds

— should be logarithmic in
— should be polynomial in

« Related to the literature on
— Overview by Becchetti, Clementi, Natale (SIGACT News, 2020)

Slush

UNIVERSITAT

Stabilization for consensus: Slush

UNIVERSITAT

. // consensus on a bit

 for do

— pick k random parties, query them for their bit
— if at least o answers are b* then //

« decide(b) /| after a fixed number of T rounds

Stabilization for consensus: Slush

UNIVERSITAT

// consensus on a bit

. for do
— pick k random parties, query them for their bit
— if at least o answers are b* then //
« decide(h)
k=3 a=2

O O O

Stabilization for consensus: Slush

UNIVERSITAT

// consensus on a bit

. for do
— pick k random parties, query them for their bit
— if at least o answers are b* then //
« decide(h)
k=3 a=2 k=50a=3
1 0

O O © OOOOO

Stabilization for consensus: Slush

UNIVERSITAT

// consensus on a bit

- for do
— pick k random parties, query them for their bit
— if at least o answers are b* then //
- decide(b)
k=3 a=2 hk=5a=3 k=5 a=4
1 0

O O O OOOOO LQOOOO

u
How does Slush perform?
e Let pi be fraction of nodes with opinion 1 in round
e Let be the expected "progress" towards consensus on
« For fixed k and q, progress ko
Is a function of pi: 8; = 8(p;) = Z (f) lpf(l—pi)k”l (=p)'pk],
=

b

u
How does Slush perform?
e Let pi be fraction of nodes with opinion 1 in round
e Let be the expected "progress" towards consensus on
« For fixed k and a, progress L
: H . k f k—£+1 f, k—t+1
Is a function of i ; 8 = 8(pi) = Z (f) [pi(l—pi) ~ (1-p)°p! .
=

0.0 01 02 03 04 05 0.6 07 0.8 0.9 1.0
Pi

b

u
How does Slush perform?
« Let pi be fraction of nodes with opinion 1 in round
e Let be the expected "progress" towards consensus on
- For fixed k and o, progress ko ﬁ
: : . o N o Lr1 o Nk=t+1 1 o\ Lk—t+1
Is a function of pi : 8i = 8(pi) = ; (f) lpi(l Di) (1=pi)'p; |
0.3 1
09 —— =20, =11

024 — % k=20,a=15
—&— k=20,a =18

0.11 0.1{ —®— k=20,a=20

% 0.0 % 0.0
—0.11 —0.1 1
—0.21

—0.2
—0.31

00 01 02 03 04 05 06 0.7 0.8 0.9 1.0 0.0 01 02 03 04 05 0.6 07 0.8 09 1.0
Pi Di

Results on stabilization for Slush

UNIVERSITAT

e Theorem 1: For and , Slush reaches stable consensus in

rounds, with all but negligible probability in A and up to corrupted nodes.

e Theorem 2: For and , the expected number of rounds for Slush
rounds to reach a stable consensus is

with up to corrupted nodes.

Snowflake

UNIVERSITAT

Decide after a stable period: Snowflake

UNIVERSITAT

. // consensus on a bit

« while do

— pick k random parties, query them for their bit
— if at least 0 answers are then // Snowflake reset condition (+)

—else

« decide(b) /| after [2 consecutive rounds with a-maj. for

b

: u
Decide more robustly: Snowflake+
. // consensus on a bit
- while do
— pick k random parties, query them for their bit
—if at least a1l answers are then // , reset with simple majority
— if at least a2 answers are b then // , count a strong majority
— else
« decide(h) /| after [3 consecutive rounds with a”-maj. for

Snowball is an earlier variant of Snowflake+

Some practical numbers

UNIVERSITAT

« Number of nodes:

« Number of faulty nodes:

« Number of sampled nodes:
« Simple majority:

« Strong majority:

 Practical insights [BBLOS24]:

— Desired failure probability:
— Required stabilization period:

Insight on Snowflake+

UNIVERSITAT

« Theorem 3: In Snowflake+ (and Snowball), even with a weak adversary, these
two properties are mutually exclusive:

1) Consensus holds with all but negligible probability (in [3);

2) Correct parties decide after polynomially many (in 3) rounds.

Blizzard

UNIVERSITAT

A better tradeoff for consensus: Blizzard

UNIVERSITAT

« Blizzard changes the termination rule by considering more history

counts number of rounds ever with an a-majority for
counts number of rounds ever with an c-majority for

« Blizzard termination rule in Snowflake (+): stop when difference larger than
— if then ...

« Theorem 4: Blizzard reaches consensus with all but negligible probability
(in) and terminates in up to rounds.

Showman++

UNIVERSITAT

From consensus to (atomic) broadcast

b
UNIVERSITAT
BRERN

« Consensus

— Every node, once:
— Every node, once:

« Reliable broadcasts

— Every node, an arbitrary number of times:
— Every node, an arbitrary number of times:

« Atomic broadcast
— All correct nodes all messages in the same order (i.e., output the same sequence)

« Generic broadcast
— All correct nodes at least conflicted messages in the same order

b

Towards atomic broadcast u

b
UNIVERSITAT
BRERN

« Snowflake provides binary consensus
« Atomic broadcast on blocks of transactions

« Folklore idea (works in model)

— Proceed in (asynchronous) rounds

— One consensus instance per round (all nodes propose, needs multivalued consensus)
— Decides on a block for the round

« A simpler idea (requires model)

— Operate in synchronized time slots

— One node per slot proposes a block

— One binary consensus decides on accepting slot of the proposer

b

u
Showman++

b
UNIVERSITAT
BRERN

e Live on Avalanche mainnet since ca. 2021

« Divide time into (30 seconds, initially), decide one block per slot
— Divide slot into

 Select one node pseudo-randomly™ for each

e Run binary Snowflake+ consensus on
— If all proposers stay silent, any node may propose a block

* Statically derived from seed in genesis block

Back to another Avalanche

UNIVERSITAT

DAG-ledger consensus in early Avalanche

« Was used in of Avalanche until 2023
— Extends consensus to a broadcast protocol

« Transactions form a , a directed acyclic graph @.@

« Transactions without dependencies (T2 and T3)
may be delivered (accepted) in any order

- parameterized by a conflict
relation and weaker than atomic broadcast

 Transactions that conflict must be ordered

T2 and T2
independent

« Every transaction is decided with a Snowball-/Snowflake+ protocol

Avalanche DAG-ledger consensus

« while TRUE do

— select some transaction
— pick k random parties and query them about

— if more than o positive results then
update DAG: for every ancestor 7' of T,

increment for acceptance
— else
update DAG: for every ancestor T’ of
reset (to 0) for acceptance
—if (that is not conflicting A)V
(that is conflicting A) then

deliver (output)

b

u

b
UNIVERSITAT
BRERN

Conflicting tx
can come to
exist in the
DAG.

Referencing
them cleverly
can delay
acceptance
of innocent tx.

b

Analysis of DAG-ledger consensus [ACT22] u

UNIVERSITAT
BRERN

 Detailed pseudocode of Avalanche protocol

« Identified a liveness problem

— Adversary A may delay acceptance of a victim transaction arbitrarily
— DAG makes acceptance of transactions depend on each other
— Subsequent transactions may delay acceptance of already existing (correct) transactions

 For other reasons, Avalanche abandoned the DAG protocol on the X-chain in
March '23

A liveness issue in DAG-ledger consensus

b
UNIVERSITAT

. may delay acceptance of
a victim transaction arbitrarily
— A submits conflicting transactions, e.g.,
T4and T5

— Waits until T4 is preferred and both
referenced by other transactions

— To attack victim transaction T8, A submits
transactions that reference T8 and T5

— T4 is preferred, but T8 and T5 conflict
with T4

— Causes counterof T8 to be resetto 0
arbitrarily often

—Then T8 is delayed forever

b

. U
Conclusion

b .
UNIVERSITAT
.. .‘ ‘-. .“-'.{“. .. ----- -.._‘- . ®
6 .. o ¢ > % ¥ oo e @ ¢ o ° o%)o o @@o o % °
Y o e @ . 4 & @ o @ o . o ® o O
o g g P - ° = ° °

« Byzantine-tolerant consensus protocols are here to stay
— Models are more important than protocols

« Avalanche: Efficient probabilistic protocols with novel ideas
— Interesting consensus dynamics

e Links
— Web: https://crypto.unibe.ch/
— Blog: https://cryptobern.github.io/

— Bluesky: @cryptobern.bsky.social

b

Thanks u

b
UNIVERSITAT
BRERN

« This work has been supported by

— Swiss National Science Foundation (SNSF);

— IC3 - The Initiative for CryptoCurrencies and Contracts;

— Avalanche, Inc.;

— Donations from Sui Foundation, Stellar Development Foundation, and more.

e Links
— Web: https://crypto.unibe.ch/
— Blog: https://cryptobern.github.io/

— Bluesky: @cryptobern.bsky.social

UNIVERSITAT

References

References 1

UNIVERSITAT

. Amores-Sesar, 1., Cachin, C., & Tedeschi, E. (2022). When is Spring
coming? A Security Analysis of Avalanche Consensus. Proc. 26th International
Conference on Principles of Distributed Systems (OPODIS), 10:1-10:22.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.10

. Amores-Sesar, 1., Cachin, C., & Schneider, P. (2024). An Analysis of
Avalanche Consensus. In Y. Emek (Ed.), Proc. Structural Information and
Communication Complexity (SIROCCO) (Vol. 14662, pp. 27-44). Springer.
https://doi.org/10.1007/978-3-031-60603-8_2

References 2

UNIVERSITAT

. Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick
O'Grady, Kevin Sekniqi: Frosty: Bringing strong liveness guarantees to the Snow
family of consensus protocols. CoRR abs/2404.14250 (2024)

. Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Kevin Sekniq:
Snowman for partial synchrony. CoRR abs/2501.15904 (2025)

. Patrick O'Grady: Snowman++: Congestion control for Snowman VMs
https://github.com/ava-labs/avalanchego/blob/master/vms/proposervm/
README.md

