

Consensus: Theory and Practice

Christian Cachin
University of Bern

ICBC, June 2025

Some history

History – Consensus protocols
• 1980 until 2000: Theory research – many theorems, no systems, no prototypes

History – Consensus protocols
• 1980 until 2000: Theory research – many theorems, no systems, no prototypes
• 2000 until 2010: Systems research – many prototypes, no products

History – Consensus protocols
• 1985 until 2000: Theory research – many theorems, no systems, no prototypes
• 2000 until 2010: Systems research – many prototypes, no products
• 2010 onward: Practice – deployment with cryptocurrencies

• Today: More theory research, more systems research, actual products, and
practical deployment

Consensus protocols today

Overview
• Nine models for consensus

• Explore the Snow protocol family of Avalanche

• Concurrently, answer your questions

Nine models for consensus

1 – Threshold trust (BFT)
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Nodes are identified
– Proof-of-Authority (PoA)

• Homogeneous and symmetric

• Requires n > 3f

• Tendermint/Cosmos, Internet Computer (DFINITY),
Hyperledger Fabric, VeChain, BNB SC, Hashgraph, TRON ...

n = 7
f = 2

2 – Generalized trust
• Trust by generalized quorums
– Set of nodes P
– Fail-prone sets consisting of

possibly Byzantine nodes
– Byzantine quorum system

• Heterogeneous and symmetric

• Requires Q3-property
– Any 3 fail-prone sets must not cover P

• Not used for consensus in any cryptocurrency (!)
– But in distributed cryptography (Coinbase Vault)

3 – Asymmetric trust
• Subjective generalized quorums

• Every node has its own fail-prone
sets and quorum system on P

• Heterogeneous and asymmetric

• Requires B3-property
– ∀ p, p' : any fail-prone set of p with any

set of p' and any of both must not cover P
– Consistent across nodes quorum systems

• Ripple, Stellar, [ACTZ24]

4 – Unstructured, probabilistic voting
• Random sampling of peers

• Exchange information and votes

• Often coupled with a DAG
(directed acyclic graph)
on transactions

• Avalanche, Conflux, IOTA-Tangle

5 – Stake-based voting
• Stake determines voting power
– Including delegated stake (DPoS)

• Protocols generalized from
symmetric voting (BFT)

• Slashing of invested stake
upon detection of misbehavior

• Tendermint/Cosmos, EOS, NEO,
Aptos, SUI, BNB SC ...

6 – Stake-based probabilistic choice
• Lottery according to stake

• Probabilistic leader election

• Cryptographic sortition using a
verifiable random function (VRF)

• Cardano/Ouroboros ...

7 – Hybrid prob. choice and stake voting
• Stake determines probability

or voting power

• Mix of random choice
with voting

• Slashing of invested stake
upon detection of misbehavior

• Ethereum (LMD-GHOST & FFG-Casper),
Polkadot (BABE & GRANDPA),
Algorand ...

8 – Proof-of-space and proof-of-delay
• Storage space as resource

• Cryptographic ZK proofs for
storage at particular time

• Time delay to prove storage
investment over time

• Filecoin, Chia, Storj ...

9 – Proof-of-work
• Demonstrate invested computation

• Nakamoto consensus

• Bitcoin and variations,
Litecoin, Dogecoin,
Ethereum (1.0) and variations,
Ethereum Classic,
Monero, ZCash ...

Communication complexity

Communication in consensus protocols
• Network of n nodes
• Tolerate f faulty nodes

• BFT protocols use Byzantine quorums: any set of b > (n+f)/2 nodes
→ (n)Ω messages per node
→ (nΩ 2) messages in the network

• With 1000s of nodes, this becomes infeasible!

How to reduce communication (1)
• Gossip messages logically
– Communicate with O(log n) nodes, but send (n)Ω logical messages
– Tendermint/CometBFT ...

→ Still O(n2) logical steps per node

• Actually gossip messages (probabilistic broadcast)
– Bitcoin, Ethereum ...

→ O(log n) or O(1) messages per node
– Only probabilistic delivery guarantees
– Cost of higher latency

How to reduce communication (2)
• Randomly chose a committee
– Select committee of k among n nodes with unbiasable randomness (→ how?)

→ w.h.p. about k/3 nodes in committee are faulty

– Let committee run consensus on block/transaction
– Disseminate the result (→ how?)
– Repeat! (Pick a fresh committee for next block ...)

– Set k = log n , then O(polylog n) communication per node

– Unbiasable randomness? E.g., cryptographic Verifiable Random Functions (VRFs)
– Disseminate decisions? → Gossip

How to reduce communication (3)
• Random polls others and interactive updates

– Ask a few others for their opinion (cf. committee)
– Update opinion based on answers from others
– Repeat this until "most" nodes have stabilized and converged on same opinion

→ Consensus Dynamics: How a group of agents – such as robots, sensors, or decision-
makers – interacting over a network can reach a common decision. [Wikipedia]

→ Avalanche Consensus

Snow and Avalanche consensus

Recent results with Ignacio Amores-Sesar &
Philipp Schneider & Enrico Tedeschi

Avalanche

Avalanche
• Avalanche is a prominent layer-1 blockchain
– AVAX cryptocurrency
– Smart-contract platform
– AVAX is in the top 15 by market cap

• Novel approach to consensus
– "Snow family" of protocols:

Slush → Snowflake → Snowball → [Snowman →] Avalanche

– Introduced in a white paper 2019:
Scalable and Probabilistic Leaderless BFT Consensus through Metastability (Yin, Sekniqi,
van Renesse, Sirer)

– Based on random sampling of peer nodes

Recent results [ACT22, ACT24]
• [ACS24]
– Analysis of the consensus dynamics
– Proofs for safety and liveness of (idealized) Snow protocols
– Binary consensus

• [ACT22]
– Detailed pseudocode of DAG-structured ledger consensus protocol
– First independent analysis
– Illustrated some problems and provided a solution
– Generic broadcast (not quite atomic broadcast)

Avalanche network model
• Cryptocurrency and smart-contract platform
– X-chain: eXchange (AVAX currency, other tokens)
– P-chain: Platform (validator node management, staking)
– C-chain: smart Contracts (EVM-compatible), with application-specific subnets

• n validator nodes
– Each validator stakes 2000 AVAX (≈ 50'000 USD, Feb. 2025)
– n ≈ 1400 (Feb. 2025)
– Throughput: ≈ 10 tps (on average); 50-100 tps (max. recorded); 4500 tps (max. claimed)

• Security
– Tolerates faulty (Byzantine) nodes
– Secure "only" against corruption of up to √n nodes

Problem statement
• Consensus is binary
– All nodes propose 0 or 1
– All correct nodes have stabilized on the same value – or – they decide the same value

• Protocol operates in synchronous rounds
– Number of rounds T
– Security parameter β

• Randomized protocol
– Every node sends and receives about O(k) messages per round, k small

• Termination
– All correct nodes terminate after T rounds, except with probability negligible in β

Goals
• Fix k as small constant
– O(n) messages overall

• Number of rounds T
– should be logarithmic in n
– should be polynomial in β

• Related to the literature on dynamics of consensus
– Overview by Becchetti, Clementi, Natale (SIGACT News, 2020)

Slush

Stabilization for consensus: Slush
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b) // after a fixed number of T rounds

Stabilization for consensus: Slush
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b)

Stabilization for consensus: Slush
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b)

Stabilization for consensus: Slush
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b)

How does Slush perform?
• Let pi be fraction of nodes with opinion 1 in round i
• Let δi [-1, 1] ∈ be the expected "progress" towards consensus on 1
• For fixed k and α, progress δi

is a function of pi :

How does Slush perform?
• Let pi be fraction of nodes with opinion 1 in round i
• Let δi [-1, 1] ∈ be the expected "progress" towards consensus on 1
• For fixed k and α, progress δi

is a function of pi :

How does Slush perform?
• Let pi be fraction of nodes with opinion 1 in round i
• Let δi [-1, 1] ∈ be the expected "progress" towards consensus on 1
• For fixed k and α, progress δi

is a function of pi :

Results on stabilization for Slush
• Theorem 1: For k ≥ 2 and = (k+1)/2α , Slush reaches stable consensus in

O(log n +)λ
rounds, with all but negligible probability in λ and up to O(√n) corrupted nodes.

• Theorem 2: For k ≥ 2 and k/2 < < kα , the expected number of rounds for Slush
rounds to reach a stable consensus is

Ω(log n / log k),
with up to O(√n) corrupted nodes.

Snowflake

Decide after a stable period: Snowflake
• b ∈ {0,1} // consensus on a bit
• counter ← 0
• while counter < β do
– pick k random parties, query them for their bit b
– if at least α answers are b* ≠ b then // > α k/2, Snowflake reset condition (+)

• b ← b*
counter ← 0

– else
counter ← counter + 1

• decide(b) // after β consecutive rounds with α-maj. for b

Decide more robustly: Snowflake+
• b ∈ {0,1} // consensus on a bit
• counter ← 0
• while counter < β do
– pick k random parties, query them for their bit b
– if at least 1α answers are b* ≠ b then // 1 > k/2α , reset with simple majority

b ← b*; counter ← 0
– if at least 2α answers are b then // 2 > 1α α , count a strong majority

counter ← counter + 1
– else

counter ← 0
• decide(b) // after β consecutive rounds with 2α -maj. for b

Snowball is an earlier variant of Snowflake+

Some practical numbers

• Number of nodes: n ≥ 500
• Number of faulty nodes: f ≤ n/5 = 100
• Number of sampled nodes: k = 80
• Simple majority: 1α = 41
• Strong majority: 2α = 72

• Practical insights [BBLOS24]:
– Desired failure probability: ε = 10-22 ε = 10-14 ε = 10-6

– Required stabilization period: = 12 β = 8 β = 4 β

Insight on Snowflake+

• Theorem 3: In Snowflake+ (and Snowball), even with a weak adversary, these
two properties are mutually exclusive:

1) Consensus holds with all but negligible probability (in β);

2) Correct parties decide after polynomially many (in β) rounds.

Blizzard

A better tradeoff for consensus: Blizzard
• Blizzard changes the termination rule by considering more history

c0 counts number of rounds ever with an α-majority for 0
c1 counts number of rounds ever with an α-majority for 1

• Blizzard termination rule in Snowflake (+): stop when difference larger than t
– if | c0 - c1 | ≥ t then ...

• Theorem 4: Blizzard reaches consensus with all but negligible probability
(in β) and terminates in up to O(log n +)β rounds.

Snowman++

From consensus to (atomic) broadcast
• Consensus
– Every node, once: propose(val v)
– Every node, once: decide(val v)

• Reliable broadcasts
– Every node, an arbitrary number of times: broadcast(msg m)
– Every node, an arbitrary number of times: deliver(msg m)

• Atomic broadcast
– All correct nodes deliver all messages in the same order (i.e., output the same sequence)

• Generic broadcast
– All correct nodes deliver at least conflicted messages in the same order

Towards atomic broadcast
• Snowflake provides binary consensus

• Atomic broadcast on blocks of transactions

• Folklore idea (works in asynchronous model)
– Proceed in (asynchronous) rounds
– One consensus instance per round (all nodes propose, needs multivalued consensus)
– Decides on a block for the round

• A simpler idea (requires synchronous model)
– Operate in synchronized time slots
– One node per slot proposes a block
– One binary consensus decides on accepting slot of the proposer

Snowman++
• Live on Avalanche mainnet since ca. 2021

• Divide time into slots (30 seconds, initially), decide one block per slot
– Divide slot into 6 windows

• Select one proposer node pseudo-randomly* for each window

• Run binary Snowflake+ consensus on block(s) from proposers
– If all proposers stay silent, any node may propose a block

* Statically derived from seed in genesis block

Back to another Avalanche

DAG-ledger consensus in early Avalanche
• Was used in X-Chain of Avalanche until 2023
– Extends consensus to a broadcast protocol

• Transactions form a DAG, a directed acyclic graph

• Transactions without dependencies (T2 and T3)
may be delivered (accepted) in any order

– Generic broadcast, parameterized by a conflict
relation and weaker than atomic broadcast

• Transactions that conflict must be ordered

• Every transaction is decided with a Snowball-/Snowflake+ protocol

T2 and T2
independent

Avalanche DAG-ledger consensus
• while TRUE do
– select some transaction T
– pick k random parties and query them about T

– if more than a positive results then
update DAG: for every ancestor T' of T,
increment counter(T') for acceptance

– else
update DAG: for every ancestor T' of T,
reset (to 0) counter(T') for acceptance

– if (∃ T* that is not conflicting Ù counter(T*) ≥ 1β) Ú
 (∃ T* that is conflicting Ù counter(T*) ≥ 1β) then

deliver (output) T

Conflicting tx
can come to
exist in the
DAG.

Referencing
them cleverly
can delay
acceptance
of innocent tx.

Analysis of DAG-ledger consensus [ACT22]
• Detailed pseudocode of Avalanche protocol

• Identified a liveness problem
– Adversary A may delay acceptance of a victim transaction arbitrarily
– DAG makes acceptance of transactions depend on each other
– Subsequent transactions may delay acceptance of already existing (correct) transactions

• For other reasons, Avalanche abandoned the DAG protocol on the X-chain in
March '23

A liveness issue in DAG-ledger consensus
• Adversary A may delay acceptance of

a victim transaction arbitrarily
– A submits conflicting transactions, e.g.,

T4 and T5
– Waits until T4 is preferred and both

referenced by other transactions
– To attack victim transaction T8, A submits

transactions that reference T8 and T5
– T4 is preferred, but T8 and T5 conflict

with T4
– Causes counter of T8 to be reset to 0

arbitrarily often
– Then T8 is delayed forever

Conclusion

• Byzantine-tolerant consensus protocols are here to stay
– Models are more important than protocols

• Avalanche: Efficient probabilistic protocols with novel ideas
– Interesting consensus dynamics

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Bluesky: @cryptobern.bsky.social

• Byzantine-tolerant consensus protocols are here to stay
– Models are more important than protocols

• Avalanche: Efficient probabilistic protocols with novel ideas
– Interesting consensus dynamics

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Twitter/X: https://x.com/cczurich/

Thanks
• This work has been supported by
– Swiss National Science Foundation (SNSF);
– IC3 – The Initiative for CryptoCurrencies and Contracts;
– Avalanche, Inc.;
– Donations from Sui Foundation, Stellar Development Foundation, and more.

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Bluesky: @cryptobern.bsky.social

References

References 1
• [ACT22] Amores-Sesar, I., Cachin, C., & Tedeschi, E. (2022). When is Spring

coming? A Security Analysis of Avalanche Consensus. Proc. 26th International
Conference on Principles of Distributed Systems (OPODIS), 10:1–10:22.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.10

• [ACS24] Amores-Sesar, I., Cachin, C., & Schneider, P. (2024). An Analysis of
Avalanche Consensus. In Y. Emek (Ed.), Proc. Structural Information and
Communication Complexity (SIROCCO) (Vol. 14662, pp. 27–44). Springer.
https://doi.org/10.1007/978-3-031-60603-8_2

References 2
• [BBLOS24] Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick

O'Grady, Kevin Sekniqi: Frosty: Bringing strong liveness guarantees to the Snow
family of consensus protocols. CoRR abs/2404.14250 (2024)

• [BBLS25] Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Kevin Sekniqi:
Snowman for partial synchrony. CoRR abs/2501.15904 (2025)

• [G21] Patrick O'Grady: Snowman++: Congestion control for Snowman VMs
https://github.com/ava-labs/avalanchego/blob/master/vms/proposervm/
README.md

