

Consensus in blockchains:
An overview

Christian Cachin
University of Bern

a16z, August 2024

Some history

History 1 - CC

History 1 - CC

History 1 - CC

History 1 - CC

History 2 - Consensus protocols

History 2 - Consensus protocols
• 1980 until 2000: Theory research – many theorems, no systems, no prototypes

• 2000 until 2010: Systems research – many prototypes, no products

History 2 - Consensus protocols
• 1985 until 2000: Theory research – many theorems, no systems, no prototypes

• 2000 until 2010: Systems research – many prototypes, no products

• 2010 onward: Practice – deployment with cryptocurrencies

• Today: More theory research, more systems research, products, and
deployments

Consensus protocols today

Overview
• Nine models of blockchain consensus

• Explore generalized trust

• Explore asymmetric trust

• Answer your questions

Nine models of consensus

1 – Threshold trust (BFT)
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Nodes are identified
– Proof-of-Authority (PoA)

• Homogeneous and symmetric

• Requires n > 3f

• Tendermint/Cosmos, Internet Computer (DFINITY),
Hyperledger Fabric, VeChain, BNB SC, Hashgraph, TRON ...

n = 7
f = 2

2 – Generalized trust
• Trust by generalized quorums
– Set of nodes P
– Fail-prone sets consisting of

possibly Byzantine nodes
– Byzantine quorum system

• Heterogeneous and symmetric

• Requires Q3-property
– Any 3 fail-prone sets must not cover P

• Not used for consensus in any cryptocurrency (!)
– But in distributed cryptography (Coinbase Vault)

3 – Asymmetric trust
• Subjective generalized quorums

• Every node has its own fail-prone
sets and quorum system on P

• Heterogeneous and asymmetric

• Requires B3-property
– ∀ p, p' : any fail-prone set of p with any

set of p' and any of both must not cover P
– Consistent across nodes quorum systems

• Ripple, Stellar, [ACTZ24]

4 – Unstructured, probabilistic voting
• Random sampling of peers

• Exchange information and votes

• Often coupled with a DAG
(directed acyclic graph)
on transactions

• Avalanche, Conflux, IOTA-Tangle

5 – Stake-based voting
• Stake determines voting power
– Including delegated stake (DPoS)

• Protocols generalized from
symmetric voting (BFT)

• Slashing of invested stake
upon detection of misbehavior

• Tendermint/Cosmos, EOS, NEO,
Aptos, SUI, BNB SC ...

6 – Stake-based probabilistic choice
• Lottery according to stake

• Probabilistic leader election

• Cryptographic sortition using a
verifiable random function (VRF)

• Cardano/Ouroboros ...

7 – Hybrid prob. choice and stake voting
• Stake determines probability

or voting power

• Mix of random choice
with voting

• Slashing of invested stake
upon detection of misbehavior

• Ethereum (LMD-GHOST & FFG-Casper),
Polkadot (BABE & GRANDPA),
Algorand ...

8 – Proof-of-space and proof-of-delay
• Storage space as resource

• Cryptographic ZK proofs for
storage at particular time

• Time delay to prove storage
investment over time

• Filecoin, Chia, Storj ...

9 – Proof-of-work
• Demonstrate invested computation

• Nakamoto consensus

• Bitcoin and variations,
Litecoin, Dogecoin,
Ethereum (1.0) and variations,
Ethereum Classic,
Monero, ZCash ...

Model 2 – Generalized trust

Byzantine quorum systems
• Set of nodes P = {p1, ..., pn}
• Fail-prone system F ⊆ 2P : all nodes in some F ∈ F may fail together

• Quorum system Q ⊆ 2P , where any Q ∈ Q is a "quorum", iff.
– Consistency:

∀ Q1, Q2 ∈ Q, ∀ F ∈ F : Q1 ∩ Q2 ⊈ F.
– Availability:

∀ F ∈ F : ∃ Q ∈ Q : F ∩ Q = ∅.
[Malkhi & Reiter, 1998]

• Symmetric trust

Generalized trust – Byz. quorum systems
• Set of nodes P = {p1, ..., pn}
• Fail-prone system F ⊆ 2P
– All F ∈ F may fail together

• Quorum system Q ⊆ 2P , any Q ∈ Q
is a "quorum" [MR98, HM00]

• F = {pq, pr, qr, xy, xz, yz}
• Q = {rxyz, qxyz, pxyz, pqrz, pqry, pqrx}

• Nodes are trusted differently
• All nodes trust equally

r

x

p

y

z

q any 2 may fail

– or –

any 2 may fail

Generalized trust
• Consensus and distributed cryptography beyond the threshold model

• Theoretically well-known, practically not explored for consensus

• Example threshold cryptosystem: CoreKMS Vault at Coinbase for wallet keys
(Lindell, SBC 2024)

– Quorum = Offline AND Human-Approvers AND MPC-Servers
– Offline = One Offline party
– Human-Approvers = M Approvers, any monotone access structure (AND, OR, threshold), e.g., 5-of-20
– MPC-Servers: K Servers, K-of-K needed

Example for generalized trust: RW Register
• A RW-register has two operations
– Write(x) → OK
– Read() → x

• Asynchronous (no clocks, no bounds on delays)

• Every operation defined by two events
– Invocation (IN)
– Completion (OUT)

• Simplification with a single-reader, single-writer (SRSW) register
– Only process w ("Whit") or pw may write
– Only process r ("Ron") or pr may read

Concurrency

• Operation o precedes o' whenever completion of o occurs before invocation of o'

• Otherwise, o and o' are concurrent

• How should the RW register behave when accessed concurrently?

Semantics of MRSW register operations

• Safe – Every read not concurrent with a write returns the most recently written
value.

• Regular – Safe & any read concurrent with a write returns either the most
recently written value or the concurrently written value: r2 may read() → x or y

• Atomic – Regular & all read and write operations occur atomically
(= linearizable): r2 must read() → y

write(x) → OK
w

r1
read() → x

r2

write(y) → OK

read() → y

read() → y read() → ?

Example executions of SRSW register
• Not regular

• Regular

SRSW regular register
• Protocol with quorum system Q ⊆ 2P on nodes P
• Fail-prone system F ⊆ 2P (any F ∈ F may fail together)

• Writer pw maintains a logical timestamp ts
– Increments ts for each write() operation
– Issues digital signature s on pair (ts, v)
– Sends timestamp/value/signature tuples (ts, v, s) to replica nodes
– Waits for a quorum Q ∈ Q of replicas to acknowledge ("Byzantine quorum")

• Reader pr asks replicas for their current (ts, v, s) tuples
– Verifies that signature s from pw is valid
– Receives such tuples from a quorum Q ∈ Q of replicas ("Byzantine quorum")
– Extracts value v with highest timestamp ts and returns v

Example SRSW register execution

s

p

write(y)

ts = 8

r

q

t

w

(8,y)
(7,x)

(8,y)

(8,y)

(7,x)

read() → y

(7,x)

Threshold crypto, generalized [AC23]
• Practical implementation of generalized distributed ("threshold") cryptosystems
– Monotone span programs (MSP)

• Verifiable secret sharing (VSS)
• Common coin
• Distributed signatures

• Tools to generate MSP from a configuration file

• Benchmarks show the approach is practical

Model 3 – Asymmetric trust

Why asymmetric trust?
• For Romans:
–De gustibus non est disputandum.

 (One cannot argue about taste.)

• For CISOs:
–One cannot argue about security assumptions.

• For blockchainers:
– A node counts only the votes of nodes that it trusts. (Ripple, 2014)
– Every node has a different idea about which other nodes are important. (Stellar,

2016)

Quorums in XRPL / Ripple
• XRP started in 2012, among top by market cap

• Independently developed consensus protocol
– Pseudocode and formal analysis later [ACM21]

• Each node declares which other nodes it trusts
– Unique Node List (UNL)
– UNLs of two nodes must overlap

• Default UNL (35 nodes)
– Published by XRP Ledger Foundation (formerly: Ripple Labs)

• Every node may choose its own UNL (in principle)

Federated quorums in Stellar
• Stellar (XLM) started as a fork of XRPL/Ripple

• Federated Byz. consensus in 2015 (Mazieres)
– Every node may specify its own quorum sets

• Ex. SDF1 validator

Asymmetric Byzantine quorum systems
• Asymmetric fail-prone system F = [F1, ..., Fn], where Fi ⊆ 2P is the fail-prone

system for pi; all nodes in some F ∈ Fi may fail together (... according to pi)

• Asymmetric quorum system Q = [Q1, ..., Qn], where Qi ⊆ 2P is the quorum
system for pi and any Qi ∈ Qi is a "quorum for pi", iff.

– Consistency:
∀ pi, pj, ∀ Qi ∈ Qi, ∀ Qj ∈ Qj, ∀ F ∈ Fi* ∩ Fj* : Qi ∩ Qj ⊈ F.

– Availability:
∀ pi, ∀ F ∈ Fi : ∃ Q ∈ Qi : F ∩ Q = ∅.

(Based on Damgård, Desmedt, Fitzi, Nielsen, Asiacrypt 2007)

Asymmetric trust [ACTZ24]
• Subjective trust assumption of p (via failures)
– p itself never fails
– Neighbor nodes q and r: May only fail alone
– Remote nodes x, y, x: Any 2 of these 3 may fail

• Fail-prone system F ⊆ 2P of p
 {q, r, xy, yz, xz}

– All F ∈ F may fail for p

• Each one of the 6 nodes uses
its own subjective trust like this
→ Asymmetric quorums

• Nodes are trusted differently. Nodes trust differently (asymmetric).

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q

Example asymmetric quorum system
• Six nodes, arranged in a ring
• Failure assumptions of node p as shown
• All others are (rotation-)symmetric to p

• Satisfies B3 property
↔
There is an asymmetric quorum system

• Each node mistrusts some 2-set of other nodes:
impossible with threshold Byzantine quorums!

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q

Execution model
• An execution defines the actually faulty nodes F

• A node pi is one of
– Faulty – pi ∈ F
– Naive pi – pi ∉ F and F ∉ Fi*
– Wise pi – pi ∉ F and F ∈ Fi*

• Safety and liveness hold only for wise nodes
– Naive nodes may be cheated

(cf. ordinary, symmetric model, when f ≥ n/3: all nodes are naive!)

• Liveness depends on existence of a guild
– A guild is a set of wise nodes that contains one quorum for each member node

Protocols with asymmetric quorums
• RW-Register emulations

• Byzantine consistent and reliable broadcasts

• Randomized binary consensus

• Related work
– Flexible consensus
– Heterogeneous Paxos

Conclusion
• Byzantine-tolerant consensus protocols matter and are here to stay
• Assumptions are more important than protocols

Conclusion
• Byzantine-tolerant consensus protocols matter and are here to stay
• Assumptions are more important than protocols

• Generalized trust
• Asymmetric trust

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Twitter/X: https://x.com/cczurich/

Thanks
• This work has been supported by
– Swiss National Science Foundation (SNSF);
– Donation from Stellar Development Foundation; and a
– Sui Academic Research Award.

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Twitter/X: https://x.com/cczurich/

References

Literature
• Model 1: Threshold trust
– [CMSZ22] Cachin, C., Mićić, J., Steinhauer, N. & Zanolini, L. (2022). Quick Order Fairness.

Proc. Financial Cryptography and Data Security (FC), LNCS 13411, 316–333.
https://doi.org/10.1007/978-3-031-18283-9_15

Literature
• Model 2: Generalized trust
– [AC20] Alpos, O., & Cachin, C. (2020). Consensus Beyond Thresholds: Generalized

Byzantine Quorums Made Live. Proc. 39th Symposium on Reliable Distributed Systems
(SRDS), 31–40. https://doi.org/10.1109/SRDS51746.2020.00010

– [ACZ21] Alpos, O., Cachin, C., & Zanolini, L. (2021). How to Trust Strangers: Composition
of Byzantine Quorum Systems. Proc. 40th Symposium on Reliable Distributed Systems
(SRDS), 120–131. https://doi.org/10.1109/SRDS53918.2021.00021

– [AC23] Alpos, O. & Cachin, C. (2023). Do Not Trust in Numbers: Practical Distributed
Cryptography With General Trust. Proc. Stabilization, Safety, and Security of Distributed
Systems (SSS), 536-551. https://doi.org/10.1007/978-3-031-44274-2_40

Literature
• Model 3: Asymmetric trust
– [ACTZ24] Alpos, O., Cachin, C., Tackmann, B., & Zanolini, L. (2024). Asymmetric

Distributed Trust. Distributed Computing, 37(3), 247-277.
https://doi.org/10.1007/s00446-024-00469-1

– [CLZ22] Cachin, C., Losa, G., & Zanolini, L. (2022). Quorum Systems in Permissionless
Proc. 26th International Conference on Principles of Distributed Systems (OPODIS),
17:1–17:22. https://doi.org/10.4230/LIPIcs.OPODIS.2022.17

– [ACM21] Amores-Sesar, I., Cachin, C., & Mićić, J. (2021). Security Analysis of Ripple
Consensus. Proc. 24th International Conference on Principles of Distributed Systems
(OPODIS), 10:1–10:16. https://doi.org/10.4230/LIPIcs.OPODIS.2020.10

Literature
• Model 3: Asymmetric trus

Literature
• Model 4: Unstructured, probabilistic voting
– [ACT22] Amores-Sesar, I., Cachin, C., & Tedeschi, E. (2022). When is Spring coming? A

Security Analysis of Avalanche Consensus. Proc. 26th International Conference on
Principles of Distributed Systems (OPODIS), 10:1–10:22.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.10

– [ACS24] Amores-Sesar, I., Cachin, C., & Schneider, P. (2024). An Analysis of Avalanche
Consensus. In Y. Emek (Ed.), Proc. Structural Information and Communication Complexity
(SIROCCO) (Vol. 14662, pp. 27–44). Springer. https://doi.org/10.1007/978-3-031-
60603-8_2

Literature
• Models 5-7: Stake based
– [B21] Bürk, T. (2022). Blockchain consensus protocols based on stake. Master thesis,

Institute of Computer Science, University of Bern.
https://crypto.unibe.ch/archive/theses/2021.msc.timo.buerk.pdf

– [AC23] Alpos, O., Cachin, C., Holmgaard Kamp, S., & Buus Nielsen, J. (2023). Practical
Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast. Proc. 5th Conference
on Advances in Financial Technologies (AFT), 31:1–31:22.
https://doi.org/10.4230/LIPIcs.AFT.2023.31

Literature
• Model 9
– [ACP21] Amores-Sesar, I., Cachin, C., & Parker, A. (2021). Generalizing Weighted Trees: A

Bridge from Bitcoin to GHOST. Proc. 3rd ACM Conference on Advances in Financial
Technologies (AFT), 156–169. https://doi.org/10.1145/3479722.3480995

– [ACLVZ22] Azouvi, S., Cachin, C., Le, D. V., Vukolic, M., & Zanolini, L. (2022). Modeling
Resources in Permissionless Longest-Chain Total-Order Broadcast. Proc. 26th
International Conference on Principles of Distributed Systems (OPODIS), 19:1–19:23.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.19

