UNIVERSITAT

Consensus In blockchains:
An overview

Christian Cachin
University of Bern

alé6z, August 2024

UNIVERSITAT

Some history

History 1 - CC

UNIVERSITAT

History 1 - CC

UNIVERSITAT

e-business

History 1 - CC

UNIVERSITAT

/ A &

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 4, APRIL 2000 593

Optimistic Fair Exchange of Digital Signatures

N. Asokan, Member, IEEE, Victor Shoup, Member, IEEE, and Michael Waidner, Member, IEEE

b

History 1 - CC u

b
UNIVERSITAT
BERN

Ve

Random Oracles in Constantinople:
Practical Asynchronous Byzantine Agreement Using Cryptography
(Extended Abstract)

Christian Cachin Klaus Kursawe Victor Shoup

IBM Research
Zurich Research Laboratory

CH-8803 Riuschlikon, Switzerland
{cca,kku,sho}@zurich.ibm.com

History 2 - Consensus protocols

b

u

History 2 - Consensus protocols

b
UNIVERSITAT
R

« 1980 until 2000: Theory research — many theorems, no systems, no prototypes

« 2000 until 2010: Systems research — many prototypes, no products

b

u

b
UNIVERSITAT
BERN

BFTW3: Why? When? Where?
Workshop on Theory and Practice of Byzantine Fault
Tolerance

Affiliated with DISC 2009

September 22, 2009
Elche, Spain

The workshop gathers researchers from both theory and systems communities and aims at
understanding why the impressive research activity in the area of Byzantine fault-tolerance is not yet
instantiated in practice. Has the moment for a wide deployment of BFT systems arrived, and if so,
where BFT systems should be deployed in the first place?

Format
The workshop will consist of invited contributions. No published proceedings, the presentations may

contain results that appeared or are going to appear elsewhere, work-in-progress reports, surveys
and tutorials. A submission is expected to be a short (around two pages) abstract of the presentation.

b

u

b
UNIVERSITAT
BERN

BFTW3: Why? When? Where?
Workshop on Theory and Practice of Byzantine Fault
Tolerance

Affiliated with DISC 2009

September 22, 2009
Elche, Spain

However, there are few visible instantiations of these results in practical systems. Industrial software
tends to ignore the BFT-related research and heads for less consistent but (apparently) simpler and more
efficient solutions (e.g., [5, 16, 11]).

In this workshop, we discussed the state of the art in BFT systems, and tried to understand why BFT

systems have not seen a widespread adoption, and what we could do to increase the chances of deploying
BFT systems.

b

History 2 - Consensus protocols u

b
UNIVERSITAT
R

« 1985 until 2000: Theory research — many theorems, no systems, no prototypes
« 2000 until 2010: Systems research — many prototypes, no products
« 2010 onward: Practice — deployment with cryptocurrencies

« Today: More theory research, more systems research, products, and
deployments

Consensus protocols today

Overview

b
UNIVERSITAT
BERN

 Nine of blockchain consensus

« Explore

« Explore

« Answer your questions

Nine models of consensus

1 — Threshold trust (BFT)

e Trust by numbers
— n nodes total
— { faulty (Byzantine) nodes

« Nodes are identified
— Proof-of-Authority (PoA)

« Homogeneous and symmetric

« Requires

—h >
i
N N

b

u

b
UNIVERSITAT
BERN

Introduction to

Reliable and
Secure Distributed
Programming

b

2 — Generalized trust t

b
UNIVERSITAT
BERN

— Set of nodes

— Fail-prone sets consisting of .
possibly Byzantine nodes

4
4
’
1
L}
|}
|)
A

e Trust by generalized quorums .__.-..
§~‘~

« Heterogeneous and symmetric

« Requires .s
— Any 3 fail-prone sets must not cover

— But in distributed cryptography (Coinbase Vault)

b

u

3 — Asymmetric trust

b
UNIVERSITAT
BERN

« Subjective generalized quorums

* 0

« Every node has its own fail-prone /",'
sets and quorum system on

« Requires ,,\
- any fail-prone set of p with any *+ '+
set of p' and any of both must not cover
— Consistent across nodes quorum systems

4 — Unstructured, probabilistic voting

« Random sampling of peers

“~ .® #
« Exchange information and votes ‘,{,’1,':' !
s’ ¢ S
. &~ v :' Y.
« Often coupled with a DAG ‘ \ ! *‘
(directed acyclic graph) Rx N
on transactions }/ ' :'
. vy

b

5 — Stake-based voting u

 Stake determines voting power
— Including delegated stake (DPoS)

 Protocols generalized from
symmetric voting (BFT)

» Slashing of invested stake
upon detection of misbehavior

6 — Stake-based probabilistic choice

UNIVERSITAT

« Lottery according to stake

« Probabilistic leader election

- Cryptographic sortition using a ‘ 0 ‘
verifiable random function (VRF) hﬂ

o o

7 — Hybrid prob. choice and stake voting

 Stake determines probability
or voting power

e Mix of random choice
with voting

» Slashing of invested stake
upon detection of misbehavior

8 — Proof-of-space and proof-of-delay

UNIVERSITAT

- Storage space as resource ‘
o

« Cryptographic ZK proofs for

storage at particular time
« Time delay to prove storage @) .
|

iInvestment over time

9 — Proof-of-work

UNIVERSITAT

- Demonstrate invested computation ‘

« Nakamoto consensus

b
UNIVERSITAT

Byzantine quorum systems

 Set of nodes
e Fail-prone system : all nodes in some may fail together

e Quorum system , where any is a "quorum’, iff.
— Consistency:

— Availability:
[Malkhi & Reiter, 1998]

e Symmetric trust

Generalized trust — Byz. quorum systems

- Set of nodes P W
e Fail-prone system // o "' RN \
— All may fail together S x el v Z |

\ /
‘ any 2 may fail '
e Quorum system , any ' '

Is a "quorum" [MR98, HMO0O0] - —or—

- . m ay
T mm=

q

) ((‘ any 2 may fail ‘\

» Nodes are trusted differently \ /

 All nodes trust equally

b

Generalized trust u

b
UNIVERSITAT
N

- Consensus and distributed cryptography beyond the threshold model
« Theoretically well-known, practically not explored for consensus

« Example threshold cryptosystem: CoreKMS Vault at Coinbase for wallet keys
(Lindell, SBC 2024)

— Quorum = AND Human-Approvers AND MPC-Servers
- = One Offline party
— Human-Approvers = M Approvers, any monotone access structure (AND, OR, threshold), e.g., 5-0f-20
— MPC-Servers: K Servers, K-of-K needed

Example for generalized trust: RW Register

UNIVERSITAT
BERN

« A RW-register has two operations

« Asynchronous (no clocks, no bounds on delays)

« Every operation defined by two events

— Invocation (IN)
— Completion (OUT)

« Simplification with a single-reader, single-writer (SRSW) register
— Only process or pw may write
— Only process or pr may read

b

u
Concurrency

« Operation o precedes o' whenever completion of o occurs before invocation of

« Otherwise, 0 and o' are concurrent

« How should the RW register behave when accessed concurrently?

Semantics of MRSW register operations
write(x) = OK write(y) = OK
W
ri >
read() >y read() = ?
rp —P—r Ol >
« Safe — Every not concurrent with a returns the most recently written
value.
e Regular — Safe & any concurrent with a returns either the most
recently written value or the concurrently written value: r2 may read() = x ory
« Atomic — Regular & all and operations occur atomically

(= linearizable): r2 must read() = v

Example executions of SRSW register

b
UNIVERSITAT
BERN

« Not regular

write(x) write(y)
p —H
; read()/> L\ read() — x read() —y
H_H_Hi
« Regular write(x) write(y)

b

: u
SRSW regular register
 Protocol with quorum system on nodes
e Fail-prone system (any may fail together)

« Writer pw maintains a logical timestamp

— Increments s for each operation

— Issues digital signature s on pair

— Sends timestamp/value/signature tuples to replica nodes

— Waits for a of replicas to acknowledge ("Byzantine quorum")
« Reader pr asks replicas for their current tuples

— Verifies that signature s from pw is valid

— Receives such tuples from a of replicas ("Byzantine quorum")

— Extracts value v with highest timestamp s and returns

SWMR regular register protocol with Byzantine processes (process p;).

State
wts: sequence number of write operations, stored only by writer p,,
rid: 1dentifier of read operations, used only by reader
ts,v,0: current state stored by p;: timestamp, value, signature

upon invocation write(v) do
wits <— wts + 1
o <—s sign,, (WRITE| w||wts||v)
send message [WRITE, wts, v, o] toall p; € P
wait for receiving a message [ACK] from more than ”—erf processes

upon invocation read do
rid < rid + 1
send message [READ, rid] to all p; € P

r; = rid and verify,, (o;, WRITE ||w||ts||v;)
return highestval({(ts;,v;)})

upon receiving a message |WRITE, ts', v’ 0’| from p,, do
if ts’ > ts then
(ts,v,0) < (1,0, 0")
send message [ACK] to py,

upon receiving a message [READ, 7| from p,. do
send message [VALUE, r, ts, v, 0] to p,

// only if p; is writer p,,

/! only if p; 1s reader p,.

wait for receiving messages [VALUE, r;, ts;, v, 0] from more than ”Qif processes such that

/] every process

/] every process

b

u

b
UNIVERSITAT
BERN

Example SRSW register execution

. 7% 8y,

b

Threshold crypto, generalized [AC23] u

UNIVERSITAT

 Practical implementation of generalized distributed ("threshold") cryptosystems
— Monotone span programs (MSP)

« Verifiable secret sharing (VSS)
« Common coin
e Distributed signatures

« Tools to generate MSP from a configuration file

« Benchmarks show the approach is practical

b

u

Model 3 — Asymmetric trust = i

b

u

Why asymmetric trust?

b
UNIVERSITAT
BERN

« For Romans:

—De gustibus non est disputandum.
(One cannot argue about taste.)

« For CISOs:
—One cannot argue about security assumptions.

 For blockchainers:
—A node counts only the votes of nodes that it trusts. (Ripple, 2014)

—Every node has a different idea about which other nodes are important. (Stellar,
2016)

b
UNIVERSITAT

Quorums in XRPL / Ripple

b XRP Started |n 2012, among tOp by market Cap XRPSCAN AMMs Metrics Validators Amend

Do you work for a Bank or Cryptocurrency Exchange? Its easy to integrate XRPSCAN in your app's w

« Independently developed consensus protocol ;
— Pseudocode and formal analysis later [ACM21] 5. Network state
—_ 591 Nodes

running on rippled versions

« Default UNL (35 nodes)
— Published by XRP Ledger Foundation (formerly: Ripple L:

@ rippled-2.2.1 @ rippled-2.2.0 rippled-2.1.1
@ rippled-2.1.0 ® rippled-2.0.1 @ rippled-2.0.0

« Every node may choose its own UNL (in principle)

Federated quorums in Stellar

b

u

b
UNIVERSITAT
BERN

« Stellar (XLM) started as a fork of XRPL/Ripple

» Federated Byz. consensus in 2015 (Mazieres)

« Ex. SDF1 validator

{ "select": 6,
"out-of": |

{"select":
{"select":
{"select":
{"select":
{"select":
{"select":
{"select":
{"select":

1}

- - -

N W N NNNNN

"out-of":
"out-of":
"out-of":
"out-of":
"out-of":
"out-of":
"out-of":
"out-of":

["Blockdaemonl", "Blockdaemon2", "Blockdaemon3"]},

[*SDF1", "SDF2", "SDF3"1},

["WirexSingapore", "WirexUK", "Wirexus"]},

["CoingvestFinland", "CoingvestHongKong", "CoinqvestGermany"]l},
["SatoshiPayUS", "SatoshiPaySG", "SatoshiPayDE"]},
["FranklinTempletonl", "FranklinTempleton2", "FranklinTempleton3"]},
["LOBSTR1", "LOBSTR2", "LOBSTR3", "LOBSTR4", "LOBSTR5"]},
["Hercules"™, "Lyra", "Bodtes"]}

Asymmetric Byzantine quorum systems

UNIVERSITAT

« Asymmetric fail-prone system , where Is the fail-prone
system for pi; all nodes in some may fail together (... according to pi)

« Asymmetric quorum system , where is the quorum
system for pi and any Is a "quorum for pi", iff.

— Consistency:

— Availability:

(Based on Damgard, Desmedt, Fitzi, Nielsen, Asiacrypt 2007)

b

Asymmetric trust [ACTZ24] u

b
o V T UNIVERSITAT

« Subjective trust assumption of p (via failures)

— p itself never fails § °

' z |
— Neighbor nodes ¢ and r: May only fail alone /

X 't' ~~‘
— Remote nodes x, v, x: Any 2 of these 3 may fail ‘ Any 2 of 3 may fail ‘
e Fail-prone system of p . -

— All may fail for p

\gm ==

‘/ .

] = mm =

A0 A
<@ @
» Each one of the 6 nodes uses o /% 0) 4

its own subjective trust like this May fail alone ~~~. ._ e Maylfail alone

p itself never fails
» Nodes are trusted differently. Nodes trust differently (asymmetric).

b

: u
Example asymmetric quorum system :
- Six nodes, arranged in a ring //*__3_*\\ N
» Failure assumptions of node p as shown
« All others are (rotation-)symmetric to p ‘“nv 20f3 ma@
| CI
\ /

May fall alone ~ .. - May fail alone

: p itself never fails
« Each node mistrusts some 2-set of other nodes:

Impossible with threshold Byzantine quorums!

b

Execution model t

b
UNIVERSITAT
BERN

« An execution defines the actually faulty nodes

« A node niis one of

— Faulty -
— Naive pi -
— Wise pi —

 Safety and liveness hold only for nodes

— Naive nodes may be cheated
(cf. ordinary, symmetric model, when : all nodes are naive!)

« Liveness depends on existence of a
- A Is a set of wise nodes that contains one quorum for each member node

SWMR regular register protocol with Byzantine processes (process p;).
State
wis: sequence number of write operations, stored only by writer p,,

rid: identifier of read operations, used only by reader
ts,v,0: current state stored by p;: timestamp, value, signature

upon invocation write(v) do // only if p; is writer p,,
wis < wis + 1
o <—s sign,,(WRITE||w||wts||v)
send message (WRITE, wts, v, o] to all p; € P

wait for receiving a message [ACK] from more than % processes
upon invocation read do // only if p; is reader p,
rid < rid + 1

send message [READ, rid] to all p; € P
wait for receiving messages [VALUE, 1, s, v;, 0| from more than ”T” processes such that

r; = rid and verify, (o, WRITE||w||zs||v;)
return highestval({(ts;,v;)})

upon receiving a message [WRITE, ts’,v’, ¢'] from p,, do /I every process
if ts” > ts then
(ts,v,0) < (15", 0")
send message [ACK] to py,

upon receiving a message [READ, 7| from p,. do /l every process
send message [VALUE, r, ts, v, 0] to py

b

u

b
UNIVERSITAT
BERN

Asymmetric SWMR regular register protocol (process p;).

State
wis: sequence number of write operations, stored only by writer p,,
rid: 1identifier of read operations, used only by reader
ts, v, o: current state stored by p;: timestamp, value, signature

upon invocation write(v) do /[only if p; is writer p,,
wits < wits + 1
o s sign, (WRITE||w||wts||v)
send message [WRITE, wts,v,o| to all p; € P
wait for receiving a message [ACK] from all processes in some quorum @, € Q,,

upon invocation read do /l only if p; is reader p,
rid < rid + 1
send message [READ, rid| to all p; € P
wait for receiving messages [VALUE, r;,1s;, v;, ;] from all processes in some @), € Q,- such that
r; = rid and verify, (o;, WRITE| w||ts||v;)
return highestval({(ts;,v;)|j € Qr})

upon receiving a message (WRITE, ts’,v’, o’| from p,, do // every process
if zs" > ts then
(ts,v,0) « (15", 0", 0")
send message [ACK] to py,

upon receiving a message [READ, r| from p, do /I every process
send message [VALUE, r, ts,v, 0] to p,

b

u

b
UNIVERSITAT
BERN

Protocols with asymmetric guorums

UNIVERSITAT
BERN

« RW-Register emulations
« Byzantine consistent and reliable broadcasts

« Randomized binary consensus

— Flexible consensus
— Heterogeneous Paxos

b

Conclusion u

b
UNIVERSITAT
BERN

« Byzantine-tolerant consensus protocols matter and are here to stay
« Assumptions are more important than protocols

.

‘@O OO0t 5K

RN B R AR NCRIEN -

v ¥ ‘ J e Sry S ' . 3
A ’ . £ L N ’ . 3 A
° . ° ° °

e, @ AR a8 @ @+ @Ts
* * F S S SN Lat el * *
I e I S RSN SRty L It S o T o

b

Conclusion u

« Byzantine-tolerant consensus protocols matter and are here to stay
« Assumptions are more important than protocols

e @ TR e e @ o . °o - °o -

§ .. 4 » & ¥ o e @ @ * o ° o ‘%. o @@o s % °
° e o @ v A4 & e o @ o . o o o ®
= S R . R ° - ° °

« Generalized trust
« Asymmetric trust

e Links
— Web: https://crypto.unibe.ch/
— Blog: https://cryptobern.github.io/
— Twitter/X: https://x.com/cczurich/

b

Thanks tu

« This work has been supported by
— Swiss National Science Foundation (SNSF);

— Donation from Stellar Development Foundation; and a
— Sui Academic Research Award.

e Links
— Web: https://crypto.unibe.ch/
— Blog: https://cryptobern.github.io/

— Twitter/X: https://x.com/cczurich/

UNIVERSITAT

References

b

Literature tu

« Model 1: Threshold trust
- Cachin, C., Mici¢, J., Steinhauer, N. & Zanolini, L. (2022). Quick Order Fairness.

Proc. Financial Cryptography and Data Security (FC), LNCS 13411, 316-333.
https://doi.org/10.1007/978-3-031-18283-9_15

b

Literature tu

« Model 2: Generalized trust
— Alpos, O., & Cachin, C. (2020). Consensus Beyond Thresholds: Generalized

Byzantine Quorums Made Live. Proc. 39th Symposium on Reliable Distributed Systems
(SRDS), 31-40. https://doi.org/10.1109/SRDS51746.2020.00010

- Alpos, O., Cachin, C., & Zanolini, L. (2021). How to Trust Strangers: Composition
of Byzantine Quorum Systems. Proc. 40th Symposium on Reliable Distributed Systems
(SRDS), 120-131. https://doi.org/10.1109/SRDS53918.2021.00021

- Alpos, O. & Cachin, C. (2023). Do Not Trust in Numbers: Practical Distributed
Cryptography With General Trust. Proc. Stabilization, Safety, and Security of Distributed
Systems (SSS), 536-551. https://doi.org/10.1007/978-3-031-44274-2_40

b

Literature tu

b
UNIVERSITAT
BERN

e Model 3: Asymmetric trust

— Alpos, O., Cachin, C., Tackmann, B., & Zanolini, L. (2024). Asymmetric
Distributed Trust. Distributed Computing, 37(3), 247-277.
https://doi.org/10.1007/s00446-024-00469-1

— Cachin, C., Losa, G., & Zanolini, L. (2022). Quorum Systems in Permissionless
Proc. 26th International Conference on Principles of Distributed Systems (OPODIS),
17:1-17:22. https://doi.org/10.4230/LIPIcs.OPODIS.2022.17

— Amores-Sesar, I., Cachin, C., & Mici¢, J. (2021). Security Analysis of Ripple
Consensus. Proc. 24th International Conference on Principles of Distributed Systems
(OPODIS), 10:1-10:16. https://doi.org/10.4230/LIPIcs.OPODIS.2020.10

Literature

UNIVERSITAT

« Model 3: Asymmetric trus

b

Literature tu

« Model 4: Unstructured, probabilistic voting

- Amores-Sesar, I., Cachin, C., & Tedeschi, E. (2022). When is Spring coming? A
Security Analysis of Avalanche Consensus. Proc. 26th International Conference on
Principles of Distributed Systems (OPODIS), 10:1-10:22.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.10

- Amores-Sesar, 1., Cachin, C., & Schneider, P. (2024). An Analysis of Avalanche
Consensus. In Y. Emek (Ed.), Proc. Structural Information and Communication Complexity
(SIROCCO) (Vol. 14662, pp. 27-44). Springer. https://doi.org/10.1007/978-3-031-
60603-8 2

b

Literature t

b
UNIVERSITAT
BERN

« Models 5-7: Stake based

— Burk, T. (2022). Blockchain consensus protocols based on stake. Master thesis,
Institute of Computer Science, University of Bern.
https://crypto.unibe.ch/archive/theses/2021.msc.timo.buerk.pdf

- Alpos, O., Cachin, C., Holmgaard Kamp, S., & Buus Nielsen, J. (2023). Practical
Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast. Proc. 5th Conference
on Advances in Financial Technologies (AFT), 31:1-31:22.
https://doi.org/10.4230/LIPIcs.AFT.2023.31

b

Literature tu

b
UNIVERSITAT
BERN

« Model 9

— Amores-Sesar, I., Cachin, C., & Parker, A. (2021). Generalizing Weighted Trees: A
Bridge from Bitcoin to GHOST. Proc. 3rd ACM Conference on Advances in Financial
Technologies (AFT), 156—169. https://doi.org/10.1145/3479722.3480995

— Azouvi, S., Cachin, C., Le, D. V., Vukolic, M., & Zanolini, L. (2022). Modeling
Resources in Permissionless Longest-Chain Total-Order Broadcast. Proc. 26th
International Conference on Principles of Distributed Systems (OPODIS), 19:1-19:23.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.19

