

Consensus in blockchains:
Theory and practice

Christian Cachin
University of Bern

ApPLIED, June 2024

A history of consensus protocol development
• 1985 until 2000: Theory research, many theorems, no systems, no prototypes

• 2000 until 2010: Systems research, many prototypes, no products

• 2015– : Deployment in practice with cryptocurrencies

• Today: More theory research, systems research, products, and deployments

Overview
• for model ∈ nine kinds of blockchain consensus do
– describe model

• for model = probabilistic voting do
– theory of Snow protocols
– practice of Avalanche blockchain and AVAX cryptocurrency

• Answer your questions

Consensus overview

1 – Threshold trust (BFT)
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Nodes are identified
– Proof-of-Authority (PoA)

• Homogeneous and symmetric

• Requires n > 3f

• Tendermint/Cosmos, Internet Computer (DFINITY),
VeChain, BNB SC, Hashgraph, TRON ...

n = 7
f = 2

2 – Generalized trust
• Trust by generalized quorums
– Set of nodes P
– Fail-prone sets consisting of

possibly Byzantine nodes
– Byzantine quorum system

• Heterogeneous and symmetric

• Requires Q3-property
– Any 3 fail-prone sets must not cover P

• Not used by any cryptocurrency (!)

3 – Asymmetric trust
• Subjective generalized quorums

• Every node has its own Byz.
quorum system on P

• Heterogeneous and asymmetric

• Requires B3-property
– ∀ p, p' : any fail-prone set of p with any

set of p' and any of both must not cover P
– Consistent across nodes quorum systems

• Ripple, Stellar, [CT19]

4 – Unstructured, probabilistic voting
• Random sampling of peers

• Exchange information and votes

• Often coupled with a DAG
(directed acyclic graph)
on transactions

• Avalanche, Conflux, IOTA-Tangle

5 – Stake-based voting
• Stake determines voting power
– Including delegated stake (DPoS)

• Protocols generalized from
symmetric voting (BFT)

• Slashing of invested stake
upon detection of misbehavior

• Tendermint/Cosmos, EOS, NEO,
Aptos, SUI, BNB SC ...

6 – Stake-based probabilistic choice
• Lottery according to stake

• Probabilistic leader election

• Cryptographic sortition using a
verifiable random function (VRF)

• Cardano/Ouroboros ...

7 – Hybrid prob. choice and stake voting
• Stake determines probability

or voting power

• Mix of random choice
with voting

• Slashing of invested stake
upon detection of misbehavior

• Ethereum (LMD-GHOST & FFG-Casper),
Polkadot (BABE & GRANDPA),
Algorand ...

8 – Proof-of-space and proof-of-delay
• Storage space as resource

• Cryptographic ZK proofs for
storage at particular time

• Time delay to prove storage
investment over time

• Filecoin, Chia, Storj ...

9 – Proof-of-work
• Demonstrate invested computation

• Nakamoto consensus

• Bitcoin and variations,
Litecoin, Dogecoin,
Ethereum (1.0) and variations,
Ethereum Classic,
Monero, ZCash ...

Snow and Avalanche consensus

Recent results with Ignacio Amores-Sesar &
Philipp Schneider & Enrico Tedeschi

Avalanche
• Avalanche is a prominent layer-1 blockchain
– AVAX cryptocurrency
– Smart-contract platform
– AVAX is in the top 15 by market cap

• Novel approach to consensus
– "Snow family" of protocols:

Slush → Snowflake → Snowball → [Snowman →] Avalanche

– Introduced in a white paper 2019:
Scalable and Probabilistic Leaderless BFT Consensus through Metastability (Yin, Sekniqi,
van Renesse, Sirer)

– Based on random sampling of peer nodes

Recent results [ACT22, ACT24]
• [ACS24]
– Analysis of the consensus dynamics
– Proofs for safety and liveness of (idealized) Snow protocols
– Binary consensus

• [ACT22]
– Detailed pseudocode of DAG-structured ledger consensus protocol
– First independent analysis
– Illustrated some problems and provided a solution
– Generic broadcast (not quite atomic broadcast)

Avalanche network model
• Cryptocurrency and smart-contract platform
– X-chain: eXchange (AVAX currency, other tokens)
– P-chain: Platform (validator node management, staking)
– C-chain: smart Contracts (EVM-compatible), with application-specific subnets

• n validator nodes
– Each validator stakes 2000 AVAX (≈ 60'000 USD, June 2024)
– n ≈ 1500 (June 2024)
– Throughput: ≈ 10 tps (on average); 50-100 tps (max. recorded); 4500 tps (max. claimed)

• Security
– Tolerates faulty (Byzantine) nodes
– Secure "only" against corruption of up to √n nodes

Problem statement
• Consensus is binary
– All nodes propose 0 or 1
– All correct nodes have stabilized on the same value – or – they decide the same value

• Protocol operates in synchronous rounds
– Number of rounds T
– Security parameter β

• Randomized protocol
– Every node sends and receives O(k) messages per round

• Termination
– All correct nodes terminate after T rounds, except with probability negligible in β

Goals
• Fix k as small constant
– O(n) messages overall

• Number of rounds T
– should be logarithmic in n
– should be polynomial in β

• Related to the literature on dynamics of consensus
– Overview by Becchetti, Clementi, Natale (SIGACT News, 2020)

Slush consensus stabilization
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b)

Slush consensus stabilization
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b)

Slush consensus stabilization
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b)

Slush consensus stabilization
• b ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2

b ← b*
• decide(b)

How does Slush perform?
• Let pi be fraction of nodes with opinion 1 in round i
• Let δi [-1, 1] ∈ be the expected "progress" towards consensus on 1
• For fixed k and α, the pro-

gress δi is a function of pi :

How does Slush perform?
• Let pi be fraction of nodes with opinion 1 in round i
• Let δi [-1, 1] ∈ be the expected "progress" towards consensus on 1
• For fixed k and α, the pro-

gress δi is a function of pi :

How does Slush perform?
• Let pi be fraction of nodes with opinion 1 in round i
• Let δi [-1, 1] ∈ be the expected "progress" towards consensus on 1
• For fixed k and α, the pro-

gress δi is a function of pi :

Results for Slush and consensus stabilization
• Theorem 1: For k ≥ 2 and = (k+1)/2α , Slush reaches stable consensus in

O(log n +)β
rounds, with all but negligible probability in β and up to O(√n) corrupted nodes.

• Theorem 2: For k ≥ 2 and k/2 < < kα , the expected number of rounds for Slush
rounds to reach a stable consensus is

Ω(log n / log k),
with up to O(√n) corrupted nodes.

Consensus with a decision: Snowflake ...
• b ∈ {0,1} // consensus on a bit
• counter ← 0
• while counter < β do
– pick k random parties, query them for their bit b
– if at least α answers are b* ≠ b then // α > k/2, Snowflake termination condition (+)

b ← b*
counter ← 0

– else
counter ← counter + 1

• decide(b) // decide after β queries with a majority for b

• Snowball changes the termination condition (+)
– if more rounds exist ever with ≥ α ans. for b* ≠ b than rounds with ≥ α ans. for b then ...

Analysis of Snowflake and Snowball

• Theorem 3: In Snowflake and Snowball, with a (weak) adversary, these two
properties are mutually exclusive:

1) Consensus holds with all but negligible probability (in β);

2) Correct parties decide after polynomially many (in β) rounds.

A better tradeoff for consensus: Blizzard
• Blizzard changes the termination condition (+) again

c0 counts number of rounds ever with an α-majority for 0
c1 counts number of rounds ever with an α-majority for 1

• New termination condition (+): stop when their difference exceeds some t
– if | c0 - c1 | ≥ t then ...

• Theorem 4: Blizzard reaches consensus with all but negligible probability
(in β) and terminates in up to O(log n +)β rounds.

DAG-ledger consensus (generic broadcast)
• Used in X-Chain
– Extends consensus to a broadcast protocol

• Transactions form a DAG, a directed acyclic graph

• Transactions without dependencies (T2 and T3)
may be delivered (accepted) in any order

– "Generic broadcast" parameterized by a conflict
relation (weaker than atomic broadcast)

• Transactions that conflict must be ordered

• In principle, every transaction is decided with a Snowball-like protocol

T2 and T2
independent

Avalanche DAG-ledger consensus
• while TRUE do
– select some transaction T
– pick k random parties and query them about T

– if more than a positive results then
update DAG: for every ancestor T' of T,
increment counter(T') for acceptance

– else
update DAG: for every ancestor T' of T,
reset (to 0) counter(T') for acceptance

– if (∃ T* that is not conflicting Ù counter(T*) ≥ b1) Ú
 (∃ T* that is conflicting Ù counter(T*) ≥ b2) then

output ("deliver") T

Conflicting tx
can come to
exist in the
DAG.

Referencing
them cleverly
can delay
acceptance
of innocent tx.

Analysis of DAG-ledger consensus
• Detailed pseudocode of Avalanche protocol

• Identified a liveness problem
– Adversary may delay acceptance of a victim transaction arbitrarily

• For other reasons, Ava Labs/Avalanche abandons the DAG protocol on the
X-chain in March '23

Conclusion
• Byzantine-tolerant consensus protocols matter and are here to stay
• Assumptions are more important than protocols

Conclusion
• Byzantine-tolerant consensus protocols matter and are here to stay
• Assumptions are more important than protocols

• Avalanche: Efficient probabilistic protocols, interesting consensus dynamics

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Twitter/X: https://x.com/cczurich/

Thanks
• This work has been supported by
– Swiss National Science Foundation (SNSF);
– Donation from Avalanche, Inc.; and a
– Sui Academic Research Award.

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Twitter/X: https://x.com/cczurich/

References

Literature
• Model 1: Threshold trust
– [CMSZ22] Cachin, C., Mićić, J., Steinhauer, N. & Zanolini, L. (2022). Quick Order Fairness.

Proc. Financial Cryptography and Data Security (FC), LNCS 13411, 316–333.
https://doi.org/10.1007/978-3-031-18283-9_15

Literature
• Model 2: Generalized trust
– [AC20] Alpos, O., & Cachin, C. (2020). Consensus Beyond Thresholds: Generalized

Byzantine Quorums Made Live. Proc. 39th Symposium on Reliable Distributed Systems
(SRDS), 31–40. https://doi.org/10.1109/SRDS51746.2020.00010

– [ACZ21] Alpos, O., Cachin, C., & Zanolini, L. (2021). How to Trust Strangers: Composition
of Byzantine Quorum Systems. Proc. 40th Symposium on Reliable Distributed Systems
(SRDS), 120–131. https://doi.org/10.1109/SRDS53918.2021.00021

– [AC23] Alpos, O. & Cachin, C. (2023). Do Not Trust in Numbers: Practical Distributed
Cryptography With General Trust. Proc. Stabilization, Safety, and Security of Distributed
Systems (SSS), 536-551. https://doi.org/10.1007/978-3-031-44274-2_40

Literature
• Model 3: Asymmetric trust
– [AZ21] Cachin, C., & Zanolini, L. (2021). Asymmetric Asynchronous Byzantine Consensus.

Proc. ESORICS Workshops on Data Privacy Management (DPM), Cryptocurrencies and
Blockchain Technology (CBT) LNCS 13140, 192–207. https://doi.org/10.1007/978-3-
030-93944-1_13

– [ACTZ24] Alpos, O., Cachin, C., Tackmann, B., & Zanolini, L. (2024). Asymmetric
Distributed Trust. Distributed Computing, 37, Online. https://doi.org/10.1007/s00446-
024-00469-1

– [CLZ22] Cachin, C., Losa, G., & Zanolini, L. (2022). Quorum Systems in Permissionless
Proc. 26th International Conference on Principles of Distributed Systems (OPODIS),
17:1–17:22. https://doi.org/10.4230/LIPIcs.OPODIS.2022.17

Literature
• Model 3: Asymmetric trust
– [ACM21] Amores-Sesar, I., Cachin, C., & Mićić, J. (2021). Security Analysis of Ripple

Consensus. Proc. 24th International Conference on Principles of Distributed Systems
(OPODIS), 10:1–10:16. https://doi.org/10.4230/LIPIcs.OPODIS.2020.10

Literature
• Model 4: Unstructured, probabilistic voting
– [ACT22] Amores-Sesar, I., Cachin, C., & Tedeschi, E. (2022). When is Spring coming? A

Security Analysis of Avalanche Consensus. Proc. 26th International Conference on
Principles of Distributed Systems (OPODIS), 10:1–10:22.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.10

– [ACS24] Amores-Sesar, I., Cachin, C., & Schneider, P. (2024). An Analysis of Avalanche
Consensus. In Y. Emek (Ed.), Proc. Structural Information and Communication Complexity
(SIROCCO) (Vol. 14662, pp. 27–44). Springer. https://doi.org/10.1007/978-3-031-
60603-8_2

Literature
• Models 5-7: Stake based
– [B21] Bürk, T. (2022). Blockchain consensus protocols based on stake. Master thesis,

Institute of Computer Science, University of Bern.
https://crypto.unibe.ch/archive/theses/2021.msc.timo.buerk.pdf

– [AC23] Alpos, O., Cachin, C., Holmgaard Kamp, S., & Buus Nielsen, J. (2023). Practical
Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast. Proc. 5th Conference
on Advances in Financial Technologies (AFT), 31:1–31:22.
https://doi.org/10.4230/LIPIcs.AFT.2023.31

Literature
• Model 9
– [ACP21] Amores-Sesar, I., Cachin, C., & Parker, A. (2021). Generalizing Weighted Trees: A

Bridge from Bitcoin to GHOST. Proc. 3rd ACM Conference on Advances in Financial
Technologies (AFT), 156–169. https://doi.org/10.1145/3479722.3480995

– [ACLVZ22] Azouvi, S., Cachin, C., Le, D. V., Vukolic, M., & Zanolini, L. (2022). Modeling
Resources in Permissionless Longest-Chain Total-Order Broadcast. Proc. 26th
International Conference on Principles of Distributed Systems (OPODIS), 19:1–19:23.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.19

