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A history of consensus protocol development
• 1985 until 2000: Theory research, many theorems, no systems, no prototypes

• 2000 until 2010: Systems research, many prototypes, no products

• 2015– : Deployment in practice with cryptocurrencies

• Today: More theory research, systems research, products, and deployments



  

Overview
• for model  ∈  nine kinds of blockchain consensus do
– describe model

• for model = probabilistic voting do
– theory of Snow protocols
– practice of Avalanche blockchain and AVAX cryptocurrency

• Answer your questions



  

Consensus overview



  

1 – Threshold trust (BFT)
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Nodes are identified
– Proof-of-Authority (PoA)

• Homogeneous and symmetric

• Requires n > 3f

• Tendermint/Cosmos, Internet Computer (DFINITY),
VeChain, BNB SC, Hashgraph, TRON ...

n = 7
f  = 2



  

2 – Generalized trust
• Trust by generalized quorums
– Set of nodes P
– Fail-prone sets consisting of

possibly Byzantine nodes
– Byzantine quorum system

• Heterogeneous and symmetric

• Requires Q3-property
– Any 3 fail-prone sets must not cover P

• Not used by any cryptocurrency (!)



  

3 – Asymmetric trust
• Subjective generalized quorums

• Every node has its own Byz.
quorum system on P

• Heterogeneous and asymmetric

• Requires B3-property
– ∀ p, p' : any fail-prone set of p with any

set of p' and any of both must not cover P
– Consistent across nodes quorum systems

• Ripple, Stellar, [CT19]



  

4 – Unstructured, probabilistic voting
• Random sampling of peers

• Exchange information and votes

• Often coupled with a DAG
(directed acyclic graph)
on transactions

• Avalanche, Conflux, IOTA-Tangle



  

5 – Stake-based voting
• Stake determines voting power
– Including delegated stake (DPoS)

• Protocols generalized from
symmetric voting (BFT)

• Slashing of invested stake
upon detection of misbehavior

• Tendermint/Cosmos, EOS, NEO,
Aptos, SUI, BNB SC ...



  

6 – Stake-based probabilistic choice
• Lottery according to stake

• Probabilistic leader election

• Cryptographic sortition using a
verifiable random function (VRF)

• Cardano/Ouroboros ...



  

7 – Hybrid prob. choice and stake voting
• Stake determines probability

or voting power

• Mix of random choice
with voting

• Slashing of invested stake
upon detection of misbehavior

• Ethereum (LMD-GHOST & FFG-Casper),
Polkadot (BABE & GRANDPA),
Algorand ...



  

8 – Proof-of-space and proof-of-delay
• Storage space as resource

• Cryptographic ZK proofs for
storage at particular time

• Time delay to prove storage
investment over time

• Filecoin, Chia, Storj ...



  

9 – Proof-of-work
• Demonstrate invested computation

• Nakamoto consensus

• Bitcoin and variations,
Litecoin, Dogecoin, 
Ethereum (1.0) and variations,
Ethereum Classic,
Monero, ZCash ...



  

Snow and Avalanche consensus

Recent results with Ignacio Amores-Sesar &
Philipp Schneider & Enrico Tedeschi



  



  

Avalanche
• Avalanche is a prominent layer-1 blockchain
– AVAX cryptocurrency
– Smart-contract platform
– AVAX is in the top 15 by market cap

• Novel approach to consensus
– "Snow family" of protocols:

Slush → Snowflake → Snowball → [Snowman → ] Avalanche

– Introduced in a white paper 2019:
Scalable and Probabilistic Leaderless BFT Consensus through Metastability (Yin, Sekniqi, 
van Renesse, Sirer)

– Based on random sampling of peer nodes



  

Recent results [ACT22, ACT24]
• [ACS24]
– Analysis of the consensus dynamics
– Proofs for safety and liveness of (idealized) Snow protocols
– Binary consensus

• [ACT22]
– Detailed pseudocode of DAG-structured ledger consensus protocol
– First independent analysis
– Illustrated some problems and provided a solution
– Generic broadcast (not quite atomic broadcast)



  

Avalanche network model
• Cryptocurrency and smart-contract platform
– X-chain: eXchange (AVAX currency, other tokens)
– P-chain: Platform (validator node management, staking)
– C-chain: smart Contracts (EVM-compatible), with application-specific subnets

• n validator nodes
– Each validator stakes 2000 AVAX (≈ 60'000 USD, June 2024)
– n ≈ 1500 (June 2024)
– Throughput: ≈ 10 tps (on average); 50-100 tps (max. recorded); 4500 tps (max. claimed)

• Security
– Tolerates faulty (Byzantine) nodes
– Secure "only" against corruption of up to √n nodes



  

Problem statement
• Consensus is binary
– All nodes propose 0 or 1
– All correct nodes have stabilized on the same value – or – they decide the same value

• Protocol operates in synchronous rounds
– Number of rounds T
– Security parameter β

• Randomized protocol
– Every node sends and receives O(k) messages per round

• Termination
– All correct nodes terminate after T rounds, except with probability negligible in β



  

Goals
• Fix k as small constant
– O(n) messages overall

• Number of rounds T 
– should be logarithmic in n
– should be polynomial in β

• Related to the literature on dynamics of consensus
– Overview by Becchetti, Clementi, Natale (SIGACT News, 2020)



  

Slush consensus stabilization
• b  ∈ {0,1} // consensus on a bit

• for round = 1, ..., T do
– pick k random parties, query them for their bit b
– if at least a answers are b* then // a > k/2 

b ← b*
• decide(b)
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How does Slush perform?
• Let pi be fraction of nodes with opinion 1 in round i
• Let δi  [-1, 1] ∈ be the expected "progress" towards consensus on 1
• For fixed k and α, the pro-

gress δi is a function of pi :
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Results for Slush and consensus stabilization
• Theorem 1: For k ≥ 2 and  = (k+1)/2α , Slush reaches stable consensus in

O(log n + )β
rounds, with all but negligible probability in β and up to O(√n) corrupted nodes.

• Theorem 2: For k ≥ 2 and k/2 <  < kα , the expected number of rounds for Slush 
rounds to reach a stable consensus is

Ω(log n / log k),
with up to O(√n) corrupted nodes.



  

Consensus with a decision: Snowflake ...
• b  ∈ {0,1} // consensus on a bit
• counter ← 0
• while counter < β do
– pick k random parties, query them for their bit b
– if at least α answers are b* ≠ b then // α > k/2, Snowflake termination condition (+)

b ← b*
counter ← 0

– else
counter ← counter + 1

• decide(b) // decide after β queries with a majority for b

• Snowball changes the termination condition (+)
– if more rounds exist ever with ≥ α ans. for b* ≠ b than rounds with ≥ α ans. for b then ...



  

Analysis of Snowflake and Snowball

• Theorem 3: In Snowflake and Snowball, with a (weak) adversary, these two 
properties are mutually exclusive:

1) Consensus holds with all but negligible probability (in β);

2) Correct parties decide after polynomially many (in β) rounds.



  

A better tradeoff for consensus: Blizzard
• Blizzard changes the termination condition (+) again

c0 counts number of rounds ever with an α-majority for 0
c1 counts number of rounds ever with an α-majority for 1

• New termination condition (+): stop when their difference exceeds some t
– if | c0 - c1 | ≥ t then ...

• Theorem 4: Blizzard reaches consensus with all but negligible probability
(in β) and terminates in up to O(log n + )β  rounds.



  

DAG-ledger consensus (generic broadcast)
• Used in X-Chain
– Extends consensus to a broadcast protocol

• Transactions form a DAG, a directed acyclic graph

• Transactions without dependencies (T2 and T3)
may be delivered (accepted) in any order

– "Generic broadcast" parameterized by a conflict
relation (weaker than atomic broadcast)

• Transactions that conflict must be ordered

• In principle, every transaction is decided with a Snowball-like protocol

T2 and T2 
independent



  

Avalanche DAG-ledger consensus
• while TRUE do
– select some transaction T
– pick k random parties and query them about T

– if more than a positive results then
update DAG: for every ancestor T' of T,
increment counter(T') for acceptance 

– else
update DAG: for every ancestor T' of T,
reset (to 0) counter(T') for acceptance

– if (∃ T* that is not conflicting Ù counter(T*) ≥ b1) Ú
   (∃ T* that is conflicting Ù counter(T*) ≥ b2) then

output ("deliver") T

Conflicting tx
can come to 
exist in the 
DAG.

Referencing 
them cleverly 
can delay 
acceptance
of innocent tx.



  

Analysis of DAG-ledger consensus
• Detailed pseudocode of Avalanche protocol

• Identified a liveness problem
– Adversary may delay acceptance of a victim transaction arbitrarily

• For other reasons, Ava Labs/Avalanche abandons the DAG protocol on the
X-chain in March '23



  

Conclusion
• Byzantine-tolerant consensus protocols matter and are here to stay
• Assumptions are more important than protocols



  

Conclusion
• Byzantine-tolerant consensus protocols matter and are here to stay
• Assumptions are more important than protocols

• Avalanche: Efficient probabilistic protocols, interesting consensus dynamics

• Links
– Web: https://crypto.unibe.ch/
– Blog: https://cryptobern.github.io/
– Twitter/X: https://x.com/cczurich/
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