UNIVERSITAT

Consensus In blockchains:
Overview and recent results

Christian Cachin
University of Bern

ChainScience, Zurich, April 2024

b

. u
Overview

b
UNIVERSITAT
BRERN

 for all kinds of blockchain consensus do
— describe

« while time lasts do

— select some https://crypto.unibe.ch/pub
— present

« Answer your questions

UNIVERSITAT

Consensus overview

1 — Threshold trust (BFT)

e Trust by numbers
— n nodes total
— { faulty (Byzantine) nodes

« Nodes are identified
— Proof-of-Authority (PoA)

« Homogeneous and symmetric

« Requires

—h >
i
N N

b

u

b
UNIVERSITAT
BRERN

Introducti

Reliable and
Secure Distributed
Programming

Second Edition

@ Springer

b

2 — Generalized trust u

b
UNIVERSITAT
BRERN

« Trust by generalized quorums

— Set of nodes

— Fail-prone sets consisting of
possibly Byzantine nodes

« Heterogeneous and symmetric

« Requires
— Any 3 fail-prone sets must not cover

b

3 — Asymmetric trust u

b
UNIVERSITAT
BRERN

« Subjective generalized quorums

« Every node has its own Byz.
quorum system on

« Heterogeneous and asymmetric

« Requires ,,\
= any fail-prone set of p with any *«_ ~::
set of p' and any of both must not cover s
— Consistent across nodes quorum systems

4 — Unstructured, probabilistic voting

UNIVERSITAT

« Random sampling of peers

“~ .® #
« Exchange information and votes ‘,{,’1,':' !
s’ ¢ S
. &~ v :' Y.
« Often coupled with a DAG ‘ \ ! *‘
(directed acyclic graph) Rx N
on transactions }/ ' :'
. vy

5 — Stake-based voting

UNIVERSITAT
RN

 Stake determines voting power
— Including delegated stake (DPoS)

 Protocols generalized from
symmetric voting (BFT)

» Slashing of invested stake
upon detection of misbehavior

6 — Stake-based probabilistic choice

UNIVERSITAT

« Lottery according to stake

« Probabilistic leader election

- Cryptographic sortition using a ‘ 0 ‘
verifiable random function (VRF) hﬂ

o o

7 — Hybrid prob. choice and stake voting

UNIVERSITAT

 Stake determines probability
or voting power

e Mix of random choice
with voting

» Slashing of invested stake
upon detection of misbehavior

8 — Proof-of-space and proof-of-delay

UNIVERSITAT

- Storage space as resource ‘
o

« Cryptographic ZK proofs for

storage at particular time
« Time delay to prove storage @) .
|

iInvestment over time

9 — Proof-of-work

UNIVERSITAT

- Demonstrate invested computation ‘

« Nakamoto consensus

UNIVERSITAT

Recent results

Model 1: Threshold trust

4 .

4 A 3
¢ A 3
q ‘
') }
o n=7 @
-, f =2 .
' 1
s q
. q
@ @
R P

UNIVERSITAT

b

Order fairness, frontrunning, and MEV u

b
UNIVERSITAT
BRERN

« Front-running and transaction-reordering attacks are common in DeFi

— Online exchanges (DEXs) can be attacked by malicious insiders
— Sandwich attack:

« A customer trade (X — Y) changes the relative asset price X/Y
« Leader injects two malicious trades that "sandwich" the victim trade X = Y
—a:-Yob:-X; X=>Y;b-X—a*-Y,wherea”* >abecause price of Y to X has increased

« Maximal extractable value (MEV)

« Ordinary consensus protocols leaves the actual order open
— See validity condition of total-order broadcast

- Validator nodes exploit their freedom and choose a profitable order

Fairness from receive-order

 Fairness means that output-order
respects receive-order at nodes

« "If all nodes receive t1«t2, then t1«t2 in
output order."

e But...

— There may be Condorcet cycles

— Two correct nodes each have
tl«t?2 & t2«t3 & t3«tl

— Faulty nodes may lie about their receive-order:
t3«t4«tl

u
L8
t3 t2 tl
5249 ¢.” —
A s~ ,'
: ORI
2 t1 t3 ‘3 ;4‘
— = —>) <----
t1 t4 t3
— — —>

Block-wise order fairness [KZGJ20]

e If protocol is sure that t1«t2 in input for
enough nodes, then output t1 before t2,
writtentl < t2.

e If uncertain whether t1«t2 in input for
enough nodes, then output t1 together
with t2, denoted [t1]|t2], in a "block."

« EX. output sequence
.10 S [t1]t2|t3] S 14 S ...

« Application must deal with "concurrent”
transactions in a block

u
L8
t3 t2 tl
5249 ¢.” —
A s~ ,'
: ORI
2 t1 t3 ‘3 ;4‘
— = —>) <----
t1 t4 t3
— — —>

b

Differential (block-)order fairness [CMSZ22] u

UNIVERSITAT
BRERN

« b(tx,tx"): number of correct nodes that receive as input tx before tx'

- Differential order fairness: Require that whenever b(tx,tx') > b(tx',tx) + 2f,
no correct node outputs tx' before tx.

— But protocol may output tx and tx' together, in same block.
—n nodes, f of them corrupted

« Theorem: If b(ix,tx') < b(tx',tx) + 2f, then no protocol can respect input order.

« With optimal resilience n = 3f + 1:

— If t1«t2 for all correct nodes, then must output t1 < t2.
— Otherwise (some correct node t1«t2, some correct node t2«t1), then output [t1]|t2].

b

Quick order-fair atomic broadcast u

b
UNIVERSITAT

- Every node reports its own received sequence to all with consistent broadcast
« Periodically, consensus protocol takes a cut | (across all received sequences)
pl: ..«tl«t2«t3«t4|
pP2: ..«t2«t3«t1l«t5«t4|«tb
pP3: ...«t3«td«tl«t5|«t6
pd: .. .«t3«tl«t2|«t4 ...
« Compute graph of tx s.t. tx = tx' whenever b(tx,tx") > b(tx',tx) + 2f is possible

 Collapse cycles in tx graph to nodes, then output tx in topo-sort order of graph

« Complexity O(n2) messages, resilience n > 3f

A Y

Y ‘

’ ‘
Y
| |
1 |
' []
s ’
. q
o ‘

UNIVERSITAT

Generalized trust — Byz. quorum systems

UNIVERSITAT

- Set of nodes P TN
e Fail-prone system : // Le=" "' RN \
—All may fail together S x el s Z

\ /
‘ any 2 may fail '
e Quorum system , any ' '

Is a "quorum" [MR98, HMO0O0] - —or—

- . m ay
T mm=

q

) ((‘ any 2 may fail ‘\

» Nodes are trusted differently \ /

 All nodes trust equally

Do not trust in numbers [AC23]

b

u

b
UNIVERSITAT
BRERN

- Consensus and distributed cryptography beyond the threshold model
— Threshold cryptography: nodes collectively hold a cryptographic key

« Theoretically well-known, practically never explored

« Example access structure (quorum set) of a validator in Stellar (SDF1)

{ "select": 6,
"out-

{ll

1}

B e T e T N

of": [

select":
"select":
"select":
"select":
"select":
'select":
"select":
"select":

- - -

-

-

N W N NNNNN

"out-of":
“out-of":
"out-of":
"out-of":
"out-of":
"out-of":
"out-of":
"out-of":

—_— e e e

"Blockdaemonl", "Blockdaemon2", "Blockdaemon3"1},

"SDF1", "SDF2", "SDF3"1},

"WirexSingapore", "WirexUK", "WirexUs"]l},

"CoingvestFinland", "CoingvestHongKong", "CoingvestGermany"l},
"SatoshiPayUS", "SatoshiPaySG", "SatoshiPayDE"]},
"FranklinTempletonl", "FranklinTempleton2", "FranklinTempleton3"1},
"LOBSTR1", "LOBSTR2", "LOBSTR3", "LOBSTR4", "LOBSTR5"1},
["Hercules", "Lyra", "Bodtes"1}

Do not trust in numbers [AC23]

UNIVERSITAT

 Practical implementation of generalized distributed ("threshold") cryptosystems
— Monotone span programs (MSP)

« Verifiable secret sharing (VSS)
« Common coin
e Distributed signatures

« Tools to generate MSP from a configuration file

« Benchmarks show the approach is practical

Do not trust in numbers:; Verifiable Secret u

Sharing [AC23]

300 Polynomial n/2 Polynomial n/2
—$— MSP n/2 10 4 % MsPn/2
250 ~@- MSP Unbalanced - MSP Unbalanced
—K~ MSP Grid —E~ MSP Grid
8 -
200 -
% 150 E ©]
5 £
100 47
50 1 27
01 o
a1 3% 64 100 2 16 36 64 100
number of parties number of parties
- Latencies of and op. in generalized verifiable secret sharing

« Polynomial (n/2), MSP (n/2), MSP (unbalanced) and MSP (grid) structures

u

b
UNIVERSITAT
BRERN

Model 3: Asymmetric trust

- u
Asymmetric trust
« Subjective trust assumption of p (via failures) / ; _‘_ i \
— p itself never fails £ y '," “~\ . \

— Neighbor nodes ¢ and

\ /
May fail alone, not together with others ‘ Any 2 of 3 may fall ‘
— Remote nodes x, v, ' b

Any 2 of these 3 may fail together ! o '
e Fail-prone system of node p /)‘/\\ //:'\
el @
\\\/,%{ P . ;\(\:\71//
« Each one of the 6 nodes uses May fail alone "~ -- _‘_ --*"May fail alone

its own subjective trust like this
p itself never fails

» Nodes are trusted differently. Nodes trust differently (asymmetric).

Why asymmetric trust?

« For Romans:

—De gustibus non est disputandum.
(One cannot argue about taste.)

« For CISOs:
—One cannot argue about security assumptions.

 For blockchainers:
—A node counts only the votes of nodes that it trusts. (Ripple, 2014)

—Every node has a different idea about which other nodes are important. (Stellar,
2016)

b

: u
Example asymmetric quorum system |
+ Six nodes, arranged in a ring //__3_\\\\““
» Failure assumptions of node p as shown
« All others are (rotation-)symmetric to p ‘“nv 20f3 ma@
| CI
\ /

May fall alone ~ .. - May fail alone

: p itself never fails
« Each node mistrusts some 2-set of other nodes:

Impossible with threshold Byzantine quorums!

b

Execution model u

b
UNIVERSITAT
BRERN

« An execution defines the actually faulty nodes

« A node niis one of

— Faulty -
— Naive pi -
— Wise pi —

 Safety and liveness hold only for nodes

— Naive nodes may be cheated
(cf. ordinary, symmetric model, when : all nodes are naive!)

« Liveness depends on existence of a
- A Is a set of wise nodes that contains one quorum for each member node

SWMR regular register protocol with Byzantine processes (process p;).

State
wis: sequence number of write operations, stored only by writer p,,
rid: identifier of read operations, used only by reader
ts,v,0: current state stored by p;: timestamp, value, signature

upon invocation write(v) do // only if p; is writer p,,
wis < wis + 1
o <—s sign,,(WRITE||w||wts||v)
send message (WRITE, wts, v, o] to all p; € P

wait for receiving a message [ACK] from more than % processes
upon invocation read do // only if p; is reader p,
rid < rid + 1

send message [READ, rid] to all p; € P
wait for receiving messages [VALUE, 1, s, v;, 0| from more than ”T” processes such that

r; = rid and verify, (o, WRITE||w||zs||v;)
return highestval({(ts;,v;)})

upon receiving a message [WRITE, ts’,v’, ¢'] from p,, do /I every process
if ts” > ts then
(ts,v,0) < (15", 0")
send message [ACK] to py,

upon receiving a message [READ, 7| from p,. do /l every process
send message [VALUE, r, ts, v, 0] to py

b

u

b
UNIVERSITAT
BRERN

Asymmetric SWMR regular register protocol (process p;).

State
wis: sequence number of write operations, stored only by writer p,,
rid: 1identifier of read operations, used only by reader
ts, v, o: current state stored by p;: timestamp, value, signature

upon invocation write(v) do /[only if p; is writer p,,
wits < wits + 1
o s sign, (WRITE||w||wts||v)
send message [WRITE, wts,v,o| to all p; € P
wait for receiving a message [ACK] from all processes in some quorum @, € Q,,

upon invocation read do /l only if p; is reader p,
rid < rid + 1
send message [READ, rid| to all p; € P
wait for receiving messages [VALUE, r;,1s;, v;, ;] from all processes in some @), € Q,- such that
r; = rid and verify, (o;, WRITE| w||ts||v;)
return highestval({(ts;,v;)|j € Qr})

upon receiving a message (WRITE, ts’,v’, o’| from p,, do // every process
if zs" > ts then
(ts,v,0) « (15", 0", 0")
send message [ACK] to py,

upon receiving a message [READ, r| from p, do /I every process
send message [VALUE, r, ts,v, 0] to p,

b

u

b
UNIVERSITAT
BRERN

b

u

b
IIIIIIIIIII
BER

Model 4: Unstructured, probabilistic votinyg

Analysis of Avalanche consensus I [ACT22]

b
UNIVERSITAT

« Metastable consensus: Avalanche and the snow family of protocols

» Nodes sample k other nodes randomly

and ask for their opinion T2 and T2

independent

e Transactions form a DAG,
a directed acyclic graph

« Transactions without dependencies (T2 and T3)
may be delivered (accepted) in any order

 Transactions may conflict

Avalanche consensus

« while TRUE do

— select some transaction
— pick k random parties and query them about

— if more than o positive results then
- update DAG: for every ancestor T' of T,

increment for acceptance
— else
« update DAG: for every ancestor ' of T,
reset (to 0) for acceptance
—if (that is not conflicting A)V
(that is conflicting A) then

- deliver (accept) T

b

u

b
UNIVERSITAT
BRERN

Conflicting tx
can come to
exist in the
DAG.

Referencing
them cleverly
can delay
acceptance
of innocent tx.

Analysis of Avalanche consensus I [ACT22]

b
UNIVERSITAT

 Detailed pseudocode of Avalanche protocol
« Independent analysis

« Illustrates a potential problem
— Adversary may delay acceptance of a victim transaction arbitrarily

 For other reasons, Ava Labs/Avalanche abandons the DAG protocol in March '23

b

Analysis of Avalanche consensus II [ACS24] u __

IIIIIIIIIII

 Avalanche protocol family
— Slush = Snowflake = Snowball = [Showman =] Avalanche

 Revisit randomized polling of Slush as plurality consensus

— Number of nodes
— Number of queries
— Security parameter

« Consensus needs rounds

« A variation Slush achieves consensus in rounds

UNIVERSITAT

Model 9: Proof-of-work

o%o

Medium: A bridge from Bitcoin to GHOST u'

[ACP21] —
« Nakamoto consensus selects the "longest" chain
« GHOST selects Greedily the Heaviest-Observed Sub-Tree

« GHOST better acknowledges work invested into "stale blocks" on short forks
— But GHOST also appears to make long-range attacks more feasible

« Is there a tradeoff between Nakamoto's longest-chain rule and GHOST?

Medium: A bridge from Bitcoin to GHOST

UNIVERSITAT

-

— | | | | |

Blocks in subtree at G: 9 10 7

Medium: A bridge from Bitcoin to GHOST

UNIVERSITAT

¥\ @:%

PENENPEN AN -

Longest chain / Nakamoto

Medium: A bridge from Bitcoin to GHOST u
!
7\ !
ot !
ot !
!
Goreedy Heaest ;

b

Medium: Fork selection rule u

b
UNIVERSITAT
BRERN

« Nakamoto consensus counts only the length of the chain
« GHOST counts only the number of blocks

« Medium weighs each block exponentially with its depth

— A block at depth c counts
— Weight is a in depth d, evaluated at constant

« Special cases

- : every block counts irrespective of depth <> GHOST rule
— : a block counts only through its depth <> Nakamoto rule

Medium: A bridge from Bitcoin to GHOST u "
!
PN v
ajafa]z|al:
N\ v
I
Medium *

Polynomial weight
in depth with const = 2

b
Consensus from an abstract resource [ACLVﬁZ]

IIIIIIIIIII

« Longest-chain consensus protocol that uses an abstract resource
« Formal model of a
« Resources: work, stake, storage ...

« Which features must a resource have to enable consensus?

Thank you!

Web — https://crypto.unibe.ch/
Blog — https://cryptobern.github.io/

Twitter — https://twitter.com/cczurich/

UNIVERSITAT

References

b

Literature u

b
UNIVERSITAT
BRERN

« Model 1: Threshold trust

- Cachin, C., Mici¢, J., Steinhauer, N. & Zanolini, L. (2022). Quick Order Fairness.
Proc. Financial Cryptography and Data Security (FC), LNCS 13411, 316-333.
https://doi.org/10.1007/978-3-031-18283-9_15

b

Literature u

b
UNIVERSITAT
BRERN

« Model 2: Generalized trust

— Alpos, O., & Cachin, C. (2020). Consensus Beyond Thresholds: Generalized
Byzantine Quorums Made Live. Proc. 39th Symposium on Reliable Distributed Systems
(SRDS), 31-40. https://doi.org/10.1109/SRDS51746.2020.00010

- Alpos, O., Cachin, C., & Zanolini, L. (2021). How to Trust Strangers: Composition
of Byzantine Quorum Systems. Proc. 40th Symposium on Reliable Distributed Systems
(SRDS), 120-131. https://doi.org/10.1109/SRDS53918.2021.00021

- Alpos, O. & Cachin, C. (2023). Do Not Trust in Numbers: Practical Distributed
Cryptography With General Trust. Proc. Stabilization, Safety, and Security of Distributed
Systems (SSS), 536-551. https://doi.org/10.1007/978-3-031-44274-2_40

b

Literature u

b
UNIVERSITAT
BRERN

e Model 3: Asymmetric trust

— Cachin, C., & Zanolini, L. (2021). Asymmetric Asynchronous Byzantine Consensus.
Proc. ESORICS Workshops on Data Privacy Management (DPM), Cryptocurrencies and
Blockchain Technology (CBT) LNCS 13140, 192-207. https://doi.org/10.1007/978-3-
030-93944-1_13

— Cachin, C., & Zanolini, L. (2020). From Symmetric to Asymmetric Asynchronous
Byzantine Consensus. e-print, arXiv:2005.08795v3 [cs.DC].
https://arxiv.org/abs/2005.08795v3

— Cachin, C., Losa, G., & Zanolini, L. (2022). Quorum Systems in Permissionless
Proc. 26th International Conference on Principles of Distributed Systems (OPODIS),
17:1-17:22. https://doi.org/10.4230/LIPIcs.OPODIS.2022.17

b

Literature u

b
UNIVERSITAT
BRERN

e Model 3: Asymmetric trust

— Amores-Sesar, I., Cachin, C., & Mici¢, J. (2021). Security Analysis of Ripple
Consensus. Proc. 24th International Conference on Principles of Distributed Systems
(OPODIS), 10:1-10:16. https://doi.org/10.4230/LIPIcs.OPODIS.2020.10

b

Literature u

b
UNIVERSITAT
BRERN

« Model 4: Unstructured, probabilistic voting

- Amores-Sesar, I., Cachin, C., & Tedeschi, E. (2022). When is Spring coming? A
Security Analysis of Avalanche Consensus. Proc. 26th International Conference on
Principles of Distributed Systems (OPODIS), 10:1-10:22.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.10

- Amores-Sesar, 1., Cachin, C., & Schneider, P. (2024). An Analysis of Avalanche
Consensus. e-print, arxiv:2401.02811 [cs.DC]. https://arxiv.org/abs/2401.02811

b

Literature u

b
UNIVERSITAT
BRERN

« Models 5-7: Stake based

— Burk, T. (2022). Blockchain consensus protocols based on stake. Master thesis,
Institute of Computer Science, University of Bern.
https://crypto.unibe.ch/archive/theses/2021.msc.timo.buerk.pdf

- Alpos, O., Cachin, C., Holmgaard Kamp, S., & Buus Nielsen, J. (2023). Practical
Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast. Proc. 5th Conference
on Advances in Financial Technologies (AFT), 31:1-31:22.
https://doi.org/10.4230/LIPIcs.AFT.2023.31

b

Literature u

b
UNIVERSITAT
BRERN

« Model 9

— Amores-Sesar, I., Cachin, C., & Parker, A. (2021). Generalizing Weighted Trees: A
Bridge from Bitcoin to GHOST. Proc. 3rd ACM Conference on Advances in Financial
Technologies (AFT), 156—169. https://doi.org/10.1145/3479722.3480995

— Azouvi, S., Cachin, C., Le, D. V., Vukolic, M., & Zanolini, L. (2022). Modeling
Resources in Permissionless Longest-Chain Total-Order Broadcast. Proc. 26th
International Conference on Principles of Distributed Systems (OPODIS), 19:1-19:23.
https://doi.org/10.4230/LIPIcs.OPODIS.2022.19

