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Overview
• for model  ∈  all kinds of blockchain consensus do
– describe model

• while time lasts do
– select some result  ∈  https://crypto.unibe.ch/pub
– present result

• Answer your questions



  

1 – Threshold trust
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Homogeneous and symmetric

• Requires n > 3f

• Tendermint, DiemBFT, Quorum ...

n = 7
f  = 2



  

2 – Generalized trust
• Trust by generalized quorums
– Set of nodes P
– Fail-prone sets consisting of

possibly Byzantine nodes
– Byzantine quorum system

• Heterogeneous and symmetric

• Requires Q3-property
– Any fail-prone sets must not cover P

• Not used by any cryptocurrency (!)



  

3 – Asymmetric trust
• Subjective generalized quorums

• Every node has its own Byz.
quorum system on P

• Consistency across nodes'
quorum systems

• Requires B3-property
– ∀ p, p' : any fail-prone set of p with any

set of p' and any set of both must not cover P

• Ripple, Stellar, [CT19]



  

4 – Unstructured, probabilistic voting
• Random sampling of peers

• Exchange information and votes

• Usually coupled with a
DAG on transactions

• Avalanche, Conflux, IOTA-Tangle



  

5 – Stake-based voting
• Stake determines voting power

• Protocols generalized from
symmetric voting

• Cosmos, EOS, NEO,
Aptos, SUI ...



  

6 – Stake-based probabilistic choice
• Lottery according to stake

• Probabilistic leader election

• Cryptographic sortition using a
verifiable random function (VRF)

• Cardano/Ouroboros ...



  

7 – Hybrid prob. choice and stake voting
• Stake determines probability

or voting power

• Mix of random choice
with voting

• Slashing of invested stake
upon detection of misbehavior

• Ethereum (LMD-GHOST & FFG-Casper),
Polkadot (BABE & GRANDPA),
Algorand ...



  

8 – Proof-of-space and proof-of-delay
• Storage space as resource

• Cryptographic ZK proofs for
storage at particular time

• Time delay to prove storage
investment over time

• Filecoin, Chia, Storj ...



  

9 – Proof-of-work
• Demonstrate invested computation

• Nakamoto consensus

• Bitcoin ...



  

Model 1: Threshold trust

n = 7
f  = 2



  

Order fairness
• Front-running and transaction-reordering attacks in DeFi

• Maximal extractable value (MEV)

• Validity of consensus (total-order broadcast) leaves actual order open

• Validator nodes exploit their freedom and choose a profitable order



  

Order fairness: Respect the receive-order



  

Condorcet: A fair order may not exist



  

Differential (block-)order fairness [CMSZ22]
• b(m,m'): number of correct nodes that receive as input m before m'

• f out of n corrupted nodes

• Differential order fairness: If b(m,m') > b(m',m) + 2f, then no correct node 
delivers m' before m. (But protocol may deliver m and m' together, in same 
block.)

• Implemented by the quick order-fair atomic broadcast protocol, for n > 3f



  

Model 2: Generalized trust



  

Generalized trust – Byz. quorum systems
• Set of nodes P = {p1, ..., pn}  
• Fail-prone system F ⊆ 2P :
– All F ∈ F may fail together

• Quorum system Q ⊆ 2P , any Q ∈ Q 
is a "quorum" [MR98, HM00]

• F = {pq, pr, qr, xy, xz, yz}
• Q = {rxyz, qxyz, pxyz, pqrz, pqry, pqrx}

• Nodes are trusted differently
• All nodes trust equally

r

x

p

y

z

q any 2 may fail

– or –

any 2 may fail



  

Do not trust in numbers [AC22]
• Distributed cryptography beyond the threshold model

• Theoretically well-known, practically never explored

• Example access structure (quorum set) of a validator in Stellar (SDF1)



  

Do not trust in numbers [AC22]
• Practical implementation of generalized cryptosystems
– Monotone span programs (MSP)

• Verifiable secret sharing (VSS)
• Common coin
• Distributed signatures

• Tools to generate MSP from a configuration file

• Benchmarks show the approach is practical



  

Do not trust in numbers: Verifiable Secret
Sharing [AC22]

• Share and Reconstruct steps of generalized verifiable secret sharing
• Polynomial (n/2), MSP (n/2), MSP (unbalanced) and MSP (grid) structures



  

Model 3: Asymmetric trust



  

Asymmetric trust
• Subjective trust assumption of p (via failures)
– p itself never fails
– Neighbor nodes q and r

May fail alone, not together with others
– Remote nodes x, y, x

Any 2 of these 3 may fail together
• Fail-prone system of node p

{q, r, xy, yz, xz}

• Each one of the 6 nodes uses
its own subjective trust like this
→ Asymmetric quorums

• Nodes are trusted differently.        Nodes trust differently (asymmetric).

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q



  

Why asymmetric trust?
• For Romans:
–De gustibus non est disputandum.

 (One cannot argue about taste.)

• For CISOs:
–One cannot argue about security assumptions.

• For blockchainers:
– A node counts only the votes of nodes that it trusts. (Ripple, 2014)
– Every node has a different idea about which other nodes are important. (Stellar, 

2016)



  

Example asymmetric quorum system
• Six nodes, arranged in a ring
• Failure assumptions of node p as shown
• All others are (rotation-)symmetric to p

• Satisfies B3 property 
↔
There is an asymmetric quorum system

• Each node mistrusts some 2-set of other nodes:
impossible with threshold Byzantine quorums!

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q



  

Execution model
• An execution defines the actually faulty nodes F

• A node pi is one of
– Faulty – pi ∈ F
– Naive pi – pi ∉ F and F ∉ Fi*
– Wise pi – pi ∉ F and F ∈ Fi*

• Safety and liveness hold only for wise nodes
– Naive nodes may be cheated

(cf. ordinary, symmetric model, when f ≥ n/3: all nodes are naive!)

• Liveness depends on existence of a guild
– A guild is a set of wise nodes that contains one quorum for each member node



  



  



  

Model 4: Unstructured, probabilistic voting



  

Analysis of Avalanche consensus [ACT22]
• Metastable consensus: Avalanche and the snow family of protocols

• Transactions form a DAG,
a directed acyclic graph

• Transactions may conflict

• Nodes sample other nodes
and ask for their opinion



  

Avalanche consensus



  

Analysis of Avalanche consensus [ACT22]
• Detailed pseudocode of Avalanche protocol

• Independent analysis

• Illustrates a potential problem

• For other reasons, Ava Labs/Avalanche abandons the DAG protocol in March '23



  

Model 9: Proof-of-work



  

Use any resource for consensus [ACLVZ22]
• Longest-chain consensus based on an abstract resource

• Formal model of a resource allocator

• Resources: work, stake, storage ...

• Which features must a resource have to enable consensus?



  

Thank you!

Web – https://crypto.unibe.ch/

Blog – https://cryptobern.github.io/

Twitter – https://twitter.com/cczurich/
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