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 De gustibus non est disputandum



  

What is distributed trust?



  

What is distributed trust?

• Trustless
• Do not trust any single node
• Fair, everyone has some influence
• Majority is right
• Remains intact despite corruptions,

nodes which lie or misbehave

• Distributed protocols tolerate 
uncertainty, failures, and attacks



  

Threshold trust
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Typically requires n > 3f

• Threshold depends on
– Timing assumption (synchronous, asynchronous)
– Fault model
– Protocol optimizations (fast decision when all is well)

n = 7
f  = 2



  

Symmetric trust



  

Why n > 3f ?

• Safety and liveness

• Reading from and writing to storage

• Reliable broadcasts

• Consensus



  

Safety & liveness
• Distributed protocols satisfy two orthogonal properties

(Alpern & Schneider, 1987)

• Safety – Nothing "bad" will ever happen
– Look at the past history if a "bad" event occurred
– "Do nothing" is always safe

• Liveness – Something "good" will happen in the future
– Look into the future of the execution if "good" event will occur
– "Do something" is always live

• Only protocols that combine safety and liveness are useful



  

Blockchain safety

• Participants reach the same decision in consensus

• All clients get the same view of the network's state
– Ownership of "coins"
– Assets of a smart contract

• Ledger does not fork

• Easy with a trusted centralized system, with no failures or attacks



  

Blockchain liveness

• Participants can execute transactions

• Network does not depend on manual intervention

• Market remains liquid due to continuous progress

• Ledger does not halt

• Easy with a trusted centralized system, with no failures or attacks



  

Background

www.distributedprogramming.net



  

RW Register abstraction
• Two operations only
– Write(x) → OK
– Read() → x

• Every operation defined by two events
– Invocation (IN)
– Completion (OUT)

• Simplification
– Only process w ("Whit") or pw may write
– Only process r ("Ron") or pr may read

... single-reader, single-writer (SRSW) register



  

RW Register abstraction
• Convenient model for shared storage
– Inspired by shared-memory multi-threaded or multi-processor systems ("processes" 

that read and write)
– Today also for cloud or blockchains (clients which read and write)

• Completely asynchronous
– No common clocks
– No bound on message delays of protocols
– No bound on local processing time

• Many results on "Wait-free synchronization" (Herlihy & Wing, 1991)
→ CPU instructions: test-and-set or compare-and-swap



  

Concurrency

• Operation o precedes o' whenever completion of o occurs before invocation of o'

• Otherwise, o and o' are concurrent

• How should the RW register behave when accessed concurrently?



  

Semantics of MRSW register operations

• Safe – Every read not concurrent with a write returns the most recently written 
value.

• Regular – Safe & any read concurrent with a write returns either the most 
recently written value or the concurrently written value: r2 may read() → x or y

• Atomic – Regular & all read and write operations occur atomically
(= linearizable): r2 must read() → y

write(x) → OK
w

r1
read() → x

r2

write(y) → OK

read() → y

read() → y read() → ?



  

Example executions of SRSW register
• Not regular

• Regular



  

BFT protocol for SRSW regular register
• Protocol with n > 3f replicated nodes, f may be Byzantine/faulty

• Writer pw maintains a logical timestamp ts
– Increments ts for each write() operation
– Issues digital signature s on pair (ts, v)
– Sends a timestamp/value/signature tuples (ts, v, s) to replica nodes
– Waits for > (n+f)/2 replicas to acknowledge ("Byzantine quorum")

• Reader pr asks replicas for their current (ts, v, s) tuples
– Verifies that signature s from pw is valid
– Receives > (n+f)/2 such tuples ("Byzantine quorum")
– Extracts value v with highest timestamp ts and returns v 



  



  

Example SRSW register execution
p

⚡

write(x) write(y)

ts=8

r

q

t

w

(7,x)

ts=7

s

read() → y

(8,y)(7,x)

(8,y)

 
(8,y)(7,x)

read() → xread() → y

 



  

Why regular?
• Read without concurrent write
– Last write by pw of (ts, x) has updated > (n+f)/2 replica nodes to (ts, x)
– Reader pr obtains > (n+f)/2 value/timestamp pairs
– Since any two sets of > (n+f)/2 overlap in > f nodes, at least one answer from honest
– pr receives one pair (ts, x) and outputs the most recently written value x

• Read with concurrent write
– Either pr either receives concurrently written value from (ts, x)
– Or pr outputs most recently written value, from argument above



  

BFT protocols in the threshold model
• Usually n > 3f replicated nodes, f nodes may be Byzantine/faulty
– May add "weight" to votes in straightforward manner

• Protocols implement many tasks
– Consistent broadcast
– Reliable broadcast
– RW registers
– Consensus
– State-machine replication
– Blockchains



  

From symmetric to asymmetric trust



  

Recall – Threshold trust is symmetric
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Typically requires n > 3f

• All nodes are equally trusted
• All nodes trust equally

n = 7
f  = 2



  

Byzantine quorum systems
• Set of nodes P = {p1, ..., pn}  
• Fail-prone system F ⊆ 2P :
– All F ∈ F may fail together

• Quorum system Q ⊆ 2P , any Q ∈ Q 
is a "quorum" [MR98, HM00]

• F = {pq, pr, qr, xy, xz, yz}
• Q = {rxyz, qxyz, pxyz, pqrz, pqry, pqrx}

• Not all nodes equally trusted
• All nodes trust equally

r

x

p

y

z

q any 2 may fail

– or –

any 2 may fail



  

Byzantine quorum systems
• Set of nodes P = {p1, ..., pn}  
• Fail-prone system F ⊆ 2P : all nodes in some F ∈ F may fail together

• Quorum system Q ⊆ 2P , where any Q ∈ Q  is a "quorum", iff.
– Consistency:

∀ Q1, Q2 ∈ Q, ∀ F  ∈ F : Q1 ∩ Q2 ⊈ F.
– Availability: 

∀ F  ∈ F : ∃ Q ∈ Q : F ∩ Q = ∅.
[Malkhi & Reiter, 1998]

• Symmetric trust



  

What about asymmetric trust?
• Subjective trust assumption of p (via failures)
– p itself never fails
– Neighbor nodes q and r
• May fail by themselves, not together with others

– Remote nodes x, y, x
• Any 2 of these 3 may fail together

• Fail-prone system of node p
{{q}, {r}, {x,y}, {y,z}, {x,z}}

• What if each one of the 6 nodes used
its own subjective trust like this?
→ Asymmetric quorums

• Nodes are trusted differently.  Every node trusts differently!

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q



  

Towards blockchains with asymmetric trust



  

Ripple



  

Consensus in Ripple
• Ripple started 2012
– Today ranks 3rd by market cap

• Ripple protocol consensus algorithm
– Schwartz, Youngs, Britto (2014)

• Each node declares which other nodes it trusts (Unique Node List)

• Intends to achieve Byzantine fault-tolerant consensus



  
https://developers.ripple.com/consensus.html



  

What does subjective trust mean?
• Each node declares its own list of trusted nodes (UNL)

• The UNLs of two nodes must overlap

• But...
– If the UNLs overlap, by how much?
– Which nodes may fail?
– If some nodes that I trust fail, what consequence does this have for me?



  

 

Ripple white paper (2014)



  

Overlap of node lists?
• 20%
– Ripple protocol consensus paper (2014)

• 40%
– Armknecht et al. (TRUST 2015)

• "almost" 100% (!)
– Chase & MacBrough (arxiv.org 2018)



  
Chase & MacBrough, Analysis of the XRP 
Ledger Consensus Protocol (2018)



  

Ripple – A consensus protocol?
• No liveness if UNLs differ

• https://developers.ripple.com/consensus-protections.html
– For all participants in the XRP Ledger to agree on what they consider validated, they must 

start by choosing a set of trusted validators that are fairly similar to the sets chosen by 
everyone else. In the worst case, less than about 90% overlap could cause some 
participants to diverge from each other. For that reason, Ripple publishes a signed list of 
recommended validators, including trustworthy and well-maintained servers run by the 
company, industry, and community.

– In mid 2017 – 5 validators of Ripple that trust each other and no other node
– In mid 2019 – 31 validators (7 Ripple; 24 non-Ripple)



  

Stellar



  

Consensus in Stellar
• Stellar forked from Ripple in 2013
– Originally used Ripple's protocol and code
– Today number 10 in market cap

• Stellar consensus failed and ledger forked in 2014

• Protocol was redesigned from scratch
– Mazières, "The Stellar Consensus Protocol: A Federated Model for Internet-level 

Consensus" (white paper, 2015) 

• Aims to achieve federated Byzantine fault-tolerant consensus



  

 

https://coindesk.com



  

Quorum "slices" in Stellar consensus
• When a node hears a "slice" assert a statement, the node adopts that

• Each node pi declares its own set of slices Si

• A set of nodes T such that ∀ pi ∈ T : ∃ Si ⊆T is called a "quorum"

• Unclear relation to consensus literature



  

Stellar's QUORUM_SET example
# QUORUM_SET is a required field
# This is how you specify this server's quorum set.
#
# It can be nested up to 2 levels: {A,B,C,{D,E,F},{G,H,{I,J,K,L}}}
# THRESHOLD_PERCENT is how many have to agree (1-100%) within a given set.
# Each set is treated as one vote.
# So for example in the above there are 5 things that can vote:
# individual validators: A,B,C, and the sets {D,E,F} and {G,H with subset {I,J,K,L}}
# the sets each have their own threshold.
# For example with {100% G,H with subset (50% I,J,K,L}}
#   means that quorum will be met with G, H and any 2 (50%) of {I, J, K, L}
#
# a [QUORUM_SET.path] section is constructed as
# THRESHOLD_PERCENT: how many have to agree, defaults to 67 (rounds up).
# VALIDATORS: array of node IDs
# additional subsets [QUORUM_SET.path.item_number]
# a QUORUM_SET  must not contain duplicate entries {{A,B},{A,C}} is invalid for example
#  The key for "self" is implicitely added at the top level, so the effective
#   quorum set is [t:2, self, QUORUM_SET].

https://github.com/stellar/stellar-core/blob/master/docs/stellar-core_example.cfg

B C

H

◊

66%

I J K

◊

◊D E

L

F G

A

100%

50%

66%



  

Stellar's QUORUM_SET example
[QUORUM_SET]
THRESHOLD_PERCENT=66
VALIDATORS=[
    "GDQWITFJLZ5HT6JCOXYEVV5VFD6FTLAKJAUDKHAV3HKYGVJWA2DPYSQV  A_from_above",
    "GANLKVE4WOTE75MJS6FQ73CL65TSPYYMFZKC4VDEZ45LGQRCATGAIGIA  B_from_above",
    "GDV46EIEF57TDL4W27UFDAUVPDDCKJNVBYB3WIV2WYUYUG753FCFU6EJ  C_from_above"
]

[QUORUM_SET.1]
THRESHOLD_PERCENT=67
VALIDATORS=[
    "$self", # 'D' from above is this node
    "GDXJAZZJ3H5MJGR6PDQX3JHRREAVYNCVM7FJYGLZJKEHQV2ZXEUO5SX2 E_from_above",
    "GB6GK3WWTZYY2JXWM6C5LRKLQ2X7INQ7IYTSECCG3SMZFYOZNEZR4SO5 F_from_above"
]

[QUORUM_SET.2]
THRESHOLD_PERCENT=100
VALIDATORS=[
    "GCTAIXWDDBM3HBDHGSAOLY223QZHPS2EDROF7YUBB3GNYXLOCPV5PXUK G_from_above",
    "GCJ6UBAOXNQFN3HGLCVQBWGEZO6IABSMNE2OCQC4FJAZXJA5AIE7WSPW H_from_above"
]

[QUORUM_SET.2.1]
THRESHOLD_PERCENT=50
VALIDATORS=[
    "GC4X65TQJVI3OWAS4DTA2EN2VNZ5ZRJD646H5WKEJHO5ZHURDRAX2OTH I_from_above",
    "GAXSWUO4RBELRQT5WMDLIKTRIKC722GGXX2GIGEYQZDQDLOTINQ4DX6F J_from_above",
    "GAWOEMG7DQDWHCFDTPJEBYWRKUUZTX2M2HLMNABM42G7C7IAPU54GL6X K_from_above",
    "GDZAJNUUDJFKTZX3YWZSOAS4S4NGCJ5RQAY7JPYBG5CUFL3JZ5C3ECOH L_from_above"
]

https://github.com/stellar/stellar-core/blob/master/docs/stellar-core_example.cfg
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Recent developments ...
• "Is Stellar As Secure As You Think?" (Kim et al., 2019)
– Exploration of the Stellar trust graph shows high centralization

• In Apr./May 2019, Stellar 
started to make its trust 
graph less centralized ...



  

 

https://medium.com



  

Another formalization of Stellar
• Personal Byzantine Quorum Systems [Losa, Gafni, Mazières, 2019]
– Describes some phenomena of running a protocol with subjective trust

• PBQS with nodes P, a set F ⊆ P of faulty nodes, set W = P – F of correct nodes

• For every correct pi ∈ W, a set of "quorums" Qi ⊆ 2P exists with
∀Q ∈ Qi , ∀pj  ∈ Qi , ∃Q' ∈ Qj : Q' ⊆ Qi.

... non-standard assumption: faulty nodes F used for defining quorums

... if instantiated with symmetric trust, does not give a Byzantine quorum system



  

Stellar – A consensus protocol?
• No clear liveness guarantees

• Does not generalize existing consensus protocols

• No simple condition to evaluate if the chosen quorum slices ensure consensus

• Relation of Stellar consensus to existing BFT consensus remains open



  

Asymmetric quorum systems



  

Asymmetric Byzantine quorum systems
• Asymmetric fail-prone system F = [F1, ..., Fn], where Fi ⊆ 2P is the fail-prone 

system for pi; all nodes in some F ∈ Fi may fail together (... according to pi)

• Asymmetric quorum system Q = [Q1, ..., Qn], where Qi ⊆ 2P  is the quorum 
system for pi and any Qi ∈ Qi  is a "quorum for pi", iff.

– Consistency:
∀ pi, pj, ∀ Qi ∈ Qi, ∀ Qj ∈ Qj, ∀ F  ∈ Fi* ∩ Fj* : Qi ∩ Qj ⊈ F.

– Availability: 
∀ pi, ∀ F  ∈ Fi : ∃ Q ∈ Qi : F ∩ Q = ∅.

(Based on Damgård, Desmedt, Fitzi, Nielsen, Asiacrypt 2007)



  

When do quorum systems exist?
• Q3 property for fail-prone system F [MR98, HM00]
– No three elements of F cover P (e.g., for threshold quorums: 3*f < n)

• B3 property for asymmetric F (and asymmetric quorum system Q)
– For all i and j, for all Fi  ∈ Fi, Fj  ∈ Fj, Fij  ∈ Fi* ∩ Fj* : P ⊈ Fi ∪ Fj  ∪ Fij

• Symmetric Thm. [MR98]: A quorum system for F exists  Q3(F)

• Asymmetric Thm.: An asymmetric quorum system for F exists  B3(F)



  

Example asymmetric quorum system
• Six nodes, arranged in a ring
• Failure assumptions of node p as shown
• All others are (rotation-)symmetric to p

• Satisfies B3 property 
↔
Asymmetric quorum system

• Each node mistrusts some 2-set of other nodes:
impossible with threshold Byzantine quorums!

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q



  

Execution model
• An execution defines the actually faulty nodes F

• Any node pi is one of
– Faulty – pi ∈ F
– Naive pi – pi ∉ F and F ∉ Fi*
– Wise pi – pi ∉ F and F ∈ Fi*

• Safety and liveness hold only for wise nodes
– Naive nodes may be cheated

(cf. ordinary, symmetric BFT system with f ≥ n/3: all nodes are naive!)

• Liveness depends on existence of a guild
– A guild is a set of wise nodes that contains one quorum for each member node



  



  



  

Protocols with asymmetric trust
• Many standard distributed protocols follow by making quorums subjective

– Emulation of a shared (SWMR) register

– Byzantine consistent broadcast

– Byzantine reliable broadcast ("Bracha" broadcast)

– Byzantine consensus (with eventual synchrony [=PBFT] and randomized)

• Strict generalizations of standard protocols with symmetric trust



  

De gustibus non est disputandum

https://cryptobern.github.io/asymmetric

https://arxiv.org/abs/1906.09314


