

Consensus with Asymmetric Trust

Christian Cachin
University of Bern

Joint work with Björn Tackmann (DFINITY) and Luca Zanolini (Univ. Bern)

SantaCrypt, 2019

 De gustibus non est disputandum

What is distributed trust?

What is distributed trust?

• Trustless
• Do not trust any single node
• Fair, everyone has some influence
• Majority is right
• Remains intact despite corruptions,

nodes which lie or misbehave

• Distributed protocols tolerate
uncertainty, failures, and attacks

Threshold trust
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Typically requires n > 3f

• Threshold depends on
– Timing assumption (synchronous, asynchronous)
– Fault model
– Protocol optimizations (fast decision when all is well)

n = 7
f = 2

Symmetric trust

Why n > 3f ?

• Safety and liveness

• Reading from and writing to storage

• Reliable broadcasts

• Consensus

Safety & liveness
• Distributed protocols satisfy two orthogonal properties

(Alpern & Schneider, 1987)

• Safety – Nothing "bad" will ever happen
– Look at the past history if a "bad" event occurred
– "Do nothing" is always safe

• Liveness – Something "good" will happen in the future
– Look into the future of the execution if "good" event will occur
– "Do something" is always live

• Only protocols that combine safety and liveness are useful

Blockchain safety

• Participants reach the same decision in consensus

• All clients get the same view of the network's state
– Ownership of "coins"
– Assets of a smart contract

• Ledger does not fork

• Easy with a trusted centralized system, with no failures or attacks

Blockchain liveness

• Participants can execute transactions

• Network does not depend on manual intervention

• Market remains liquid due to continuous progress

• Ledger does not halt

• Easy with a trusted centralized system, with no failures or attacks

Background

www.distributedprogramming.net

RW Register abstraction
• Two operations only
– Write(x) → OK
– Read() → x

• Every operation defined by two events
– Invocation (IN)
– Completion (OUT)

• Simplification
– Only process w ("Whit") or pw may write
– Only process r ("Ron") or pr may read

... single-reader, single-writer (SRSW) register

RW Register abstraction
• Convenient model for shared storage
– Inspired by shared-memory multi-threaded or multi-processor systems ("processes"

that read and write)
– Today also for cloud or blockchains (clients which read and write)

• Completely asynchronous
– No common clocks
– No bound on message delays of protocols
– No bound on local processing time

• Many results on "Wait-free synchronization" (Herlihy & Wing, 1991)
→ CPU instructions: test-and-set or compare-and-swap

Concurrency

• Operation o precedes o' whenever completion of o occurs before invocation of o'

• Otherwise, o and o' are concurrent

• How should the RW register behave when accessed concurrently?

Semantics of MRSW register operations

• Safe – Every read not concurrent with a write returns the most recently written
value.

• Regular – Safe & any read concurrent with a write returns either the most
recently written value or the concurrently written value: r2 may read() → x or y

• Atomic – Regular & all read and write operations occur atomically
(= linearizable): r2 must read() → y

write(x) → OK
w

r1
read() → x

r2

write(y) → OK

read() → y

read() → y read() → ?

Example executions of SRSW register
• Not regular

• Regular

BFT protocol for SRSW regular register
• Protocol with n > 3f replicated nodes, f may be Byzantine/faulty

• Writer pw maintains a logical timestamp ts
– Increments ts for each write() operation
– Issues digital signature s on pair (ts, v)
– Sends a timestamp/value/signature tuples (ts, v, s) to replica nodes
– Waits for > (n+f)/2 replicas to acknowledge ("Byzantine quorum")

• Reader pr asks replicas for their current (ts, v, s) tuples
– Verifies that signature s from pw is valid
– Receives > (n+f)/2 such tuples ("Byzantine quorum")
– Extracts value v with highest timestamp ts and returns v

Example SRSW register execution
p

⚡

write(x) write(y)

ts=8

r

q

t

w

(7,x)

ts=7

s

read() → y

(8,y)(7,x)

(8,y)

(8,y)(7,x)

read() → xread() → y

Why regular?
• Read without concurrent write
– Last write by pw of (ts, x) has updated > (n+f)/2 replica nodes to (ts, x)
– Reader pr obtains > (n+f)/2 value/timestamp pairs
– Since any two sets of > (n+f)/2 overlap in > f nodes, at least one answer from honest
– pr receives one pair (ts, x) and outputs the most recently written value x

• Read with concurrent write
– Either pr either receives concurrently written value from (ts, x)
– Or pr outputs most recently written value, from argument above

BFT protocols in the threshold model
• Usually n > 3f replicated nodes, f nodes may be Byzantine/faulty
– May add "weight" to votes in straightforward manner

• Protocols implement many tasks
– Consistent broadcast
– Reliable broadcast
– RW registers
– Consensus
– State-machine replication
– Blockchains

From symmetric to asymmetric trust

Recall – Threshold trust is symmetric
• Trust by numbers
– n nodes total
– f faulty (Byzantine) nodes

• Typically requires n > 3f

• All nodes are equally trusted
• All nodes trust equally

n = 7
f = 2

Byzantine quorum systems
• Set of nodes P = {p1, ..., pn}
• Fail-prone system F ⊆ 2P :
– All F ∈ F may fail together

• Quorum system Q ⊆ 2P , any Q ∈ Q
is a "quorum" [MR98, HM00]

• F = {pq, pr, qr, xy, xz, yz}
• Q = {rxyz, qxyz, pxyz, pqrz, pqry, pqrx}

• Not all nodes equally trusted
• All nodes trust equally

r

x

p

y

z

q any 2 may fail

– or –

any 2 may fail

Byzantine quorum systems
• Set of nodes P = {p1, ..., pn}
• Fail-prone system F ⊆ 2P : all nodes in some F ∈ F may fail together

• Quorum system Q ⊆ 2P , where any Q ∈ Q is a "quorum", iff.
– Consistency:

∀ Q1, Q2 ∈ Q, ∀ F ∈ F : Q1 ∩ Q2 ⊈ F.
– Availability:

∀ F ∈ F : ∃ Q ∈ Q : F ∩ Q = ∅.
[Malkhi & Reiter, 1998]

• Symmetric trust

What about asymmetric trust?
• Subjective trust assumption of p (via failures)
– p itself never fails
– Neighbor nodes q and r
• May fail by themselves, not together with others

– Remote nodes x, y, x
• Any 2 of these 3 may fail together

• Fail-prone system of node p
{{q}, {r}, {x,y}, {y,z}, {x,z}}

• What if each one of the 6 nodes used
its own subjective trust like this?
→ Asymmetric quorums

• Nodes are trusted differently. Every node trusts differently!

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q

Towards blockchains with asymmetric trust

Ripple

Consensus in Ripple
• Ripple started 2012
– Today ranks 3rd by market cap

• Ripple protocol consensus algorithm
– Schwartz, Youngs, Britto (2014)

• Each node declares which other nodes it trusts (Unique Node List)

• Intends to achieve Byzantine fault-tolerant consensus

https://developers.ripple.com/consensus.html

What does subjective trust mean?
• Each node declares its own list of trusted nodes (UNL)

• The UNLs of two nodes must overlap

• But...
– If the UNLs overlap, by how much?
– Which nodes may fail?
– If some nodes that I trust fail, what consequence does this have for me?

Ripple white paper (2014)

Overlap of node lists?
• 20%
– Ripple protocol consensus paper (2014)

• 40%
– Armknecht et al. (TRUST 2015)

• "almost" 100% (!)
– Chase & MacBrough (arxiv.org 2018)

Chase & MacBrough, Analysis of the XRP
Ledger Consensus Protocol (2018)

Ripple – A consensus protocol?
• No liveness if UNLs differ

• https://developers.ripple.com/consensus-protections.html
– For all participants in the XRP Ledger to agree on what they consider validated, they must

start by choosing a set of trusted validators that are fairly similar to the sets chosen by
everyone else. In the worst case, less than about 90% overlap could cause some
participants to diverge from each other. For that reason, Ripple publishes a signed list of
recommended validators, including trustworthy and well-maintained servers run by the
company, industry, and community.

– In mid 2017 – 5 validators of Ripple that trust each other and no other node
– In mid 2019 – 31 validators (7 Ripple; 24 non-Ripple)

Stellar

Consensus in Stellar
• Stellar forked from Ripple in 2013
– Originally used Ripple's protocol and code
– Today number 10 in market cap

• Stellar consensus failed and ledger forked in 2014

• Protocol was redesigned from scratch
– Mazières, "The Stellar Consensus Protocol: A Federated Model for Internet-level

Consensus" (white paper, 2015)

• Aims to achieve federated Byzantine fault-tolerant consensus

https://coindesk.com

Quorum "slices" in Stellar consensus
• When a node hears a "slice" assert a statement, the node adopts that

• Each node pi declares its own set of slices Si

• A set of nodes T such that ∀ pi ∈ T : ∃ Si ⊆T is called a "quorum"

• Unclear relation to consensus literature

Stellar's QUORUM_SET example
QUORUM_SET is a required field
This is how you specify this server's quorum set.
#
It can be nested up to 2 levels: {A,B,C,{D,E,F},{G,H,{I,J,K,L}}}
THRESHOLD_PERCENT is how many have to agree (1-100%) within a given set.
Each set is treated as one vote.
So for example in the above there are 5 things that can vote:
individual validators: A,B,C, and the sets {D,E,F} and {G,H with subset {I,J,K,L}}
the sets each have their own threshold.
For example with {100% G,H with subset (50% I,J,K,L}}
means that quorum will be met with G, H and any 2 (50%) of {I, J, K, L}
#
a [QUORUM_SET.path] section is constructed as
THRESHOLD_PERCENT: how many have to agree, defaults to 67 (rounds up).
VALIDATORS: array of node IDs
additional subsets [QUORUM_SET.path.item_number]
a QUORUM_SET must not contain duplicate entries {{A,B},{A,C}} is invalid for example
The key for "self" is implicitely added at the top level, so the effective
quorum set is [t:2, self, QUORUM_SET].

https://github.com/stellar/stellar-core/blob/master/docs/stellar-core_example.cfg

B C

H

◊

66%

I J K

◊

◊D E

L

F G

A

100%

50%

66%

Stellar's QUORUM_SET example
[QUORUM_SET]
THRESHOLD_PERCENT=66
VALIDATORS=[
 "GDQWITFJLZ5HT6JCOXYEVV5VFD6FTLAKJAUDKHAV3HKYGVJWA2DPYSQV A_from_above",
 "GANLKVE4WOTE75MJS6FQ73CL65TSPYYMFZKC4VDEZ45LGQRCATGAIGIA B_from_above",
 "GDV46EIEF57TDL4W27UFDAUVPDDCKJNVBYB3WIV2WYUYUG753FCFU6EJ C_from_above"
]

[QUORUM_SET.1]
THRESHOLD_PERCENT=67
VALIDATORS=[
 "$self", # 'D' from above is this node
 "GDXJAZZJ3H5MJGR6PDQX3JHRREAVYNCVM7FJYGLZJKEHQV2ZXEUO5SX2 E_from_above",
 "GB6GK3WWTZYY2JXWM6C5LRKLQ2X7INQ7IYTSECCG3SMZFYOZNEZR4SO5 F_from_above"
]

[QUORUM_SET.2]
THRESHOLD_PERCENT=100
VALIDATORS=[
 "GCTAIXWDDBM3HBDHGSAOLY223QZHPS2EDROF7YUBB3GNYXLOCPV5PXUK G_from_above",
 "GCJ6UBAOXNQFN3HGLCVQBWGEZO6IABSMNE2OCQC4FJAZXJA5AIE7WSPW H_from_above"
]

[QUORUM_SET.2.1]
THRESHOLD_PERCENT=50
VALIDATORS=[
 "GC4X65TQJVI3OWAS4DTA2EN2VNZ5ZRJD646H5WKEJHO5ZHURDRAX2OTH I_from_above",
 "GAXSWUO4RBELRQT5WMDLIKTRIKC722GGXX2GIGEYQZDQDLOTINQ4DX6F J_from_above",
 "GAWOEMG7DQDWHCFDTPJEBYWRKUUZTX2M2HLMNABM42G7C7IAPU54GL6X K_from_above",
 "GDZAJNUUDJFKTZX3YWZSOAS4S4NGCJ5RQAY7JPYBG5CUFL3JZ5C3ECOH L_from_above"
]

https://github.com/stellar/stellar-core/blob/master/docs/stellar-core_example.cfg

B C

H

◊

66%

I J K

◊

◊D E

L

F G

A

100%

50%

66%

Recent developments ...
• "Is Stellar As Secure As You Think?" (Kim et al., 2019)
– Exploration of the Stellar trust graph shows high centralization

• In Apr./May 2019, Stellar
started to make its trust
graph less centralized ...

https://medium.com

Another formalization of Stellar
• Personal Byzantine Quorum Systems [Losa, Gafni, Mazières, 2019]
– Describes some phenomena of running a protocol with subjective trust

• PBQS with nodes P, a set F ⊆ P of faulty nodes, set W = P – F of correct nodes

• For every correct pi ∈ W, a set of "quorums" Qi ⊆ 2P exists with
∀Q ∈ Qi , ∀pj ∈ Qi , ∃Q' ∈ Qj : Q' ⊆ Qi.

... non-standard assumption: faulty nodes F used for defining quorums

... if instantiated with symmetric trust, does not give a Byzantine quorum system

Stellar – A consensus protocol?
• No clear liveness guarantees

• Does not generalize existing consensus protocols

• No simple condition to evaluate if the chosen quorum slices ensure consensus

• Relation of Stellar consensus to existing BFT consensus remains open

Asymmetric quorum systems

Asymmetric Byzantine quorum systems
• Asymmetric fail-prone system F = [F1, ..., Fn], where Fi ⊆ 2P is the fail-prone

system for pi; all nodes in some F ∈ Fi may fail together (... according to pi)

• Asymmetric quorum system Q = [Q1, ..., Qn], where Qi ⊆ 2P is the quorum
system for pi and any Qi ∈ Qi is a "quorum for pi", iff.

– Consistency:
∀ pi, pj, ∀ Qi ∈ Qi, ∀ Qj ∈ Qj, ∀ F ∈ Fi* ∩ Fj* : Qi ∩ Qj ⊈ F.

– Availability:
∀ pi, ∀ F ∈ Fi : ∃ Q ∈ Qi : F ∩ Q = ∅.

(Based on Damgård, Desmedt, Fitzi, Nielsen, Asiacrypt 2007)

When do quorum systems exist?
• Q3 property for fail-prone system F [MR98, HM00]
– No three elements of F cover P (e.g., for threshold quorums: 3*f < n)

• B3 property for asymmetric F (and asymmetric quorum system Q)
– For all i and j, for all Fi ∈ Fi, Fj ∈ Fj, Fij ∈ Fi* ∩ Fj* : P ⊈ Fi ∪ Fj ∪ Fij

• Symmetric Thm. [MR98]: A quorum system for F exists  Q3(F)

• Asymmetric Thm.: An asymmetric quorum system for F exists  B3(F)

Example asymmetric quorum system
• Six nodes, arranged in a ring
• Failure assumptions of node p as shown
• All others are (rotation-)symmetric to p

• Satisfies B3 property
↔
Asymmetric quorum system

• Each node mistrusts some 2-set of other nodes:
impossible with threshold Byzantine quorums!

May fail alone

Any 2 of 3 may fail

p itself never fails

r

May fail alone

x

p

y

z

q

Execution model
• An execution defines the actually faulty nodes F

• Any node pi is one of
– Faulty – pi ∈ F
– Naive pi – pi ∉ F and F ∉ Fi*
– Wise pi – pi ∉ F and F ∈ Fi*

• Safety and liveness hold only for wise nodes
– Naive nodes may be cheated

(cf. ordinary, symmetric BFT system with f ≥ n/3: all nodes are naive!)

• Liveness depends on existence of a guild
– A guild is a set of wise nodes that contains one quorum for each member node

Protocols with asymmetric trust
• Many standard distributed protocols follow by making quorums subjective

– Emulation of a shared (SWMR) register

– Byzantine consistent broadcast

– Byzantine reliable broadcast ("Bracha" broadcast)

– Byzantine consensus (with eventual synchrony [=PBFT] and randomized)

• Strict generalizations of standard protocols with symmetric trust

De gustibus non est disputandum

https://cryptobern.github.io/asymmetric

https://arxiv.org/abs/1906.09314

