Consensus with Asymmetric Trust

Christian Cachin
University of Bern

Joint work with Bjorn Tackmann (DFINITY) and Luca Zanolini (Univ. Bern)

SantaCrypt, 2019

UNIVERSITAT

De gustibus non est disputandum

What is distributed trust?

UNIVERSITAT

b

What is distributed trust? u

b
UNIVERSITAT
BERN

 Trustless

e Do not trust any single node

e Fair, everyone has some influence

« Majority is right

« Remains intact despite corruptions,
nodes which lie or misbehave

« Distributed protocols tolerate
uncertainty, failures, and attacks

b

Threshold trust u

b
UNIVERSITAT
BERN

 Trust by numbers

— 1 nodes total ,‘— ----- .‘s

— f{ faulty (Byzantine) nodes ‘ .

- Typically requires ‘ n="17 ’
f =2

« Threshold depends on

— Timing assumption (synchronous, asynchronous) " ‘
— Fault model d 4

— Protocol optimizations (fast decision when all is well) Teel '_ -7

UNIVERSITAT

Symmetric trust

Why n > 3f?

UNIVERSITAT

 Safety and liveness
« Reading from and writing to storage
 Reliable broadcasts

« Consensus

b

Safety & liveness u

b
UNIVERSITAT
BERN

e Distributed protocols satisfy two orthogonal properties
(Alpern & Schneider, 1987)

 Safety — Nothing "bad" will ever happen

— Look at the past history if a "bad" event occurred
—"Do nothing" is always safe

 Liveness — Something "good" will happen in the future

— Look into the future of the execution if "good" event will occur
— "Do something" is always live

« Only protocols that combine safety and liveness are useful

b

Blockchain safety u

b
UNIVERSITAT
BERN

 Participants reach the same decision in consensus

« All clients get the same view of the network's state
— Ownership of "coins"
— Assets of a smart contract

 Ledger does not fork

« Easy with a trusted centralized system, with no failures or attacks

Blockchain liveness

 Participants can execute transactions

« Network does not depend on manual intervention
« Market remains liquid due to continuous progress
« Ledger does not halt

« Easy with a trusted centralized system, with no failures or attacks

b

Background u

b
UNIVERSITAT
BERN

Christian Cachin
Rachid Guerraoui
Luis Rodrigues

Introduction to

Reliable and

Secure Distributed www.distributedprogramming.net
Programming

Second Edition

@ Springer

b

RW Register abstraction u

b
UNIVERSITAT
BERN

« Two operations only

» Every operation defined by two events
— Invocation (IN)
— Completion (OUT)

« Simplification
— Only process or Py, may write

— Only process or p, may read
... single-reader, single-writer (SRSW) register

b

RW Register abstraction u

b
UNIVERSITAT
BERN

« Convenient model for shared storage

— Inspired by shared-memory multi-threaded or multi-processor systems ("processes”
that read and write)

— Today also for cloud or blockchains (clients which read and write)

« Completely asynchronous
— No common clocks

— No bound on message delays of protocols
— No bound on local processing time

« Many results on "Wait-free synchronization" (Herlihy & Wing, 1991)
— CPU Instructions: test-and-set or compare-and-swap

Concurrency

« Operation o precedes o' whenever completion of o occurs before invocation of
« Otherwise, o and o' are concurrent

« How should the RW register behave when accessed concurrently?

b

Semantics of MRSW register operations
write(x) = OK write(y) = OK
W -
r o
read() =y read() = ?

r2 - I

« Safe — Every not concurrent with a returns the most recently written
value.

« Regular — Safe & any concurrent with a returns either the most

recently written value or the concurrently written value: ro may read() = x ory

« Atomic — Regular & all and operations occur atomically
(= linearizable): rp must read() = vy

b

Example executions of SRSW register u

b
UNIVERSITAT
BERN

« Not regular

write(x) write(y)
p _H
. read()/~ L read() — X read() — y
H_H_Hi
. Regu lar write(x) write(y)
p —H

g read()/~ x read() — x read() —y
— o 0—o o—o

BFT protocol for SRSW regular register

b
UNIVERSITAT
BERN

« Protocol with replicated nodes, may be Byzantine/faulty

« Writer p,, maintains a logical timestamp

— Increments s for each operation

— Issues digital signature s on pair

— Sends a timestamp/value/signature tuples to replica nodes
— Waits for replicas to acknowledge ("Byzantine quorum")

« Reader p, asks replicas for their current tuples

— Verifies that signature s from p,, is valid

— Receives such tuples ("Byzantine quorum")
— Extracts value v with highest timestamp ts and returns

SWMR regular register protocol with Byzantine processes (process p;).

State
wis: sequence number of write operations, stored only by writer p,,
rid: identifier of read operations, used only by reader
ts, v, o: current state stored by p;: timestamp, value, signature

upon invocation write(v) do
wits < wits + 1
o <s sign,,(WRITE||w||wts||v)
send message [WRITE, wts, v, o] toall p; € P
wait for receiving a message [ACK] from more than % processes

upon invocation read do
rid < rid + 1
send message [READ, rid] to all p; € P
wait for receiving messages [VALUE, r;, ts;, v;, 0] from more than
r; = rid and verify, (o, WRITE||w||ts||v;)
return highestval({(ts;,v;)})

upon receiving a message [WRITE, ts', v’ ¢’] from p,, do
if 75" > ts then
(ts,v,0) « (15,0, 0")
send message [ACK] to py,

upon receiving a message [READ, r| from p,. do
send message [VALUE, r,ts, v, 0] to p,

n+f
2

// only if p; 1s writer p,,

/! only if p; 1s reader p,

processes such that

/] every process

/] every process

b

u

b
UNIVERSITAT
BERN

Example SRSW register execution

b

Why regular? u

b
UNIVERSITAT
BERN

« Read without concurrent write

— Last write by p,, of has updated replica nodes to

— Reader p; obtains value/timestamp pairs

— Since any two sets of overlap in > T nodes, at least one answer from honest
— D, receives one pair and outputs the most recently written value

« Read with concurrent write
— Either p, either receives concurrently written value from
— Or p,; outputs most recently written value, from argument above

b

BFT protocols in the threshold model u

b
UNIVERSITAT
BERN

e Usually replicated nodes, nodes may be Byzantine/faulty
— May add "weight" to votes in straightforward manner

» Protocols implement many tasks
— Consistent broadcast

— Reliable broadcast

— RW registers

— Consensus

— State-machine replication

— Blockchains

UNIVERSITAT

From symmetric to asymmetric trust

b

: : u

Recall — Threshold trust is symmetric

- Trust by numbers

— n nodes total /‘ ‘,

— { faulty (Byzantine) nodes '/ ‘\

- Typically requires , n="7 ’
« All nodes are equally trusted . '.'
 All nodes trust equally " ‘

: u
Byzantine quorum systems
. Se.t of nodes / x"-‘.'\ \
« Fail-prone system : [x o oz

— All may fail together \

\‘\ any 2 may fail ,/

e Quorum system , any
is a "quorum" [MR98, HMO0O]

. q‘ any 2 may fail 'r

« Not all nodes equally trusted
« All nodes trust equally

Byzantine quorum systems

UNIVERSITAT

« Set of nodes
« Fail-prone system : all nodes in some may fail together

« Quorum system , where any Is a "quorum’, iff.
— Consistency:

— Availability:
[Malkhi & Reiter, 1998]

« Symmetric trust

: u
What about asymmetric trust? ,,
« Subjective trust assumption of p (via failures) : N W
— p itself never fails /x x " ‘ - \\ Z\

--_—

— Neighbor nodes g and r | ’ ,
« May fail by themselves, not together with others . Any 2 of 3 may fail
— Remote nodes x, v, X !
N

« Any 2 of these 3 may fail together
4 PN
@

4 0 k /
May fail alone "~ -. ‘_—— “May fail alone

e Fail-prone system of node p

« What if each one of the 6 nodes used
Its own subjective trust like this? p itself never fails
— Asymmetric quorums

« Nodes are trusted differently. Every node trusts differently!

UNIVERSITAT

Towards blockchains with asymmetric trust

UNIVERSITAT

Ripple

Consensus in Ripple

 Ripple started 2012
— Today ranks 3rd by market cap

 Ripple protocol consensus algorithm
— Schwartz, Youngs, Britto (2014)

« Each node declares which other nodes it trusts (Unique Node List)

 Intends to achieve Byzantine fault-tolerant consensus

Consensus

The servers on the network share information about candidate transactions.
Through the consensus process, validators agree on a specific subset of the
candidate transactions to be considered for the next ledger. Consensus is an

iterative process in which servers relay proposals, or sets of candidate transactions.

Servers communicate and update proposals until a supermajority % of chosen
validators agree on the same set of candidate transactions.

During consensus, each server evaluates proposals from a specific set of servers,
known as that server's trusted validators, or Unique Node List (UNL).* Trusted
val'rII:iators represent a subset of the network which, when taken collectively, is
"trusted" not to collude in an attempt to defraud the server evaluating the proposals.
This definition of "trust” does not require that each individual chosen validator is
trusted. Rather, validators are chosen based on the expectation they will not collude
in a coordinated effort to falsify data relayed to the network °.

Validators each propose a

set of transactions to be
included in the next ledger
version

FaN
Round 1 g

Validators add transactions Abhd
to their proposals if most —_ AdLa
ather validators they trust — =

proposed thase

transactions

Validalors remove
transactions [f most other
validators they trust didn't
propose them.

(The remaved transastions ara

- vli
VN
S
. d .‘"/ :
N e e Teger
) S
FaN
V

wersiaon)
AN
Round 2 e

In this document: b

u

* Consensus

o

o

o

o

o

Introduction -

The XRP Ledger Protocol - UNIVERSITAT
Consensus and Validation PERn

= Consensus

= Validation

Key Takeaways

Further Resources

End Notes

https://developers.ripple.com/consensus.html

b

What does subjective trust mean? u

b
UNIVERSITAT
BERN

« Each node declares its own list of trusted nodes (UNL)

« The UNLs of two nodes must overlap

e But...

— If the UNLs overlap, by how much?
— Which nodes may fail?

— If some nodes that I trust fail, what consequence does this have for me?

b

u

b
UNIVERSITAT
BERN

Figure 2. An example of the connectivity required to
prevent a fork between two UNL cliques.

prove agreement is given by:

1
\UNL;NUNL;| > gmax(\UNLiL \[UNL;|)Vi,j () Ripple white paper (2014)

Overlap of node lists?

— Ripple protocol consensus paper (2014)

— Armknecht et al. (TRUST 2015)

« "almost” 100% (!)
— Chase & MacBrough (arxiv.org 2018)

OO O®» OO

Figure 6: Example of stuck network with 99% UNL overlap and no Byzantine
faults.

Chase & MacBrough, Analysis of the XRP
Ledger Consensus Protocol (2018)

b

Ripple — A consensus protocol? u

b
UNIVERSITAT
BERN

« No liveness if UNLs differ

« https://developers.ripple.com/consensus-protections.html

— For all participants in the XRP Ledger to agree on what they consider validated, they must
start by choosing a set of trusted validators that are fairly similar to the sets chosen by
everyone else. In the worst case, less than about 90% overlap could cause some
participants to diverge from each other. For that reason, Ripple publishes a signed list of

recommended validators, including trustworthy and well-maintained servers run by the
company, industry, and community.

—In mid 2017 - 5 validators of Ripple that trust each other and no other node
—In mid 2019 — 31 validators (7 Ripple; 24 non-Ripple)

UNIVERSITAT

Stellar

b

Consensus In Stellar u

b
UNIVERSITAT
BERN

» Stellar forked from Ripple in 2013

— Originally used Ripple's protocol and code
— Today number 10 in market cap

» Stellar consensus failed and ledger forked in 2014

 Protocol was redesigned from scratch

— Mazieres, "The Stellar Consensus Protocol: A Federated Model for Internet-level
Consensus" (white paper, 2015)

« Aims to achieve federated Byzantine fault-tolerant consensus

: -AJ % %, b
Stellar Network Fork Prompts Concerns u

Over Ripple Consensus Protocol

b
UNIVERSITAT
BERN

Ad closed by Google

REHGLAGIEERE VWhy this ad? >

v | s | in P8 4 | =

=5 Stan Higgins & ¥ X\
®© Dec 9, 2014 at 20:26 UTC » Updated Dec 10, 2014 at 12:16 UTC k_

A recent unintended ledger fork in the Stellar network led to a temporary disruption of its transaction
system and a broader debate about the integrity of the Ripple consensus protocol.

The debate began on 5th December, when Stellar Development Foundation (SDF) executive director
Joyce Kim published a blog post outlining a fork in the Stellar network that the company attributed to
problems within the Ripple consensus protocol.

Both Ripple Labs and Stellar use the open-source protocol to provide competing transaction networks
that allow fiat money to be sent over the blockchain. The development calls into question the viability of
technology both companies hope will appeal to individuals and businesses seeking a powerful way to

https://coindesk.
reduce the costs of moving money, though the incident last week only impacted the Stellar network. psifjcoindesk.com

Quorum "slices" in Stellar consensus

UNIVERSITAT

« When a node hears a "slice" assert a statement, the node adopts that

« Each node p; declares its own set of slices

« A set of nodes T such that Is called a "quorum”

e Unclear relation to consensus literature

Stellar's QUORUM _SET example

QUORUM_SET is a required field

b

u

b

UNIVERSITAT
BERN

This is how you specify this server's quorum set.

66% A

It can be nested up to 2 levels: {A,B,C,{D,E,F},{G,H,{I,J,K,L}}}

THRESHOLD_PERCENT is how many have to agree (1-100%) within a given set.
Each set is treated as one vote.

So for example in the above there are 5 things that can vote:

individual validators: A,B,C, and the sets {D,E,F} and {G,H with subset {I,J,K,L}}
the sets each have their own threshold.

For example with {100% G,H with subset (50% I,J,K,L}}

means that quorum will be met with G, H and any 2 (50%) of {I, J, K, L}

#

a [QUORUM_SET.path] section is constructed as

THRESHOLD_PERCENT: how many have to agree, defaults to 67 (rounds up).

VALIDATORS: array of node IDs

additional subsets [QUORUM_SET.path.item_number]

a QUORUM_SET must not contain duplicate entries {{A,B},{A,C}} is invalid for example
The key for "self" is implicitely added at the top level, so the effective

quorum set is [t:2, self, QUORUM_SET].

B C O
ANV AN
66% F | 100 0 G H
VARNN
50 I J K L

https://github.com/stellar/stellar-core/blob/master/docs/stellar-core_example.cfg

Stellar's QUORUM _SET example

THRESHOLD_PERCENT=66

u

b
UNIVERSITAT
BERN

VALIDATORS=[

"GDQWITFILZ5HT6JCOXYEVV5VFD6FTLAKJAUDKHAV3HKYGVIWA2DPYSQV A_from_above", 66% A

"GANLKVE4WOTE75MJS6FQ73CL65TSPYYMFZKCAVDEZA5LGQRCATGAIGIA B_from_above",

%

"GDV46EIEF57TDL4W27UFDAUVPDDCKINVBYB3WIV2WYUYUG753FCFU6EJ C_from_above"
]

THRESHOLD_PERCENT=67

VALIDATORS=[
"$self", # 'D' from above is this node
"GDXJAZZI3H5MIGR6PDQX3JHRREAVYNCVM7FIYGLZIKEHQV2ZXEUO5SX2 E_from_above",
"GB6GK3WWTZYY2IXWM6C5LRKLO2X7INQ7IYTSECCG3SMZFYOZNEZR4SO5 F_from_above"

]

THRESHOLD_PERCENT=100
VALIDATORS=[
"GCTAIXWDDBM3HBDHGSAOLY223QZHPS2EDROF7YUBB3GNYXLOCPV5PXUK G_from_above",
"GCI6UBAOXNQFN3HGLCVQBWGEZO6IABSMNE20CQCA4FIAZXIASAIE7WSPW H_from_above"
]

THRESHOLD_PERCENT=50

VALIDATORS=[
"GCAX65TQIVI3ZOWASADTA2EN2VNZ5ZRID646H5WKEIHO5ZHURDRAX20TH I_from_above",
"GAXSWUO4RBELRQT5WMDLIKTRIKC722GGXX2GIGEYQZDQDLOTINQ4DX6F J_from_above",
"GAWOEMG7DQDWHCFDTPIEBYWRKUUZTX2M2HLMNABM42G7C7IAPU54GL6X K_from_above",
"GDZAINUUDJFKTZX3YWZSOASASANGCI5RQAY7IPYBG5CUFL3JZ5C3ECOH L_from_above"

66%

50%

100 O G H

I J KL

https://github.com/stellar/stellar-core/blob/master/docs/stellar-core_example.cfg

b

Recent developments ... u

b
UNIVERSITAT
BERN

« "Is Stellar As Secure As You Think?" (Kim et al., 2019)
— Exploration of the Stellar trust graph shows high centralization

PS4 4

sat.aﬂ sat ay2 GDAXA

. e o Strongholgs CCBMH
tem m
GBWHO telldfport2 goedx stronghold2
e In Apr./May 2019, Stellar UK ib:@:::“’m trstr:ng;olﬂ GADLA
. GAE72 strongho
started to make its trust ib_US ibmdndia ooy gpesz R0 kst
repuablic ibrn ®razil A GDXQB
graph less centralized ... S el e ey 02
GOBK ibm_Agstralia exodgomw pS MWPGDC;?Y?S
GCXLL GBR7I uniyel Geogry CBPHS _ .
GC8AQ smoove2 GB¥7K
GBWUC smoove1

Figure 2. Directed graph of quorum slices in Stellar

I Stellar Developers s [Getstated |

’

May 15th Network Halt

Stellar Development Foundation | Follow |

g May 16 - 4 min read

RSITAT

At 1:14pm Pacific time, May 15th, the Stellar network halted for 67 minutes
due to an inability to reach consensus. During that time no ledgers were
closed and no transactions were processed—basically, Stellar stopped.

However, the ledger state remained safe and consistent across the network.

Stellar has roughly 150,000 users every day and over 3 million total

accounts. No one lost their money; no one’s balances were confused by a
fork. At 2:21, ledgers began closing where they left off, and the network is
healthy this morning.

Needless to say, an outage like this is highly undesirable, and it uncovered a
few improvements we need to make. Here are the main takeaways, which we
expand upon below.

1) The halt wasn’t because Stellar’s Consensus Protocol failed—in fact, it

worked as intended. For a system like Stellar, a temporary halt is preferable
https://medium.com

to the permanent confusion of a fork. But yesterday shows that Stellar needs

L u
Another formalization of Stellar
 Personal Byzantine Quorum Systems [Losa, Gafni, Mazieres, 2019]
— Describes some phenomena of running a protocol with subjective trust
« PBQS with nodes P, a set of faulty nodes, set of correct nodes

« For every correct , a set of "quorums” exists with

... hon-standard assumption: faulty nodes F used for defining quorums
... If instantiated with symmetric trust, does not give a Byzantine quorum system

Stellar — A consensus protocol?

» No clear liveness guarantees
 Does not generalize existing consensus protocols
« No simple condition to evaluate if the chosen quorum slices ensure consensus

 Relation of Stellar consensus to existing BFT consensus remains open

UNIVERSITAT

Asymmetric quorum systems

Asymmetric Byzantine quorum systems

UNIVERSITAT

« Asymmetric fail-prone system , Where Is the fail-prone
system for p;; all nodes in some may fail together (... according to p;)

« Asymmetric quorum system , Where Is the quorum
system for p; and any Is a "quorum for p;", iff.

— Consistency:

— Availability:

(Based on Damgard, Desmedt, Fitzi, Nielsen, Asiacrypt 2007)

When do quorum systems exist?

UNIVERSITAT

« Q3 property for fail-prone system F [MR98, HMOO]
— No three elements of F cover P (e.g., for threshold quorumes:)

« B3 property for asymmetric 7~ (and asymmetric quorum system ©)
— Forall rand |, for all

« Symmetric Thm. [MR98]:

« Asymmetric Thm.:

b

: u
Example asymmetric quorum system

b
UNIVERSITAT
BERN

 Six nodes, arranged in aring
« Failure assumptions of node p as shown
« All others are (rotation-)symmetric to p

May fall alone ‘ - May fall alone

] itself never fails
« Each node mistrusts some 2-set of other nodes: g

Impossible with threshold Byzantine quorums!

b

Execution model u

b
UNIVERSITAT
BERN

« An execution defines the actually faulty nodes

« Any node p;is one of
— Faulty -

— Naive pj -

— Wise pj —

 Safety and liveness hold only for wise nodes

— Naive nodes may be cheated
(cf. ordinary, symmetric BFT system with : all nodes are naive!)

» Liveness depends on existence of a guild
— A guild is a set of wise nodes that contains one quorum for each member node

SWMR regular register protocol with Byzantine processes (process p;).

State
wis: sequence number of write operations, stored only by writer p,,
rid: identifier of read operations, used only by reader
ts, v, o: current state stored by p;: timestamp, value, signature

upon invocation write(v) do // only if p; is writer p,,
wis < wis + 1
o <—s sign,, (WRITE||w||wts||v)
send message [WRITE, wis,v, 0| toallp; € P

wait for receiving a message [ACK] from more than # processes
upon invocation read do /l only if p; is reader p,
rid < rid + 1

send message [READ, rid] to all p; € P
wait for receiving messages [VALUE, 1, ts;, v;, 0| from more than ”T” processes such that

r; = rid and verify, (o, WRITE||w||zs||v;)
return highestval({(ts;,v;)})

upon receiving a message [WRITE, ts’,v’, ¢'] from p,, do // every process
if 15" > ts then
(ts,v,0) < (ts',v",0")
send message [ACK] to py,

upon receiving a message [READ, 7| from p,. do /l every process
send message [VALUE, r, ts, v, 0] to p,

b

u

b
UNIVERSITAT
BERN

Asymmetric SWMR regular register protocol (process p;).

State
wts: sequence number of write operations, stored only by writer p,,
rid: identifier of read operations, used only by reader
ts,v,o: current state stored by p;: timestamp, value, signature

upon invocation write(v) do // only if p; is writer p,,
wts < wis + 1
o <s sign, (WRITE||w|\wis||v)
send message [WRITE, wts, v, ol toall p; € P
wait for receiving a message [ACK] from all processes in some quorum (Q,, € Q,,

upon invocation read do // only if p; is reader p,.
rid < rid + 1
send message [READ, rid| to all p; € P
wait for receiving messages [VALUE, r;,1s;, v;, ;] from all processes in some @), € Q,. such that
r; = rid and verify, (o;, WRITE||w||ts||v;)
return highestval({(ts;,v;)|j € Qr})

upon receiving a message (WRITE, ts’,v’, o’| from p,, do /l every process
if #s" > ts then
(ts,v,0) « (ts', V", 0")
send message [ACK] to py,

upon receiving a message [READ, 7| from p, do /I every process
send message [VALUE, 1, ts, v, o] to p,

b

u

b
UNIVERSITAT
BERN

b

u

Protocols with asymmetric trust

b
UNIVERSITAT
BERN

« Many standard distributed protocols follow by making quorums subjective
— Emulation of a shared (SWMR) register
— Byzantine consistent broadcast

— Byzantine reliable broadcast ("Bracha" broadcast)

— Byzantine consensus (with eventual synchrony [=PBFT] and randomized)

« Strict generalizations of standard protocols with symmetric trust

UNIVERSITAT

De gustibus non est disputandum

https://cryptobern.github.io/asymmetric

https://arxiv.org/abs/1906.09314

