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● Adds transparency
● Reduces risk
● Stores significant value

● Automates trust
● Replaces authorities by technology
● Eliminates intermediaries

Blockchain – new opportunities
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Bitcoin

‣ First cryptocurrency

‣ Introduced blockchain

‣Decentralized, trustless, anonymous

‣Resists censorship

‣Nobody owns it – Satoshi Nakamoto?

‣Roots in "cypherpunks" movement of ~1990-1995
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In cryptography we trust (?)
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What is a blockchain?
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Ledger

‣ Ledger records all business activity as 
transactions
– Database

‣ Every market and network defines a 
ledger

‣ Ledger records asset transfers between 
participants

‣ Problem — (Too) many ledgers
– Every market has its ledger
– Every organization has its own ledger
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Multiple ledgers

‣ Every party keeps its own 
ledger and state

‣ Problems, incidents, faults

‣ Ledgers diverge

‣Reconciliation is expensive
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Blockchain provides one virtual ledger

‣One covirtual trusted ledger

‣ Today often implemented by a 
centralized intermediary

‣Blockchain holds the world 
state for all parties

‣Replicated and produced 
collaboratively

‣ Trust in ledger from
– Cryptographic protection
– Distributed validation

Alice Charlie

Frank Dave

   One
       Ledger

Bob

Eve
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Consensus

Four elements characterize Blockchain

Replicated ledger Cryptography

Business logic
● Logic embedded in the ledger
● Executed together with transactions
● From simple "coins" to self-enforcing 

"smart contracts"

● History of all transactions
● Append-only with immutable past
● Distributed and replicated

● Decentralized protocol
● Shared control tolerating disruption
● Transactions validated

● Integrity of ledger
● Authenticity of transactions
● Privacy of transactions
● Identity of participants
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Blockchain simplifies complex transactions

Financial assets Property records Logistics

Real-time visibility

Improved efficiency

Transparency & verifiability

Reduced cost

Faster settlement times

Increased credit availability

Transparency & verifiability

No reconciliation cost

Digital but unforgeable

Fewer disputes

Transparency & verifiability

Lower transfer fees
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Blockchain scenario features

‣A given task or problem, but no (central) trusted party available

‣ Protocol among multiple nodes, solving a distributed task
– The writing nodes decide and reach consensus collectively

‣ Key aspects of the distributed task
– Stores data
– Multiple nodes write
– Not all writing nodes are trusted
– Operations are (somewhat) verifiable

‣ If all writing nodes are known → permissioned or consortium blockchain

‣Otherwise, when writing nodes are not known → permissionless or public blockchain
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Why blockchain now?

‣Cryptography has been a key technology in the financial world for decades
– Payment networks, ATM security, smart cards, online banking ...

‣ Trust model of (financial) business has not changed
– Trusted intermediary needed for exchange among non-trusting partners
– Today cryptography mostly secures point-to-point interactions

‣Bitcoin started in 2009
– Embodies only cryptography of 1990s and earlier
– First prominent use of cryptography for a new trust model (= trust no entity)

‣ The promise of Blockchain – Reduce trust and replace it by technology
– Exploit advanced cryptographic techniques
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Again – What is a blockchain?
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A state machine

‣ Functionality F
– Operation o transforms a state s to new state s' and may generate a response r

(s', r) ← F(s, o)

‣Validation condition
– Operation needs to be valid, in current state, according to a predicate P()

r

s s'

o

o

s s'

P(s,o) = TRUE

r
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Blockchain state machine

‣Append-only log
– Every operation o appends a "block" of valid transactions (tx) to the log

‣ Log content is verifiable from the most recent element

‣ Log entries form a hash chain

ht ← Hash( [tx1, tx2, ... ] || ht-1 || t) . 

o

s s'
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Example – The Bitcoin state machine

‣Bitcoins are unforgeable bitstrings
– "Mined" by the protocol itself (see later)

‣Digital signature keys (ECDSA) own and transfer bitcoins
– Owners are pseudonymous, e.g., 3JDs4hAZeKE7vER2YvmH4yTMDEfoA1trnC

‣ Every transaction transfers a bitcoin (fraction) from current to next owner
– "This bitcoin now belongs to 3JDs..." signed by the key of current owner
– The coin flow is linkable by design, not anonymous when connected to the real world

‣Validation is based on the global history of past transactions
– Signer has received the bitcoin before
– Signer has not yet spent the bitcoin
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A consensus protocol creates the blockchain

o1 o2 o3

s0 s1 s2 s3

Protocol orders 

transactions and

constructs the 

ledger

Nodes

produce

transactions (tx)
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Blockchain protocol features

‣Only "valid" operations (transactions) are "executed"

‣ Transactions can be simple
– Bitcoin tx are statement of ownership for coins, digitally signed

"This bitcoin now belongs to K2" signed by K1

‣ Transactions can be arbitrary code (smart contracts)
– Embody logic that responds to events (on blockchain) and may transfer assets in 

response
– Auctions, elections, investment decisions, blackmail ...
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Consensus
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Types of blockchain consensus

‣Decentralized / permissionless / Nakamoto consensus
– Bitcoin, Ethereum, ...

‣Consortium / permissioned / BFT consensus
– BFT (Byzantine fault tolerance) consensus, quorums
– Flexible quorums: Ripple and Stellar

‣Weighted by stake / rational agreement / proof-of-stake consensus
– Peercoin, Cardano-Ouroboros, Algorand, Ethereum-Casper ...

‣DAG protocols
– SPECTRE, Hashgraph, IOTA Tangle, Snowflake-Avalanche, Conflux ...
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Decentralized / permissionless / Nakamoto 
consensus



23

Decentralized – Permissionless

‣Anyone can join

‣ Sybil attacks

‣No traditional votes

‣Bitcoin's idea: One CPU = One vote

‣ "Vote" by investing and proving work
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Nakamoto consensus in Bitcoin, Ethereum ...

‣Voting not possible
– Anyone can join, a malicious party may claim many pseudonyms (Sybil attack)

‣ For consistency and ordering transactions, use a leader

‣ Idea
– Probabilistically determine a leader (once every ~10 mins in Bitcoin)
– Provide an incentive to be a good, correct leader → receives a newly "mined" coin
– To be elected, a candidate grows the ledger and orders transactions

‣Approach
– Determine leader by lottery
– The first candidate to solve a useless cryptographic puzzle wins
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Decentralized – Nakamoto consensus/Bitcoin

‣All nodes prepare blocks
– List of transactions (tx)
– All tx valid

‣ Lottery race
– Solves a hard puzzle
– Selects a winner randomly
– Winner's block of tx are

executed and
– Winner "mines" a coin

‣All nodes verify and
validate new block
– "Longest" chain wins
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How does proof-of-work ensure consistency?

‣Miners solve puzzle to create blocks
– Concurrent, include conflicting tx
– Disseminate block, fast
– Mining reward

‣ "Longest" chain wins

‣ Forks occur regularly
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How does proof-of-work ensure consistency?

‣Miners solve puzzle to create blocks
– Concurrent, include conflicting tx
– Disseminate block, fast
– Mining reward

‣ "Longest" chain wins

‣ Forks occur regularly
– With probability independent of past

‣ Forks do not last forever, with high probability
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How does proof-of-work ensure consistency?

‣Miners solve puzzle to create blocks
– Concurrent, include conflicting tx
– Disseminate block, fast
– Mining reward

‣ "Longest" chain wins

‣ Forks occur regularly
– With probability independent of past

‣ Forks do not last forever, with high probability
– Bitcoin tx confirmed if 6 blocks deep
– Probability of k-blocks long fork exponentially small in k

‣Alternative rules exist to select winning chain (GHOST ...)
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Features of decentralized consensus

‣ Survives censorship and suppression (+ / —)
– No identities, no counting of nodes
– Give incentive to participate with mining reward

‣ Scales to 1000s of nodes (+)

‣High latency (minutes or more), and decisions are never final (—)

‣Requires proof-of-work (PoW)  (—)
– Majority of hashing power controls the network

‣Waste-of-work: Bitcoin's PoW consensus consumes huge amounts of power
– Bitcoin consumes 20% more electricity than Switzerland

(bitcoinenergyconsumption.com // Bundesamt für Energie (BFE), Stromverbrauch 2017)
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Consortium / permissioned / BFT consensus
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Consortium – Permissioned – BFT

‣ Traditional consensus based on voting

‣Defined group of validator nodes

‣Has been studied for decades
– Byzantine Fault Tolerance (BFT)
– Elaborate mathematical theory (quorums)
– Clear assumptions and top-down design

‣Many variations possible
– Change group membership through protocol itself
– Votes weighted by stake

‣ Implementations available, some open source
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History of BFT consensus research

‣Helped develop the field of distributed computing
– The mathematical consensus abstraction plays a key role
– Rich body of literature, textbooks ...

‣Computer-science theory research
– Very active topic ca. 1985–2000
– Many theorems, no systems (cf. Paxos, VSR ...)

‣Computer systems research
– Very active topic ca. 1999–2010
– Many systems, no deployment (cf. ZooKeeper, Raft/etcd ...)

‣Blockchain research and development
– Revived interest, starting ca. 2015
– Deployment in practice
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Consortium consensus (quorums & BFT)

‣Designated set of N validator
nodes for consensus

‣BFT consensus
– Tolerates F-out-of-N faulty/

adversarial nodes
– Generalized quorums

‣ Send tx to validator nodes

‣BFT consensus validates tx,
decides, and disseminates
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Protocols for BFT consensus

‣ PBFT = Practical Byzantine Fault Tolerance [CL02]
– Assumes eventual synchrony (live only in synchronous networks)
– Extends consensus tolerating crashes (Paxos, Viewstamped Replication, ZooKeeper, 

Raft/etcd) to Byzantine nodes [C09]

– BFT-SMaRt toolkit, Hyperledger Fabric, Tendermint and many more

‣ Practical randomized Byzantine consensus from cryptography [CKS05, CKPS01]
– No synchrony assumption, fully asynchronous
– Uses distributed (threshold) cryptography to produce unpredictable randomness

– SINTRA prototype [C01, CP02], HoneyBadger BFT [MXC+16] and more
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Permissioned consensus overview
[CV17] C. Cachin, M. Vukolic: 
Blockchain consensus protocols in 
the wild, DISC 2017.

https://arxiv.org/abs/1707.01873
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Features of BFT consensus

‣Well-understood (+)
– Many protocols, research papers (700 protocols ... [AGK+15]), textbooks
– Security proofs and open-source implementations

‣ Fast (+)
– 1000s or 10'000s of tx/s
– Latency of seconds

‣Decisions are final (+)

‣Requires all-to-all, Ω(N2), communication (—)
– Does not scale to 1000s of nodes

‣Relies on identities of nodes (+ / —)
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Meta-consensus
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Two kinds of consensus

‣ Protocol-level consensus on transactions
– Automatic and purely mechanical
– No debates among humans

‣Meta-level consensus on protocol
– Which consensus protocol to run?
– Social and economic process
– Much more like diplomacy ... and difficult to automate
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Why is a bitcoin worth anything?
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Bitcoin

‣Anonymous creator
– Only an informal group of developers and code maintainers
– Protocol execution controlled by miners

‣Debate about block-size limit
– Bitcoin's block size of 1MB limits throughput to 7tx/s
– Starting 2015, intensive debates among developers and others to increase block size
– No meta-consensus ... many developers left Bitcoin
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Bitcoin meta-consensus issues

‣No consensus either in 2017, but a new method to resolve: fork!
– Forking always possible when a permissionless blockchain changes its protocol
– Creates a new currency

‣Bitcoin Cash (BCH) forked in July 2017, increasing block size to 8MB
– Every bitcoin (BTC) also became a bitcoin-cash coin (BCH)
– Today: 1 BTC = $6580; 1 BCH = $541

‣Bitcoin Gold (BTG) forked in Nov. 2017, using a different hash function
("equihash", intended to be memory-hard, preventing mining with ASICs)
– Today: 1 BTC = $6580; 1 BTG = $25



42

Ethereum

‣Consortium and foundation with a legal status
– Vitalik Buterin as main public figure
– Development mostly controlled by the creators with close links to consortium
– Protocol execution controlled by miners, as in bitcoin

‣ The DAO and the DAO attack
– DAO was supposed to be the first decentralized autonomous organization

● A kind of investment fund controlled only by the blockchain
● DAO tokens controlled by smart contract on Ethereum

– Shortly after its start in 2016, an attacker removed ~1/3 of the fund
● Total worth about $160 M, about $55M at risk
● DAO tokens were locked up for a period and could not immediately be taken out
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Ethereum meta-consensus issues

‣Before end of DAO token release period, the Ethereum blockchain forked
– Buterin and creators decided for a protocol change (hard fork)
– Buterin posted a blog and most miners followed this
– Hard fork removed the DAO tokens owned by the attacker

‣ Ethereum Classic (ETC) forked, not executing the hard fork
– Its supporters did not want to change the rules
– ETC continued with the DAO alive and the funds available to attacker
– Today: 1 ETH = $229; 1 ETC = $11.2

‣ Soon afterwards the DAO token disappeared completely
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Meta-consensus in permissioned blockchains

‣Consortium consensus always requires common goal

‣A priori agreement on protocols, no issues with meta-consensus

‣No public blockchain
– Many deployments, one for every application
– No native cryptocurrency (but it could be an application)
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Hyperledger
&

Hyperledger Fabric
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Hyperledger

‣Hyperledger – www.hyperledger.org

‣Global collaboration hosted by the Linux Foundation
– Advances blockchain technologies for business, neutral, community-driven
– Started in 2016: Hyperledger unites industry leaders to advance blockchain technology
– ca. 230 members in May '18

‣Develops and promotes blockchain technologies for business

‣ Today 5 frameworks and 5 tools, hundreds of contributors

‣Hyperledger Fabric – github.com/hyperledger/fabric/
– One blockchain framework of Hyperledger
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Hyperledger overview
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Hyperledger members
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Hyperledger Fabric
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Hyperledger Fabric –
An enterprise blockchain platform
‣ Fabric is a distributed ledger framework for consortium blockchains

– One of multiple blockchain platforms in the Hyperledger Project (V0.6 in Oct. '16)
– First active platform in Hyperledger project and production-ready (V1.0 in Jul. '17)

‣Developed open-source
– github.com/hyperledger/fabric
– Initially developed as openblockchain and contributed by IBM
– Driven IBM, State Street, Digital Asset Holdings, HACERA and others

● IBM Research – Zurich (Rüschlikon) produced important designs and key components
– Key technology for IBM's blockchain strategy

‣ Technical details [Androulaki et al., Eurosys 2018, doi.org/10.1145/3190508.3190538] 

– Modular architecture (e.g., pluggable consensus, cryptography, languages, trust model)
– Programmable consortium blockchain, implemented in GO
– Runs smart contracts called "chaincode" within Docker containers
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Traditional architecture – Replicated service

Update stateOrder Execute

● Deterministic (!)
tx execution

● Persist state on 
all peers

● Consensus or 
atomic broadcast

● All prior BFT systems operate as a replicated state machine [S90]
● All other (permissioned) blockchains operate like this

● Including Hyperledger Fabric until V0.6
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Traditional architecture (including Fabric 0.6)
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Issues with the traditional replication design

‣ Sequential execution
– Increased latency – or – complex schemes for parallelism

‣Operations must be deterministic
– Difficult to enforce with generic programming language (difficult per se!)
– Modular filtering of non-deterministic operations is costly [CSV16]

‣ Trust model is fixed for all applications (smart contracts)
– Typically some (F+1) validator nodes must agree to result (at least one correct)
– Fixed to be the same as in consensus protocol

‣ Privacy is difficult, as data spreads to all nodes
– All nodes execute all applications

‣All these are lessons learned from Hyperledger Fabric, before V0.6
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Fabric V1 architecture

● Includes techniques from databases
● Extends a middleware-replicated database to BFT model

● Order rw-sets
● Atomic broadcast 

(consensus)
● Stateless ordering

service

● Persist state on all 
peers

● Simulate tx and 
endorse

● Create rw-set
● Collect endorse-

ments

Update stateOrderExecute Validate
✓

● Validate endorse-
ments & rw-sets

● Eliminate invalid 
and conflicting tx
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Fabric V1 – Separating endorsement and 
consensus
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Transactions in Fabric V1

‣Client (or submitter-peer)
– Produces a tx (operation) for a chaincode (smart contract)

‣ Endorsing peer (one or more, according to policy)
– Executes/simulates tx with chaincode 
– Does not change state, but records accessed state values   readset/writeset

(resp., verifies an already given readset/writeset)
– Endorses tx with a signature on readset/writeset

‣Consensus (ordering) service
– Receives endorsed tx, orders them, and outputs stream of "raw" tx (=atomic broadcast)

‣All peers
– Disseminate tx stream from consensus service with peer-to-peer communication (gossip)
– Filter out the not properly endorsed tx, according to chaincode endorsement policy
– Validate state changes from readset/writeset, filter out conflicting tx
– Apply state changes
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Fabric V1 – Benefits of the separation

‣ Possible parallel execution increases throughput
– Off the critical path for consensus protocol
– Intertwined with trust model

‣Non-determinism is confined to chaincode
– Diverging rw-sets do not properly endorse an operation
– Turns safety problem (forked peers) for blockchain into a harmless liveness issue

‣ Flexible trust model
– Designate different groups of peers responsible for each chaincode

‣ Private code execution on endorser nodes
– May encrypt state with chaincode-specific key
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Modular consensus in Fabric V1

‣ "Solo orderer"
– One host only, acting as specification during development (ideal functionality)

‣Apache Kafka, a distributed pub/sub streaming platform
– Tolerates crashes among member nodes, resilience from Apache Zookeeper inside
– Focus on high throughput

‣BFT-SMaRt – Research prototype
– Tolerates F < N/3 Byzantine faulty nodes among N
– Demonstration of functionality [SBV17]

‣ SBFT – Simple implementation of PBFT (currently under development)
– Tolerates F < N/3 Byzantine faulty nodes among N
– Focus on resilience
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Fabric V1 – Performance of 'Fabric Coin'

● Impact of block size on throughput and latency
● Bitcoin-like transactions (UTXO): mint and spend
● Cloud deployment on a LAN [Androulaki et al., Eurosys 18]
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Fabric V1 – Performance in LAN and WAN

● Impact of number of non-endorsing peers on throughput
● Cloud deployment on LAN
● Deployment on WAN in two data centers (2DC), ordering service in one

[Androulaki et al., Eurosys 18]
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Hyperledger Fabric V1 - Skipped aspects

‣ Further important components
– Organizations, Membership service providers (MSP), and Certification Authorities (CA)
– Chaincode syntax (GO)
– Gossip protocols for dissemination
– Channels
– Data format and ledger design (LevelDB)

‣Most important
– Industrial software engineering
– Production releases, V1.0 in July '17, latest is V1.2 in July '18; current work is v1.3.0-rc1
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Hyperledger Fabric deployment

‣ Fabric is the most prominent and widely used blockchain platform for business
– Cloud deployment (BaaS) by: IBM, Amazon, Azure, Oracle, Fujitsu, SAP ...
– Hundreds of prototypes and in-production systems built by IBM alone

‣At the core of many new businesses
– Example: IBM-Maersk joint venture, building a blockchain platform for global trade
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IBM Blockchain Platform

‣ Fully integrated blockchain service platform
– Developer tools like Hyperledger Composer
– Hyperledger Fabric distributed ledger technology
– Governance tools
– Deployed on IBM Cloud environment

‣ Provides enterprise-grade security
– Keys managed by hardware security modules (HSM),

certified by NIST at highest level
– Secure service container (SSC) technology,

protecting code and data from admins
(such as available with IBM LinuxONE)
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Current research directions

‣ Private transactions in Fabric
– Privacy-preserving state-based 

endorsement (Side DB)
– Share data selectively with channel-

private data, ledger stores only hashes

‣Zero-knowledge proofs (ZKP)
– Anonymous authentication with IBM 

Identity Mixer, anonymity with attribute-
based access control

– Zero-Knowledge Asset Transfer (ZKAT), for 
privacy-preserving exchange of assets

‣ Secure smart-contract execution with 
Intel SGX technology
– Hardware-based secure enclaves
– Data and application logic protected from 

malicious peers
[Brandenburger et al., 
arxiv.org/abs/1805.08541]
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Conclusion
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Conclusion

‣Blockchain = Distributing trust over the Internet

‣Blockchain enables new trust models

‣Distributed computing + cryptography + economics

‣We are only at the beginning

‣ Some links
cachin.com/cc
www.hyperledger.org
www.ibm.com/blockchain/
www.zurich.ibm.com/blockchain/
ibm.ent.box.com/v/BlockFiles
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Hyperledger Fabric references

‣www.hyperledger.org/projects/fabric

‣Architecture of V1 – Eurosys 2018, https://doi.org/10.1145/3190508.3190538

‣Designs – wiki.hyperledger.org/projects/fabric/design-docs

‣Docs – hyperledger-fabric.readthedocs.io/en/latest/

‣Code – github.com/hyperledger/fabric

‣Chat – chat.hyperledger.org, all channels like #fabric-*


