
Hyperledger Fabric:
A Platform for Distributing Trust
Christian Cachin

IBM Research – Zurich

June 2018

2

How to design a blockchain?

‣Blockchains are like cryptosystems
– Must resist attacks
– Resilient against unknown adversaries

‣ Impossible to demonstrate their
security a priori, by demonstration
– Only an attack shows how it fails

‣Multiple ways to achieve security
– Empirical validation
– Mathematical proofs from broadly

accepted assumptions
– Public review, open discussion, standards

The problem with bad security is
that it looks just like good security.
You can't tell the difference by
looking at the finished product.
– Both make the same security claims;

both have the same functionality.
– Both might use the same protocols,

implement the same standards, and
have been endorsed by the same
industry groups.

– Yet one is secure and the other is
insecure.

Bruce Schneier (1999)

3

Blockchain consensus protocols in the wild
C. Cachin, M. Vukolic: Blockchain
consensus protocols in the wild,
DISC 2017.

https://arxiv.org/abs/1707.01873

4

Blockchain consensus

5

Permissionless or decentralized blockchains

‣Anyone can join

‣ Sybil attacks

‣No traditional votes

‣Bitcoin's idea: One CPU = One vote

‣ "Vote" by investing and proving work

6

Features of decentralized consensus

‣ Survives censorship and suppression (+ / —)
– No identities, no counting of nodes
– Give incentive to participate with mining reward

‣ Scales to 1000s of nodes (+)

‣High latency (minutes or more), and decisions are never final (—)

‣Requires proof-of-work (PoW) (—)
– Majority of hashing power controls the network

‣ PoW = waste-of-work: Consensus proctocol consumes huge amounts of power
– Bitcoin consumes 20% more electricity than Switzerland

(bitcoinenergyconsumption.com // Bundesamt für Energie (BFE), Stromverbrauch 2017)

7

Consortium or permissioned blockchains

‣ Traditional BFT consensus based on voting

‣Defined group of validator nodes

‣Has been studied for decades
– Byzantine Fault Tolerance (BFT)
– Elaborate mathematical theory (quorums)
– Clear assumptions and top-down design

‣Many variations possible
– Change group membership through protocol itself
– Votes weighted by stake

‣ Implementations available, some open source

8

History of BFT consensus

‣Helped develop the field of distributed computing
– The mathematical consensus abstraction plays a key role
– Rich body of literature, textbooks ...

‣Computer-science theory research
– Very active topic ca. 1985–2000
– Many theorems, no systems (cf. Paxos ...)

‣Computer systems research
– Very active topic ca. 1999–2010
– Many systems, no deployment (cf. ZooKeeper, Raft/etcd ...)

‣Blockchain research and development
– Revived interest, starting ca. 2015
– Deployment in practice

9

Features of BFT consensus

‣Well-understood (+)
– Many protocols, manny research papers, textbooks
– Security proofs and open-source implementations

‣ Fast (+)
– 1000s or 10'000s of tx/s
– Latency of seconds

‣Decisions are final (+)

‣Usually requires all-to-all, Ω(N2), communication (—)
– Does not scale to 1000s of nodes

‣Needs identities of nodes (+ / —)

10

Hyperledger

11

Hyperledger

‣Hyperledger – www.hyperledger.org

‣Global collaboration hosted by the Linux Foundation
– Advances blockchain technologies for business, neutral, community-driven
– Started in 2016: Hyperledger unites industry leaders to advance blockchain technology
– ca. 230 members in May '18

‣Develops and promotes blockchain technologies for business

‣ Today 5 frameworks and 5 tools, hundreds of contributors

‣Hyperledger Fabric – github.com/hyperledger/fabric/
– One blockchain framework of Hyperledger

12

Hyperledger overview

13

Hyperledger members

14

Hyperledger Fabric

15

Hyperledger Fabric –
An enterprise blockchain platform
‣ Fabric is a distributed ledger framework for consortium blockchains

– One of multiple blockchain platforms in the Hyperledger Project (V0.6 in Oct. '16)
– First active platform in Hyperledger project and production-ready (V1.0 in Jul. '17)

‣Developed open-source
– github.com/hyperledger/fabric
– Initially developed as openblockchain and contributed by IBM
– Driven IBM, State Street, Digital Asset Holdings, HACERA and others

● IBM Research – Zurich (Rüschlikon) produced important designs and key components
– Key technology for IBM's blockchain strategy

‣ Technical details [Androulaki et al., Eurosys 2018, doi.org/10.1145/3190508.3190538]

– Modular architecture (e.g., pluggable consensus, cryptography, languages, trust model)
– Programmable consortium blockchain, implemented in GO
– Runs smart contracts called "chaincode" within Docker containers

16

Traditional architecture – Replicated service

Update stateOrder Execute

● Deterministic (!)
tx execution

● Persist state on
all peers

● Consensus or
atomic broadcast

● All prior BFT systems operate as a replicated state machine
[Schneider, ACM Comp. Surv. 1990]

● All other (permissioned) blockchains operate like this
● Including Hyperledger Fabric until V0.6

17

Traditional architecture (including Fabric 0.6)

18

Issues with the traditional replication design

‣ Sequential execution
– Increased latency – or – complex schemes for parallelism

‣Operations must be deterministic
– Difficult to enforce with generic programming language (difficult per se!)
– Modular filtering of non-deterministic operations is costly [Cachin et al., OPODIS 2016]

‣ Trust model is fixed for all applications (smart contracts)
– Typically some (F+1) validator nodes must agree to result (at least one correct)
– Fixed to be the same as in consensus protocol

‣ Privacy is difficult, as data spreads to all nodes
– All nodes execute all applications

‣All these are lessons learned from Hyperledger Fabric, before V0.6

19

Fabric V1 architecture

● Includes techniques from databases
● Extends a middleware-replicated database to BFT model

● Order rw-sets
● Atomic broadcast

(consensus)
● Stateless ordering

service

● Persist state on all
peers

● Simulate tx and
endorse

● Create rw-set
● Collect endorse-

ments

Update stateOrderExecute Validate
✓

● Validate endorse-
ments & rw-sets

● Eliminate invalid
and conflicting tx

20

Fabric V1 – Separating endorsement and
consensus

21

Fabric V1 details

‣ Separate the functions of nodes into endorsers and consensus nodes
– Every chaincode may have different endorsers
– Endorsers have state, run tx, and validate tx for their chaincode
– Chaincode specifies endorsement policy
– Consensus nodes order endorsed and already-validated tx
– All peers apply all state changes in order, only for properly endorsed tx

‣ Functions as replicated database maintained by peers [Kemme et al., 2010]
– Replication via (BFT) atomic broadcast in consensus
– Endorsement protects against unauthorized updates

‣ Scales better – only few nodes execute, independent computations in parallel

‣ Permits some confidential data on blockchain via partitioning state
– Data seen only by endorsers assigned to run that chaincode

22

Modular consensus in Fabric V1

‣ "Solo orderer"
– One host only, for testing

‣Apache Kafka, a distributed pub/sub streaming platform
– Tolerates crashes among member nodes, resilience from Apache Zookeeper inside
– Focus on high throughput

‣BFT-SMaRt – Research prototype
– Tolerates F < N/3 Byzantine faulty nodes among N
– Demonstration of functionality [Sousa et al., A BFT Ordering Service for Hyperledger Fabric ..., DSN 2018]

‣ SBFT – Simple implementation of PBFT (currently under development)
– Tolerates F < N/3 Byzantine faulty nodes among N
– Focus on resilience

23

Fabric V1 – Performance of 'Fabric Coin'

● Scalability with number of non-endorsing peers
● Bitcoin-like transactions (UTXO): mint and spend
● Cloud deployment on a LAN and in two data centers (2DC)

[Androulaki et al., Eurosys 2018, doi.org/10.1145/3190508.3190538]

24

Hyperledger Fabric deployment

‣ Fabric is the most prominent and widely used blockchain platform for business
– Cloud deployment (BaaS) by: IBM, Amazon, Azure, Oracle, Fujitsu, SAP ...
– Hundreds of prototypes and in-production systems built by IBM alone

‣At the core of many new businesses
– Example: IBM-Maersk joint venture, building a blockchain platform for global trade

25

IBM Blockchain Platform

‣ Fully integrated blockchain service platform
– Developer tools like Hyperledger Composer
– Hyperledger Fabric distributed ledger technology
– Governance tools
– Deployed on IBM Cloud environment

‣ Provides enterprise-grade security
– Keys managed by hardware security modules (HSM),

certified by NIST at highest level
– Secure service container (SSC) technology,

protecting code and data from admins
(such as available with IBM LinuxONE)

26

Current research directions

‣ Private transactions in Fabric
– Privacy-preserving state-based

endorsement (Side DB)
– Share data selectively with channel-

private data, ledger stores only hashes

‣Zero-knowledge proofs (ZKP)
– Anonymous authentication with IBM

Identity Mixer, anonymity with attribute-
based access control

– Zero-Knowledge Asset Transfer (ZKAT), for
privacy-preserving exchange of assets

‣ Secure smart-contract execution with
Intel SGX technology
– Hardware-based secure enclaves
– Data and application logic protected from

malicious peers
[Brandenburger et al.,
arxiv.org/abs/1805.08541]

27

Conclusion

28

Conclusion

‣Blockchain = Distributing trust over the Internet

‣Go beyond the hype and turn to established science and engineering

‣Hyperledger Fabric is the most advanced enterprise blockchain platform
– Driven by innovations from IBM Research

‣ Some links
www.hyperledger.org
www.ibm.com/blockchain/
www.zurich.ibm.com/blockchain/
ibm.ent.box.com/v/BlockFiles/
cachin.com/cc

Privacy-Enhancing Cryptography in Distributed
Ledgers (EU Horizon 2020; 2018-2020)

priviledge-project.eu

29

Hyperledger Fabric references

‣www.hyperledger.org/projects/fabric

‣Architecture paper – doi.org/10.1145/3190508.3190538

ACM Eurosys 2018 conference

‣Designs – wiki.hyperledger.org/projects/fabric/design-docs

‣Docs – hyperledger-fabric.readthedocs.io/en/latest/

‣Code – github.com/hyperledger/fabric

‣Chat – chat.hyperledger.org, all channels like #fabric-*

