
Blockchain, cryptography, and
consensus
Christian Cachin
(with Elli Androulaki, Angelo De Caro, Andreas Kind, Mike Osborne, Simon
Schubert, Alessandro Sorniotti, Marko Vukolic and many more)

IBM Research – Zurich

June 2017

2

Connected markets

‣Networks connect participants
– Customers, suppliers, banks, consumers

‣Markets organize trades
– Public and private markets

‣Value comes from assets
– Physical assets (house, car ...)
– Virtual assets (bond, patent ...)
– Services are also assets

‣ Transactions exchange assets

3

Ledger

‣ Ledger records all business activity as
transactions
– Databases

‣ Every market and network defines a
ledger

‣ Ledger records asset transfers between
participants

‣ Problem — (Too) many ledgers
– Every market has its ledger
– Every organization has its own ledger

4

Multiple ledgers

‣ Every party keeps its own
ledger and state

‣ Problems, incidents, faults

‣Diverging ledgers

Ledger
C

Ledger
B

Ledger
E

Ledger
F

Ledger
A Alice

Bob

Charlie

Frank

Eve Ledger
D

Dave

5

Blockchain provides one virtual ledger

‣One common trusted ledger

‣ Today often implemented by a
centralized intermediary

‣Blockchain creates one single
ledger for all parties

‣Replicated and produced
collaboratively

‣ Trust in ledger from
– Cryptographic protection
– Distributed validation

Alice Charlie

Frank Dave

 One
 Ledger

Bob

Eve

6

Consensus

Four elements characterize Blockchain

Replicated ledger Cryptography

Business logic
● Logic embedded in the ledger
● Executed together with transactions
● From simple "coins" to self-enforcing

"smart contracts"

● History of all transactions
● Append-only with immutable past
● Distributed and replicated

● Decentralized protocol
● Shared control tolerating disruption
● Transactions validated

● Integrity of ledger
● Authenticity of transactions
● Privacy of transactions
● Identity of participants

7

Blockchain simplifies complex transactions

Logistics Property records Capital markets

Faster settlement times

Increased credit availability

Transparency & verifiability

No reconciliation cost

Real-time visibility

Improved efficiency

Transparency & verifiability

Reduced cost

Digital but unforgeable

Fewer disputes

Transparency & verifiability

Lower transfer fees

8

Blockchain scenario features

‣A given task or problem, but no (central) trusted party available

‣ Protocol among multiple nodes, solving a distributed task
– The writing nodes decide and reach consensus collectively

‣ Key aspects of the distributed task
– Stores data
– Multiple nodes write
– Not all writing nodes are trusted
– Operations are (somewhat) verifiable

‣ If all writing nodes are known → permissioned or consortium blockchain

‣Otherwise, when writing nodes are not known → permissionless or public blockchain

9

Why blockchain now?

‣Cryptography has been a key technology in the financial world for decades
– Payment networks, ATM security, smart cards, online banking ...

‣ Trust model of (financial) business has not changed
– Trusted intermediary needed for exchange among non-trusting partners
– Today cryptography mostly secures point-to-point interactions

‣Bitcoin started in 2009
– Embodies only cryptography of 1990s and earlier
– First prominent use of cryptography for a new trust model (= trust no entity)

‣ The promise of Blockchain – Reduce trust and replace it by technology
– Exploit advanced cryptographic techniques

10

What is a blockchain?

11

When you get too many people talking
about the same thing it tends to clutter up
things.

Bob Dylan, 1965

12

A state machine

‣ Functionality F
– Operation o transforms a state s to new state s' and may generate a response r

(s', r) ← F(s, o)

‣Validation condition
– Operation needs to be valid, in current state, according to a predicate P()

r

s s'

o

o

s s'

P(s,o) = TRUE

r

13

Blockchain state machine

‣Append-only log
– Every operation o appends a "block" of valid transactions (tx) to the log

‣ Log content is verifiable from the most recent element

‣ Log entries form a hash chain

ht ← Hash([tx1, tx2, ...] || ht-1 || t) .

o

s s'

14

Example – The Bitcoin state machine

‣Bitcoins are unforgeable bitstrings
– "Mined" by the protocol itself (see later)

‣Digital signature keys (ECDSA) own and transfer bitcoins
– Owners are pseudonymous, e.g., 3JDs4hAZeKE7vER2YvmH4yTMDEfoA1trnC

‣ Every transaction transfers a bitcoin (fraction) from current to next owner
– "This bitcoin now belongs to 3JDs..." signed by the key of current owner
– (Flow linkable by protocol, and not anonymous when converted to real-world assets)

‣Validation is based on the global history of past transactions
– Signer has received the bitcoin before
– Signer has not yet spent the bitcoin

15

Distributed p2p protocol to create a ledger

o1 o2 o3

s0 s1 s2 s3

Nodes run a
protocol to
construct the
ledger

Nodes
produce
transactions

16

Blockchain protocol features

‣Only "valid" operations (transactions) are "executed"

‣ Transactions can be simple
– Bitcoin tx are statement of ownership for coins, digitally signed

"This bitcoin now belongs to K2" signed by K1

‣ Transactions can be arbitrary code (smart contracts)
– Embody logic that responds to events (on blockchain) and may transfer assets in

response
– Auctions, elections, investment decisions, blackmail ...

17

Consensus

18

Three kinds of consensus for blockchain

‣Decentralized / permissionless
– Bitcoin, Ethereum

‣ Somewhat decentralized
– Ripple, Stellar

‣Consortium / permissioned
– BFT (Byzantine fault tolerance) consensus

19

Decentralized – Nakamoto consensus/Bitcoin

‣Nodes prepare blocks
– List of transactions (tx)
– All tx valid

‣ Lottery race
– Solves a hard puzzle
– Selects a random

winner/leader
– Winner's operation/

block is executed and
"mines" a coin

‣All nodes verify and
validate new block
– "Longest" chain wins

20

Decentralized = permissionless

‣ Survives censorship and suppression
– No central entity

‣Nakamoto consensus requires proof-of-work (PoW)
– Original intent: one CPU, one vote
– Majority of hashing power controls network
– Gives economic incentive to participate (solution to PoW is a newly "mined" Bitcoin)

‣ Today, total hashing work consumes a lot of electricity
– Estimates vary, 250-1000MW, from a major city to a small country ...

‣ Protocol features
– Stability is a tradeoff between dissemination of new block (10s-20s) and mining rate

(new block on average every 10min)
– Decisions are not final ("wait until chain is 6 blocks longer before a tx is confirmed")

21

Decentralized – deployment

‣Bitcoin
– Many (100s? 1000s?) of alt-coins and blockchains

‣ Ethereum
– First digital currency with general-purpose smart contract execution

‣ Sawtooth ledger (Intel contribution to Hyperledger)
– PoET consensus (proof of elapsed time)

● Nodes run PoET program in "trusted execution environment" (Intel SGX)
● PoET waits a random amount of time (say, E[wait] = 10min)
● Creates an attested proof of elapsed time
● Rest like in Bitcoin protocol

22

Somewhat (de)centralized – Ripple, Stellar

‣Nodes decide whom
to trust
– Validator nodes

‣Quorum-like protocol
– Among different

heterogeneous
validators

‣Consistent when
"enough" nodes in
path are trusted by
the nodes involved
in the transaction

23

Somewhat (de)centralized

‣ Every node designates other, well-connected nodes that it trusts
– Decentralization

‣ Transactions among two nodes are agreed if validated by "strong" majority in
the overlap of the trusted node sets
– In practice, leads to centralization

‣ Stellar evolved as fork of Ripple protocol
– Issues with ledger forks and protocol correctness have been reported

‣Open questions
– Relation to Byzantine quorum systems [MR98]
– How to formally specify properties

24

Consortium consensus (quorums & BFT)

‣Designated set of
homogeneous
validator nodes

‣BFT/Byzantine agreement
– Tolerates f-out-of-n faulty/

adversarial nodes
– Generalized quorums

‣ Tx sent to consensus
nodes

‣Consensus validates tx,
decides, and disseminates
result

25

Consortium consensus = permissioned

‣Central entity controls group membership
– Dynamic membership changes in protocol
– Membership may be decided inline, by protocol itself

‣Well-understood problem in distributed computing
– BFT and consensus studied since ca. 1985

● Clear assumptions and top-down design
● 700 protocols and counting [AGK+15]
● Textbooks [CGR11]
● Open-source implementations (BFT-SMaRT)

– Many systems already provide crash tolerant consensus (Chubby, Zookeeper, etcd ...)
– Requires Ω(n2) communication (OK for 10-100 nodes, not > 1000s)

‣Revival of research in BFT protocols
– Focus on scalability and communication efficiency

26

Consortium consensus – under development

‣Hyperledger Fabric (originally started by IBM)
– Includes PBFT protocol [CL02]

‣ Tendermint, Juno/Kadena, JPMC Quorum, Axoni, Iroha, Chain and others

‣HoneyBadgerBFT [MXC+16]
– Revisits practical randomized BFT [CKPS01], including amoritzation

‣Many existing BFT libraries predate blockchain
– BFT-SMaRT, Univ. Lisbon (github.com/bft-smart/library)
– Prime, Johns Hopkins Univ. (www.dsn.jhu.edu/byzrep/prime.html)

27

More variations of consensus

‣Bitcoin-NG [EGS+16]
– Bitcoin PoW elects a leader, it is responsible for ordering the next K tx

‣ Proof-of-stake (explored by Ethereum)
– Voting power relative to asset holdings (through cryptocurrency held by blockchain)

‣Hybrid PoW (PeerCensus [DSW16])
– PoW protocol to elect nodes in one consensus group
– Group runs ordinary BFT consensus

‣Hierarchical & partitioned, randomized [LNB+15]
– Random sub-groups, nodes and tx assigned randomly to sub-groups
– Each sub-group runs ordinary BFT consensus

28

Scalability–performance tradeoff

M. Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication.
Proc. iNetSec 2015, LNCS 9591.

29

Validation

30

Validation of transactions – PoW protocols

‣Recall validation predicate P on state s and operation o: P(s, o)

‣When constructing a block, the node
– Validates all contained tx
– Decides on an ordering within block

‣When a new block is propagated, all nodes must validate the block and its tx
– Simple for Bitcoin – verify digital signatures and that coins are unspent
– More complex and costly for Ethereum – re-run all the smart-contract code

‣Validation can be expensive
– Bitcoin blockchain contains the log of all tx – 105GB as of 3/2017

(https://blockchain.info/charts/blocks-size)

31

Validation of transactions – BFT protocols

‣ Properties of ordinary Byzantine consensus
– Weak Validity: Suppose all nodes are correct: if all propose v, then a node may only

decide v; if a node decides v, then v was proposed by some node.
– Agreement: No two correct nodes decide differently.
– Termination: Every correct node eventually decides.

‣ Standard validity notions do not connect to the application!

‣Need validity anchored at external predicate [CKPS01]
– External validity: Given predicate P, known to every node, if a correct node decides v,

then P(v); additionally, v was proposed by some node.

– Can be implemented with digital signatures on input tx

32

Public validation vs. private state

‣ So far everything on blockchain is public – where is privacy?

‣Use cryptography – keep state "off-chain" and produce verifiable tx

– In Bitcoin, verification is a digital signature by key that owns coin

– In ZeroCash [BCG+14], blockchain holds committed coins and transfers use zero-
knowledge proofs (zk-SNARKS) validated by P

– Hawk [KMS+16] uses verifiable computation (VC)
● Computation using VC performed off-chain by involved parties
● P checks correctness of proof for VC

‣ Private computation requires additional assumption (MPC, trusted HW ...)

33

Security and privacy

‣ Transactional privacy
– Anonymity or pseudonymity through cryptographic tools
– Some is feasible today (e.g., anonymous credentials in IBM Identity Mixer)

‣Contract privacy
– Distributed secure cryptographic computation on encrypted data

‣Accountability & non-repudiation
– Identity and cryptographic signatures

‣Auditability & transparency
– Cryptographic hash chain

‣Many of these need advanced cryptographic protocols

34

Hyperledger Fabric

35

Hyperledger

‣A Linux Foundation project – www.hyperledger.org
– Open-source collaboration, developing blockchain technologies for business
– Started in 2016: Hyperledger unites industry leaders to advance blockchain technology
– 135 members in Apr. '17

‣ Incubates and promotes blockchain technologies for business

‣ Today 4 frameworks and 4 tools, hundreds of contributors

‣Hyperledger Fabric was originally contributed by IBM –
github.com/hyperledger/fabric/
– Architecture and consensus protocols originally contributed by IBM Research - Zurich

36

37

38

39

Hyperledger Fabric

‣ Enterprise-grade blockchain fabric and distributed ledger framework
– One of multiple blockchain platforms in the Hyperledger Project
– First "active" platform under the Hyperledger umbrella (since 3/2017)

‣Developed open-source, by IBM and others (DAH, LSEG ...)
– github.com/hyperledger/fabric
– Initially called 'openblockchain' and contributed by IBM to Hyperledger project
– Actively developed, IBM and IBM Zurich play key roles

‣ Technical details
– Implemented in GO
– Runs smart contracts or "chaincode" within Docker containers
– Transactions Deploy new chaincode / Invoke an operation / Read state
– Implements consortium blockchain using traditional consensus (BFT, ZooKeeper)

40

Hyperledger Fabric V1

‣ Separate the functions of nodes into endorsers and consensus nodes
– Every chaincode may have different endorsers
– Endorsers have state, run tx, and validate tx for their chaincode
– Chaincode specifies endorsement policy
– Consensus nodes order endorsed and already-validated tx
– All peers apply all state changes in order, only for properly endorsed tx

‣ Functions as replicated database maintained by peers [PWSKA00, KJP10]
– Replication via (BFT) atomic broadcast in consensus
– Endorsement protects against unauthorized updates

‣ Scales better – only few nodes execute, independent computations in parallel

‣ Permits some confidential data on blockchain via partitioning state
 Data seen only by endorsers assigned to run that chaincode

41

Separation of endorsement from consensus

‣Validation is by chaincode

‣Dedicated endorsers
per chaincode

‣Consensus service
– Only communication
– Pub/sub messaging
– Ordering for endorsed tx

‣ State and hash chain
are common
– State may be encrypted

Consensus service
only orders tx

Per-chaincode
endorsers

42

Transactions in Fabric V1

‣Client
– Produces a tx (operation) for some chaincode (smart contract)

‣ Submitter peer
– Execute/simulates tx with chaincode
– Records state values accessed, but does not change state readset/writeset

‣ Endorsing peer
– Re-executes tx with chaincode and verifies readset/writeset
– Endorses tx with a signature on readset/writeset

‣Consensus service
– Receives endorsed tx, orders them, and outputs stream of "raw" tx (=atomic broadcast)

‣All peers
– Disseminate tx stream from consensus service with p2p communication (gossip)
– Filter out the not properly endorsed tx, according to chaincode endorsement policy
– Execute state changes from readset/writeset of valid tx, in order

43

Transaction flow

44

Modular consensus in Fabric V1

‣ "Solo orderer"
– One host only, acting as specification during development (ideal functionality)

‣Apache Kafka, a distributed pub/sub streaming platform
– Tolerates crashes among member nodes, resilience from Apache Zookeeper inside
– Focus on high throughput

‣ SBFT - Simple implementation of PBFT (6/2017 - under development)
– Tolerates f < n/3 Byzantine faulty nodes among n
– Focus on resilience

45

Conclusion

46

Conclusion

‣Blockchain enables new trust models

‣Many interesting technologies
– Distributed computing for consensus
– Cryptography for integrity, privacy, anonymity

‣We are only at the beginning

‣Blockchain = Distributing trust over the Internet

– www.hyperledger.org
– www.ibm.com/blockchain/
– www.research.ibm.com/blockchain/

47

References

[AGK+15] P.-L. Aublin, R. Guerraoui, N. Knezevic, V. Quéma, M. Vukolic: The Next 700 BFT Protocols. ACM
TOCS, 32(4), 2015.

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza: Zerocash:
Decentralized Anonymous Payments from Bitcoin. IEEE S&P 2014.

[CKPS01] C. Cachin, K. Kursawe, F. Petzold, V. Shoup: Secure and Efficient Asynchronous Broadcast
Protocols. CRYPTO 2001.

[CGR11] C. Cachin, R. Guerraoui, L. Rodrigues: Introduction to Reliable and Secure Distributed
Programming (2. ed.). Springer, 2011.

[CSV16] C. Cachin, S. Schubert, M. Vukolic: Non-determinism in Byzantine Fault-Tolerant Replication.
OPODIS 2016.

[CL02] M. Castro, B. Liskov: Practical Byzantine fault tolerance and proactive recovery. ACM TOCS, 20(4),
2002.

[DSW16] C. Decker, J. Seidel, R. Wattenhofer: Bitcoin meets strong consistency. ICDCN 2016.

[EGS+16] I. Eyal, A. Gencer, E.G. Sirer, R. van Renesse: Bitcoin-NG: A Scalable Blockchain Protocol. NSDI
2016.

48

References

[KMS+16] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou: Hawk: The Blockchain Model of
Cryptography and Privacy-Preserving Smart Contracts. IEEE S&P 2016.

[LNB+15] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, P. Saxena: A Secure Sharding Protocol For
Open Blockchains. ACM CCS 2016.

[MR98] D. Malkhi, M. Reiter: Byzantine Quorum Systems. Distributed Computing, 1998.

[MXC+16] A. Miller, Y. Xia, K. Croman, E. Shi, D. Song: The Honey Badger of BFT Protocols. ACM CCS 2016.

[V16] M. Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. LNCS 9591,
Proc. iNetSeC 2015.

49

Hyperledger Fabric references

‣www.hyperledger.org

‣Docs – hyperledger-fabric.readthedocs.io/en/latest/

‣Chat – chat.hyperledger.org, all channels like #fabric-*

‣Designs – wiki.hyperledger.org/community/fabric-design-docs

‣Architecture of V1 –
github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-
Architecture-Proposal.md

‣Code – github.com/hyperledger/fabric

50

51

Consensus?

52

Consensus?

53

Consensus?

54

Consensus?

55

Consensus?

56

Consensus?

57

Consensus?

58

59

Hyperledger Fabric details (v0.6-preview) / 1

‣ Platform-agnostic
– GO, gRPC over HTTP/2

‣ Peers
– Validating peers (all running consensus) and non-validating peers

‣ Transactions
– Deploy new chaincode / Invoke an operation / Read state
– Chaincode is arbitrary GO program running in a Docker container

‣ State is a key-value store (RocksDB)
– Put, get ... no other state must be held in chaincode
– Non-validating peers store state and execute transactions

60

Hyperledger Fabric details / 2

‣Consensus in BFT model
– Modular architecture supports other consensus protocols
– Currently, Practical Byzantine Fault Tolerance (PBFT) [CL02]
– Non-determinism addressed by Sieve protocol [CSV16]
– Static membership in consensus group

‣Hash chain computed over state and transactions

61

Hyperledger Fabric details / 3

‣Membership service issues certificates to peers
– Enrollment certificates (E-Cert, issued by E-CA)

● Assign identity to peer, gives permission to join and issue transactions

– Transaction certificates (T-Cert, issued by T-CA)
● Capability to issue one transaction (or more)
● Unlinkable to enrollment certificate, for anyone except for transaction CA

‣ Pseudonymous transaction authorization
– Controlled by peer, how many Transaction-Signatures with same T-Cert

62

Hyperledger Fabric details (V0.6)

‣ Peers
– Validating peers (all running consensus) and non-validating peers

‣Membership service issues identity-certificates and transaction-certificates

‣ Transactions
– Deploy new chaincode / Invoke an operation / Read state
– Chaincode is arbitrary GO program running in a Docker container

‣ State is a key-value store (RocksDB)
– Put, get ... no other state must be held in chaincode
– Non-validating peers store state and execute transactions

‣Hash chain computed over state (and possibly transactions)

63

Non-determinism in BFT replication [CSV16]

‣ Service-replication paradigm needs deterministic state machines
– Agree on order of operations, then every node executes

‣What if application is given as black-box? Deterministic? Undecidable!

‣Our approach – filter out inadvertent non-determinism
– Execute operation, compare results, and revert it if "too much" divergence is evident
– When "enough" nodes arrive at the same result, accept it

‣ If application is randomized
– For algorithmic purpose (Monte Carlo): use master-slave approach
– For cryptography and security functions: cryptographic verifiable random functions (VRF)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

