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Connected markets

‣Networks connect participants
– Customers, suppliers, banks, consumers

‣Markets organize trades
– Public and private markets

‣Value comes from assets
– Physical assets (house, car ...)
– Virtual assets (bond, patent ...)
– Services are also assets

‣ Transactions exchange assets 
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Ledger

‣ Ledger records all business activity as 
transactions
– Databases

‣ Every market and network defines a 
ledger

‣ Ledger records asset transfers between 
participants

‣ Problem — (Too) many ledgers
– Every market has its ledger
– Every organization has its own ledger
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Multiple ledgers

‣ Every party keeps its own 
ledger and state

‣ Problems, incidents, faults

‣Diverging ledgers
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Blockchain provides one virtual ledger

‣One common trusted ledger

‣ Today often implemented by a 
centralized intermediary

‣Blockchain creates one single 
ledger for all parties

‣Replicated and produced 
collaboratively

‣ Trust in ledger from
– Cryptographic protection
– Distributed validation
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Bob
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Consensus

Four elements characterize Blockchain

Replicated ledger Cryptography

Business logic
● Logic embedded in the ledger
● Executed together with transactions
● From simple "coins" to self-enforcing 

"smart contracts"

● History of all transactions
● Append-only with immutable past
● Distributed and replicated

● Decentralized protocol
● Shared control tolerating disruption
● Transactions validated

● Integrity of ledger
● Authenticity of transactions
● Privacy of transactions
● Identity of participants
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Blockchain simplifies complex transactions

Logistics Property records Capital markets

Faster settlement times

Increased credit availability

Transparency & verifiability

No reconciliation cost

Real-time visibility

Improved efficiency

Transparency & verifiability

Reduced cost

Digital but unforgeable

Fewer disputes

Transparency & verifiability

Lower transfer fees
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Blockchain scenario features

‣A given task or problem, but no (central) trusted party available

‣ Protocol among multiple nodes, solving a distributed task
– The writing nodes decide and reach consensus collectively

‣ Key aspects of the distributed task
– Stores data
– Multiple nodes write
– Not all writing nodes are trusted
– Operations are (somewhat) verifiable

‣ If all writing nodes are known → permissioned or consortium blockchain

‣Otherwise, when writing nodes are not known → permissionless or public blockchain



9

Why blockchain now?

‣Cryptography has been a key technology in the financial world for decades
– Payment networks, ATM security, smart cards, online banking ...

‣ Trust model of (financial) business has not changed
– Trusted intermediary needed for exchange among non-trusting partners
– Today cryptography mostly secures point-to-point interactions

‣Bitcoin started in 2009
– Embodies only cryptography of 1990s and earlier
– First prominent use of cryptography for a new trust model (= trust no entity)

‣ The promise of Blockchain – Reduce trust and replace it by technology
– Exploit advanced cryptographic techniques
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What is a blockchain?
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When you get too many people talking 
about the same thing it tends to clutter up 
things.

Bob Dylan, 1965
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A state machine

‣ Functionality F
– Operation o transforms a state s to new state s' and may generate a response r

(s', r) ← F(s, o)

‣Validation condition
– Operation needs to be valid, in current state, according to a predicate P()

r

s s'

o

o

s s'

P(s,o) = TRUE

r
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Blockchain state machine

‣Append-only log
– Every operation o appends a "block" of valid transactions (tx) to the log

‣ Log content is verifiable from the most recent element

‣ Log entries form a hash chain

ht ← Hash( [tx1, tx2, ... ] || ht-1 || t) . 

o

s s'
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Example – The Bitcoin state machine

‣Bitcoins are unforgeable bitstrings
– "Mined" by the protocol itself (see later)

‣Digital signature keys (ECDSA) own and transfer bitcoins
– Owners are pseudonymous, e.g., 3JDs4hAZeKE7vER2YvmH4yTMDEfoA1trnC

‣ Every transaction transfers a bitcoin (fraction) from current to next owner
– "This bitcoin now belongs to 3JDs..." signed by the key of current owner
– (Flow linkable by protocol, and not anonymous when converted to real-world assets)

‣Validation is based on the global history of past transactions
– Signer has received the bitcoin before
– Signer has not yet spent the bitcoin
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Distributed p2p protocol to create a ledger

o1 o2 o3

s0 s1 s2 s3

Nodes run a 
protocol to 
construct the 
ledger

Nodes 
produce 
transactions
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Blockchain protocol features

‣Only "valid" operations (transactions) are "executed"

‣ Transactions can be simple
– Bitcoin tx are statement of ownership for coins, digitally signed

"This bitcoin now belongs to K2" signed by K1

‣ Transactions can be arbitrary code (smart contracts)
– Embody logic that responds to events (on blockchain) and may transfer assets in 

response
– Auctions, elections, investment decisions, blackmail ...
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Consensus
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Three kinds of consensus for blockchain

‣Decentralized / permissionless
– Bitcoin, Ethereum

‣ Somewhat decentralized
– Ripple, Stellar

‣Consortium / permissioned
– BFT (Byzantine fault tolerance) consensus
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Decentralized – Nakamoto consensus/Bitcoin

‣Nodes prepare blocks
– List of transactions (tx)
– All tx valid

‣ Lottery race
– Solves a hard puzzle
– Selects a random

winner/leader
– Winner's operation/

block is executed and
"mines" a coin

‣All nodes verify and
validate new block
– "Longest" chain wins
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Decentralized = permissionless

‣ Survives censorship and suppression
– No central entity

‣Nakamoto consensus requires proof-of-work (PoW)
– Original intent: one CPU, one vote
– Majority of hashing power controls network
– Gives economic incentive to participate (solution to PoW is a newly "mined" Bitcoin)

‣ Today, total hashing work consumes a lot of electricity
– Estimates vary, 250-1000MW, from a major city to a small country ...

‣ Protocol features
– Stability is a tradeoff between dissemination of new block (10s-20s) and mining rate 

(new block on average every 10min)
– Decisions are not final ("wait until chain is 6 blocks longer before a tx is confirmed")
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Decentralized – deployment

‣Bitcoin
– Many (100s? 1000s?) of alt-coins and blockchains

‣ Ethereum
– First digital currency with general-purpose smart contract execution

‣ Sawtooth ledger (Intel contribution to Hyperledger)
– PoET consensus (proof of elapsed time)

● Nodes run PoET program in "trusted execution environment" (Intel SGX)
● PoET waits a random amount of time (say, E[wait] = 10min)
● Creates an attested proof of elapsed time
● Rest like in Bitcoin protocol
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Somewhat (de)centralized – Ripple, Stellar

‣Nodes decide whom
to trust
– Validator nodes

‣Quorum-like protocol
– Among different

heterogeneous
validators

‣Consistent when 
"enough" nodes in 
path are trusted by 
the nodes involved 
in the transaction
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Somewhat (de)centralized

‣ Every node designates other, well-connected nodes that it trusts
– Decentralization

‣ Transactions among two nodes are agreed if validated by "strong" majority in 
the overlap of the trusted node sets
– In practice, leads to centralization

‣ Stellar evolved as fork of Ripple protocol
– Issues with ledger forks and protocol correctness have been reported

‣Open questions
– Relation to Byzantine quorum systems [MR98]
– How to formally specify properties
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Consortium consensus (quorums & BFT)

‣Designated set of
homogeneous
validator nodes 

‣BFT/Byzantine agreement
– Tolerates f-out-of-n faulty/

adversarial nodes
– Generalized quorums

‣ Tx sent to consensus
nodes

‣Consensus validates tx,
decides, and disseminates
result
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Consortium consensus = permissioned

‣Central entity controls group membership
– Dynamic membership changes in protocol
– Membership may be decided inline, by protocol itself

‣Well-understood problem in distributed computing
– BFT and consensus studied since ca. 1985

● Clear assumptions and top-down design
● 700 protocols and counting [AGK+15]
● Textbooks [CGR11]
● Open-source implementations (BFT-SMaRT)

– Many systems already provide crash tolerant consensus (Chubby, Zookeeper, etcd ...)
– Requires Ω(n2) communication (OK for 10-100 nodes, not > 1000s)

‣Revival of research in BFT protocols
– Focus on scalability and communication efficiency
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Consortium consensus – under development

‣Hyperledger Fabric (originally started by IBM)
– Includes PBFT protocol [CL02]

‣ Tendermint, Juno/Kadena, JPMC Quorum, Axoni, Iroha, Chain and others

‣HoneyBadgerBFT [MXC+16]
– Revisits practical randomized BFT [CKPS01], including amoritzation

‣Many existing BFT libraries predate blockchain
– BFT-SMaRT, Univ. Lisbon (github.com/bft-smart/library)
– Prime, Johns Hopkins Univ. (www.dsn.jhu.edu/byzrep/prime.html)
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More variations of consensus

‣Bitcoin-NG [EGS+16]
– Bitcoin PoW elects a leader, it is responsible for ordering the next K tx

‣ Proof-of-stake (explored by Ethereum)
– Voting power relative to asset holdings (through cryptocurrency held by blockchain)

‣Hybrid PoW (PeerCensus [DSW16])
– PoW protocol to elect nodes in one consensus group
– Group runs ordinary BFT consensus

‣Hierarchical & partitioned, randomized [LNB+15]
– Random sub-groups, nodes and tx assigned randomly to sub-groups
– Each sub-group runs ordinary BFT consensus
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Scalability–performance tradeoff

M. Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. 
Proc. iNetSec 2015, LNCS 9591.
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Validation
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Validation of transactions – PoW protocols

‣Recall validation predicate P on state s and operation o: P(s, o) 

‣When constructing a block, the node
– Validates all contained tx
– Decides on an ordering within block

‣When a new block is propagated, all nodes must validate the block and its tx
– Simple for Bitcoin – verify digital signatures and that coins are unspent
– More complex and costly for Ethereum – re-run all the smart-contract code

‣Validation can be expensive
– Bitcoin blockchain contains the log of all tx – 105GB as of 3/2017 

(https://blockchain.info/charts/blocks-size)
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Validation of transactions – BFT protocols

‣ Properties of ordinary Byzantine consensus
– Weak Validity: Suppose all nodes are correct: if all propose v, then a node may only 

decide v; if a node decides v, then v was proposed by some node.
– Agreement: No two correct nodes decide differently.
– Termination: Every correct node eventually decides.

‣ Standard validity notions do not connect to the application!

‣Need validity anchored at external predicate [CKPS01]
– External validity: Given predicate P, known to every node, if a correct node decides v, 

then P(v); additionally, v was proposed by some node.

– Can be implemented with digital signatures on input tx
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Public validation vs. private state

‣ So far everything on blockchain is public – where is privacy?

‣Use cryptography – keep state "off-chain" and produce verifiable tx

– In Bitcoin, verification is a digital signature by key that owns coin

– In ZeroCash [BCG+14], blockchain holds committed coins and transfers use zero-
knowledge proofs (zk-SNARKS) validated by P

– Hawk [KMS+16] uses verifiable computation (VC)
● Computation using VC performed off-chain by involved parties
● P checks correctness of proof for VC

‣ Private computation requires additional assumption (MPC, trusted HW ...)
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Security and privacy

‣ Transactional privacy
– Anonymity or pseudonymity through cryptographic tools
– Some is feasible today (e.g., anonymous credentials in IBM Identity Mixer)

‣Contract privacy
– Distributed secure cryptographic computation on encrypted data

‣Accountability & non-repudiation
– Identity and cryptographic signatures

‣Auditability & transparency
– Cryptographic hash chain

‣Many of these need advanced cryptographic protocols
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Hyperledger Fabric
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Hyperledger

‣A Linux Foundation project – www.hyperledger.org
– Open-source collaboration, developing blockchain technologies for business
– Started in 2016: Hyperledger unites industry leaders to advance blockchain technology
– 135 members in Apr. '17

‣ Incubates and promotes blockchain technologies for business

‣ Today 4 frameworks and 4 tools, hundreds of contributors

‣Hyperledger Fabric was originally contributed by IBM – 
github.com/hyperledger/fabric/
– Architecture and consensus protocols originally contributed by IBM Research - Zurich
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Hyperledger Fabric

‣ Enterprise-grade blockchain fabric and distributed ledger framework
– One of multiple blockchain platforms in the Hyperledger Project
– First "active" platform under the Hyperledger umbrella (since 3/2017)

‣Developed open-source, by IBM and others (DAH, LSEG ...)
– github.com/hyperledger/fabric
– Initially called 'openblockchain' and contributed by IBM to Hyperledger project
– Actively developed, IBM and IBM Zurich play key roles

‣ Technical details
– Implemented in GO
– Runs smart contracts or "chaincode" within Docker containers
– Transactions Deploy new chaincode / Invoke an operation / Read state
– Implements consortium blockchain using traditional consensus (BFT, ZooKeeper)
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Hyperledger Fabric V1

‣ Separate the functions of nodes into endorsers and consensus nodes
– Every chaincode may have different endorsers
– Endorsers have state, run tx, and validate tx for their chaincode
– Chaincode specifies endorsement policy
– Consensus nodes order endorsed and already-validated tx
– All peers apply all state changes in order, only for properly endorsed tx

‣ Functions as replicated database maintained by peers [PWSKA00, KJP10]
– Replication via (BFT) atomic broadcast in consensus
– Endorsement protects against unauthorized updates

‣ Scales better – only few nodes execute, independent computations in parallel

‣ Permits some confidential data on blockchain via partitioning state
 Data seen only by endorsers assigned to run that chaincode
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Separation of endorsement from consensus

‣Validation is by chaincode

‣Dedicated endorsers
per chaincode

‣Consensus service
– Only communication
– Pub/sub messaging
– Ordering for endorsed tx

‣ State and hash chain
are common
– State may be encrypted

Consensus service 
only orders tx

Per-chaincode  
endorsers
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Transactions in Fabric V1

‣Client
– Produces a tx (operation) for some chaincode (smart contract)

‣ Submitter peer
– Execute/simulates tx with chaincode
– Records state values accessed, but does not change state   readset/writeset

‣ Endorsing peer
– Re-executes tx with chaincode and verifies readset/writeset
– Endorses tx with a signature on readset/writeset

‣Consensus service
– Receives endorsed tx, orders them, and outputs stream of "raw" tx (=atomic broadcast)

‣All peers
– Disseminate tx stream from consensus service with p2p communication (gossip)
– Filter out the not properly endorsed tx, according to chaincode endorsement policy
– Execute state changes from readset/writeset of valid tx, in order



43

Transaction flow
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Modular consensus in Fabric V1

‣ "Solo orderer"
– One host only, acting as specification during development (ideal functionality)

‣Apache Kafka, a distributed pub/sub streaming platform
– Tolerates crashes among member nodes, resilience from Apache Zookeeper inside
– Focus on high throughput

‣ SBFT - Simple implementation of PBFT (6/2017 - under development)
– Tolerates f < n/3 Byzantine faulty nodes among n
– Focus on resilience
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Conclusion
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Conclusion

‣Blockchain enables new trust models

‣Many interesting technologies
– Distributed computing for consensus
– Cryptography for integrity, privacy, anonymity

‣We are only at the beginning

‣Blockchain = Distributing trust over the Internet

– www.hyperledger.org
– www.ibm.com/blockchain/
– www.research.ibm.com/blockchain/
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Hyperledger Fabric references

‣www.hyperledger.org

‣Docs – hyperledger-fabric.readthedocs.io/en/latest/

‣Chat – chat.hyperledger.org, all channels like #fabric-*

‣Designs – wiki.hyperledger.org/community/fabric-design-docs

‣Architecture of V1 –  
github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-
Architecture-Proposal.md

‣Code – github.com/hyperledger/fabric
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Hyperledger Fabric details (v0.6-preview) / 1

‣ Platform-agnostic
– GO, gRPC over HTTP/2

‣ Peers
– Validating peers (all running consensus) and non-validating peers

‣ Transactions
– Deploy new chaincode / Invoke an operation / Read state
– Chaincode is arbitrary GO program running in a Docker container

‣ State is a key-value store (RocksDB)
– Put, get ... no other state must be held in chaincode
– Non-validating peers store state and execute transactions
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Hyperledger Fabric details / 2

‣Consensus in BFT model
– Modular architecture supports other consensus protocols
– Currently, Practical Byzantine Fault Tolerance (PBFT) [CL02] 
– Non-determinism addressed by Sieve protocol [CSV16]
– Static membership in consensus group

‣Hash chain computed over state and transactions
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Hyperledger Fabric details / 3

‣Membership service issues certificates to peers
– Enrollment certificates (E-Cert, issued by E-CA)

● Assign identity to peer, gives permission to join and issue transactions

– Transaction certificates (T-Cert, issued by T-CA)
● Capability to issue one transaction (or more)
● Unlinkable to enrollment certificate, for anyone except for transaction CA

‣ Pseudonymous transaction authorization
– Controlled by peer, how many Transaction-Signatures with same T-Cert
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Hyperledger Fabric details (V0.6)

‣ Peers
– Validating peers (all running consensus) and non-validating peers

‣Membership service issues identity-certificates and transaction-certificates

‣ Transactions
– Deploy new chaincode / Invoke an operation / Read state
– Chaincode is arbitrary GO program running in a Docker container

‣ State is a key-value store (RocksDB)
– Put, get ... no other state must be held in chaincode
– Non-validating peers store state and execute transactions

‣Hash chain computed over state (and possibly transactions)
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Non-determinism in BFT replication [CSV16]

‣ Service-replication paradigm needs deterministic state machines
– Agree on order of operations, then every node executes

‣What if application is given as black-box? Deterministic? Undecidable!

‣Our approach – filter out inadvertent non-determinism
– Execute operation, compare results, and revert it if "too much" divergence is evident
– When "enough" nodes arrive at the same result, accept it

‣ If application is randomized
– For algorithmic purpose (Monte Carlo): use master-slave approach
– For cryptography and security functions: cryptographic verifiable random functions (VRF)
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