
Cryptography and Protocols in
Hyperledger Fabric

Elli Androulaki, Christian Cachin, Angelo De Caro, Andreas Kind, Mike Osborne,
Simon Schubert, Alessandro Sorniotti, Marko Vukolic and many more

IBM Research – Zurich

Real-World Cryptography Conference 2017

2

Hyperledger Fabric

§ Implementation of a blockchain platform [for the enterprise]

§ Uses familiar and proven technologies

§ Modular architecture

§ Container technology for smart contracts in any modern language

§ Developed open source & collaboratively in the Hyperledger Project

3

Consensus

Four elements characterize Blockchain

Replicated ledger Cryptography

Business logic
● Logic embedded in the ledger
● Executed together with transactions
● From simple "coins" to self-enforcing

"smart contracts"

● History of all transactions
● Append-only with immutable past
● Distributed and replicated

● Decentralized protocol
● Shared control tolerating disruption
● Transactions validated

● Integrity of ledger
● Authenticity of transactions
● Privacy of transactions
● Identity of participants

4

Why blockchain now?

§ Cryptography has been a key technology in the financial world for decades
– Payment networks, ATM security, smart cards, online banking ...

§ Trust model of (financial) business has not changed
– Trusted intermediary needed for exchange among non-trusting partners
– Today cryptography mostly secures point-to-point interactions

§ Bitcoin started in 2009
– Embodies only cryptography of 1990s and earlier
– First prominent use of cryptography for a new trust model (= trust no entity)

§ The promise of Blockchain – Reduce trust and replace it by technology
– Exploit advanced cryptographic techniques

5

What is a blockchain?

6

A state machine

§ Functionality F
– Operation o transforms a state s to new state s' and may generate a response r

(s', r) ← F(s, o)

§ Validation condition
– Operation needs to be valid, in current state, according to a predicate P()

o

s s' / r

o

s s' / r

P(s,o) = TRUE

7

Blockchain state machine

§ Append-only log
– Every operation o appends a "block" of valid transactions (tx) to the log

§ Log content is verifiable from the most recent element

§ Log entries form a hash chain

ht ← Hash([tx1, tx2, ...] || ht-1 || t) .

o

s s'

8

Example – The Bitcoin state machine

§ Bitcoins are unforgeable bitstrings
– "Mined" by the protocol itself (see later)

§ Digital signature keys (ECDSA) own and transfer bitcoins
– Owners are pseudonymous, e.g., 3JDs4hAZeKE7vER2YvmH4yTMDEfoA1trnC

§ Every transaction transfers a bitcoin (fraction) from current to next owner
– "This bitcoin now belongs to 3JDs..." signed by the key of current owner
– (Flow linkable by protocol, and not anonymous when converted to real-world assets)

§ Validation is based on the global history of past transactions
– Signer has received the bitcoin before
– Signer has not yet spent the bitcoin

9

Distributed p2p protocol to create a ledger

o1 o2 o3

s0 s1 s2 s3

Nodes run a
protocol to
construct the
ledger

Nodes
produce
transactions

10

Blockchain protocol features

§ Only "valid" operations (transactions) are "executed"

§ Transactions can be simple
– Bitcoin tx are statement of ownership for coins, digitally signed

"This bitcoin now belongs to K2" signed by K1

§ Transactions can be arbitrary code (smart contracts)
– Embody logic that responds to events (on blockchain) and may transfer assets in

response
– Auctions, elections, investment decisions, blackmail ...

11

Consensus

12

Three kinds of blockchain consensus

§ Decentralized / permissionless
– Bitcoin

§ Somewhat decentralized – skipped here
– Ripple, Stellar

§ Consortium / permissioned
– BFT (Byzantine fault tolerance) consensus

13

Decentralized – Nakamoto consensus/Bitcoin

§ Nodes prepare blocks
– List of transactions (tx)
– All tx valid

§ Lottery race
– Solves a hard puzzle
– Selects a random

winner/leader
– Winner's operation/

block is executed and
"mines" a coin

§ All nodes verify and
validate new block
– "Longest" chain wins

14

Decentralized = permissionless

§ Survives censorship and suppression
– No central entity

§ Nakamoto consensus requires proof-of-work (PoW)
– Original intent: one CPU, one vote
– Majority of hashing power controls network
– Gives economic incentive to participate (solution to PoW is a newly "mined" Bitcoin)

§ Today, total hashing work consumes a lot of electricity
– Estimates vary, 250-500MW, from a major city to a small country ...

§ Protocol features
– Stability is a tradeoff between dissemination of new block (10s-20s) and mining rate

(new block on average every 10min)
– Decisions are not final ("wait until chain is 6 blocks longer before a tx is confirmed")

15

Consortium consensus (BFT, Hyperledger)

§ Designated set of
homogeneous
validator nodes

§ BFT/Byzantine agreement
– Tolerates f-out-of-n faulty/

adversarial nodes
– Generalized quorums

§ Tx sent to consensus
nodes

§ Consensus validates tx,
decides, and disseminates
result

16

Consortium consensus = permissioned

§ Used by Hyperledger Fabric and many other platforms

§ Central entity controls group membership (PKI)
– Membership may be decided inline dynamically

§ Features
– BFT and consensus are very-well understood problems

● Clear assumptions and top-down design
● 700 protocols and counting [AGK+15]
● Textbooks [CGR11]
● Open-source implementations (BFT-SMaRT)

– Many systems already provide crash tolerant consensus (Chubby, Zookeeper, etcd ...)
– Typically needs Ω(n2) communication (OK for 10-100 nodes, not > 1000s)

§ Revival of research in BFT consensus protocols

17

Scalability–performance tradeoff

M. Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication.
Proc. iNetSec 2015, LNCS 9591.

18

More about consensus protocols

Introduction to Reliable and Secure
Distributed Programming

C. Cachin, R. Guerraoui, L. Rodrigues

2nd ed., Springer, 2011

www.distributedprogramming.net

19

Validation

20

Validation of transactions – PoW protocols

§ Recall validation predicate P on state s and operation o: P(s, o)

§ When constructing a block, the node
– Validates all contained tx
– Decides on an ordering within block

§ When a new block is propagated, all nodes must validate the block and its tx
– Simple for Bitcoin – verify digital signatures and that coins are unspent
– More complex and costly for Ethereum – re-run all the smart-contract code

§ Validation can be expensive
– Bitcoin blockchain contains the log of all tx – 97GB as of 1/2017

(https://blockchain.info/charts/blocks-size)

21

Validation of transactions – BFT protocols

§ Properties of ordinary Byzantine consensus
– Weak Validity: Suppose all nodes are correct: if all propose v, then a node may only

decide v; if a node decides v, then v was proposed by some node.
– Agreement: No two correct nodes decide differently.
– Termination: Every correct node eventually decides.

§ Standard validity notions do not connect to the application!

§ Need validity anchored at external predicate [CKPS01]
– External validity: Given predicate P, known to every node, if a correct node decides v,

then P(v); additionally, v was proposed by some node.

– Can be implemented with digital signatures on input tx

22

Public validation vs. private state

§ So far everything on blockchain is public – where is privacy?

§ Use cryptography – keep state "off-chain" and produce verifiable tx

– In Bitcoin, verification is a digital signature by key that owns coin

– In ZeroCash [BCG+14], blockchain holds committed coins and transfers uze zerk-
knowledge proofs (zk-SNARKS) validated by P

– Hawk [KMS+16] uses verifiable computation (VC)
● Computation using VC performed off-chain by involved parties
● P checks correctness of proof for VC

§ Private computation requires additional assumption (MPC, trusted HW ...)

23

Security and privacy

§ Transactional privacy
– Anonymity or pseudonymity through cryptographic tools
– Some is feasible today (e.g., anonymous credentials in IBM Identity Mixer)

§ Contract privacy
– Distributed secure cryptographic computation on encrypted data

§ Accountability & non-repudiation
– Identity and cryptographic signatures

§ Auditability & transparency
– Cryptographic hash chain

§ Many of these need advanced cryptographic protocols

24

Hyperledger Fabric

25

Hyperledger project

§ Open-source collaboration under Linux Foundation
– www.hyperledger.org
– Hyperledger unites industry leaders to advance blockchain technology (Dec. '15)
– 100 members today

§ Develops enterprise-grade, open-source distributed ledger technology

§ Code contributions from several members

§ Fabric is the IBM-started contribution – github.com/hyperledger/fabric/
– Security architecture and consensus protocols from IBM Research - Zurich

26

27

Hyperledger fabric

§ Enterprise-grade blockchain fabric and distributed ledger framework
– A blockchain implementation in the Hyperledger Project

§ Developed open-source, by IBM and others (DAH, LSEG ...)
– github.com/hyperledger/fabric
– Initially called 'openblockchain' and donated by IBM to Hyperledger project
– Actively developed, IBM and IBM Zurich play key roles

§ Technical details
– Implemented in GO
– Runs smart contracts ("chaincode") within Docker containers
– Implements consortium blockchain using traditional consensus (BFT, Paxos)

28

Hyperledger fabric architecture

29

Hyperledger fabric details (v0.6-preview) / 1

§ Platform-agnostic
– GO, gRPC over HTTP/2

§ Peers
– Validating peers (all running consensus) and non-validating peers

§ Transactions
– Deploy new chaincode / Invoke an operation / Read state
– Chaincode is arbitrary GO program running in a Docker container

§ State is a key-value store (RocksDB)
– Put, get ... no other state must be held in chaincode
– Non-validating peers store state and execute transactions

30

Hyperledger fabric details / 2

§ Consensus in BFT model
– Modular architecture supports other consensus protocols
– Currently, Practical Byzantine Fault Tolerance (PBFT) [CL02]
– Non-determinism addressed by Sieve protocol [CSV16]
– Static membership in consensus group

§ Hash chain computed over state and transactions

31

Hyperledger fabric details / 3

§ Membership service issues certificates to peers
– Enrollment certificates (E-Cert, issued by E-CA)

● Assign identity to peer, gives permission to join and issue transactions

– Transaction certificates (T-Cert, issued by T-CA)
● Capability to issue one transaction (or more)
● Unlinkable to enrollment certificate, for anyone except for transaction CA

§ Pseudonymous transaction authorization
– Controlled by peer, how many Transaction-Signatures with same T-Cert

32

Non-determinism in BFT replication [CSV16]

§ Service-replication paradigm needs deterministic state machines
– Agree on order of operations, then every node executes

§ What if application is given as black-box? Deterministic? Undecidable!

§ Our approach – filter out inadvertent non-determinism
– Execute operation, compare results, and revert it if "too much" divergence is evident
– When "enough" nodes arrive at the same result, accept it

§ If application is randomized
– For algorithmic purpose (Monte Carlo): use master-slave approach
– For cryptography and security functions: cryptographic verifiable random functions (VRF)

33

Towards Hyperledger fabric V1

§ Separate the functions of nodes into endorsers and consensus nodes
– Every chaincode may have different endorsers
– Endorsers have state, run tx, and validate tx for their chaincode
– Chaincode specifies endorsement policy
– Consensus nodes order endorsed and already-validated tx
– All peers apply all state changes in order, only for properly endorsed tx

§ Functions as replicated database maintained by peers [PWSKA00, KJP10]
– Replication via (BFT) atomic broadcast in consensus
– Endorsement protects against unauthorized updates

§ Scales better – only few nodes execute, independent computations in parallel

§ Permits some confidential data on blockchain via partitioning state
 Data seen only by endorsers assigned to run that chaincode

34

Separation of endorsement from consensus

§ Validation is by chaincode

§ Dedicated endorsers
per chaincode

§ Consensus service
– Only communication
– Pub/sub messaging
– Ordering for endorsed tx

§ State and hash chain
are common
– State may be encrypted

Consensus service
only orders tx

Per-chaincode
endorsers

35

Transactions in fabric V1

§ Client
– Produces a tx (operation) for some chaincode (smart contract)

§ Submitter peer
– Execute/simulates tx with chaincode
– Records state values accessed, but does not change state  readset/writeset

§ Endorsing peer
– Re-executes tx with chaincode and verifies readset/writeset
– Endorses tx with a signature on readset/writeset

§ Consensus service
– Orders the endorsed tx, produces ordered stream of tx
– Filters out the not properly endorsed tx, according to chaincode endorsement policy

§ All peers
– Disseminate tx from consensus service with p2p communication (gossip)
– Execute state changes from readset/writeset of valid tx, in order

36

Transaction flow

37

Modular consensus in fabric V1

§ "Solo orderer"
– One host only, acting as specification during development (ideal functionality)

§ Apache Kafka, a distributed pub/sub streaming platform
– Tolerates crashes among member nodes, has Apache Zookeeper
– Focus on high throughput

§ SBFT - A simple implementation of Practical Byzantine Fault Tolerance (PBFT)
– Tolerates f < n/3 Byzantine faulty nodes among n
– Focus on resilience

38

From the ideal world to the real world

39

Why does it take 15 years?

§ Agreement and consensus protocols have been researched for 30 years

§ Cryptographic e-cash (Chaum-style) from 1980s

§ 100s of protocols for anonymous communication/payment/credentials ...

§ Proof-of-work from 1990s

40

Blockchain and fintech today

§ Lots of activity and hype

§ 1000s (?) of startups
– Many with their "new" consensus protocols or crypto-magic (= rediscovered 90s results)

§ Is it all "déjà vu"? Are there any new ideas?

– DH 1975, RSA 1978    PGP 1991, SSL 1995

– Ethernet Xerox PARC 1973    IEEE 802.3 1983

41

Blockchain follows a typical technology cycle

§ Yes, many academic cryptography papers contain prototypes
– but they remain academic prototypes
– Almost never real-world systems

§ For the real world, it often takes another generation of people

§ Academics then re-visit practice and create new models for what is deployed

In theory, theory and practice are the same. In practice, they are not.

42

Summary

43

Blockchain – A golden opportunity for
realizing cryptographic ideas

§ Blockchain enables new trust models

§ Many interesting technologies
– Distributed computing for consensus
– Cryptography for integrity, privacy, anonymity

§ We are only at the beginning

§ Blockchain = Distributing trust over the Internet

– www.hyperledger.org
– www.ibm.com/blockchain/
– www.research.ibm.com/blockchain/

44

Hyperledger Fabric references

§ www.hyperledger.org

§ Docs – hyperledger-fabric.readthedocs.io/en/latest/

§ Slack – hyperledgerproject.slack.com, all channels like #fabric-*

§ Designs – wiki.hyperledger.org/community/fabric-design-docs

§ Architecture of V1 –
github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-
Architecture-Proposal.md

§ Code – github.com/hyperledger/fabric

45

References

[AGK+15] P.-L. Aublin, R. Guerraoui, N. Knezevic, V. Quéma, M. Vukolic: The Next 700 BFT Protocols. ACM
TOCS, 32(4), 2015.

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza: Zerocash:
Decentralized Anonymous Payments from Bitcoin. IEEE S&P 2014.

[CKPS01] C. Cachin, K. Kursawe, F. Petzold, V. Shoup: Secure and Efficient Asynchronous Broadcast
Protocols. CRYPTO 2001.

[CGR11] C. Cachin, R. Guerraoui, L. Rodrigues: Introduction to Reliable and Secure Distributed
Programming (2. ed.). Springer, 2011.

[CSV16] C. Cachin, S. Schubert, M. Vukolic: Non-determinism in Byzantine Fault-Tolerant Replication.
OPODIS 2016.

[CL02] M. Castro, B. Liskov: Practical Byzantine fault tolerance and proactive recovery. ACM TOCS, 20(4),
2002.

[DSW16] C. Decker, J. Seidel, R. Wattenhofer: Bitcoin meets strong consistency. ICDCN 2016.

[EGS+16] I. Eyal, A. Gencer, E.G. Sirer, R. van Renesse: Bitcoin-NG: A Scalable Blockchain Protocol. NSDI
2016.

46

References

[KJP10] B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez: Database Replication. Morgan & Claypool, 2010.

[KMS+16] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou: Hawk: The Blockchain Model of
Cryptography and Privacy-Preserving Smart Contracts. IEEE S&P 2016.

[LNB+15] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, P. Saxena: A Secure Sharding Protocol For
Open Blockchains. ACM CCS 2016.

[MR98] D. Malkhi, M. Reiter: Byzantine Quorum Systems. Distributed Computing, 1998.

[MXC+16] A. Miller, Y. Xia, K. Croman, E. Shi, D. Song: The Honey Badger of BFT Protocols. ACM CCS 2016.

[PWSKA00] F. Pedone, M. Wiesmann, A. Schiper, B. Kemme, G. Alonso: Understanding Replication in
Databases and Distributed Systems. ICDCS 2000.

[V16] M. Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. LNCS 9591,
Proc. iNetSeC 2015.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

