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Hyperledger Fabric

§ Implementation of a blockchain platform [for the enterprise]

§ Uses familiar and proven technologies

§ Modular architecture

§ Container technology for smart contracts in any modern language

§ Developed open source & collaboratively in the Hyperledger Project
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Consensus

Four elements characterize Blockchain

Replicated ledger Cryptography

Business logic
● Logic embedded in the ledger
● Executed together with transactions
● From simple "coins" to self-enforcing 

"smart contracts"

● History of all transactions
● Append-only with immutable past
● Distributed and replicated

● Decentralized protocol
● Shared control tolerating disruption
● Transactions validated

● Integrity of ledger
● Authenticity of transactions
● Privacy of transactions
● Identity of participants
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Why blockchain now?

§ Cryptography has been a key technology in the financial world for decades
– Payment networks, ATM security, smart cards, online banking ...

§ Trust model of (financial) business has not changed
– Trusted intermediary needed for exchange among non-trusting partners
– Today cryptography mostly secures point-to-point interactions

§ Bitcoin started in 2009
– Embodies only cryptography of 1990s and earlier
– First prominent use of cryptography for a new trust model (= trust no entity)

§ The promise of Blockchain – Reduce trust and replace it by technology
– Exploit advanced cryptographic techniques
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What is a blockchain?
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A state machine

§ Functionality F
– Operation o transforms a state s to new state s' and may generate a response r

(s', r) ← F(s, o)

§ Validation condition
– Operation needs to be valid, in current state, according to a predicate P()

o

s s' / r

o

s s' / r

P(s,o) = TRUE
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Blockchain state machine

§ Append-only log
– Every operation o appends a "block" of valid transactions (tx) to the log

§ Log content is verifiable from the most recent element

§ Log entries form a hash chain

ht ← Hash( [tx1, tx2, ... ] || ht-1 || t) . 

o

s s'
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Example – The Bitcoin state machine

§ Bitcoins are unforgeable bitstrings
– "Mined" by the protocol itself (see later)

§ Digital signature keys (ECDSA) own and transfer bitcoins
– Owners are pseudonymous, e.g., 3JDs4hAZeKE7vER2YvmH4yTMDEfoA1trnC

§ Every transaction transfers a bitcoin (fraction) from current to next owner
– "This bitcoin now belongs to 3JDs..." signed by the key of current owner
– (Flow linkable by protocol, and not anonymous when converted to real-world assets)

§ Validation is based on the global history of past transactions
– Signer has received the bitcoin before
– Signer has not yet spent the bitcoin
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Distributed p2p protocol to create a ledger

o1 o2 o3

s0 s1 s2 s3

Nodes run a 
protocol to 
construct the 
ledger

Nodes 
produce 
transactions
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Blockchain protocol features

§ Only "valid" operations (transactions) are "executed"

§ Transactions can be simple
– Bitcoin tx are statement of ownership for coins, digitally signed

"This bitcoin now belongs to K2" signed by K1

§ Transactions can be arbitrary code (smart contracts)
– Embody logic that responds to events (on blockchain) and may transfer assets in 

response
– Auctions, elections, investment decisions, blackmail ...
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Consensus
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Three kinds of blockchain consensus

§ Decentralized / permissionless
– Bitcoin

§ Somewhat decentralized – skipped here
– Ripple, Stellar

§ Consortium / permissioned
– BFT (Byzantine fault tolerance) consensus
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Decentralized – Nakamoto consensus/Bitcoin

§ Nodes prepare blocks
– List of transactions (tx)
– All tx valid

§ Lottery race
– Solves a hard puzzle
– Selects a random

winner/leader
– Winner's operation/

block is executed and
"mines" a coin

§ All nodes verify and
validate new block
– "Longest" chain wins
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Decentralized = permissionless

§ Survives censorship and suppression
– No central entity

§ Nakamoto consensus requires proof-of-work (PoW)
– Original intent: one CPU, one vote
– Majority of hashing power controls network
– Gives economic incentive to participate (solution to PoW is a newly "mined" Bitcoin)

§ Today, total hashing work consumes a lot of electricity
– Estimates vary, 250-500MW, from a major city to a small country ...

§ Protocol features
– Stability is a tradeoff between dissemination of new block (10s-20s) and mining rate 

(new block on average every 10min)
– Decisions are not final ("wait until chain is 6 blocks longer before a tx is confirmed")
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Consortium consensus (BFT, Hyperledger)

§ Designated set of
homogeneous
validator nodes 

§ BFT/Byzantine agreement
– Tolerates f-out-of-n faulty/

adversarial nodes
– Generalized quorums

§ Tx sent to consensus
nodes

§ Consensus validates tx,
decides, and disseminates
result
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Consortium consensus = permissioned

§ Used by Hyperledger Fabric and many other platforms

§ Central entity controls group membership (PKI)
– Membership may be decided inline dynamically

§ Features
– BFT and consensus are very-well understood problems

● Clear assumptions and top-down design
● 700 protocols and counting [AGK+15]
● Textbooks [CGR11]
● Open-source implementations (BFT-SMaRT)

– Many systems already provide crash tolerant consensus (Chubby, Zookeeper, etcd ...)
– Typically needs Ω(n2) communication (OK for 10-100 nodes, not > 1000s)

§ Revival of research in BFT consensus protocols
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Scalability–performance tradeoff

M. Vukolic: The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. 
Proc. iNetSec 2015, LNCS 9591.
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More about consensus protocols

Introduction to Reliable and Secure 
Distributed Programming

C. Cachin, R. Guerraoui, L. Rodrigues

2nd ed., Springer, 2011

www.distributedprogramming.net
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Validation
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Validation of transactions – PoW protocols

§ Recall validation predicate P on state s and operation o: P(s, o) 

§ When constructing a block, the node
– Validates all contained tx
– Decides on an ordering within block

§ When a new block is propagated, all nodes must validate the block and its tx
– Simple for Bitcoin – verify digital signatures and that coins are unspent
– More complex and costly for Ethereum – re-run all the smart-contract code

§ Validation can be expensive
– Bitcoin blockchain contains the log of all tx – 97GB as of 1/2017 

(https://blockchain.info/charts/blocks-size)
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Validation of transactions – BFT protocols

§ Properties of ordinary Byzantine consensus
– Weak Validity: Suppose all nodes are correct: if all propose v, then a node may only 

decide v; if a node decides v, then v was proposed by some node.
– Agreement: No two correct nodes decide differently.
– Termination: Every correct node eventually decides.

§ Standard validity notions do not connect to the application!

§ Need validity anchored at external predicate [CKPS01]
– External validity: Given predicate P, known to every node, if a correct node decides v, 

then P(v); additionally, v was proposed by some node.

– Can be implemented with digital signatures on input tx
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Public validation vs. private state

§ So far everything on blockchain is public – where is privacy?

§ Use cryptography – keep state "off-chain" and produce verifiable tx

– In Bitcoin, verification is a digital signature by key that owns coin

– In ZeroCash [BCG+14], blockchain holds committed coins and transfers uze zerk-
knowledge proofs (zk-SNARKS) validated by P

– Hawk [KMS+16] uses verifiable computation (VC)
● Computation using VC performed off-chain by involved parties
● P checks correctness of proof for VC

§ Private computation requires additional assumption (MPC, trusted HW ...)
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Security and privacy

§ Transactional privacy
– Anonymity or pseudonymity through cryptographic tools
– Some is feasible today (e.g., anonymous credentials in IBM Identity Mixer)

§ Contract privacy
– Distributed secure cryptographic computation on encrypted data

§ Accountability & non-repudiation
– Identity and cryptographic signatures

§ Auditability & transparency
– Cryptographic hash chain

§ Many of these need advanced cryptographic protocols
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Hyperledger Fabric
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Hyperledger project

§ Open-source collaboration under Linux Foundation 
– www.hyperledger.org
– Hyperledger unites industry leaders to advance blockchain technology (Dec. '15)
– 100 members today

§ Develops enterprise-grade, open-source distributed ledger technology

§ Code contributions from several members

§ Fabric is the IBM-started contribution – github.com/hyperledger/fabric/
– Security architecture and consensus protocols from IBM Research - Zurich
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Hyperledger fabric

§ Enterprise-grade blockchain fabric and distributed ledger framework
– A blockchain implementation in the Hyperledger Project

§ Developed open-source, by IBM and others (DAH, LSEG ...)
– github.com/hyperledger/fabric
– Initially called 'openblockchain' and donated by IBM to Hyperledger project
– Actively developed, IBM and IBM Zurich play key roles

§ Technical details
– Implemented in GO
– Runs smart contracts ("chaincode") within Docker containers
– Implements consortium blockchain using traditional consensus (BFT, Paxos)
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Hyperledger fabric architecture
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Hyperledger fabric details (v0.6-preview) / 1

§ Platform-agnostic
– GO, gRPC over HTTP/2

§ Peers
– Validating peers (all running consensus) and non-validating peers

§ Transactions
– Deploy new chaincode / Invoke an operation / Read state
– Chaincode is arbitrary GO program running in a Docker container

§ State is a key-value store (RocksDB)
– Put, get ... no other state must be held in chaincode
– Non-validating peers store state and execute transactions
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Hyperledger fabric details / 2

§ Consensus in BFT model
– Modular architecture supports other consensus protocols
– Currently, Practical Byzantine Fault Tolerance (PBFT) [CL02] 
– Non-determinism addressed by Sieve protocol [CSV16]
– Static membership in consensus group

§ Hash chain computed over state and transactions
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Hyperledger fabric details / 3

§ Membership service issues certificates to peers
– Enrollment certificates (E-Cert, issued by E-CA)

● Assign identity to peer, gives permission to join and issue transactions

– Transaction certificates (T-Cert, issued by T-CA)
● Capability to issue one transaction (or more)
● Unlinkable to enrollment certificate, for anyone except for transaction CA

§ Pseudonymous transaction authorization
– Controlled by peer, how many Transaction-Signatures with same T-Cert
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Non-determinism in BFT replication [CSV16]

§ Service-replication paradigm needs deterministic state machines
– Agree on order of operations, then every node executes

§ What if application is given as black-box? Deterministic? Undecidable!

§ Our approach – filter out inadvertent non-determinism
– Execute operation, compare results, and revert it if "too much" divergence is evident
– When "enough" nodes arrive at the same result, accept it

§ If application is randomized
– For algorithmic purpose (Monte Carlo): use master-slave approach
– For cryptography and security functions: cryptographic verifiable random functions (VRF)
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Towards Hyperledger fabric V1

§ Separate the functions of nodes into endorsers and consensus nodes
– Every chaincode may have different endorsers
– Endorsers have state, run tx, and validate tx for their chaincode
– Chaincode specifies endorsement policy
– Consensus nodes order endorsed and already-validated tx
– All peers apply all state changes in order, only for properly endorsed tx

§ Functions as replicated database maintained by peers [PWSKA00, KJP10]
– Replication via (BFT) atomic broadcast in consensus
– Endorsement protects against unauthorized updates

§ Scales better – only few nodes execute, independent computations in parallel

§ Permits some confidential data on blockchain via partitioning state
 Data seen only by endorsers assigned to run that chaincode
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Separation of endorsement from consensus

§ Validation is by chaincode

§ Dedicated endorsers
per chaincode

§ Consensus service
– Only communication
– Pub/sub messaging
– Ordering for endorsed tx

§ State and hash chain
are common
– State may be encrypted

Consensus service 
only orders tx

Per-chaincode  
endorsers
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Transactions in fabric V1

§ Client
– Produces a tx (operation) for some chaincode (smart contract)

§ Submitter peer
– Execute/simulates tx with chaincode
– Records state values accessed, but does not change state   readset/writeset

§ Endorsing peer
– Re-executes tx with chaincode and verifies readset/writeset
– Endorses tx with a signature on readset/writeset

§ Consensus service
– Orders the endorsed tx, produces ordered stream of tx
– Filters out the not properly endorsed tx, according to chaincode endorsement policy

§ All peers
– Disseminate tx from consensus service with p2p communication (gossip)
– Execute state changes from readset/writeset of valid tx, in order
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Transaction flow
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Modular consensus in fabric V1

§ "Solo orderer"
– One host only, acting as specification during development (ideal functionality)

§ Apache Kafka, a distributed pub/sub streaming platform
– Tolerates crashes among member nodes, has Apache Zookeeper
– Focus on high throughput

§ SBFT - A simple implementation of Practical Byzantine Fault Tolerance (PBFT)
– Tolerates f < n/3 Byzantine faulty nodes among n
– Focus on resilience
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From the ideal world to the real world



39

Why does it take 15 years?

§ Agreement and consensus protocols have been researched for 30 years

§ Cryptographic e-cash (Chaum-style) from 1980s

§ 100s of protocols for anonymous communication/payment/credentials ...

§ Proof-of-work from 1990s
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Blockchain and fintech today

§ Lots of activity and hype

§ 1000s (?) of startups
– Many with their "new" consensus protocols or crypto-magic (= rediscovered 90s results)

§ Is it all "déjà vu"? Are there any new ideas?

– DH 1975, RSA 1978    PGP 1991, SSL 1995

– Ethernet Xerox PARC 1973    IEEE 802.3 1983
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Blockchain follows a typical technology cycle

§ Yes, many academic cryptography papers contain prototypes
– but they remain academic prototypes
– Almost never real-world systems

§ For the real world, it often takes another generation of people

§ Academics then re-visit practice and create new models for what is deployed

In theory, theory and practice are the same. In practice, they are not.
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Summary
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Blockchain – A golden opportunity for 
realizing cryptographic ideas

§ Blockchain enables new trust models

§ Many interesting technologies
– Distributed computing for consensus
– Cryptography for integrity, privacy, anonymity

§ We are only at the beginning

§ Blockchain = Distributing trust over the Internet

– www.hyperledger.org
– www.ibm.com/blockchain/
– www.research.ibm.com/blockchain/
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Hyperledger Fabric references

§ www.hyperledger.org

§ Docs – hyperledger-fabric.readthedocs.io/en/latest/

§ Slack – hyperledgerproject.slack.com, all channels like #fabric-*

§ Designs – wiki.hyperledger.org/community/fabric-design-docs

§ Architecture of V1 –  
github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-
Architecture-Proposal.md

§ Code – github.com/hyperledger/fabric
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