MASTER N
COMPUTER
SCIENCE

APBFT

Adapting the PBFT Consensus Algorithm to the Asymmetric Trust Setting

Master Thesis

Bernhard Jonathan

Universitit Freiburg

August 2025

Prof. Dr. Christian Cachin
Juan Villacis
Michael Senn

Cryptology and Data Security Group
Institute of Computer Science
University of Bern, Switzerland

b

u i

UNIVERSITAT UNIVERSITE DE
BERN NEUCHATEL

UNIVERSITE DE FRIBOURG
UNIVERSITAT FREIBURG

Abstract

Consensus protocols are fundamental to distributed computing, enabling processes to agree on a single
value even in the presence of faults. Traditional consensus mechanisms, such as Paxos, PBFT, HotStuff,
and Tendermint, assume a symmetric trust model where all nodes share uniform assumptions about
fault tolerance. While effective in controlled environments, this assumption often limits applicability
in large-scale, decentralized, or geo-distributed networks, where nodes may hold heterogeneous trust
views.

This thesis investigates consensus under asymmetric trust, where each node specifies its own
fail-prone sets. We present the first empirical evaluation of two consensus paradigms adapted to this
setting: a leader-driven PBFT variant (PAPBFT) and Asymmetric Randomized Consensus, a fully
asynchronous randomized consensus protocol. Our experiments demonstrate that PAPBFT achieves
low latency in fault-free scenarios but is sensitive to faulty leaders, whereas the randomized protocol
maintains stable performance regardless of faults.

To make such protocols practical, we examine the computational complexity of key quorum-related
tasks and prove that enumerating the tolerated system of an asymmetric quorum system, which a key
component of several algorithms, is NP-hard. We address this challenge by introducing the superset
recognizer abstraction, and show that an efficient recognizer for a quorum system can be transformed
into recognizers for both its kernel system and its tolerated system. This allows the algorithms to be
implemented entirely on top of quorum superset recognizers, avoiding the need to explicitly enumerate
these complex structures.

Building on prior work, we extend the PBFT algorithm with a leader-change primitive tailored
for asymmetric trust and propose a novel asymmetric variant of the PBFT consensus mechanism
that manages unequal role assignments among nodes. We provide a formal correctness proof of our
PBFT variant, ensuring both safety and liveness in asymmetric trust environments. These contributions
establish a practical foundation for reliable and efficient consensus in heterogeneous distributed systems.

Introduction
Related Work

Preliminaries
3.1 System Model

3.2 Symmetric Byzantine Quorum System
3.3 Asymmetric Byzantine Quorum System

Tolerated System: Intractable Construction and Efficient Recognition
4.1 Hardness of Tolerated System Construction
4.2 Superset Recognizers

Asynchronous Consensus
5.1 Asymmetric Strong Byzantine Consensus Specification
5.2 Asymmetric Common Coin Abstraction
5.3 Asymmetric Binary Validated Broadcast
5.4 Asymmetric Randomized Consensus Algorithm

Partially Synchronous Consensus
6.1 Asymmetric Epoch Change Primitive
6.1.1 Asymmetric Epoch Change Specification
6.1.2 Algorithm Description: Asymmetric Rotating Epoch Change
6.1.3 Algorithm Correctness
6.2 Asymmetric Epoch Consensus
6.2.1 Review of PBFT
Symmetric Epoch Consensus Specification
Algorithm Description
6.2.2 PAPBFT: A Hybrid Approach
Algorithm Description

6.2.1.1

6.2.1.2

6.2.2.1

6.2.2.2
6.2.3 Introducing APBFT
Asymmetric Epoch Consensus Specification
6.2.3.2 Algorithm Description
Algorithm Correctness
6.3 Leader-Driven Consensus Algorithm

6.2.3.1

6.2.3.3

Experimental Evaluation

Future Work

Conclusion

Contents

Introduction

The consensus problem is a core abstraction in distributed computing, requiring processes to agree on a single
value among those proposed, even in the presence of faults. It underpins systems that require consistent transaction
ordering, as repeated instances can be used to build a global sequence of decisions. Protocols such as PAX0S [14],
PBFT [7], HOTSTUFF [22], and TENDERMINT [5] are well-established consensus mechanisms in practice, forming
the foundation of many replicated services and permissioned blockchain systems.

These protocols are built on top of the symmetric trust model, where all nodes share a uniform assumption about
the number and type of faults the system must tolerate. Typically, this is captured by a fixed threshold, e.g., the
assumption that at most f out of n nodes are Byzantine, meaning they may behave in arbitrary or malicious ways.
Under this assumption, quorum systems are constructed such that every quorum has sufficient overlap with others to
guarantee both safety and liveness properties.

This threshold-based model can be more generally captured by the framework of Byzantine quorum systems
(BOS) [17]. Instead of relying on numerical thresholds, BQS define a set of fail-prone sets: collections of nodes
that might fail together. A quorum system is then a set of node subsets that intersect with one another and contain
a sufficient number of correct processes. In the symmetric BQS model, all nodes share the same quorums and
fail-prone sets, preserving the assumption of a homogeneous trust structure.

However, this symmetric trust assumption can become a significant limitation in real-world systems. In large-
scale, geo-distributed, or decentralized networks, participants may have very different views of which nodes they
consider trustworthy. Nodes operated by independent entities often cannot agree on a global fault assumption.

To address these limitations, BQS have been extended to support asymmetric trust. In this setting, as introduced
by Damgard et al. [8] and later refined by Alpos et al. [1], each node specifies its own view of fail-prone sets,
reflecting its local trust assumptions.

Zanolini [23] introduced two consensus algorithms for the asymmetric trust setting: a variant of the PBFT
algorithm as proposed by Cachin et al. [6], and a randomized consensus algorithm based on the work of Mostéfaoui
et al. [19]. However, Zanolini neither provides an implementation of the proposed algorithms nor specifies the full
PBFT mechanism, leaving, in particular, the liveness mechanism open. Building on this foundation, we complete
Zanolini’s PBFT variant with a leader-change primitive tailored to the asymmetric trust setting, enabling its practical
execution. We implement both of Zanolini’s algorithms and empirically evaluate their performance. Furthermore,
we propose a novel asymmetric variant of PBFT and provide a formal proof of its correctness.

The remainder of this thesis is structured as follows.

¢ Chapter 2 discusses related work, particularly other consensus protocols that address asymmetric trust.

Chapter 3 presents the preliminaries, introducing the system model and quorum systems.

Chapter 4 details hardness results related to the computation of guilds in asymmetric quorum systems and
discusses how to efficiently operationalize the reviewed quorum-based algorithms.

* Chapter 5 reviews the Asymmetric Randomized Consensus algorithm.

* Chapter 6 examines an asymmetric version of PBFT and introduces a novel variation of the protocol.

* Chapter 7 presents the empirical evaluation of the two reviewed algorithms.
* Chapter 8 outlines future work, discussing potential extensions and open questions.

* Chapter 9 concludes the thesis, summarizing the results.

Related Work

The study of asymmetric trust in distributed consensus has been formalized through several foundational works.
Damgard et al. [8] were the first to introduce the notion of asymmetric trust, laying the theoretical groundwork for
subsequent research. Building on this foundation, Alpos et al. [1] formalized asymmetric trust as a generalization of
symmetric Byzantine quorum systems [17], extending classical consistency and availability properties to a more
flexible setting. In their framework, they also introduced the concept of a guild, a subset of correct nodes whose
presence ensures system progress, and proved that their proposed consensus algorithms satisfy both safety and
liveness under this model.

Subsequently, Li et al.[15] showed that consistency and availability alone are insufficient to guarantee consensus
in asymmetric trust environments, emphasizing the necessity of the guild condition identified by Alpos et al. They
also developed their own model of asymmetric Byzantine quorum systems, derived from the Federated Byzantine
Agreement System (FBAS) used in Stellar [18]. In this formulation, quorum system properties are defined relative to
a fixed set of predetermined Byzantine processes. By contrast, the Alpos et al.[1] approach defines these properties
in terms of the fail-prone system introduced by Damgard et al. [8], which leads to a more natural expression of the
consistency property. This formulation accommodates executions in which the quorums of correct processes, with
incorrect trust assumptions, need not intersect in a correct process with the quorums of its peers. Such scenarios
cannot be expressed in Li et al.’s [15] formalism, where the consistency property requires the quorums of all correct
processes to intersect in at least one correct process.

Amores-Sesar et al. [3] present the first DAG-based asymmetric consensus protocol, which generalizes the
renowned DAG-Rider [12] algorithm using the same formal framework adopted in this work. This work builds
directly on the model developed by Alpos et al. [1].

In a somewhat independent line, Heterogeneous Paxos [21] generalizes Byzantine Paxos to settings with non-
uniform trust. A further generalization of the protocol is that it allows learners to also operate under heterogeneous
fault models. To capture these assumptions, the authors introduce the concept of a learner graph, where each learner
is represented as a node labeled with its individual quorum system, the sets of validators it trusts to reach a decision.
Edges between learners are labeled with safe sets, which specify the subsets of non-Byzantine nodes required to
ensure that connected learners agree on their decision value.

Ripple [2, 20] and Stellar [18] are two of the most prominent blockchain systems built on asymmetric trust
assumptions, enabling open-ended membership without requiring a globally agreed-upon validator set. Ripple
requires each node to maintain a static Unique Node List (UNL), a list of trusted validators. A node only considers
messages from nodes in its UNL and regards a transaction as validated if a sufficient proportion of those validators
approve it. However, in practice, Ripple exhibits a relatively centralized structure: new participants are given a
default UNL, which they can customize, but are discouraged from doing so, as poor choices could compromise the
system’s safety guarantees [18].

Stellar builds on and generalizes Ripple’s approach by introducing the concept of a Federated Byzantine
Agreement System (FBAS). In Stellar, each node defines one or more quorum slices, subsets of nodes it trusts to
reach consensus. These slices collectively give rise to quorums, which are sets of nodes that contain a quorum slice
for each of their members. The structure of quorum slices and quorums in Stellar resembles the quorum systems
and guilds discussed earlier. However, the two differ fundamentally in their properties, as the notion of quorum

systems is grounded in the concept of fail-prone sets, whereas FBAS does not explicitly model the possible faulty
processes in the system.

Both systems require careful configuration to ensure liveness: Ripple relies on timely communication and high
UNL overlap [2], while Stellar requires that nodes form quorum slices with adequate intersection and availability [11].
However, Stellar also assumes some level of network synchrony to guarantee progress.

Cobalt [16], developed as a successor to Ripple’s protocol, retains the asymmetric trust model in which each
node maintains a locally defined trusted set (similar to UNLSs), but improves resilience by reducing the required
overlap between them and operating under full asynchrony, without assuming bounded message delays.

Preliminaries

In this chapter, we introduce the system model and then review the notion of Asymmetric Byzantine Quorum Systems,
originally proposed by Damgard et al. [8] and later extended by Alpos et al. [1]. These systems offer a mathematical
framework for formalizing trust assumptions in distributed environments and form the basis of all the protocols
discussed in this work.

To build toward this generalization, we first review the classical notion of Symmetric Byzantine Quorum Systems,
introduced by Malkhi and Reiter [17], before moving on to the asymmetric setting.

3.1 System Model

Processes. In this thesis, our attention is restricted to permissioned systems of n processes, denoted by P =
{p1,p2,--.,Pn}. The processes communicate with each other over a fully connected network.

Executions and Faults. An execution starts with all processes in a special initial state. The processes then
repeatedly trigger events, as soon as their guards are satisfied, changing the processes’ states. Every event executes
as an atomic unit. Each event executed by some process is associated with a unique point in time ¢ € R, inducing a
total order on the events. However, the processes do not have access to a global clock and are therefore unaware of
this global ordering.

A process that follows its protocol throughout its execution is called correct. Processes may crash during
execution or deviate arbitrarily from their specification; such faulty processes are called Byzantine.

Idealized Digital Signatures. In the pseudocode, the cryptographic operation of generating digital signatures
is abstracted into two operations, sign, and verify,. Process p; invokes sign, by providing a object o as input and
obtaining a signature o € {0,1}* as output. Only p; may invoke sign;. The operation verify, may be called by
any process: given an object o and a signature o, it returns TRUE if and only if p; previously invoked sign, (o) and
produced o.

Timing Assumptions. We consider two different timing models for message delays:

* Fully Asynchronous Model. Messages may be delayed by an unbounded amount of time but are guaranteed
to eventually be delivered.

 Partially Synchronous Model [9]. The execution is divided into two phases. Before an unknown global
stabilization time (GST € R), messages behave as in the fully asynchronous model. After GST, every message
sent is delivered within at most A € R time units. Both GST and A are unknown to the processes, and no
messages are lost.

3.2 Symmetric Byzantine Quorum System

Given a set of processes P, a fail-prone system F C 27 encodes the trust assumptions underlying the Byzantine
quorum system. Each set F' € F represents a group of processes that might fail together during the execution of a
distributed protocol. In essence, F specifies the failure patterns that processes in P are designed to tolerate.

A quorum system Q C 2% is a collection of subsets of PP that guarantees both safety and liveness, under the
assumption that failures conform to the structure defined by F.

The safety property, known as the Consistency Property, ensures that any two quorums @)1, Q2 € Q intersect
in at least one correct process. This overlap guarantees that when two processes make decisions based on quorum
information, they do so with input from at least one common, correct source, an essential property for avoiding
divergence and maintaining global consistency.

The liveness property, referred to as the Availability Property, ensures that for any admissible failure set
F € F, there exists at least one quorum) € Q that contains only correct processes. This ensures that progress
remains possible despite faults.

Definition 1 (Symmetric Byzantine Quorum System). Let P be a set of processes, and F C 27 a fail-prone
system representing the possible sets of processes that may fail together.

A Byzantine quorum system for F is a collection of quorums Q C 27, where no quorum is contained in another,
and each (€ Q is called a quorum. The system satisfies the following two properties:

* Consistency. The intersection of any two quorums contains at least one correct process. Formally, for all
Q1,Q2 € Qandforall F € F,
Q1NQs ¢ F.

* Availability. For every fail-prone set F' € F, there exists a quorum) € Q that is disjoint from F, i.e.,

VFeF,3Qe Q:QNF =0.

The following definition introduces a conceptually simple yet powerful condition, known as the Q3-condition,
which determines whether a given fail-prone system JF can be complemented by a quorum system Q that satisfies
Definition 1.

Definition 2 (Q3-Condition). A fail-prone system JF satisfies the Q3-condition, abbreviated as Q3 (F), whenever it
holds that
VFl,FQ,Fg eF . FLUF,UF;s 757)

Intuitively, the (Q3-condition states that no combination of three fail-prone sets can cover the entire set of
processes. This condition captures a fundamental limit on the number of failures a quorum system can tolerate.

Lemma 1 (Malkhi et al. [17]). Given a fail-prone system F, a Byzantine quorum system for F exists if and only if

Q*(F).

Core Sets. A core set is another important concept when designing distributed protocols. It refers to a minimal set
of processes that is guaranteed to include at least one correct process in every execution. The formal definition is as
follows:

Definition 3 (Core Set). Let P be a set of processes and F C 2% a fail-prone system.
A core set for F is a set C' C P satisfying:

* Correctness Coverage. The set C' contains at least one correct process in any failure scenario, i.e., for all
FeF,
C ¢ F orequivalently, CN(P\F)#0.

* Minimality. No proper subset of C satisfies the above property. That is,

YC' CC,3F € F:C' CF

We denote the collection of all core sets for F by C.

Kernels. Lastly, we introduce the notion of a kernel, which generalizes the idea of a core set. A kernel is a minimal
set of processes that intersects with every quorum in the system Q. In this sense, every kernel includes at least one
core set.

Definition 4 (Kernel). Let P be a set of processes, F C 2% a fail-prone system, and Q C 2% a quorum system.
A kernel for Q is a set K C P such that:

* Quorum Intersection. The kernel intersects every quorum, i.e.,
YQeQ:KNQ #0.
* Minimality. No proper subset of K satisfies the above condition, i.e.,

VK'CK,3Q e Q: K'nQ = 0.

We denote the set of all kernels of the quorum system Q by K, also referred to as the kernel system.

3.3 Asymmetric Byzantine Quorum System

The concept of a symmetric Byzantine quorum system can be generalized by allowing each process p; to specify its
own individual fail-prone system F; C 2%, thereby expressing the potentially differing trust assumptions across
processes. The array of these fail-prone systems, denoted by F = [Fy, Fo, ..., F,], is called the asymmetric
fail-prone system, and it encapsulates the system-wide asymmetric trust relationships within P.

The properties required from a corresponding quorum system for F are defined below. Observe that, for any
pair of processes with correctly specified trust assumptions, meaning that in every execution the actual faulty
processes are contained in their respective fail-prone sets, the asymmetric Byzantine quorum system provides the
same consistency and availability guarantees as in the symmetric setting, among the quorums of these processes.

Before proceeding, we introduce the following notation, which will be useful in the formal definitions to come.
For a given set A C 27 of subsets of P the set A* is defined as A* = {a C A’A € A}, the set of all subsets of the
sets in A.

Definition 5 (Asymmetric Byzantine Quorum System). An asymmetric Byzantine quorum system for an asym-
metric fail-prone system F is an array of collections of sets Q = [Qy, ..., Q,], where Q; C 2P for each i € [1, n].
The set Q; is called the quorum system of process p;, and any set Q; € Q; is called a quorum for p;.

The system satisfies the following properties:

* Consistency. The intersection of any two quorums from any two processes contains at least one process that
one of them trusts. Formally,

Vi,j S [l,n], VQ; € Q;, VQ] S Qj, VFij €]:i* ﬂ‘/—"; Qs ﬂQ]' 7¢_ Fij.

* Availability. For every process p;, and every fail-prone set F' € F;, there exists a quorum @); € Q; disjoint
from F, i.e.,
Vi € [1,77/],VF€.FZ', HQZ S Q,LQZQF:@

The B3-condition is the asymmetric counterpart of the Q3-condition, and it expresses precisely how many
faults an asymmetric quorum system can tolerate. The modifications made to its definition reflect the corresponding
changes in the consistency property of the quorum system.

Definition 6 (B3-Condition). An asymmetric fail-prone system [F satisfies the B3-condition, abbreviated as B3(F),
whenever it holds that

Vi, j € [l,n},VFi S fi,VFj €]'-j,VFij €]:7* ﬂ]:j* : U F; U F £ P.

Lemma 2 (Alpos et al. [1]). An asymmetric fail-prone system F satisfies B3(F) if and only if there exists an
asymmetric quorum system for IF.

For a set of sets B its complement is denoted by B and is defined as B = {P \ B |B € B}.

Definition 7 (Canonical Quorum System). An asymmetric quorum system (T, Q) is called canonical if, for every
process p;, the quorum system for p; is the complement of the fail-prone system for p;, i.e.,

V’LE[].,TL]QZ:.?Z

The following lemma captures a key intersection property that holds in canonical asymmetric quorum systems
but does not generally hold in arbitrary quorum systems.

Lemma 3. For a canonical asymmetric quorum system (F, Q), the following intersection is non-empty:

V’i,j S [LTLL invaig € Qiu Vle’QjZ € Qj : Qil N le N (Q'LQ U Q]é) 7& (Z)

Proof. Since the quorum system is canonical, there exist fault sets F; = P\ Q;, € F; and F; =P\ Q;, € F;. By
the consistency property, we have that

Fiij:(P\Qh)m(P\Qh)thmle'

This is equivalent to:
P \ (sz U sz) g Qh N le'

Taking complements on both sides, we conclude that

Qil N le N (Qtz U sz) 7é wv

which proves the lemma. O

Asymmetric Core Sets and Kernels. The notions of core sets and kernels extend naturally to the asymmetric
trust setting. For an asymmetric fail-prone system F, we define the asymmetric core set system C = [Cy,- -+ ,C,],
where each C; is the core set system corresponding to the local fail-prone system F; of process p;.

Similarly, for an asymmetric quorum system Q corresponding to I, the asymmetric kernel system is denoted by
K = [Ky,---, K], where each [C; is the kernel system derived from the local quorum system Q; for the processes
pi € P.

Definition 8 (Kernel for all Processes). A kernel for all processes K C P for an asymmetric kernel system K is a
set of processes such that every process p; € P has a kernel contained in K. Formally,

Vp; € P, IK' cK; : K' CK.

Naive and Wise Processes. Based on the formalism introduced above, for a given protocol execution and a set F’
of faulty processes, the correct processes P \ F can be classified into two groups. A process p; is called wise if it
correctly anticipates the fault set, that is, if F' € F;*. Otherwise, it is called naive, meaning F' ¢ F;".

In the symmetric setting, this distinction does not arise: for any given failure set F, either all correct processes
are wise or all are naive, depending on whether /' € F*. This is a key differentiation between the symmetric and
asymmetric settings. In symmetric quorum systems, wise processes are always guaranteed by availability to have
access to a quorum for themselves consisting only of wise processes. In the asymmetric setting, this is not the case:
availability only guarantees the existence of a quorum of correct processes, which may include naive processes.

However, it turns out that in many protocols, naive processes can be easily exploited by the adversary, making it
impossible to provide certain security and liveness guarantees for them. This effect snowballs, as wise processes
may rely on naive processes in their quorums, thereby weakening the security and liveness guarantees that wise
processes can uphold. Recall that in the symmetric case, every wise process has access to a quorum composed
entirely of other wise processes. This guarantee is generalized in the asymmetric model through the concept of
a guild: a set of processes that are wise and contain a quorum for themselves within the guild. Observe that the
structure of the guilds is determined by the structure of the quorum system. The fail-prone sets, on the other hand,
determine which processes are wise in a given execution and therefore, in a sense, determine which guilds are active
under that particular execution.

Definition 9 (Guild). Given an asymmetric fail-prone system FF, an asymmetric quorum system Q for IF, and a
protocol execution with faulty processes F, a set of processes G is called a guild for F' and Q if it satisfies the
following two properties:

e Wisdom. G consists only of wise processes. Formally,
Vp, €G:FeF;.
* Closure. G contains a quorum for each of its members, i.e.,
Vpi €G,3Q; € Qi : Q: € G.

10

Lemma 4 (Alpos et al. [1]). In any execution with a guild under faults F', any two guilds G, and G5 intersect.

The set of processes that contains all guilds of a given execution is itself a guild and is referred to as the maximal
guild, denoted by Gp.x. A process that belongs to the maximal guild is called a guild member. For a given guild and
one of its members, the term guild quorum refers to a quorum (from the member’s local quorum system) that lies
entirely within the guild.

The following definition introduces the notion of a minimal guild, which is used to characterize the tolerated
system, a key concept introduced at the end of this section.

Definition 10 (Minimal Guild). Let (F, Q) be an asymmetric quorum system, and let F* be a set of faulty processes.
A set G C P is called a minimal guild (with respect to F') if:

e G is a guild in executions with faulty processes F'.

* No strict subset of G is a guild under faults F, i.e.,
VG'CG,3p;eG :VQ€EQ;, QLG

We denote by G the set of all guilds, and by G™" the set of all minimal guilds, in an execution with faults
FCP.

The following lemma establishes that Gy contains all the guilds of a quorum system, providing a convenient
way to denote the set of all guilds.

Lemma 5. The set of all guilds under all possible executions is equal to the set of guilds under the execution with
no faulty processes. Formally,

U Gr=06y.
Fe2P
Proof. Clearly, Gy C |J Gp,sinced € 2P and thus Gy is one of the sets in the union.
Fe2P
Let F' € 27 be an arbitrary set of faulty processes, and let G € G be any guild in an execution with faulty
processes F'. Then G € Gy as well, since:

e every process in G is wise when no process is faulty, and
* the closure property still holds, as it is independent of which processes are faulty.

Hence, Gr C Gy. Since F' was chosen arbitrarily, it follows that

U Gr C Gy.
Fe2P
Combining both directions, we conclude:
Gy= J Gr.
Fe2?

O

The following lemmas capture four key properties of kernels and guilds which are used extensively throughout
this work.

Lemma 6 (Alpos et al. [1]). For a wise process p; and any of its quorums QQ € Q;, Q) contains a kernel of correct
processes for any other wise process p;.

Lemma 7. In every execution with a guild, for every guild member p; € Gy, each kernel K; € IC; for p; contains
a guild member p; € Gy Formally,

vpi € gmaxa K1 € ICz 3pj € gmax L Py € Kz

Proof. Since K is a kernel for p; it intersects with every quorum for p;, hence in particular with its guild quorum
Qg. Therefore Qg N K; # 0, which implies that some guild member Pj € Gmax is contained in Kj;. O

Lemma 8 (Alpos ef al. [1]). In every execution with a guild, the maximal guild G, is a kernel for all processes.

Lemma 9 (Alpos et al. [1]). In every execution with a guild, every quorum for every correct process contains a
guild member:

11

Tolerated System. Given an asymmetric Byzantine quorum system (F, Q), the folerated system T is defined as
the complement of all minimal guilds of the quorum system. Since many protocols based on asymmetric quorum
systems rely on guilds for their safety and liveness guarantees, the tolerated system characterizes the set of failures
the system can endure while still upholding the guarantees of the protocols it runs.

Definition 11 (Tolerated System). Let QQ be an asymmetric quorum system. The tolerated system T is
T={P\G|GeGj"}.

If the asymmetric quorum system is canonical then the canonical system (7, H = Gg‘i“) forms a symmetric
byzantine quorum system.

Lemma 10 (Alpos et al. [1]). For a given canonical asymmetric Byzantine quorum system (F, Q), its tolerated
system (T, H = G%””) is a symmetric quorum system.

12

Tolerated System: Intractable Construction and
Efficient Recognition

In this chapter, we study the computational complexity of the tolerated quorum system . We show that explicitly
enumerating it is intractable in general. We then discuss how the quorum system 7 can nevertheless be recognized
efficiently. To this end, we introduce the concept of superset recognizers and explain how, given efficient recognizers
for the quorum systems Q; of the underlying asymmetric quorum system Q , the implementation of consensus
algorithms relying on these systems can be made more practical.

4.1 Hardness of Tolerated System Construction

In this section, we show that totally enumerating the tolerated quorum system is in general intractable. To do so, we
first introduce the Minimal Set Cover Search Problem, an NP-hard problem which we will reduce to the problem of
finding the smallest guild in an execution with no faults. This we then use to establish the desired result.

Definition 12 (Minimal Set Cover Search Problem). Given a universe / = {uq,...,u,} and a collection of
subsets of U, denoted S = {S1,...,S,} C 24, such that Uges S = U, find a sub-collection C' C S such that:

* CeoversU. Jgee S =U.
* C'is of minimal size. For all C’ C S such that | g, S = U, we have |C'| > |C|.

The following definition introduces the Smallest Guild Search Problem. Recall that, by Lemma 5, the set Gy
denotes all guilds of the quorum system.

Definition 13 (Smallest Guild Search Problem). Given an asymmetric quorum system (IF, Q), a set of processes
G C P is a solution to the smallest guild search problem if G € Gy and G has the least number of processes in Gy.

Lemma 11. The Smallest Guild Search Problem is NP-hard.

Proof. We prove this lemma by giving a polynomial-time reduction from the Minimal Set Cover Problem to the
Smallest Guild Search Problem.

Given an instance (U, S) of the Minimal Set Cover Problem, we construct an asymmetric quorum system (F, Q)
as follows:

Let P = {p1,---,PnsPn+1s---sPntm}. The processes pi,...,p, are in one-to-one correspondence with
the elements of the universe uq, ..., u,, where process p; represents element u; of U for 1 < ¢ < n. The
Processes Ppy1, - - - ; Pntm correspond one-to-one with the sets Sy, . .., S,,, with process p,_; representing set .S;
forl <j <m.

The fail-prone system is defined as F = [(}, . .. ,)], meaning every process anticipates no failures. This simplifies
the construction, as the fail-prone sets do not influence the quorum properties. For each process p; where 1 < i < n,
its quorum system is defined as

Q= {{ph T 7pn} U {pn+j}|ui S S]}

13

In words, process p; has a quorum for each set S; that contains the element u;. Each such quorum includes all
processes representing elements in I/ and one additional process representing a set in S. For each process py,;
where 1 < j < m, its quorum system is:

Qn+j = {{pl, o apn}}

Clearly, (F,Q) is an asymmetric Byzantine quorum System. The availability property is satisfied trivially since
every process has at least one process. Moreover, every quorum () € Q. for p; contains the set p1,...,p,. Thus,
any two quorums intersect, satisfying the consistency condition.

Next we show that this construction is a one-to-one mapping of a set covers of size [onto guilds of size [+ n.
Suppose G € Gy is a guild of size n + [. Since every quorum contains p1, . . . , P, it follows that p1,...,p, C G.
Let C, = G\ {p1,...,pn} be the subset of processes representing sets in S, and let C = {S; | pn+; € Cp}.
Clearly, |C] = 1.

To show that C' is a set cover of U, take any u; € U. Then p; € G, so by the closure property, there exists a
quorum @ € Q; for p; such that C G. Each such @ includes some p,,1; with u; € S;, hence S; € C. Since ¢
was arbitrary, C' covers all of U.

Conversely, let C be a set cover of size I. Define: Go = {p1, - ,pn} U {Pn+; |Sj € C}. To show G¢ € Gy,
observe:

For each p,,+; € G, its quorum {p1, ..., p, } is contained in G¢. For each p;, since C'is a cover, there exists
S; € Csuchthat u; € S;. Then Q = {p1,...,Pn,Pntj} € Qi and Q C Ge. Thus, Ge satisfies the closure
property and is a guild in the execution with no faulty processes.

Therefore the construction reduces the problem of finding the smallest set cover to that of finding the smallest
guild, since every guild of size n 4 [stands in one-to-one correspondence with a set cover of size [, and there fore a
guild of minimal size must correspond to a set cover of smallest size. O

A similar result has previously been established for federated Byzantine agreement systems [13], where the
authors proved that finding the smallest quorum of an FBAS is NP-hard.

The following lemma concludes this section, establishing that the tolerated quorum system cannot be constructed
efficiently.

Lemma 12. Constructing the tolerated quorum system H cannot be done in polynomial time with respect to the size
of the quorum system.

Proof. This follows from the fact that the smallest guild G,,;, (With respect to cardinality) is a minimal guild, and
thus is contained in the set (Gg‘in =H.

Suppose that H could be constructed in polynomial time in the size of the quorum system (i.e., there exists an
algorithm with polynomial total time, and the number of minimal guilds is polynomially bounded). Then we could
solve the smallest guild search problem by iterating over all elements of H and selecting the one with minimal size,
which would also run in polynomial time.

However, the smallest guild search problem is NP-hard, as shown above by a reduction from Set Cover. Hence,
unless P = NP, there can be no such polynomial-time construction algorithm for H.

Therefore, constructing (7", H) cannot be done efficiently. O

Since explicitly enumerating the tolerated quorum system (7,) is, in general, inefficient, it is impractical to
base algorithms on such enumeration.

However, as the following lemmas in the next section demonstrate, it is possible to efficiently recognize sets in
(T, H) by leveraging efficient superset recognizers for the individual quorum systems Q; of the asymmetric quorum
system Q.

4.2 Superset Recognizers

Quorum-based protocols are usually described as event-driven protocols, where the quorum system is used to
determine whether messages satisfying a given condition have been received from a quorum of processes (examples
can be seen in Algorithm 2 line 18). The same principle applies to kernel and coreset systems. To operationalize
these conditions, we introduce the abstraction of a superset recognizer: an algorithm that recognizes supersets of a
given collection of sets (as defined in Definition 14).

There is no general recipe for implementing a waiting condition using superset recognizers; however, in all
cases we have encountered, this abstraction has proven sufficient.

14

Definition 14 (Superset Recognizer). For a given set of sets of processes A, a superset recognizer R4 is an
algorithm with binary output, that detects whether a set X contains a subset in 4. Formally,

VX CP:R4(X)=TRUE <— JAC X:Aec A

We show that a superset recognizer for the quorum systems Q; of an asymmetric quorum system can be
efficiently transformed into recognizers for its kernel systems X; and for the quorum system H of its tolerated
system. Consequently, the presented algorithms can be implemented entirely on top of efficient superset recognizers
for the individual quorum systems Q.

Lemma 13. Given a superset recognizer Rg for a quorum system Q, the kernel system K of Q is recognized by the
superset recognizer Rx, which for any set X C P, returns ~Rg(P \ X).

Proof. Given a set X, if Ric(X) = FALSE, then by definition Ro(P \ X) = TRUE. Therefore, there exists a
quorum @ € Q such that @ C P\ X, which implies that Q@ N X = (. Hence X cannot contain a kernel.

If Ric(X) = TRUE, then Ro(P \ X) = FALSE. Let Q € Q. Since Rg(P \ X) = FALSE, it follows that
Q ¢ P\ X, which implies that X N Q # (.

This establishes that R is a superset recognizer for K. O

Algorithm 1 Superset Recognizer for the set of Guilds Gy

Input:
I: X /I Set of processes
2: [Ro,,- -+ ,Ro,]| !l Array of superset recognizers for the quorum system of interest
3: function Ry (X, [Ro,," - , Rg,]) returns Boolean is
4 while Jp; € X : =Rg,(X) do
5: X+ X\ {pi}
6: return X # ()

Lemma 14. Given an asymmetric quorum system Q and superset recognizers Ro, for its individual quorum systems
Q;, Algorithm 1 implements a superset recognizer for Gy, and hence also for Gy".

Proof. Let X € P. If X contains a guild, then there exists a set G C X such that for all p; € G, it holds that
Ro,(G) = TRUE. Therefore, the while loop of R never removes any element in G, and hence Ry;(X) = TRUE.
If X does not contain a guild, then for all X’ C X, there exists a process p; € X’ such that Rg, (X’) = FALSE.
Hence, the while loop removes all elements from X, and Rz (X) = FALSE.
Since one element is removed from X n each iteration of the loop, and the empty set does not satisfy the loop
condition, the algorithm terminates after at most | X | iterations. O

15

Asynchronous Consensus

In this chapter, we present a consensus algorithm for the fully asynchronous communication model. We begin by
defining the Asymmetric Strong Byzantine Consensus abstraction that the algorithm implements. We then introduce
the two core building blocks it relies on: the Asymmetric Common Coin and the Asymmetric Binary Validated
Broadcast (ABV-broadcast). Finally, we describe the algorithm proposed by Alpos et al. [1], a generalization of the
asynchronous protocol by Mostéfaoui, Moumen, and Raynal [19] to the asymmetric trust setting. For clarity, we
refer to this algorithm as Asymmetric Randomized Consensus throughout the remainder of this thesis.

5.1 Asymmetric Strong Byzantine Consensus Specification

Consensus is a fundamental problem in distributed computing, in which a group of processes must agree on a single
value even if they start with different proposals and some processes fail or behave maliciously. At an abstract level,
each process interacts with the consensus service by submitting a value through a Propose(v) event and, at some
later point, receiving a Decide(v) event indicating the agreed outcome. This interaction hides the complexity of
coordination, fault tolerance, and message exchange, providing the processes with a simple and consistent interface
for reaching agreement.

Consensus abstractions come in different flavours, offering varying strengths of validity, agreement, and
termination guarantees depending on the fault model and system assumptions. The Asymmetric Randomized
Consensus algorithm described here implements one such variant: the Asymmetric Strong Byzantine Consensus
interface specified in Module 1. The Agreement property captures the core requirement of consensus, while Strong
Validity ensures that the decided value was indeed proposed by a correct process, more precisely, by a guild member,
if such a guild exists. In a later section, we relax this to Weak Validity, which permits the decision of arbitrary values
in executions where at least one faulty process is present.

The Probabilistic Termination condition is essential for consensus in a fully asynchronous setting. As shown by
Fischer, Lynch, and Paterson [10], no deterministic algorithm can guarantee termination under asynchrony and even
a single crash fault. Instead, randomized algorithms ensure that, for any finite round number r, the probability of
non-termination after round r can be made arbitrarily small, and, in the limit, goes to zero.

5.2 Asymmetric Common Coin Abstraction

The required non-determinism of the algorithm is encapsulated in a common coin abstraction, whose specification
is shown in Module 2. This abstraction provides processes with access to a random coin shared among them. When
a process wants to obtain the coin’s value, it triggers the ReleaseCoin event. Once a sufficient number of processes
have released the coin, the process is informed of the coin’s value via the CoinOutput event.

The Unpredictability and No Bias properties of the coin ensure that the adversary cannot deduce the coin’s value
before it is too late. The Matching property guarantees that all processes observe the same random value.

In this work, no implementation of the Asymmetric Common Coin abstraction is provided, as the algorithm
proposed by Alpos et al. [1] is deemed impractical.

16

Module 1 Interface and Properties of the Asymmetric Strong Byzantine Consensus abstraction

Module:
Name: AsymmetricStrongByzantineConsensus, instance asbc.

Events:
Request: asbc.Propose(v): Propose value v.
Indication: asbc.Decide(v): Decision value of the protocol.

Properties:
ASBCI1: Probabilistic Termination: In all executions with a guild, every wise process decides with probability 1,
meaning that lim P (wise process p; decides by round r) = 1.
T—00

ASBC2: Strong Validity: In every execution with a guild, a wise process only decides a value
that has been proposed by a process in the maximal guild.
ASBC3: Integrity: No correct process decides more than once.

ASBC4: Agreement: No two wise processes decide differently.

Module 2 Interface and Properties of the Asymmetric Common Coin Abstraction

Module:
Name: AsymmetricCommonCoin, instance acc.

Events:
Request: acc.ReleaseCoin(): Signals that the process is ready to receive the coin’s value.
Indication: acc.OutputCoin(c): Delivers the coin value c to the process.

Properties:
ACC1: Termination: In all executions with a guild, every process in the maximal guild
eventually outputs a coin value.

ACC2: Unpredictability: In every execution with a guild, no process has information about the coin’s value
before at least one kernel for every process of all correct processes has released the coin.

ACC3: Matching: In every execution with a guild, all processes in the maximal guild
output the same coin value.

ACC4: No Bias: The output of the coin is uniformly distributed.

17

5.3 Asymmetric Binary Validated Broadcast

The communication in the consensus algorithm is carried out using a broadcast primitive called Asymmetric Binary
Validated Broadcast. Its interface and properties are defined in Module 3. Each process may broadcast a value
b € {0, 1} by invoking abv.Broadcast(b).

The Termination property ensures that every wise process eventually delivers some value. However, the primitive
may trigger two deliver events, one for each binary value. The Validity condition ensures that if a sufficient number
of processes broadcast the same value, then that value is eventually delivered by every wise process. The Integrity
property guarantees that any delivered value was broadcast by at least one member of the maximal guild. Finally,
the Agreement property ensures that all wise processes eventually deliver the same set of values.

Module 3 Interface and Properties of the Asymmetric Binary Validated Broadcast Abstraction

Module:
Name: AsymmetricBinaryValidatedBroadcast, instance abv.

Events:
Request: abv.Broadcast(b): Broadcast bit b to peers.
Indication: abv.Delive(b): Deliver bit b, broadcast by some peers.

Properties:
ABV1: validity: In all executions with a guild, let K be a kernel for all processes, consisting of correct processes
that has broadcast the same value b € {0, 1}. Then, every wise process eventually delivers b.

ABV2: Integrity: In every execution with a guild, if a wise process delivers some b,
then b has been broadcast by some process in the maximal guild.

ABV3: Agreement: In every execution with a guild, if a wise process delivers some value b,
then every wise process eventually delivers b.

ABV4: Termination: In every execution with a guild, every wise process eventually delivers some value.

The implementation of the Asymmetric Binary Validated Broadcast is shown in Algorithm 2. When a
abv.Broadcast(b) event is triggered, the process sends the value b to all its peers in a [VALUE, b] message. Every
process maintains a local data structure values, in which it records, for each of its peers, the values b € {0, 1} for
which it has received a [VALUE, b] message. Once the process receives the same value b from a kernel for itself,
it joins the broadcast by also sending a [VALUE, b] message to its peers. When it has received the value b from
a quorum for itself, it delivers the value. This mechanism of amplifying a broadcast upon receiving matching
messages from a kernel for itself, and deciding or delivering upon receiving matching messages from a quorum for
itself, is a common design pattern that recurs in multiple algorithms throughout this thesis.

5.4 Asymmetric Randomized Consensus Algorithm

The Asymmetric Randomized Consensus algorithm is shown in Algorithm 3 [1]. As mentioned, the algorithm
proceeds in rounds. Each round runs an independent instance of Asymmetric Binary Validated Broadcast, identified
by a tag corresponding to the current round. When a value is proposed, it is broadcast, and the process waits for a
deliver event to occur.

Once the process delivers a value b, it records the values it has delivered in the current round and sends an
[AUX, b] message to all its peers. When the process has received a set B C {0, 1} of values carried by AUX messages
from a quorum for itself, it releases the coin. The process then waits for the coin value s. Note that the set B may
change while the process waits for the coin to return a value. Once this occurs, the process checks whether there is a
single value b in B. If so, and if b matches the coin’s output s, the process becomes ready to decide b, and does so by
broadcasting a decide message [DECIDE, b] to all its peers. It then proceeds to the next round with b as its decision
value. If B contains both values, the process adopts s, the coin value, as its decision value for the next round.

In parallel, the protocol may disseminate DECIDE messages and terminate. When the process receives matching
DECIDE messages for some value b from a kernel for itself, it amplifies the decision by sending a DECIDE message
of its own for b. Once it receives DECIDE messages for b from a quorum for itself, it triggers a decide event and
terminates.

18

Algorithm 2 Asymmetric Binary Validated Broadcast Implementation (Process p;).

implements
AsymmetricBinaryValidatedBroadcast, instance abv
state
7 sentvalue < [FALSE]? // Entry sentvalue[b] indicates whether p; has sent [VALUE, b]
8: values < [0]™ // List of sets of received binary values

9: upon event abv.Broadcast(b) do
10: sentvalue[b] +— TRUE
11: sned message [VALUE, b] to all p; € P

12: upon receiving message [VALUE, b] from p; do
13: if b & values[j] then
14: values[j| < values[j] U {b}

15:upon 3b € {0, 1} such that {p; € P|b € values[j]} € Ki A —sentvalue[b] do
16: sentvalue[b] <— TRUE
17: send message [VALUE, b] to all p; € P

18: upon 3b € {0, 1} such that {p; € P|b € values[j]} € Q; do
19: trigger abv.Deliver(b)

19

Algorithm 3 Asymmetric Randomized Consensus Implementation (Process p;).

implements
AsymmetricStrongByzantineConsensus, instance asbc

state
20: round <+ 0
21: values < {} // Set of delivered binary values for the round
22: aux < [{}]™ // Stores sets of values received in AUX messages in the round
23: decided < [L]™ // Stores binary values that have been reported as decided by other processes
24: sentdecide <— FALSE // Indicates whether p; has sent a DECIDE message

25: upon event asbc.Propose(b) do
26: trigger abv.Broadcast(b) with tag round

27: upon event abv.Deliver(b) with tag r such that r» = round do
28: values < values U {b}
29: send message [AUX, round, b] to all p; € P

30: upon receiving a message [AUX, r, b] from p; such that » = round do
31: aux[j] < aux[j] U {b}

32:upon I{p; € Plaux[j] C values} € Q; do
33: trigger ReleaseCoin() with tag round

34: upon event acc.OutputCoin(s) with tag round

35: and 3B C {0, 1},Q7; € Q; such that B # 0 AVp; € Q;: B = aux[j} do
36: round < round + 1

37: if 3b such that B = {b} then

38: if b = s A\ —sentdecide then

39: send message [DECIDE, b] to all p; € P
40: sentdecide < TRUE

41: trigger abv.Broadcast(b) with tag round

42: else

43: trigger abv.Broadcast(s) with tag round

44: values < {}

45: aux < [{}"

46: upon receiving a message [DECIDE, b] from p; such that decided[j] =L do
47: decided[j] < b

48: upon b #_1 such that {p; € P]decided[j] =b} € K; do

49: if —sentdecide then
50: send message [DECIDE, b] to all p; € P
51: sentdecide < TRUE

52: upon 3b # L such that {p; € P|decided|[j] = b} € Q; do
53: asbc.Decide(b)
54: halt

20

Partially Synchronous Consensus

In this chapter, we present an adaptation of the PBFT algorithm, as described by Cachin et al. [6], to the asymmetric
trust setting. PBFT itself operates in the partially synchronous model and is a leader-driven consensus algorithm.
Leader-driven algorithms are characterized by an unequal distribution of roles among the processes: one process
acts as the dedicated leader, which collects all required information from the replicas, decides on a value, and
then communicates that decision back to the replicas. The replicas verify the work of the leader, ensuring that the
leader’s chosen value is valid. This design reduces communication complexity in the decision phase from quadratic
(all-to-all) to linear (replicas-to-leader).

However, because the dedicated leader may be faulty, the algorithm must be able to detect and replace it with a
correct leader. To achieve this, PBFT is built on two main abstractions:

¢ Epoch Change (Heartbeat) Abstraction. This abstraction, often called the heartbeat mechanism, detects
faulty leaders and triggers leader replacement. It produces a sequence of epochs, each with a globally known
dedicated leader.

* Epoch Consensus Abstraction. This is the core consensus mechanism. It ensures that once a process decides
on a value in some epoch, no process can decide on a different value in any later epoch, thereby preserving
the agreement property of consensus.

APBFT implements a weaker form of consensus, called Asymmetric Weak Consensus (shown in Module 4),
which differs from Asymmetric Strong Consensus primarily in its validity property. The weak consensus abstraction
provides the same validity guarantee as strong consensus does when all processes are correct, but provides no such
guarantee otherwise, allowing decision values that may not have been proposed by any correct process if faulty
processes exist. This relaxation is necessary because a faulty leader can behave indistinguishably from a correct
leader to its peers, enabling it to cause the processes to decide on a value that was not proposed by any correct
process.

The termination conditions differ because the strong consensus algorithm we consider operates in a fully
asynchronous model, requiring probabilistic termination to ensure progress. In contrast, APBFT assumes a partially
synchronous model, which allows for deterministic termination and stronger guarantees. Thus, the difference in
termination stems from the specific system models these algorithms target, rather than the inherent strength of the
consensus properties.

In the following sections, we first present the Asymmetric Epoch Change abstraction. When introducing the
epoch consensus abstraction, we begin with the symmetric case, and subsequently generalize it to the asymmetric
case to aid understanding. In the asymmetric setting, we consider two variations of PBFT: PAPBFT (Partially
Asynchronous PBFT), introduced by Zanolini [23], and our own variant, APBFT (Asymmetric PBFT), which is
presented in detail in this work.

6.1 Asymmetric Epoch Change Primitive

This section presents the Asymmetric Epoch Change abstraction. We first provide its formal specification, and then
describe a concrete algorithm based on a round-robin leader selection, along with a discussion of its correctness.

21

Module 4 Interface and Properties of Asymmetric Weak Byzantine Consensus

Module:
Name: AsymmetricWeakByzantineConsensus, instance awc.

Events:
Request: awc.Propose(v): Propose the decision value v.
Indication: awc.Decide(v): Signals the agreed upon decision value.
Properties:
WC1: Termination: In every execution with a guild, every guild member eventually decides.

WCQC2: Weak Validity: If all processes are correct and some process decides v,
then v was proposed by some process.

WC3: Integrity: No correct process decides twice.

WC4: Agreement: No two wise processes decide differently.

6.1.1 Asymmetric Epoch Change Specification

The epoch change abstraction signals the beginning of a new epoch by triggering an StartEpoch(ts, £) event whenever
the current leader is suspected to be faulty. This event carries two parameters: the epoch timestamp s and the
designated leader ¢ for that epoch.

When a process suspects the leader is faulty, it can trigger the Complain(ts) event to notify the epoch change
abstraction and request a leader change. Once a sufficient number of processes have complained, a new epoch
begins.

The timestamps associated with StartEpoch(ts,) must be strictly increasing, and all processes must agree on
the same leader for each epoch timestamp: this is enforced by the Monotonicity and Consistency properties of the
Asymmetric Epoch Change interface (see Module 5).

Putch Resistance guarantees that no process advances to epoch #s + 1 unless at least one guild member has
complained about the leader of epoch ts, preventing faulty or naive processes from causing unwanted leader changes.
Eventual Progression ensures that once a kernel for all processes has complained in epoch ts, all guild members
eventually enter epoch ts 4+ 1. Unbounded Leadership ensures the existence of an epoch during which the processes
remain in the same epoch for a sufficient amount of time to allow termination of the epoch consensus algorithm.
Finally, Uniform Leadership guarantees that every process is elected leader infinitely often. In combination with
Unbounded Leadership, this ensures that eventually processes will trust a adequate leader for an arbitrarily long
duration.

6.1.2 Algorithm Description: Asymmetric Rotating Epoch Change

Algorithm 4 implements the Asymmetric Epoch Change abstraction. It maintains a continuously increasing
epoch counter and deterministically derives the leader via a round-robin function leader(ets) with respect to the
process identifiers. When the higher-level protocol triggers aec. Complain(ts) and s is the current epoch, a process
broadcasts a COMPLAINT message. As soon as it receives a quorum for itself of complaints against the current
leader, it increments its epoch. Furthermore, if it receives a kernel for itself of complaints but has not yet complained
itself in the current epoch, it joins the complainers by sending its own COMPLAINT message. This ensures that (1)
Byzantine processes alone cannot force a leader change, and (2) once a guild member advances to the next epoch,
all other guild members eventually follow (Lemma 15).

Note that this guarantee applies only to guild members, not to all wise processes: naive processes may become
stuck in lower epochs, and if they appear in a wise process’s quorum, they can block its progression. This is a
critical limitation of the asymmetric epoch change algorithm since, as we will see in the APBFT algorithm, correct
processes may hold information essential for a leader of an epoch to make a valid decision.

The algorithm is based on the Rotating Byzantine Leader Detector algorithm presented in the book by Cachin,
Guerraoui, and Rodriguez [6]. The interface of the Asymmetric Epoch Change abstraction also follows the Byzantine
Epoch Change Module introduced in the same book. In the paper by Bravo et al. [4], the authors point out a flaw in
the construction of the epoch change specification [6], where the authors make the assumption (which they justify
informally) that every process complains only a finite number of times, stating the properties of the module based

22

Module 5 Interface and Properties of the Asymmetric Epoch Change Abstraction

Module:
Name: AsymmetricEpochChange, instance aec.

Events:
Request: aec.Complain(ts): Requests a leader change in epoch fs.
Indication: aec.StartEpoch(ts, ¢): Signals the start of a new epoch.
Properties:
EC1: Monotonicity: If a correct process starts an
epoch (s, ¢) and later starts an epoch (¢s', '), then ts’ > ts.

EC2: Consistency: If a correct process starts an epoch (fs, £) and another correct
process starts an epoch (s', £') with ts = ts’, then £ = ¢’

EC3: Putch Resistance: A guild member only enters epoch s + 1
if a guild member has previously complained in epoch zs.

EC4: Eventual Progression: If a kernel for all processes complains in epoch zs, then all guild members
eventually start epoch s + 1.

ECS: Eventual Entry: In every execution with a guild,
if a wise process starts a new epoch ets, then eventually every guild member starts epoch ets.

EC6: Unbounded Leadership: In every execution with a guild, if all guild members start

an infinite number of epochs, and the time guild members wait before complaining after starting a new epoch is
strictly increases with the epoch number, then for every duration d € R there exists an epoch ets

such that all guild members are simultaneously in epoch ets’ for at least d time units, for all epochs ets’ > ets.

EC7: Uniform Leadership: If a guild member starts an infinite
number of epochs, then every process is the leader of some epoch infinitely often.

23

on this assumption. This leads to problems with circular reasoning. To avoid this problem in our description of the
epoch change abstraction, the Eventual Leadership property is removed and replaced by the weaker Eventual Entry
property, which holds without assuming that the processes complain only a finite number of times. Furthermore, the
Unbounded Leadership property is added to capture the essence of the informal argument made by the authors of
the book. In this way, it becomes the task of the caller of the epoch change interface to prove that the Complain
event is triggered only a finite number of times, avoiding circularity.

In the following discussion, a process is said to start an epoch efs at some time ¢, when it triggers the event
aec.StartEpoch(ets, -) at time t.

Algorithm 4 Rotating Byzantine Epoch Change (Process p;).

implements
AsymmetricEpochChange, instance aec
state
55: ets < 0
56: complaintset <— [FALSE|™
57: complained <— FALSE

58: upon event aec.Init() do
59: trigger aec.StartEpoch(1, leader(1))

60: upon event aec. Complain(ts) such that—complained A ts = ets do
61: complained < TRUE
62: send message [COMPLAINT, efs] to all p; € P

63: upon receiving a message [COMPLAINT, r| from p; such that r = ets do
64: complaintset[j] <~ TRUE

65: upon —complained \ {p; € P|complaintset[j] = TRUE} € K; do // Kernel of processes has complained
66: complained <— TRUE
67: send message [COMPLAINT, ets] to all p; € P

68: upon complained N {p; € P|c0mpluintset[j] = TRUE} € Q; do // Quorum of processes has complained
69: ets <—ets+ 1

70: complaintset < [FALSE|"
71: complained <— FALSE
72 trigger aec.StartEpoch(ets, leader(ets))

6.1.3 Algorithm Correctness
We now prove that Algorithm 4 implements the Asymmetric Epoch Change interface (Module 5).
Lemma 15. Algorithm 4 satisfies the Eventual Entry property.

Proof. Proof by induction on the epoch ets.

Base Case (ets = 0): By initialization, every correct process triggers aec.startEpoch(0, leader(0)). Therefore, the
property holds for ets = 0.

Inductive Step: Assume that for some ets > 0, if any wise process triggers an aec.startEpoch(ets, £,,s) event, then
eventually every process in G,y triggers aec.startEpoch(ets, £,,;). We now show that if any wise process p; triggers
an aec.startEpoch(ets + 1, £) event, then eventually every process in Gnax triggers aec.startEpoch(ets + 1, (). By
the protocol, a process can only transition to a new epoch after it has received a quorum @ for itself of complaint
messages in epoch ets, when handling the event on line 68. Hence, for p; to start epoch ets + 1, it must have
previously been in epoch ets. By the inductive hypothesis, since p; (a wise process) has previously triggered
aec.startEpoch(ets, L., every process in Gy, eventually triggers aec.startEpoch(ets, £,,;). Moreover, by Lemma 6
(regarding quorum (), every guild member eventually receives a kernel for itself of complaints for epoch efs.
Consequently, every process in G, eventually sends a complaint message to all processes in epoch ets and sets
complained to TRUE (line 65). Therefore, every process in Gy,.x eventually receives the necessary complaints (i.e.,
its quorum condition is satisfied; line 68) in epoch ets, causing them to trigger aec.startEpoch(ets + 1, /) . O

24

Lemma 16. If a guild member py enters epoch ts > 0 at time t, then for every guild member p, and every epoch
0 < ts' < ts, there exists a kernel for itself of correct processes K' € K, that has sent a complaint message in
epoch ts' to py at some time < t.

Proof. 1f p, starts epoch ts, it must have previously started every epoch 0 < s’ < ts at some time ¢’ < t. p, only
starts epoch s after receiving complaint messages for epoch s’ — 1 from a quorum), for itself, and after it has
itself sent a complaint message in epoch zs” — 1(line 68).

A correct process only sends a complaint message for epoch s’ — 1 to p, if it also sends one to every process.
Therefore, for every guild member p,-, by Lemma 6, a kernel for p, of correct processes has sent a complaint
message for epoch s — 1 to p, at some time < t' < ¢.

Since #s’ is chosen arbitrarily in the range 0 < #5" < ts, it follows that for every guild member p,/, a kernel
for py of correct processes has sent complaint messages to py in every epoch ts” at some time < ¢ < ¢, with
0<1ts <ts. O

Definition 15 (Guild Timestamps). Let ETS; = {ets | ets € N A some guild member is in epoch ets at time ¢}
denote the set of epochs of the guild members at time ¢

Definition 16 (Min/Max Timestamp). Let ets;ni“ = min ETS; and ets7™ = max ETS; denote the minimal and
maximal epochs of some guild member at time ¢.

Lemma 17 (Fast Progression). For any time t after GST, if ets]"™ < ets}'™, then ets}', > ets}"™" + 1.
Proof. Since t > GST and by Lemma 16 (which is applicable since ets™" < ets™®*), every process in epoch etsmin
satisfies the kernel condition on line 65 at some time < ¢ + A, and sends a complaint message, or has already sent a
complaint message for that epoch.

Therefore, at time ¢’ > ¢ + A, every guild member has, in fact, sent a complaint message for epoch ets;"i“, since
processes can only advance from an epoch after sending a complaint message.

As aresult, at time t* < ¢ + 2/, every process in epoch ets™" satisfies the quorum condition on line 68, forcing
them to move on to epoch ezs™" + 1.

Thus, etsf™ 4+ 1 < ets{% 5. O
Lemma 18 (Unbounded Leadership). Algorithm 4 satisfies the Unbounded Leadership property.

Proof. To prove the lemma, we first have to establish that, at some point in time after GST, all guild members catch
up to each other and are in the same epoch infinitely often. For this, let ¢’ be the time after GST at which every
guild member waits at least 7A time units after starting an epoch before complaining. Such a time exists because,
by assumption, the waiting time before complaining is strictly increasing with every new epoch a guild member

max

starts, and every guild member starts infinitely many epochs. Let ts5)/™ = etsi®; ;o and 153" = etsy)} ;A Since
every guild member waits at least 7A time units before complaining, it follows that 53/ < 5! + 1. Also, by
Lemma 17, #sJ) 4 2 > 15} while etsP™ < etsf™ for all ¢t with t’ + k- 7TA <t < '+ (k+ 1) - TA. Combining
the inequalities above, it follows that there is a time ¢* > ¢’ where ets!®™ = ets™in. In fact, ets™ = ets™" infinitely
often after time ¢'. Let t” be the time after which all guild members wait at least 2 - (A + d) time units and at
which ets}i* = ets?)?“ = ets. If no guild member enters a new epoch at time ¢t* with ¢ < t* < " + d, then the
lemma is proven. If some guild member starts a new epoch ets + 1 at time ¢*, then ets™" = ets7™ + 1. Therefore,
by Lemma 17, ets?lij_g A = etsilyn = ets + 1. Furthermore, by qonstruction, no guild member complains
about epoch efs + 1 at least up to time ¢t* + 2A + d. Therefore, ets|i? = etsP¥ = ets + 1 for t** in the range
t* 4+ 2A < t** < t* + 2A + d. Since the guild members complain in increasing time intervals, the same argument

can be applied to all ets’ > ets, concluding the proof. O
Theorem 19. Algorithm 4 implements the Asymmetric Epoch Change abstraction.

Proof. Monotonicity is satisfied since the algorithm only alters the ets variable on line 69, where it increments it by
one before triggering the aec.newEpoch event.

Consistency is also provided since the leader utility function is deterministic.

To show Putch Resistance, let p; be a wise process that has started a new epoch ets > 0. This means that
p; has received a quorum () for itself of complaints for the previous epoch ets — 1 (line 68). By the consistency
property of the quorum system, @ N Gax # 0. Hence at least one member of G, has sent a complaint message
for epoch ets — 1. Let py be the first guild member to send a complaint message for epoch ets — 1. By Lemma 7
and the minimality of p,, it cannot have sent the complaint message after satisfying the kernel condition on line 65.
Therefore, p, must have triggered a complaint event (line 60), as this is the only other way it could send a complaint
message.

25

Regarding Eventual Progression, when a kernel for all processes K, which is composed of correct processes,
complains about a leader p; in epoch ets, then by Lemma 7, K contains a guild member. This means, by Eventual
Entry, that eventually every guild member enters epoch ets. Therefore every guild member eventually satisfies the
kernel condition for epoch ets (line 65), after receiving all Complaint messages from K. Therefore, every guild
member eventually sends a complaint message. Hence, by availability of the quorum system, every guild member
eventually satisfies the quorum condition, causing them to start epoch ets + 1.

Eventual Entry has been proven in Lemma 15.

The Unbounded Leadership property has been shown in Lemma 18.

The Uniform Leadership property is satisfied since the leader utility function selects the leader in a round-robin
fashion with respect to the epoch timestamp. O

6.2 Asymmetric Epoch Consensus
In this section, we introduce the epoch consensus primitive. First, we review the Practical Byzantine Fault Tolerance
(PBFT) algorithm as presented by Cachin et al. [6] in the symmetric setting. We then explore an asymmetric version

of PBFT proposed by Zanolini [23] and discuss its potential drawbacks. Finally, we propose our own asymmetric
variant, called Asymmetric Practical Byzantine Fault Tolerance (APBFT).

6.2.1 Review of PBFT
Phase 1 Phase 2 Phase 3

State [v,Proof] v v

Figure 6.1. Communication flow of the PBFT algorithm as it progresses through its three phases.

We now review the PBFT protocol. First, we introduce the epoch consensus abstraction for the symmetric trust
setting that it implements, and then we discuss the specifics of the protocol’s implementation.

6.2.1.1 Symmetric Epoch Consensus Specification

The epoch consensus abstraction is a primitive by which processes agree on a value proposed by the leader of a
given epoch. Each epoch has a globally known leader, identified by its epoch timestamp. Since the leader may be
faulty, an epoch consensus instance can be aborted, in which case the protocol moves to the next epoch under a new
leader. An epoch terminates at a process either by triggering the Decide event or when a new epoch begins and the
StartEpoch event is triggered.

Module 6 defines the properties of the Symmetric Epoch Consensus abstraction. These properties closely
correspond to those of Weak Byzantine Consensus. The Weak Validity property allows decisions on values proposed
in earlier epochs. The additional Lock-in property ties together the sequence of epochs, ensuring that once a correct
process decides a value in any epoch, no correct process can decide a different value in any later epoch.

Module 6 omits termination conditions, as they must be adapted to the epoch change abstraction described
above. Termination is revisited when we present the APBFT algorithm.

6.2.1.2 Algorithm Description

The PBFT protocol proceeds in three phases, each motivated by the need to guard against Byzantine misbehavior
and to ensure that future leaders can reliably detect past support:

26

Module 6 Interface and Properties of the Symmetric Epoch Consensus Abstraction

Module:
Name: SymmetricEpochConsensus, instance sep

Events:
Request: sep.Propose(v): Propose value v for epoch consensus. Executed only by the leader £.
Indication: sep.Decide(v): Output the decided value v of epoch consensus.
Request: sep.StartEpoch(ts, £): Start a new epoch zs with leader £.

Properties:
EP1: Weak Validity: 1f all processes are correct and a process decides v in epoch ets, then v
was proposed by the leader of some epoch ts” < ets.
EP2: Agreement: No two correct processes decide differently during an epoch.

EP3: Integrity: Every correct process decides at most once during an epoch.

EP4: Lock-in: If a correct process has decided some value v in an epoch
with timestamp s’ < ets, then no correct process decides a different value in epoch ets.

1. Proposal Phase. The leader of epoch ets gathers from a quorum of replicas:

* their write-sets, containing all values they have validated in earlier epochs, and

* their persisted state (zs,v), the most recent epoch and value each replica has recorded.
Inspecting the highest-timestamped state (s, v) allows the leader to respect the lock-in rule, adopting any
previously committed value rather than inventing a new one. The write-sets serve to certify that the chosen
(ts,v) was genuinely stored by correct replicas and cannot be fabricated by a Byzantine leader. The leader

then broadcasts
[DECISION, v, proof]

indicating that evidence for v accompanies its proposal. The exact construction of proof is discussed in the
next paragraph.

2. Validation (Write) Phase. Upon receiving [DECISION, v, proof], each replica:

* Verifies that the leader supplied a valid proof.

* Records (ets, v) in its local write-set to persist the intent to decide v. This step prevents future leaders
from fabricating a decision that never had quorum support.

* Broadcasts [WRITE, v] to all peers, echoing the proposed value to validate that the leader has sent the
same decision value to all replicas.

Once a replica collects a quorum of matching [WRITE, v] messages, it considers v validated and advances to
the pre-commit phase.

3. Pre-Commit Phase. To ensure that any subsequent leader can detect that a quorum of replicas was ready to
decide v, each replica:

* Persists the pair (efs, v) in its local state. This durable storage guarantees that future leaders cannot
ignore the fact that v had sufficient support.

* Broadcasts [PRECOMMIT, v] to its peers, signaling its final readiness to decide.

When a replica gathers a quorum of identical [PRECOMMIT, v] messages, it knows that enough correct replicas
have durably recorded (ets, v) and safely triggers

sep.Decide(v).
The communication flow and the 3 phase structure of the PBFT algorithm is illustrated in Figure 6.1

27

Safety Mechanism. The structure of phase 2 and 3 of the algorithm ensures that the persisted states and write-sets
of the replicas contain all the information the leader of an epoch requires to avoid violating the Lock-In property.
For any given epoch, if a correct process has decided in a previous epoch, then, by the structure of the third phase, a
quorum of processes must have persisted that value to their state in that epoch. Therefore, by the quorum intersection
property, each quorum of collected states must contain at least one such state testifying to a potential decision on
that value. Therefore, in the absence of Byzantine processes, it would thus suffice for the leader to set its decision
value to the value of the state with the highest timestamp. This is formalized using the predicate couldbind, which is
defined below.

We adopt a fixed naming convention across all predicate definitions: the parameters val and ts always denote a
value and a timestamp that together represent a state, and .S always denotes a set of tuples containing at least the
components (process, value, timestamp). For each process process, the pair (value, timestamp) records its state at
the beginning of the epoch. We refer to any such S as a set of states.

In the following predicate definitions, the notation S(,,c.ss) denotes the projection of the set of tuples .S onto
the process component of the tuples. To make the notation more concise: given a set A consisting of tuples with
components (x,¥, z), the notation A, ,y denotes the set {(z,y) | (z,y,2) € A}. This notation will be used
throughout the text.

z,y)

couldbind(S, ts,val) <=
S(process) € Q 1/ The processes of .S form a quorum
A (val, ts) € S(vatue,iimesamp) !/ The state (val, ts) is contained in the states of .S
AV1ts" € Stimesiamp) © ts' < ts I/ The state (val, ts) is the state with the highest timestamp in S

AY(val',1s") € S(vatue imesiamp) : 15 =ts = val' = val // The state (val, ts)
is the unique state with maximal timestamp

In the presence of Byzantine processes, the couldbind predicate alone is no longer sufficient to guarantee the Lock-In
property. After a process has decided on some value v, Byzantine processes can attempt to violate the Lock-In
property by sending a forged state to the leader with a different decision value and a higher timestamp.

To prevent this attack, the leader and replicas only accept a state (val, ts) that satisfies couldbind if there is also
evidence that val was written by a correct process in some epoch ts’ > ts. Hence, if correct processes only write
decision values that preserve the Lock-In property, this attack becomes impossible.

This is where the write-set comes into play: it records which decision values each process has actually written
in each epoch. We formalize this verification using the cert predicate. Intuitively, the cert predicate checks whether
the write-sets of a coreset of processes contain a write of the decision value val in an epoch during or after epoch
ts. By the definition of a coreset, the cert predicate can only be satisfied if a correct process has indeed written the
value as required.

Formally, the predicate takes as input a new type of argument, W, called a set of witnesses. W consists of tuples
containing at least the components (process, writeset), where each writeset is the write-set of process process at the
start of the epoch. As with the set .S, whenever we refer to a set W for a predicate, it is assumed to be a set of tuples
of this form.

cert(W,ts,val) <=
Wiprocess) € C I/ The processes of W form a coreset

NS € Wiiteser), ts’ > ts : (val, ts") € ws // The write-sets record
that val was written in or after epoch zs

The predicate bind combines the couldbind and cert predicates to implement the safety mechanism described above.
bind(S, W, ts,val) <=
couldbind(S, val, ts) // The state (val, ts) satisfies couldbind

A cert(W, ts, val) // The set of witnesses W certifies the state (val, ts)

28

To protect against faulty leaders, replicas verify the leader’s work by accepting its decision value only if it provides
them with a set of states and witnesses that satisfy the bind predicate for that value. To prevent the leader from
manipulating the collected states, each process signs the state it send to the leader, and replicas only accept states
that are presented with correct signatures.

Finally, the leader and replicas need a way to handle the situation where none of the quorums satisfy bind. This
situation occurs in particular after the initialization of the system, when every process has the state (L, 0).

By disallowing L as a decision value, collecting a quorum of initial states proves to the replicas that no correct
process has decided in any previous epoch. Therefore, in this scenario, it is safe for the replicas to accept any
decision value proposed by the leader without violating the Lock-In property. This condition is expressed by the
predicate unbound.

unbound(S) <—
S(processy € Q 1/ The processes of .S form a quorum

AY(val,ts) € S(vatue,simesiamp) = (val, ts) = (L, 0) // Every process in S has the initial state

The complete code for the epoch-consensus mechanism of the PBFT algorithm is shown in Algorithms 5-7. Every
message is timestamped with the epoch, to ensure that messages from different epochs cannot interfere.

6.2.2 PAPBFT: A Hybrid Approach

In this section, we review an asymmetric PBFT epoch-consensus algorithm proposed by Zanolini [23]. We discuss
the adaptations made to the original PBFT algorithm and highlight the main drawback of this variation. No formal
specification of the algorithm’s interface is given, since this algorithm is not the main focus of the section and is
very similar to the asymmetric epoch-consensus interface of APBFT, which is presented in the next subsection.

6.2.2.1 Algorithm Description

The usual recipe of replacing quorums, kernels, and core sets with their asymmetric counterparts [1] fails in phase
1 of the PBFT algorithm. In the first phase, the leader and replicas rely on states from a quorum of processes to
deduce the system’s state, in particular to identify whether a process has or has not decided in a previous epoch. In
the symmetric setting, all processes share the same set of quorums; hence, each quorum serves as a snapshot of
the system that all processes agree upon and accept. However, in the asymmetric setting, every process defines its
own set of quorums, and therefore no single quorum exists that serves as a global snapshot of the system for all
processes.

Zanolini works around this issue by operating on the quorum system H, derived from the tolerated system 7 of
the asymmetric quorum system. This resolves the problem, since the tolerated system is again a symmetric quorum
system, and therefore its quorums once again serve as a global snapshot shared among the processes.

This change in the algorithm is reflected in a straightforward adjustment of the predicates couldbind, cert, and
unbound, where each reference to the quorum system Q is replaced by the quorum system , and every reference
to the coreset system C of Q is replaced by the coreset system Cy; of H, while all other aspects of the predicates
remain unchanged. The redefinition of the affected predicates is given below.

cert(W,ts,val) <
Wiprocess) € C1 1/ The processes of W form a coreset

N Yws € Wiiteser), ts’ > ts = (val, ts") € ws /I The write-sets record
that val was written in or after epoch #s

couldbind(S, ts,val) <=
S(process) € M /[The processes of S form a quorum
A (val, ts) € S(vatue,timestamp) !/ The state (val, ts) is contained in the states of S
AVts" € Stimesiamp) © ts' < ts I/ The state (val, ts) is the state with the highest timestamp in S

AY(val',1s") € S(vaiue imesiamp) : 15 =ts = val' = val // The state (val, ts)
is the unique state with maximal timestamp

29

Algorithm 5 PBFT/PAPBFT (Part 1, Decision Phase) (Process p;).

state
73: (val,ts,ws) < (L, 0,{}) // Process state
74: proposal <L [/ Processes proposal
75: ets <— 0 // Current epoch
76: ¢ <1 // Leader of the current epoch

// Phase 1 variables
77: received < {} // Collected states by the leader; stores tuples of the form
(timestamp, value, writeset, process, signature), where timestamp, value and writeset is the local state
of processes process and signature is its signature for that state

// Phase 2 variables
78: sent <— FALSE // Tracks if the process has already sent a WRITE msg
79: written < [L]"™ // Received writes

// Phase 3 variables

80: decided <— FALSE // Tracks if the process has decided
81: wrote <— FALSE // Tracks if the process has written to its state
82: accepted < [L]" // Received decides

83: upon event StartEpoch(epoch, leader) do

84: /I Reset the epoch specific state variables
85: ets <— epoch

86: £ < leader

87: received < {}

88: sent <— FALSE

89: written < [L]"

90: decided < FALSE

91: wrote <— FALSE

92: accepted <+ [L]"

93: prevState < (val, ts, ws)

94: o < sign,(prevState)

95: send message [INPUT, (prevState, o, ets)] to leader £

96: upon event propose(v) do
97: if proposal =1 then proposal <+ v
98: proposed <— TRUE

99: upon receive a message [INPUT, (prevState, o, ts")] from p; such that ts' = ets do
100: if verify; (prevState, o) then
101: received <— received U {(prevState® ,p;, o)}

102: upon event proposed A 3S, W C received,v #1 ts € N : bind(v, ts, S, W) do
103: send message [BIND, v, fs, S, W, ets] to p; € P

104: upon event proposed A 3S C received : unbound(S) do
105: send message [UNBOUND, proposal, S, ets] to p; € P

106: upon receive a message [BIND, val, ts, S, W, ts'] from £ such that ts" = ets do
107: if V(state,pj, o) € SUW : verify;(state, o) A bind(val, ts, S, W) then
108: trigger Phase2(val, ets)

109: upon receive a message [UNBOUND, val, S, ts'] from £ such that ts' = ets do
110: if V(state,pj, o) € S : verify; (state, o) A unbound(S) then
111: trigger Phase2(val, ets)

30

Algorithm 6 PBFT (Part 2, Write/Validation phase) (Process p;).

112: upon event Phase2(v, ts") such that —written A ts' = ets do
113: written <— TRUE

114: if 35" : (¢, v) € ws then

115: ws + ws \ (s, v)

116: ws < ws U (ets, v)

117: send message [WRITE, v, ets] to all p; € P

118: upon receive a message [WRITE, v, £s'] from p; such that rs" = ets do
119: written[j] < v

120: upon Jv # perp such that {p; € P|written[j] = v} € Q do
121: trigger Phase3(v, ets)

Algorithm 7 PBFT (Part 3, Pre-Commit Phase) (Process p;).

122: upon event Phase3(v, ts") such that ts’ = ets do
123: (val, ts) < (v, ets)
124: send message [PRECOMMIT, v, ets] top; €P

125: upon receive a message [PRECOMMIT, v, #s'] from p, such that ts’ = ets do
126: accepted[j] < v

127: upon —decided N Fv #_L such that {p; € Placcepted[j] = v} € Q do
128: decided < TRUE
129: trigger sep.Decide(v)

unbound(S) <—

S(processy € M I/ The processes of .S form a quorum

AY(val,ts) € S(vatue,simesiamp) = (val, ts) = (L, 0) // Every process in S has the initial state

Algorithms 8 and 9 show the implementation of phases two and three of the consensus algorithm. They differ from
the symmetric algorithm only in that they replace the symmetric quorums with asymmetric ones. The pseudocode
for the first phase is not shown as it is identical to that of the symmetric case (Algorithm 5), using the redefined bind

and unbound predicates.

Algorithm 8 PAPBFT (Part 2, Write/Validation Phase) (Process p;).

130: upon event Phase2(v, ts') such that —written A ts' = ets do
131: written <— TRUE

132: if 3ts" : (t5',v) € ws then

133: ws + ws \ (s, v)

134: ws < ws U (ets, v)

135: send message [WRITE, v, efs] to all p; € P

136: upon receive a message [WRITE, v, #s'| from p; such that ts' = ets do
137: written[j] < v

138: upon Jv # L such that {p; € P|written[j] = v} € Q; do
139: trigger Phase3(v, ets)

6.2.2.2 Drawback

This implementation has one major drawback. From a theoretical standpoint, it is a rather unsatisfactory solution to
the issue encountered in the first phase when considering asymmetric quorum systems. The algorithm does not

31

Algorithm 9 PAPBFT (Part 3, Pre-Commit Phase) (Process p;).
140: upon event Phase3(v, ts") such that ts' = ets do
141: (val, ts) < (v, ets)
142: send message [PRECOMMIT, v, efs] to p; € P

143: upon receive a message [PRECOMMIT, v, ts'] from p, such that ts' = ets do
144: accepted|j] + v

145: upon —decided N Fv #_L such that {p; € P|accepted[j] = v} € Q; do
146: decided < TRUE
147: trigger aep.Decide(v)

provide a true solution to the lack of a global view shared by the processes but instead circumvents the issue by
relying once again on a symmetric quorum system. This approach offers no insight into how to address this dilemma
within the asymmetric setting itself.

6.2.3 Introducing APBFT

Phase 1 Phase 2 Phase 3

State CertRequest Cert [v,Proof] v v

Figure 6.2. Communication flow of the APBFT algorithm as it progresses through its three phases. In contrast to
the PBFT algorithm, the first phase includes an additional round of communication, in which the leader broadcasts
certification requests and the replicas holding a certificate send back a response.

In this section, we introduce the APBFT algorithm, an asymmetric version of the PBFT algorithm that does not
rely on the tolerated system. First, we discuss the adaptation of the epoch consensus interface to the asymmetric
setting. Next, we describe the adaptations made to PAPBFT to derive the APBFT algorithm, and finally, we prove
its correctness.

6.2.3.1 Asymmetric Epoch Consensus Specification

We review the changes made to the epoch consensus interface (shown in Module 7) to adapt it to the asymmetric
setting. The first four core properties of the epoch consensus abstraction remain semantically the same as in the
symmetric setting. However, the guarantees of Agreement and Lock-In have been restricted to guild members.

The epoch consensus interface specifies two termination conditions. The first, called Termination, ensures that
when a guild member is the leader of an epoch and the replicas give them sufficient time to fulfill their role, every
guild member reaches consensus in that epoch. The second condition, called One for All, is a termination guarantee
that ensures all guild members in an epoch eventually terminate if at least one other guild member has already
decided.

This additional termination condition is required to handle cases where faulty leaders attempt to sabotage system
liveness by allowing some guild members to terminate while blocking the progress of others. The One for All
property prevents this from happening.

6.2.3.2 Algorithm Description

As mentioned in the previous section, the main difficulty in reformulating the PBFT algorithm lies in how the leader
and replicas share a global view of the system via a quorum. This shared view does not exist in the asymmetric
setting. Recall what the replicas and the leader try to achieve in the first phase of the algorithm. The job of the

32

Module 7 Interface and Properties of the Asymmetric Epoch Consensus Abstraction

Module:
Name: AsymmetricEpochConsensus, instance aep

Events:
Setup: aep.StartEpoch(ets, £): Progresses epoch consensus to epoch ets
with leader /.

Request: aep.Propose(v): Proposes value v for epoch consensus.
Indication: aep.Decide(v): Output a decide value v of epoch consensus.
Properties:
EP1: Weak Validity: If all processes are correct and a process decides v in epoch ets, then v
was proposed by the leader of some epoch ets’” < efs.
EP2: Agreement: No two wise processes decide differently in an epoch.

EP3: Integrity: Every correct process decides at most once in each epoch.

EP4: Lock-in: If a wise processes has decided some value v in an epoch
with timestamp ts” < ts, then no wise process decides a value different from v in epoch ts.

EPS: Termination: If the leader ¢ of some epoch ets is a guild member, has proposed a value,
and all guild members are simultaneously in epoch ets for a fixed time period,
then every guild member decides in epoch ets.

EP6: One for All: In every execution with a guild, When a guild member decides in some epoch ets,
and all guild members are simultaneously in epoch ets for a fixed amount of time,
then every guild member decides in epoch efs.

33

leader is to identify a decision value that it can prove to a sufficient number of replicas does not violate the Lock-In
property, based on the local states of the replicas. The job of the replicas is to verify that proof and proceed to phase
2 of the algorithm only with decision values that respect Lock-In.

The key to circumventing the issue of no shared global quorum to rely on is for the leader to collect, for each
process, one of its personal quorums to provide it with a personalized proof that the decision value is safe to accept.

In the symmetric setting, the bind predicate was used to identify decision values that respect Lock-In. The
justification for why the bind predicate preserves Lock-In generalizes,for guild members, to the asymmetric setting
when swapping symmetric quorums with asymmetric ones.

Below, the redefinition of the bind and unbound predicates is given. We defer the redefinition of the cert
predicate to the end of this section, since the certification mechanism needs to be adapted due to weaker guarantees
of the epoch change primitive in the asymmetric setting. However, the asymmetric cert predicate preserves its
properties for guild members and serves the same purpose as it does in the symmetric setting.

The predicates additionally take a process identifier as input to index the individual quorum systems. The
parameters of the predicates remain unchanged; only the structure of the set of witnesses W differs, which will be
discussed when presenting the redefinition of cert.

bind; (S, W,val,ts) <—
couldbind; (S, val, ts) // The state (val, ts) satisfies couldbind;

A cert; (W, ts, val) // The set of witnesses T certifies the state (val, ts)

couldbind; (S, val,ts) <
S(process) € Qi I The processes of S form a quorum for process p;
A (val, ts) € S(vatue,timestamp) !/ The state (val, ts) is contained in the states of S
AV1ts" € Stimestamp) * ts" < ts I/ The state (val, ts) is the state with the highest timestamp in S
AY(val'ts) € S (value timestamp) : val' = val // The state (val, ts)

is the unique state with maximal timestamp

This adapted bind predicate behaves identically as in the symmetric case for guild members. In particular, after a
guild member has decided on some value v, for every guild member p;, bind; can only be satisfied by the decision
value v. However, the converse is not true: bind being satisfied does not guarantee that a guild member has
previously decided. Recall that in the symmetric case, the unbound predicate proved to a replica that no correct
process had yet decided. This concept generalizes naturally to the asymmetric setting.

unbound;(S) <
S(process) € Qi 1/ The processes of S form a quorum for process p;

AV (val, ts) € S(vaiue,iimestamp) * (val,ts) = (L, 0) // Every process in S has the initial state

The key idea in the construction of the APBFT algorithm is the introduction of an additional predicate that proves to
a guild member that no guild member has yet decided. By combining the ideas of the unbound and bind predicates,
a replica can conclude that a decision value is safe to accept when confronted with a set of states and witnesses
S and K that bind to a state (val, ts), and, in addition, a set of witnesses K that certify they have written some
different value val' # val in an epoch with timestamp ts’ > fs.

debind; (S, W, W' val,ts) <=
Jval' # val,ts' < ts : bind;(S, W,val',ts') // Predicate bind; is satisfied
for a value val’ # val with a timestamp ts' < ts

A cert; (W', val, ts) // The set of witnesses W' certifies (val, ts)

This third predicate increases the number of decision values a replica can accept, thereby facilitating the leader’s
task of identifying a decision value that a sufficient number of replicas can accept.

The final decision rule, by which a replica can identify safe decision values, is expressed by the predicate V' (for
Verify). It combines the three predicates: bind, unbound, and debind.

34

Vi(S, W, W' val) <—
unbound; (.S) // Predicate unbound; is satisfied
V dts € N : bind; (S, W, val, ts) // Predicate bind; is satisfied

V 3ts € N : debind; (S, W, W', val, ts) // Predicate debind, is satisfied

The predicate V' has the desirable property that, in every execution of the algorithm, it can be satisfied with the same
decision value for every guild member. Thus, for the leader of an epoch to choose a suitable decision value, it must
collect states until it detects a quorum for itself of processes that satisfy V' with the same decision value. If the leader
is a guild member, such a quorum is guaranteed to exist, and this quorum suffices to drive the epoch to consensus.

The decision rule of the leader is formalized as the predicate C;(Q, S, W, val), standing for Collect. The input
parameter () is a set of processes forming a quorum for the leader p;. The sets S and W are the sets of states and
witnesses, respectively. They carry all the required information for satisfying the V' predicate for every process in
the quorum () for the same decision value val.

Ci(Q, S, Wyval) <—
Q € Q, // The set of processes () is a quorum for the leader

AVp; € Q,35 CS, W W' CW,ts € N: V;(S", W', W"val, ts)
/l For every process in @ the process can verify val

Since the leader can only determine a decision value for a quorum for itself, processes also write a value in the
second phase of the algorithm when they receive a kernel for themselves of write messages from their peers. This
ensures that eventually all wise processes write a value, even if they never complete the first phase.

One final change must be made to the original PBFT algorithm due to the weaker properties of the Asymmetric
Epoch Change abstraction. Namely, in the asymmetric setting, the proposed epoch change mechanism, Eventual
Entry, only ensures progression through the epochs for guild members. This means that wise and naive processes
may get stuck in some epoch, even though the system did not, and will not, reach consensus in that epoch. This is
problematic because the V' predicate relies on kernels of processes that certify a state with their write sets.

When a wise process decides on v in some epoch ets, the structure of the second and third phases of the algorithm
ensures that, for every guild member, a kernel for itself of correct processes exists that certifies the state (v, ets).
However, since this kernel need not consist exclusively of guild members, some processes certifying the state may
get stuck in lower epochs. As a result, the leader may never collect their states and thus never observe the kernel,
potentially jeopardizing the liveness of the algorithm.

To address this issue, instead of processes sending their write-sets to the leader at the start of the first phase
of the algorithm, they only send their local state (val, ts). The leader then uses the couldbind predicate to identify
states that require certification. The leader subsequently broadcasts a request to the replicas, asking them to certify
the requested state. Once a process is able to certify the requested state, it sends a signed acknowledgment back to
the leader, attesting that it can indeed certify the requested state. This additional communication step is illustrated in
Figure 6.2

The leader stores this information in a set of tuples called witnesses, of the form (value, timestamp, witnessSet),
where witnessSet is a set of tuples of the form (process, signature), each consisting of a process and a signa-
ture. These tuples represent processes that have messaged the leader, stating that they can certify the state
(value, timestamp), with the signature preventing the leader from forging certificates. The cert; predicate is rede-
fined to operate on this new data structure; it checks whether a set of witnesses W contains a kernel for process p;
that certify val for some timestamp zs’ > ts.

In the symmetric setting, we relied on coresets for the certification process. In the APBFT algorithm, we instead
rely on kernels, since kernels provide the same key guarantee as coresets in the symmetric setting, namely, that they
contain at least one correct process, which is required to justify the definition of the cert predicate.

However, in the asymmetric setting, coresets provide weaker guarantees than kernels. Coresets for guild
members still preserve the guarantee that they contain at least one correct process. This guarantee is weaker,
however, because this correct process might be naive, making its testimony that it has written a value unreliable, as
naive processes are not protected from writing decision values that violate the Lock-In property. Kernels for guild
members, on the other hand, provide the stronger guarantee of containing at least one other guild member, which
mimics the mechanism of coresets in the symmetric setting.

35

cert;(W,ts,val) <

3K € K;,¥p; € K,3(val,ts',w) € W : 1" > 15 A pj € Wiprocess)
// W contains a kernel of certificates for (zs, val)

The final code for the first and second phases is shown in Algorithms 10-12. Phase 3 remains unchanged as in
Algorithm 9.

6.2.3.3 Algorithm Correctness

In this section, we prove the correctness of the APBFT algorithm. We begin by formalizing the properties of the
predicates discussed in the previous section and conclude by showing that APBFT implements the Asymmetric
Epoch Consensus abstraction.

Throughout the following proofs, we make repeated use of the following terminology: In the execution of the
epoch consensus algorithm, the first startEpoch event marks the beginning of the first epoch. The period between
two startEpoch events defines the execution of an epoch, where the first event is referred to as the start of the epoch
and the second as the end. Each epoch is identified by the value of the variable efs.

A process p; is said to satisfy a predicate if, during the execution of the protocol, the predicate evaluates to
TRUE at process p; at some time .

The following lemma establishes the desired property of the cert predicate.

Lemma 20. In every execution with a guild, if a correct process p; satisfies the predicate cert;(W, v, ts) in epoch
ets at time t, where p; € Gmax, then there exists another process Dy € Gayx that wrote v at time t4 < t in some
epochtsg > ts.

Proof. A correct processes p; only satisfies cert; when it is the leader of an epoch (on lines 198 and 193), while
satisfying predicates C; and V;. Also p; satisfies cert; when satisfying V; on line 203. In all three cases, cert; is
invoked on a set W containing tuples (v’, ts’, w), where w contains process-signature pairs (py, o). In all three
cases, on lines 191 and 202, before satisfying cert;, the processes first check that the signature o was generated by
process py, for the state (v', #s”) by verifying that verify, ((v’, ts"), o) is true for all tuples in W. However, a correct
processes pp, only generates this signature on lines 186 and 212, after checking that its write set contains a pair
(v',ts") with ts” > ts”. Since py, only adds tuple (v’, zs”) to its write set on line 209 when writing v’ in epoch #s”,
this establishes that every correct process in w has, in fact written v’ in some epoch £s” > s at some time t' < ¢ as
desired.

Furthermore, by the definition of the predicate cert;, W satisfies it only when it contains a kernel K € KC; for p;.
By Lemma 7, there is a guild member p,; € G, contained in K. Also, by the definition of cert; there is a tuple
(v, 154, wy) in W such that p, € wy and s, > ts. As argued above, this establishes that p, wrote v in epoch s, at
some time ¢, < t, as desired. O

Lemma 21. If a correct process py, satisfies the predicate unbound;(.S) or couldbind; (S, -,) in some epoch ets, for
a correct process p;, then for all (v, ts,p;) € S (value timestamp process)> the pair (v, ts) is the local state of p; at the end
of epoch ets — 1.

Proof. The predicate unbound; or couldbind; is only satisfied on lines 181, 193, 198 and 203, either by the leader
of epoch ets or by p; itself if its correct. In both cases, the set .S consists of tuples (v, ts, p;, o) and the processes
ensure that the state (v, s) indeed originates from processes p; by performing the check verify,((v, s),) on
lines 179 and 201, before satisfying the predicates. Since a correct p; only generates this signature at the start of the
first phase(line 173) this establishes that (v, #s") is the state of p; at the end of epoch ets — 1. O

The next lemma establishes the property, that for guild members p; the predicate V; can only be satisfied with
decision values that do not violate the Lock-In property, starting off with two helper lemmas.

Lemma 22. If in some epoch ets a wise process p; writes (v, ets) to its local state, then no other wise process writes
(v, ets) to its local state for v' # v in that epoch.

Proof. Process p; only writes (v, ets) to its local state after receiving WRITE messages for v from a quorum
for itself (lines 219 and 123). Assume that there is another wise process that writes (v, efs) to its local state with
v # v, which it would only do after receiving WRITE messages for v’ from a quorum Q' for itself (line 219). By
the quorum intersection property, there is a correct process in the intersection of () and @', implying that it has sent
a WRITE message for both v and v’, contradicting the fact that a correct process only sends a single WRITE message
in each epoch. This is ensured by the fact that the write event is guarded by a —wrote condition, which is set to
TRUE before sending the write message on line 205. The wrote variable is only reset to FALSE when triggering the
startEpoch event, which also increments the ets variable(line 161). O]

36

Algorithm 10 State Variables and Epoch Initialization of APBFT (Process p;).

implements
AsymmetricEpochConsensus, instance aep

state
148: (val,ts,ws) < (L, 0, {}) // Process state
149: proposal <—_1 /] Processes proposal
150: ets <— 0 // Current epoch
151: ¢ <1 // Leader of the current epoch

// Phase 1 variables
152: decisionvalue <1 // Leaders identified decision value
153: received < {} // Collected states by the leader; stores tuples of the form
(timestamp, value, process, signature), where timestamp and value is the local state
of processes process and signature is its signature for that state

// Phase 2 variables
154: sent <— FALSE // Tracks if the process has already sent a WRITE msg
155: written < [L]™ // Received writes

// Phase 3 variables

156: decided < FALSE // Tracks if the process has decided
157: wrote <— FALSE // Tracks if the process has written to its state
158: accepted + [L]" // Received decides

// certification datastructures
159: witnesses < {} // Contains tuples of the form (value, timestamp, certificates) where certificates
is a set of tuples of the form (process, signature) of processes
that certify the state (value, timestamp) and there signatures signature
160: certify < {} I/ Set of tuples of the form (value, timestamp, process)
storing the state pairs (value, timestamp) that leader process needs a certificate for

161: upon event StartEpoch(epoch, leader) do

162: // Reset the epoch specific state variables
163: ets < epoch

164: { < leader

165: received < {}

166: sent <— FALSE

167: written < [L]"

168: decided < FALSE

169: wrote <— FALSE

170: accepted + [L]"

171: decisionvalue <1

172: prevState < (val, ts)

173: o < sign, (prevState)

174: send message [INPUT, (prevState, o, ets)] to leader ¢

37

Algorithm 11 APBFT (part 1, Decision Phase) (Process p;).

175

176:
177:

178:
179:
180:

181:
182:
183:

184:
185:
186:
187:
188:
189:

190:
191:
192:

193:
194:
195:
196:
197:

198:
199:

200:
201:
202:
203:
204:

: upon event propose(v) do
if proposal =_1 then proposal < v
proposed <— TRUE

upon receive a message [INPUT, (prevState, o, ts')] from p; such that ts' = ets do
if verify; (prevState, o) then
received < received U {(prevState® , p;, o)}

upon Jp; € P, v #L, ts € N, S C received : couldbind; (S, v,ts) A (v,ts,-) & witnesses do
witnesses — witnesses U {(v, s, {})}
send message [CERTIFY, v, ts] to all p; € P

upon receive a message [CERTIFY, v, £s] from p; do
if 3ts’ <ts: (v,ts') € ws then
o < sign,;((v, 1s))
send message [VERIFIED, (v, 1s), o] to p;
else

certify < certify U {(v, ts,p;) }

upon receive message [VERIFIED, (v, fs), o] from p; do
if verify; ((v,1s), o) A 3(v, ts,w) € witnesses then
w <+ wU (pj, o)

upon proposal 1L N v #1, Q € Q; : Ci(Q, received, witnesses, v) do // Only leader £
if Vp; € Q,3S; C received : unbound;(S;) then
decisionvalue < proposal
else
decisionvalue < v

upon decisionvalue # 1, 3p; € P, S C received, W, W' C witnesses : V;(S, W, W', decisionvalue) do
send message [BIND, S, W, W', decisionvalue, ets) to p;

upon receive a message [BIND, S, W, W', decisionvalue, ts'] from £ such that ts' = ets do
if V(state,pj, o) € S : verify; (state, o)
AY(v,15,w) € WU W', (pj,0) € w : verify,;((v,1s), 0)
AVi(S, W, W', decisionvalue) then
trigger write(decisionvalue, ets)

Algorithm 12 APBFT (part 2, Write/Validation Phase) (Process p;).

205

206:
207:
208:
209:
210:
211:
212:
213:
214:

215

216:

217

218:

219

220:

: upon event write(v, ts") such that —wrote A ts' = ets do
wrote < TRUE
if 3ts" : (57, v) € ws then
ws < ws \ (s, v)
ws < ws U (ets, v)
send message [WRITE, v, efs] to all p; € P
if Jis < ets, p; € P : (v,ts,p;) € certify then
o+ sign,((v, 1s))
send message [VERIFIED, (v, fs), 0] to ¢

certify < certify \ {(v,ts,p;)}

:upon v #.1 such that {p; € P|written[j] = v} € K; do
trigger write(v, ets)

: upon receive a message [WRITE, v, ts'] from p; such that ts" = ets do
written[j] + v

:upon Jv #_L such that {p; € P|written]j] = v} € Q; do
trigger Phase3(v, ets)

38

Lemma 23. After a wise process p; decides v # 1 in some epoch ets, no correct process satisfies unbound; for any
wise process p;.

Proof. By the structure of the third phase of the algorithm, process p; only decides v after receiving PRECOMMIT
messages for v from a quorum @; € Q; for itself (line 127). Observe that a correct process only sends a
PRECOMMIT message after writing (v, ets) to its local state (line 123).

Now assume that there is a correct process py, that satisfies unbound;(.S) in some epoch ets’ > ets. By the
quorum intersection property, S(,cess) and @) intersect in a correct process py,. Let (vp, etsy, pp,-) € S be the
tuple in S corresponding to process py,. Since unboundy, (S) is satisfied, v, =1. By Lemma 21, (vp, efsy,) is the
local state of py, at the end of epoch ets” — 1. Let ¢ be the time at which process py, writes (v, ets) to its local state in
epoch ets. Since ets’ — 1 > ets this means that processes py, ends epoch ets’ — 1 at time ¢’ > . Observe that no
correct process ever writes | to its local state, which implies that v, 1, a contradiction. O

Lemma 24. In every execution with a guild, if a correct process satisfies the predicate V;(S, W, W’ v) in some
epoch ets and p; € Gyuay, then no wise process has decided a value v' # v in any epoch ts' < ets.

Proof. For the sake of contradiction assume that V; (S, W, W’ v) is satisfied, yet a wise process p,, has decided
v’ # v in some epoch s’ < efs. Process p,, only decides after receiving PRECOMMIT messages for v’ from a
quorum @Q,, for itself (line 127). Each correct process in @, only send a PRECOMMIT message for v’ after setting
its local state to (v',ts’) (line 123).

Since by Lemma 23, unbound; cannot be satisfied, bind; or debind; must be satisfied for V; to hold.

Observe that correct processes only write strictly increasing timestamps to their local state, since the sequence
of epochs is strictly increasing. By definition, a timestamp #s” can only satisfy couldbind(S, v, ts”) if ts” is the
maximal timestamp in S. Therefore, by the quorum intersection property of Q. and S(,c.ss) and the above
observation applied to @, it follows that zs” can only satisfy couldbind;, if ts” > ts’. Hence bind; can only be
satisfied by a timestamp > ts’. Therefore, by definition, debind; can also only be satisfied by a timestamp > zs'.

In fact, like debind; (S, W, W' v,ts"), bind;(S, W,v,ts”) can also only be satisfied by a #s”, that is strictly
larger than #s’. This also follows from the quorum intersection property of S(pcess) and Qy,, and the unique maximal
state condition of the couldbind; predicate. In the case where ts” = ts’ if, for sake of contradiction, bind(S, W, v, ts")
is satisfied, then (v, z5") is the unique maximal state in S. By quorum intersection of S(,ycess) and Q.,, S contains
the state information of a correct process p. € Q. Let (ve, IS¢, e, -) € S be the tuple in S associated with process
pe. Since correct processes write strictly increasing timestamps to their local state, s. > ts’. Therefore, s, is the
maximal timestamp in S, and it follows that ts. = s’ and v. = v. However, p. had state (v’, ts”), and since p.. only
writes strictly increasing timestamps to its state, it follows that v/ = v, a contradiction. This establishes that bind;
can only be satisfied with a timestamp > s for value v.

By definition for bind; (S, W, v, ts”) or debind;(S, W, W’ v,ts") to be satisfied with a timestamp zs” > zs', it
must hold that cert; (W, v, s") or cert;(W’', v, ts") is satisfied. By Lemma 20, a guild member must exist that writes
v during or after epoch #5”. Let p; € Gmax be the first guild member that writes v in some epoch ets, such that
etsy > ts'. Denote the time of this event by ¢,4,. Since p, is the first guild member to write v in epoch ets,, by
Lemma 7, its write cannot have occurred by satisfying the kernel condition on line 215. Therefore p, must have
written the value after returning it from the first phase (line 204). This means that p,, satisfied V; (Sy, W, Wy, v)
for some Sy, W, and W. Denote by t,4, < t4, the time at which this occurs. Since efs, > ts’, by the same
reasoning as above, unbound, (S) is unsatisfiable and bind, (Sy, W, v,ts,) or debindy(S,, Wy, W, v, ts,) can
only be satisfied by a timestamp s, > ts'. This, as argued above, implies that another guild member p,/ € Gax
wrote v in some epoch with timestamp ets, > ts’, at some time ¢, where clearly t,, < tg, < t4,, contradicting the
minimality of p,. O

Finally we establish the liveness property of the C; predicate showing that it is always satisfiable when the
leader is a guild member, again starting off with a helper lemma.

Lemma 25. when a wise process p,, writes (val, ets) to its local state at time t, then at any time t' > t, for every
other wise process py, a kernel K € K,y for p, of correct processes exist that can verify the state (val, ets).
Meaning that every process in K has an entry (val, ts) in its write set, such that ts > ets.

Proof. py, only writes (val, ets) to its local state after receiving a WRITE message for val from a quorum @, for
itself in epoch ets. By lemma 6 @), contains a kernel K,/ for p,,s of correct processes for every wise process py, .
Since every correct process only sends a WRITE message for val in epoch ets after adding (val, ets) to its write
set. Furthermore a correct processes never removes a value from its write set, it only replaces a tuple (val, ets) by
another tuple (val, ets’), with ets’ > ets, when writing val in a later epoch ets’. Hence every process in K, can
always verify (val, ets) after time t. O

39

Lemma 26. After GST, in every execution with a guild, if the leader py € Gnax 0Of Some epoch ets is a guild member
and all guild members start epoch ets, then py satisfies Cy within 3A time steps, assuming p; does not move to a
new epoch in the meantime.

Proof. After the last guild member starts epoch ets at time ¢, he sends his state to p, (line 161), which arrives no
later than at time ¢ + A. Let @, denote the leader’s guild quorum, and let (), denote the guild quorum for each
guild member p, € Q. Once p, receives the state from the last guild member, the leader can satisfy couldbind, or
unbound, for every guild member p,.

Let S9 be the states of the processes in (4. More precisely, define S9 := {(v, s, p;j, o) € received | p; € Q4}.
If every state in SY is the initialization state, i.e., V(v, ts) € S(mlue imestamp) * (Vs ts) = (L, 0), then unbound, (SY)
is satisfied. Observe that for all s > 0, we have (L, s) & S? (value timestamp)® since correct processes never write L to
their local state. Hence if unbound, (S9) is not satisfied, it follows that there exists a state (v, 1s) € SY (value timestamp)
such that v #_L. Moreover, since correct processes only write strictly increasing timestamps to their local state, it
follows that ts > 0. Furthermore, since every process in @, is wise, it follows from Lemma 22 that states in 59
that share the same timestamp have the same decision value. More formally, this means that V(v, ts), (v', 1s') €

Sf’value simestamp) 15 = ts' = v = v'. Hence, some state (vg™*, tsg"*) with a maximal timestamp in S clearly

satisfies couldbindy (S9, vg™, tsg™).

This establishes that at time ¢ + A, the leader can either satisfy unbound,, or has satisfied couldbind, and
broadcast a verification request (line 181) for the state (vg*, zs57™*) if he has not done so previously. Therefore,
by Lemma 25, the leader receives, for every p,, a kernel for Dg of certificates for each state (vy™*, tsj™*) after 2A
time steps. More formally, Lemma 25 establishes that for every guild member pq € Q¢ and every max1mal state
(vg™, tsg™*) of some guild member p, € @y, the singleton subset K := {(vg™, 7™, w) € witnesses} satisfies
cert (K vy 15,

This shows that the leader satisfies Cy(Q)y, received, witnesses, v™) (line 193), where (v™*, £s™*) is the state
with the maximal timestamp among the states (vy™, tsg"®*) for the processes p,, in the leader’s guild quorum Q. To
see this, recall that as stated above, for every process in p, € Qy, the leader satisfies either unbound, or couldbind,.
In the first case Vj, is satisfied. In the second case, if 753" = 5™, then again by Lemma 22, it follows that
v = v‘;‘*"‘, and hence bindg(S Wy, v , 5™ is satlsﬁed, where W, C witnesses contains the kernel for p,
of witnesses for the state (v™*, tsma"). Thus, Vj is satisfied. Recall that the existence of W, has been established
above by showing that wimesses contains a kernel for p, of witnesses for every state vy™, 7sg"™* and every guild
member p,.

In the scenario where £s3"* < 5™, then debind, (59, W,, Wy, v™™, ts™%) is satisfied, where W, C witnesses
contains the kernel for p, of witnesses that certify (ax tsm‘”‘) and W, C witnesses contains the kernel for p, of
witnesses that certify (v™*, ts™*).

Hence every process p, € Q) satisfies V; for value v™*, and therefore py satisfies Cy(Qy, received, witnesses) at
most after 3A time steps after the last guild member started the epoch. O

max

We now show that APBFT implements the Asymmetric Epoch Consensus interface.
Theorem 27. The APBFT algorithm implements the Asymmetric Epoch Consensus interface

Proof. We first show Weak Validity. First, Observe that all processes are guild members, since all processes are
correct. A process decides v in epoch ets only after receiving PRECOMMIT messages for v from a quorum for itself
(line 145). Furthermore, a process only sends a PRECOMMIT message for v after receiving WRITE messages for v
from a quorum for itself in epoch ets (line 219). Let p, be the first process to send a WRITE message for v in some
epoch ets’. By the minimality of pg, this can only occur after the process has returned v from the first phase of the
algorithm (line 204). The leader ¢’ of epoch ets’ sends v to p, (line 198) only after satisfying the Cy/ predicate
(line 193), which requires collecting states and certificates such that a quorum Q) for the leader satisfies the bind,
debind, or unbound predicate for value v. Observe that cert;(-, v, -) is unsatisfiable for all processes p; € Qy,
since otherwise, by Lemma 20, this would contradict the minimality of p,. This implies, by definition, that for all
processes p; € (g, both bind; (-, -, v,) and debind;(-, -, -, v,) are unsatisfiable. Therefore, all processes in Q)
must satisfy the unbound predicate for Cy (Q, states, witnesses, v) to be satisfied. Thus, the leader satisfies the
condition on line 194, and therefore v is the proposal of ¢/, establishing Weak Validity.

The Agreement property follows directly from Lemma 22, since correct processes only send PRECOMMIT
messages for values that they have written to their local state in a given epoch (line 140).

Integrity is ensured by the —~decided guard on the event that triggers Decide (line 145). The guard is set to TRUE
before deciding, and is only reset once a new epoch starts (line 168).

To show Lock-In: Assume a process p; has decided on value v in some epoch ets. For the sake of contradiction,
assume that a process p; decides on a value v # v in some epoch ets’ > ets. It follows that p; has received a

40

PRECOMMIT message for v’ from a quorum @ for itself (line 145). @ contains a guild member pj, who has received
a quorum for itself of WRITE messages for v’ (line 219), which itself includes a guild member. Let pj, be the first
guild member to write v in epoch efs’. By the minimality of p;, and Lemma 7, p;, cannot have written v’ after
receiving a kernel for itself of WRITE messages for v’ (line 215), and must therefore have returned v’ from the first
phase of the algorithm (line 204). This implies that p;, satisfied predicate Vi (-, -, -,v’) (line 203). Lemma 24 then
directly contradicts the assumption that p; decided v in epoch ets < ets’.

To show Termination, recall that Lemma 26 establishes that a quorum @) € Qy for £ returns a decision value
v from the first phase of the algorithm after at most GST + 3A time steps. After returning from the first phase
(line 204), these processes write v, sending a WRITE message to all peers (line 205). By Lemma 6, this implies
that every wise process receives a WRITE message for v from a kernel for itself. Hence, after at most GST + 4A
time steps, every wise process satisfies the kernel condition on line 215 and also broadcasts a WRITE message for
v to its peers. Therefore, by the availability condition, every wise process receives WRITE messages for v from a
quorum for itself after at most GST + 5A time steps. Hence, every wise process sends a PRECOMMIT message for
v (line 219), and subsequently receives PRECOMMIT messages from a quorum for itself after at most GST + 6A
time steps, and decides v (line 145).

Finally, to show One for All, if a wise process decides value v in epoch ets, it must have received PRECOMMIT
messages from a quorum () for itself line 145).) must contain at least one wise process, which only sends
a PRECOMMIT message for v after receiving WRITE messages for v from a quorum @’ for itself line 219). By
Lemma 6, Q' contains a kernel for every wise process. Hence, every wise process must eventually receive a
kernel for itself of WRITE messages for v, and therefore must eventually write v itself line 215). As argued for
the Termination condition, this ensures that every wise process eventually receives a quorum for itself of WRITE
messages for v, and hence eventually receives a quorum for itself of PRECOMMIT messages for v, and thus eventually
decides v. O

6.3 Leader-Driven Consensus Algorithm

In this final section, we present the glue code that combines the Asymmetric Epoch Change and Asymmetric Epoch
Consensus abstractions into a single consensus algorithm implementing Asymmetric Weak Byzantine Consensus.

The Leader-Driven Consensus Algorithm is shown in Algorithm 13. Upon receiving a aec.StartEpoch event
from the epoch change abstraction, the algorithm relays this information to the epoch consensus abstraction by
triggering its corresponding aep.StartEpoch event. Additionally, a timeout is started. The timeout duration is set to a
constant multiple of the epoch number, ensuring that the process increases its wait time with each successive epoch.

If the timer expires, the process suspects the leader to be faulty and issues a aec. Complain event to the epoch
change abstraction. When a value is proposed, it is directly forwarded to the epoch consensus instance. Upon
receiving a aep.Decide event from the epoch consensus instance, the timeout is canceled. If the process has not yet
made a decision, it decides on the received value.

Theorem 28. The Leader-Driven Consensus Algorithm implements Weak Consensus.

Proof. The Weak Validity property follows directly from the Weak Validity property of the Asymmetric Epoch
Consensus abstraction. Assume all processes are correct, and that process p; decides on a decision value v. Process
p; decides only after an aep.Decide(v) event occurs (line 229). The Weak Validity property of Asymmetric Epoch
Consensus ensures that v was aep.Proposed by some correct process p; € P. However p; only aep.Proposes v
immediately after v has been awc.Propsed by p; (line 223), thereby establishing the validity property.

Concerning Integrity, observe that before deciding, a process sets its decided guard to TRUE (line 232) and only
decides when —decided holds (line 231). Since decided is only set to FALSE upon initialization (line 221) Integrity
is ensured.

To show Agreement, assume that some wise process p; decides v, and another wise process p; decides v’. Both
processes can only decide after an aep.Decide event occurs (line 229). Hence, the Agreement and Lock-In properties
of Asymmetric Epoch Consensus ensure that v = v’. The Agreement property applies when both processes decide
in the same epoch of the epoch consensus instance, and the Lock-In applies when they decide in different epochs.

Finally we show the Termination property. For the sake of contradiction, assume that some guild member
Pg € Gmax never decides. There are two cases to consider. Either pg starts an infinite sequence of epochs, or p,
remains in some epoch indefinitely. In the first case, by the Eventual Entry property, p, can only remain indefinitely
in an epoch ets if all guild members remain in the same epoch indefinitely. Therefore, the Eventual Progression
property of Asymmetric Epoch Change implies that no kernel for all processes ever complains in epoch ets. Since,
by Lemma 8, the maximal guild G, contains a kernel for all processes, it follows that some guild member py, never
complains in epoch ets. However, a correct process always complains in an epoch it has started unless it decides in

41

Algorithm 13 Leader-Driven Consensus Algorithm (Process p;).

implements
AsymmetricWeakByzantineConsensus, instance awc
uses
AsymmetricEpochChange, instance aec
AsymmetricEpochConsensus, instance aep
state
221: decided < FALSE
222: (ets,) < (0,1)

223: upon event awc.Propose(v) do
224: aep.Propose(v)

225: upon event aec.StartEpoch(newts, newf) such that newts > ets do

226: (ets, £) < (newts, newl)
227: trigger aep.StartEpoch(newts, newt)
228: StartTimer((newts + 1) - A)

229: upon event aep.Decide(v) do

230: CancelTimer()

231: if ~decided then

232: decided <+ TRUE;

233: trigger awc.Decide(v);

234: upon event Timeout do
235: trigger aec.Complain(ets)

that epoch. Therefore, by the One for All property of Asymmetric Epoch Consensus, every guild member decides in
epoch ets. In particular p, decides in epoch ets, a contradiction.

Now consider the latter case, where p, starts an infinite number of epochs. By the Eventual Entry property,
this implies that every guild member starts an infinite number of epochs. Since the guild members complain in
increasing time intervals, the precondition of the Unbounded Leadership property of Asymmetric Epoch Change is
satisfied. Combined with the Uniform Leadership property, this implies that for any duration d there is some epoch
etsq, such that all guild members are simultaneously in epoch ets, for at least that duration and the leader of etsy
is a guild member. Hence it follows that the guild members are simultaneously in an epoch ets that satisfies the
precondition of the Termination property of the epoch consensus abstraction. Therefore, all guild members decide
in epoch ets, a contradiction.

O

42

Experimental Evaluation

In this chapter we discuss the experimental evaluation of the PAPBFT algorithm [23] and the Asymmetric Random-
ized Consensus algorithm [19].

Benchmarking Parameters. We empirically investigate the scalability and impact of faulty processes on the
running time of the two algorithms. All experiments are performed on three quorum systems consisting of 5, 6, and
7 processes. These quorum systems are taken directly from the example systems provided in the paper by Alpos et
al. [1], illustrated in Examples 1, 2, and 4. We restrict our analysis to this small collection of quorum systems, since
constructing asymmetric quorum systems is a non-trivial task with no known general procedure. Moreover, the
benchmark is not suitable for large quorum systems.

To assess scalability, we measure the performance of the algorithms as the number of processes in the quorum
system increases.

To evaluate the impact of faulty processes, we compare the algorithms’ performance under failure-free conditions
to their performance when the maximum allowable number of processes fail. The maximum number of failures
is determined by determining the smallest guild in the system while allowing all other processes to fail. Failed
nodes are modeled as non-responsive processes that do not reply to messages from their peers. Byzantine nodes
are simulated solely as crash faults, since modeling more complex malicious behavior would complicate the
benchmarking process without any anticipated impact on the performance of the algorithms compared to crash
faults. Verifying this hypothesis is left as future work.

Benchmark Metric. The performance of the algorithm is measured using the quorum response time of the
quorum system. To perform this measurement, a dedicated process referred to as the client is introduced. The client
is responsible for initiating and observing the execution of the consensus algorithm. The measurement begins when
the client sends a start message to all processes in the quorum system that participate in the consensus algorithm,
along with a value for them to propose.

Each replica executes the consensus protocol independently. When a replica completes the protocol and reaches
a decision, it sends a decide message with the decided value back to the client. The client collects these responses
and terminates the measurement once it has received decision messages from any quorum in the asymmetric quorum
system.

More formally, for a given quorum system, the client stops the measurement once:

dp; € P,Q € Q; : the client has received a decide message from all processes in Q).

This duration is referred to as the quorum response time of the consensus algorithm. The measuring procedure
is illustrated in Figure 7.1.

Hardware Setup. All experiments were conducted on a single computer with an AMD Ryzen 7 5800X processor.
The network was implemented by communicating locally using the loopback interface (i.e., 127.0.0.1).

43

Q1

Qutput: Time between the first start message and the last
decide response from a quorum.

Figure 7.1. Client/Replicas architecture for measuring the quorum response time. The client starts the measurement
by sending a start message to all the replicas. The replicas run the consensus algorithm and respond back to the
client once they have decided. As soon as the client is informed of some quorum deciding, the measurement is
terminated. In the illustration quorum @), has decided

44

Repetition of Measurements. To increase the stability of the measurements, each experiment was repeated 50
times, and the results report the average metric. Furthermore, in each repetition, the identifiers of the processes in
the asymmetric quorum system were shuffled to average out the influence of process labeling on the measurement.
This labeling has a particularly strong effect on the leader-driven PAPBFT consensus algorithm, where it determines
the sequence in which processes are elected as leaders of the epoch consensus instances.

We settled on this number of repetitions because, given the observed standard deviation of the measurements,
we believe it is sufficient to obtain a reliable estimate of the true underlying mean.

Asymmetric Common Coin Implementation. As mentioned in Chapter 5, the common coin of the Asymmetric
Randomized Consensus algorithm has not been implemented. To make the algorithm operational, the common coin
was substituted with a local random bit generator. To ensure the Marching property of the Asymmetric Common
Coin abstraction (Module 2), each random bit generator was initialized with the same seed. This implementation,
however, violates the Unpredictability property of the abstraction. Nevertheless, this violation does not affect the
correctness of the algorithm in the experiment, since the emulated Byzantine processes only crash and therefore do
not exploit it.

Scalability and Performance Comparison. Figures 7.2a and 7.2b show the response times of the two algorithms
as the number of processes in the asymmetric quorum system increases and their structures change. Figure 7.2a
presents results for executions in which all processes are correct, while Figure 7.2b shows the scenario where the
maximal number of processes fail. A direct comparison of the execution times under both conditions is further
summarized in Table 7.1.

Figure 7.2a demonstrates that when all processes are correct, PAPBFT exhibits good scalability. There is no
clear upward trend in the quorum response time as the system size increases. In contrast, Asymmetric Randomized
Consensus shows poor scalability: as the number of processes increases, the response time increases steadily. The
algorithm requires on average 1.75 times longer on 7 than on 5 processes. Moreover, in this failure-free scenario,
PAPBFT clearly outperforms Asymmetric Randomized Consensus, with the margin steadily increasing as the
number of processes increases. On 5 processes, PAPBFT runs on average 1.35 times faster than Asymmetric
Randomized Consensus. On 7 processes, the performance gap significantly increases, with PAPBFT executing 2.66
times faster than Asymmetric Randomized Consensuss on average.

However, this picture changes dramatically in the presence of faults, as illustrated in Figure 7.2b. In this scenario,
the Asymmetric Randomized Consensus algorithm significantly outperforms PAPBFT, executing between 1.5 and
1.9 times faster than PAPBFT on average.

Table 7.1 offers insight into this performance shift. The performance of the Asymmetric Randomized Consensus
algorithm is barely affected by the presence of faulty processes; it remains nearly constant across both conditions.
In contrast, the performance of the PAPBFT algorithm degrades substantially when faulty processes are introduced.
This behavior is a direct consequence of the Leader-Driven Consensus Paradigm: agreement can only be reached
during an epoch led by a correct leader. If the leaders of the first k£ epochs are faulty, then, by design, the system
spends atleast A- (14+2+ ...+ k) =A- (%) time steps making no progress. Consequently, the choice of
A and the number of faulty processes, both in absolute terms and relative to the total number of processes, have
a significant impact on performance. In our experiments, A was set to 200 ms. This effect is clearly visible in
the increasing response times of PAPBFT in Figure 7.2b. The relative number of failures are Z, 2, and 7 for the
three quorum systems, respectively. As the number of processes increases, both the absolute number of faulty
processes and the failure rate rise, which in turn leads to the observed worsening performance of PAPBFT under
faulty conditions.

The same factors also explain the higher variability of PAPBFT’s response times in executions with faults
compared to those without. Because leader identifiers are shuffled between repetitions, different runs encounter
varying arrangements of faulty leaders, leading to differences in execution time. Moreover, as the total number
of processes grows, so does the number of faulty processes and, consequently, the maximum possible length of
consecutive faulty leaders. This increases the potential variation in execution times across repetitions, resulting in a
higher standard deviation as the number of processes increases.

Notably, the plots show that the performance of Asymmetric Randomized Consensus is much more stable
compared to PAPBFT: the standard deviation of PAPBFT’s response times reaches up to 0.133 s under no faults,
while Asymmetric Randomized Consensus maintains a low standard deviation of around 0.008 s.

45

T T T T T T
—e— Asymmetric Randomized Consensus 1.2 -| —e— Asymmetric Randomized Consensus

=~ —-— PAPBFT ~ —-— PAPBFT
2 03[‘1l J
= =
o o
8 2
= < 08} |
£ £
3 0.2 B g
9 o 0.6 R
= =
2 2
3 3 0.4 .
E 0.1} 8 =)
g Z 0.2 :
=}]
=) =)
o o

£ 0 | |

oL | L | | |
S 6 7 5 6 7

Number of processes

(a) No faulty processes.

Number of processes

(b) Maximal faulty processes.

Figure 7.2. Average quorum response time of PAPBFT and Asymmetric Randomized Consensus as the number of
processes increases. Error bars indicate the standard deviation of the measurement.

Table 7.1. Quorum response time (seconds) under different failure modes for PAPBFT and Asymmetric Randomized

Consensus

Asymmetric quorum system

PAPBFT

Asymmetric Randomized Consensus

No Failures

Maximal Failures

No Failures Maximal Failures

5 Peer System
6 Peer System
7 Peer System

0.14
0.15
0.12

0.27
0.48
0.59

0.19 0.18
0.26 0.26
0.32 0.31

46

Future Work

We believe that the guarantees provided by the APBFT algorithm can be strengthened through a more thorough
analysis of the epoch consensus primitive and a simple extension of the leader-driven consensus algorithm. More
precisely, we believe that the Agreement and Lock-In properties of epoch consensus hold for all correct processes
in executions with a guild. This should be derivable from Lemma 9, which can be applied in a straightforward
manner to the provided proofs to establish these additional Agreement and Lock-In properties. This would allow
for a strengthening of the Termination condition of the APBFT algorithm, guaranteeing termination for all wise
processes when a guild exists.

Regarding the empirical evaluation of the consensus algorithms, it is important to extend the benchmark to
include substantially more quorum systems with a larger variation in the number of processes, in order to increase
the reliability of the results. This requires a mechanism that allows for the automatic generation of asymmetric
quorum systems for different numbers of processes. To support this, the benchmarking code needs to be adapted.

In its current form, the benchmark evaluates the performance of the algorithms under faulty executions by
computing the smallest guild of the quorum system and letting all other processes fail. As we have shown, this
approach does not scale to quorum systems with many processes. This limitation could be addressed by instead
randomly sampling, at each repetition of an experiment, some minimal guild of the quorum system, which can be
done efficiently.

It would also be of interest to extend the benchmark with additional consensus algorithms. One candidate of
particular interest is the DAG-based consensus algorithm proposed by Amores-Sesar et al. [3].

47

Conclusion

In this work, we presented the first empirical evaluation of two consensus paradigms tailored for the asymmetric trust
setting: the leader-driven protocol PAPBFT and Asymmetric Randomized Consensus a protocol designed for fully
asynchronous environments. Our evaluation demonstrates that PAPBFT scales more efficiently than Asymmetric
Randomized Consensus in fault-free scenarios, achieving significantly lower response times as the number of
processes increases. However, PAPBFT’s performance deteriorates substantially in the presence of faulty processes
due to its reliance on a correct leader for progress, causing delays when faulty leaders are repeatedly selected.
In contrast, Asymmetric Randomized Consensus exhibits stable performance regardless of faults, maintaining
consistent response times with minimal variability.

Alongside these experiments, we examined the algorithmic underpinnings required to make asymmetric trust
consensus practical. We proved that determining the tolerated system of an asymmetric quorum system is NP-hard,
and introduced the superset recognizer abstraction as a practical way to work around this barrier. Crucially, an
efficient superset recognizer for each quorum system in an asymmetric quorum system can be leveraged to build
superset recognizers for both its kernel system and its tolerated system. This means our consensus algorithms can
be implemented entirely on top of quorum superset recognizers, avoiding the need to explicitly enumerate complex
system structures while retaining efficiency.

Additionally, we proposed a novel variant of the PBFT algorithm that does not depend on the tolerated system
of the quorum system. Our approach introduces new techniques for managing unequal role distributions among
processes in asymmetric trust environments. Finally, we provide a complete correctness proof of the PBFT algorithm
in the asymmetric trust setting by fully specifying the heartbeat mechanism, ensuring its reliability and robustness.

48

(1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bibliography

Orestis Alpos, Christian Cachin, Bjorn Tackmann, and Luca Zanolini. Asymmetric distributed trust. Distributed
Comput., 37(3):247-277, 2024. URL: https://doi.org/10.1007/s00446-024-00469-1.

Ignacio Amores-Sesar, Christian Cachin, and Jovana Micic. Security analysis of ripple consensus. CoRR,
abs/2011.14816, 2020. URL: https://arxiv.org/abs/2011.14816.

Ignacio Amores-Sesar, Christian Cachin, Juan Villacis, and Luca Zanolini. Dag-based consensus with asym-
metric trust [extended version]. CoRR, abs/2505.17891, 2025. URL: https://doi.org/10.48550/
arXiv.2505.17891.

Manuel Bravo, Gregory V. Chockler, and Alexey Gotsman. Liveness and latency of byzantine state-
machine replication. Distributed Comput., 37(2):177-205, 2024. URL: https://doi.org/10.1007/
s00446-024-00466-4.

Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR, abs/1807.04938,
2018. URL: http://arxiv.org/abs/1807.04938.

Christian Cachin, Rachid Guerraoui, and Luis E. T. Rodrigues. Introduction to Reliable and Secure Distributed
Programming (2. ed.). Springer, 2011. URL: https://doi.org/10.1007/978-3-642-15260-3.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, pages 173-186. USENIX
Association, 1999. URL: https://dl.acm.org/citation.cfm?id=296824.

Ivan Damgérd, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols with asymmetric
trust. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 357-375. Springer, 2007.
URL: https://doi.org/10.1007/978-3-540-76900-2_22.

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial synchrony. J.

ACM, 35(2):288-323, 1988. URL: https://doi.org/10.1145/42282.42283.

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374-382, 1985. URL: https://doi.org/10.1145/3149.214121.

Alvaro Garcia-Pérez and Alexey Gotsman. Federated byzantine quorum systems (extended version). CoRR,
abs/1811.03642, 2018. URL: http://arxiv.org/abs/1811.03642.

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need is DAG. In
PODC, pages 165-175. ACM, 2021. URL: https://doi.org/10.1145/3465084.3467905.

Lukasz Lachowski. Complexity of the quorum intersection property of the federated byzantine agreement
system. CoRR, abs/1902.06493, 2019. URL: http://arxiv.org/abs/1902.06493.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, 1998. URL: https:
//doi.org/10.1145/279227.279229.

Xiao Li, Eric Chan, and Mohsen Lesani. Quorum subsumption for heterogeneous quorum systems. In DISC,
volume 281 of LIPIcs, pages 28:1-28:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023. URL:
https://doi.org/10.4230/LIPIcs.DISC.2023.28.

Ethan MacBrough. Cobalt: BFT governance in open networks. CoRR, abs/1802.07240, 2018. URL:
http://arxiv.org/abs/1802.07240.

Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed Comput., 11(4):203-213, 1998.
URL: https://doi.org/10.1007/s004460050050.

49

https://doi.org/10.1007/s00446-024-00469-1
https://arxiv.org/abs/2011.14816
https://doi.org/10.48550/arXiv.2505.17891
https://doi.org/10.48550/arXiv.2505.17891
https://doi.org/10.1007/s00446-024-00466-4
https://doi.org/10.1007/s00446-024-00466-4
http://arxiv.org/abs/1807.04938
https://doi.org/10.1007/978-3-642-15260-3
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1007/978-3-540-76900-2_22
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3149.214121
http://arxiv.org/abs/1811.03642
https://doi.org/10.1145/3465084.3467905
http://arxiv.org/abs/1902.06493
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.4230/LIPIcs.DISC.2023.28
http://arxiv.org/abs/1802.07240
https://doi.org/10.1007/s004460050050

[18] David Mazieres, Nicolas Barry, Giuliano Losa, Jed McCaleb, and Stanislas Polu. The stellar consensus
protocol: A federated model for internet-level consensus, 2015. URL: https://stellar.org/papers/
stellar-consensus—protocol.pdf.

[19] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary byzantine
consensus with t < n/3, o(n2) messages, and O(1) expected time. J. ACM, 62(4):31:1-31:21, 2015. URL:
https://doi.org/10.1145/2785953.

[20] David Schwartz, Noah Youngs, and Arthur Britto. The ripple protocol consensus algorithm. Technical report,
Ripple Labs Inc., 2014. URL: https://ripple.com/files/ripple_consensus_whitepaper.
pdf.

[21] Isaac C. Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. Heterogeneous paxos: Technical
report. CoRR, abs/2011.08253, 2020. URL: https://arxiv.org/abs/2011.08253.

[22] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff: BFT consensus
with linearity and responsiveness. In PODC, pages 347-356. ACM, 2019. URL: https://doi.org/10.
1145/3293611.3331591.

[23] Luca Zanolini. Asymmetric Trust in Distributed Systems. PhD thesis, University of Bern, Faculty of Science,
Bern, Switzerland, 2023. URL: https://doi.org/10.48549/4481.

50

https://stellar.org/papers/stellar-consensus-protocol.pdf
https://stellar.org/papers/stellar-consensus-protocol.pdf
https://doi.org/10.1145/2785953
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://arxiv.org/abs/2011.08253
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.48549/4481

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 System Model
	3.2 Symmetric Byzantine Quorum System
	3.3 Asymmetric Byzantine Quorum System

	4 Tolerated System: Intractable Construction and Efficient Recognition
	4.1 Hardness of Tolerated System Construction
	4.2 Superset Recognizers

	5 Asynchronous Consensus
	5.1 Asymmetric Strong Byzantine Consensus Specification
	5.2 Asymmetric Common Coin Abstraction
	5.3 Asymmetric Binary Validated Broadcast
	5.4 Asymmetric Randomized Consensus Algorithm

	6 Partially Synchronous Consensus
	6.1 Asymmetric Epoch Change Primitive
	6.1.1 Asymmetric Epoch Change Specification
	6.1.2 Algorithm Description: Asymmetric Rotating Epoch Change
	6.1.3 Algorithm Correctness

	6.2 Asymmetric Epoch Consensus
	6.2.1 Review of PBFT
	6.2.1.1 Symmetric Epoch Consensus Specification
	6.2.1.2 Algorithm Description

	6.2.2 PAPBFT: A Hybrid Approach
	6.2.2.1 Algorithm Description
	6.2.2.2 Drawback

	6.2.3 Introducing APBFT
	6.2.3.1 Asymmetric Epoch Consensus Specification
	6.2.3.2 Algorithm Description
	6.2.3.3 Algorithm Correctness

	6.3 Leader-Driven Consensus Algorithm

	7 Experimental Evaluation
	8 Future Work
	9 Conclusion

