b

u

b
UNIVERSITAT
BERN

Implementing Privacy-Preserving
Authentication Flow for U2SSO with
OpenlD Self-Provider

Anonymous Self-Credentials for OpenID Connect

Bachelor Thesis

Yanis Cedric Berger

from
Bern, Switzerland

Faculty of Science, University of Bern

9. September 2025

Prof. Christian Cachin
Mariarosaria Barbaraci
Cryptology and Data Security Group
Institute of Computer Science
University of Bern, Switzerland

ii

Abstract

Digital identity management faces fundamental privacy and centralization challenges in cur-
rent federated authentication systems, where users lack control over their digital identities,
leading to privacy vulnerabilities and dependence on centralized authorities. While OpenID
Connect incorporates some privacy-preserving functionalities, it still relies on a centralized
identity provider model. This architecture enables cross-service tracking, creates vendor
lock-in, and leaves users vulnerable to data breaches and service discontinuation.

The OpenID Connect community has recognized these limitations and developed the Self-
Issued OpenlID Provider (SIOP) specification to enable users to act as their own identity
providers. However, SIOP faces a fundamental challenge: how can service providers trust
self-issued identities without a centralized authority? This trust problem has limited real-
world adoption despite SIOP’s advantages. The User-Issued Unlinkable Single Sign-On
(U2SSO0) protocol offers a novel approach that integrates Anonymous Self-Credentials to
provide unlinkable pseudonyms across services.

This thesis addresses these limitations by implementing a privacy-preserving Self-Issued
OpenlD Provider that merges U2SSO’s cryptographic primitives with the OpenID Connect
standard. A key step during development was the identification and implementation of a
deterministic transformation technique that enables derivation of standard ECDSA private
keys from the U2SSO master identity, allowing authentication using standard OIDC tokens
while preserving privacy and eliminating post-registration U2SSO dependencies. Through
the development of a CGo wrapper library and proof-of-concept implementation, this work
demonstrates the practical feasibility of integrating self-sovereign identity with industry-
standard authentication protocols, achieving efficient ongoing authentication while accept-
ing one-time registration overhead for enhanced privacy.

ii

v

Contents

(L_Introduction|

2 Background|

2.1 ~ The Digital Identity Problem|
[2.1.1 Current Federated Identity Limitations and Centralization Concerns|
[2.1.2 'The Need for Selt-Sovereign Solutions|

22 OpenlD Connect] e
[2.2.1 Core Protocol Flow and Privacy Implications|

2.3 Self-Issued OpenID Provider]
[2.3.1 Motivation and Scope| L.

[2.4 Anonymous Self Credentials and U2SSO|

2.4.1 Pedersen Commitments|o
[2.4.2 Zero-Knowledge Arguments|

[2.4.3 Anonymous Self-Credentials (ASC)[.
[2.4.4 Security Analysis|.

Anonymous Self Credentials for OpenlD Connect]

[3.1 System Architecture Overview| Lo
[3.1.1 System Components| e

[3.1.3 Key Architectural Decisions| oo oL
[3.2 Initial Setup and Master Identity Creation|
[3.2.1 Master Secret Key Generation and Storage|
[3.2.2 Credential Recovery|
[3.2.3 Master Identity Registration|
3.3 Registration Flow|
[3.3.1 User Imtiates Registration|
[3.3.2 SIOP Processes Registration Request|
(3.3.3 ID Token Construction and Response|

[3.4.1 Imitial U2SSO Authentication Approach|.
[3.4.2 Key Improvement: SSK-to-ECDSA Transformation|
[3.4.3 Comparative Analysis and Decision Rationale{.

[3.5.1 Authentication Request Processing|.,

[3.5.3 Security Properties Maintained|.,
[3.6 Supporting Infrastructure: Blockchain Identity Registry|
[3.6.1 Eliminating Trusted Third Parties|
[3.6.2 Anonymity Set Management| Lo Lo L
[3.6.3 Implementation Architecture] L oo
[3.6.4 Deployment Characteristics|,

[3.7 Discussion of Security and Privacy Properties| 0 ..
[3.7.1 Preserved Privacy Properties|
[3.7.2 Authentication Security Properties|
[3.7.3 Security Comparison with Traditional OIDC|

4 Testing and Benchmarking|

4.1 CGo Wrapper library|
[4.1.1 Resultsand Analysis| L
4.2 Proofof Concept] e

|A~ Cryptographic Library Functions|

|A.1 Master Identity Functions|. o o oo

B~ Smart Contract Implementation|

Vi

31
31
31
34
34
34
34
35
36
36
37

39

41
41

43

Chapter 1

Introduction

Digital identity management has become an important factor in today’s digital space. Users increasingly
rely on online services, from social media to banking. The traditional approach of maintaining separate
credentials for each service has proven both cumbersome and insecure. Single Sign-On (SSO) and
Federated Identity Management (FIM) solutions have emerged to address this problem, allowing users
to authenticate once with a trusted Identity Provider (IdP) and gain access to multiple services.

However, current federated identity systems suffer from fundamental privacy and centralization is-
sues. Traditional solutions, which typically implement OpenID Connect through centralized identity
providers, place digital identities under the control of singular, centralized identity providers, such as
Google, Meta, or Microsoft. This centralized architecture creates inherent privacy vulnerabilities through
several mechanisms. Identity providers can correlate user activities across all connected services by
linking authentication events to the same user account, creating comprehensive behavioral profiles. The
OAuth 2.0 [12] authorization flows that underpin OpenID Connect [21] require services to redirect users
through the identity provider, giving these providers visibility into which services users access and when.
Furthermore, the identity provider controls the authentication tokens and can potentially access or mod-
ify the claims being shared with relying parties. This creates an asymmetric power relationship where
users must trust identity providers with both their authentication credentials and their activity patterns
across the entire federated ecosystem.

Economist Yanis Varoufakis argues in his book “Technofeudalism: What Killed Capitalism” [27]] that
digital platforms have created a new system, which he calls Technofeudalism, where a few technology
giants extract rent from digital fiefdoms rather than competing in traditional markets. Digital identity
represents one of the most critical examples of this phenomenon. When users authenticate through
“Sign in with Google” or “Login with Facebook”, they become digital serfs in these companies’ identity
fiefdoms.

This dependency relationship enables massive data extraction, something Varoufakis calls “cloud
rent”, as identity providers track user behavior across the web. The apparent convenience of SSO masks
a fundamental transfer of power from users to platform owners. Users lose control over their digital
identities while platforms gain unprecedented surveillance capabilities and market power.

Self-Sovereign Identity represents a shift toward user-controlled digital identity. Rather than relying on
centralized identity providers, SSI systems enable users to create, manage, and control their own dig-
ital identities. The Self-Issued OpenID Provider (SIOP) specification [29] extends the widely adopted
OpenlD Connect [21]] protocol to support self-sovereign identity, allowing users to act as their own iden-
tity providers. SIOP eliminates the need for traditional identity providers by enabling users to generate
cryptographic proofs [10] of their identity directly from their devices. This approach preserves the famil-
iar OpenID Connect authentication flow that service providers already understand while fundamentally
changing the trust model from relying on centralized authorities to cryptographic verification. A Self-
Issued OpenlD Provider enables a potential pathway toward digital identity liberation, giving users the

power to reclaim control and ownership over their digital identities without sacrificing the convenience
of single sign-on.

However, implementing SIOP in practice raises significant challenges. How can service providers
trust self-issued identities without a centralized authority? In what way can the system prevent Sybil
attacks [6] where malicious users create multiple identities? How can users maintain privacy across
different services while still enabling legitimate identity verification? These questions have limited the
real-world adoption of SIOP despite its privacy and self-sovereign advantages.

This thesis addresses these challenges by implementing a practical SIOP solution using the User-
Issued Unlinkable Single Sign-On (U2SSO) system developed by Alupotha et al [1]]. The U2SSO proto-
col provides a cryptographic framework that enables unlinkable authentication across multiple services,
leading to the preservation of users’ anonymity and Sybil-resistance for relying parties. These two Prop-
erties are essential for practical identity systems but difficult to achieve simultaneously.

The core innovation of U2SSO lies in its use of Anonymous Self-Credentials (ASC) [[1]], which allow
users to prove membership in a fixed set of identities without revealing which specific identity they own.
This enables service providers to verify that users have legitimate credentials while preserving privacy
across services through unlinkable pseudonyms.

By combining SIOP’s standardized authentication flows with U2SSO’s cryptographic privacy guar-
antees, this thesis demonstrates how self-sovereign identity can be made practical for real-world us-
age. The implementation follows the Self-Issued OpenID Provider v2 specification while incorporat-
ing U2SSO’s privacy-preserving mechanisms, creating a bridge between cryptographic research and
industry-standard authentication protocols.

A significant breakthrough emerged during the implementation process: the development of a de-
terministic key transformation technique that derives U2SSO service-specific secret keys as standard
ECDSA private keys. This optimization enables authentication using standard OpenID Connect ID To-
kens without requiring any U2SSO protocol elements.

Chapter 2

Background

This chapter provides the necessary background knowledge for understanding the technical founda-
tions and the motivation behind integrating User-Issued Unlinkable Single Sign-On (U2SSO) within the
OpenlD Connect standard, by implementing a Self-Issued OpenID Provider proposed in the specification
draft [29] by the OpenlD Federation.

First, we introduce the fundamental concepts needed to understand current single sign-on implemen-
tations through OpenlD Connect. After examining the current standard, the concept of a Self-Issued
OpenlD Provider is introduced, quickly examining the key differences as well as what it solves.

The chapter concludes with the cryptographic foundations of the U2SSO system, which are essential
to understanding the implementation described in Chapter [3|

2.1 The Digital Identity Problem

Digital identity, the collection of attributes and credentials that uniquely identify users within online
systems [26l p. 272], has become a cornerstone of the modern internet. Unlike physical identity verifica-
tion, digital identity faces unique challenges: persistence across sessions, linkability across services, and
dependence on centralized authorities for verification.

Current digital identity solutions suffer from fundamental privacy and centralization issues that com-
promise user autonomy. When users authenticate through “Sign in with Google” or similar services, they
give away control of their digital identities to centralized providers who can track their activities across
the web and unilaterally revoke access. Understanding these limitations is essential for understanding
why privacy-preserving authentication systems like Self-Issued OpenID Providers are necessary.

2.1.1 Current Federated Identity Limitations and Centralization Concerns

Federated Identity Management (FIM) represents the dominant paradigm for web authentication, where
multiple service providers form associations with established identity providers, enabling users to lever-
age credentials from a provider to access services across the entire federation [3|]. While this approach
offers convenience through single sign-on capabilities, it creates both technical limitations and broader
socioeconomic concerns.

The most visible manifestation of this paradigm is social login, where users authenticate on third-
party websites using credentials from established social identity providers. While social logins offer
enhanced user convenience by eliminating the need to create distinct credentials for each service, they
exemplify the fundamental problems of centralized federated identity [9]].

Technical and Operational Limitations

Centralized Users must trust centralized identity providers with both their authentication cre-
Control: dentials and their activity patterns. These providers control access to users’ digital
identities and can unilaterally revoke access or modify terms of service [16].

Cross-Service Identity providers can correlate user activities across all connected services by

Tracking: linking authentication events to the same user account. The OAuth 2.0 authoriza-
tion flows require services to redirect users through the identity provider, giving
these providers visibility into which services users access and when [[16].

Vendor Lock-in: Once users establish accounts with federated services through a particular identity
provider, switching providers becomes costly and complex, creating dependency
relationships that limit user choice [4]].

Single Points of The entire federated ecosystem depends on the continued operation and trustwor-
Failure: thiness of centralized identity providers. Service outages or security breaches at
these providers can affect access to numerous dependent services [14].

Economic and Power Structure Implications

These technical limitations reflect broader shifts in digital power structures. Economist Yanis Varoufakis
argues that digital platforms have created a new system where technology giants extract rent from digital
fiefdoms rather than competing in traditional markets [27]. Digital identity represents a critical example
of this phenomenon.

When users authenticate through a centralized identity provider they become digital serfs in these
companies’ identity fiefdoms. This relationship enables what Varoufakis calls “cloud rent”, the extraction
of value through control of digital infrastructure rather than traditional market competition. Users lose
control over their digital identities while platforms accumulate comprehensive behavioral profiles across
the web, creating asymmetric power relationships that extend far beyond simple authentication.

This concentration of identity control creates systemic vulnerabilities not just for individual privacy,
but for the competitive dynamics of the entire internet economy. Smaller service providers become
dependent on identity giants, while users face increasingly limited choices and diminished autonomy
over their digital presence.

Privacy and Centralization Concerns

Beyond operational limitations, centralized federated identity creates fundamental privacy vulnerabilities
that compromise user autonomy and data protection.

Comprehensive Data Aggregation: Identity providers collect far more information than necessary
for authentication, including tracking users’ website access patterns [15]], device fingerprints [23]], lo-
cation data [5], and behavioral patterns. This data aggregation extends beyond authentication events to
include email content, search history, and application usage when users employ integrated services [17].

Informed Consent Challenges: The complexity of federated identity relationships makes meaning-
ful user consent nearly impossible. Users cannot reasonably understand the full scope of data sharing
between identity providers and third-party services, violating principles of informed consent central to
privacy regulations [28]].

Jurisdictional and Regulatory Complications: Users in privacy-protective jurisdictions may find
their data processed by identity providers subject to different legal frameworks. This creates regula-
tory arbitrage where privacy protections can be circumvented through strategic identity provider selec-
tion [20].

Profile Permanence and Right to be Forgotten: Centralized identity systems create persistent
digital profiles that are difficult to modify or delete. Even when users attempt to exercise rights like
data deletion, the interconnected nature of federated systems makes complete data removal practically
impossible [19].

2.1.2 The Need for Self-Sovereign Solutions

Self-Sovereign Identity (SSI) represents a paradigm shift toward user-controlled digital identity. Rather
than relying on centralized identity providers, SSI systems enable users to create, manage, and control
their own digital identities through cryptographic mechanisms.

The Self-Issued OpenlID Provider (SIOP) specification [29] extends the widely adopted OpenID Con-
nect [21] protocol to support self-sovereign identity, allowing users to act as their own identity providers.
This approach preserves the familiar authentication flows that service providers already understand while
fundamentally changing the trust model from relying on centralized authorities to cryptographic verifi-
cation.

However, implementing SIOP raises significant challenges: How can service providers trust self-
issued identities without a centralized authority? How can the system prevent Sybil attacks while pre-
serving user privacy? These questions are difficult to face and have limited real-world adoption, despite
SIOP’s advantages.

2.2 OpenlD Connect

This section provides an overview of the relevant protocols. Unless otherwise cited, all information is
drawn from the OpenlD Core specification [21]] and the Self-Issued OpenID Provider draft [29].

OpenlD Connect is an additional layer built on top of the OAuth 2.0 protocol. This extra layer enables
authentication, meaning that Clients may verify the identity of an end user provided by an Authorization
Server. Additionally, Clients MAY obtain basic profile information about the end user. Information about
the authentication performed by the OpenlID Provider is returned in the form of an ID Token, a JSON
Web Token (JWT) [21]].

Authentication vs Authorization

Understanding the distinction between Authentication (AuthN) and Authorization (AuthZ) is essential
for analyzing OpenID Connect’s privacy implications and the role of Self-Issued OpenlD Providers.

Authentication in digital identity systems refers to the process of verifying a claimed identity, an-
swering the question “Who is this user?” When Alice logs into a service using Google as her identity
provider, the authentication process confirms that Alice is indeed the owner of her Google account.

The OpenlD Connect specification defines authentication as the “process used to achieve sufficient
confidence in the binding between the Entity and the presented Identity” [21l], emphasizing the trust
establishment aspect of the authorization process.

Authorization determines what resources or actions an authenticated user may access, answering
“What can this user do?” This includes decisions about which user attributes (email, name, profile)
should be shared with the requesting service and what permissions the user grants.

This distinction has important privacy implications: while authentication establishes user identity,
the authorization process determines how much personal information flows between identity providers
and relying parties. In traditional federated systems, users have limited control over this authorization
process, contributing to the privacy problems discussed in Subsection|2.1.1

Terminology Note: Following OpenlD Connect conventions, this thesis uses “Authorization Re-
quest” to refer to the initial request from relying party to identity provider, even when the primary pur-
pose is authentication. This reflects the standard protocol terminology where the OAuth 2.0 authorization
framework underlies the authentication layer.

Background (OAuth 2.0)

OpenID Connect builds upon OAuth 2.0, an authorization framework that enables third-party applica-
tions to obtain limited access to HTTP services through a redirection-based flow [[12]. While OAuth 2.0
was designed for authorization rather than authentication, its redirection mechanisms form the foundation

for OpenlID Connect’s identity layer, which create the privacy vulnerabilities that centralized federated
identity systems exhibit.
2.2.1 Core Protocol Flow and Privacy Implications

OpenlD Connect involves three actors: the OpenlD Provider (OP) that authenticates users, the Relying
Party (RP) that requires authentication, and the end user being authenticated. The protocol follows these
steps, each creating opportunities for surveillance and tracking:

1. Authorization Request: The RP redirects the user to the OP, revealing to the OP which service
the user is accessing and when.

2. Authentication and Authorization: The OP authenticates the user and can correlate this authen-
tication with the requesting service.

3. Token Response: The OP issues an ID Token containing user identity information, establishing
ongoing dependency relationships.

4. UserInfo Request: The RP may request additional user claims from the OP, enabling further data
collection.

5. Claims Response: The OP provides user attributes, completing the privacy-compromising infor-
mation flow.

The protocol flow is illustrated in [Figure 2.1} provided by the OpenID specification.

to——————= I to——————- 4
I I I I
| | (L)) Zsticlly| IREEBIESiE-=——=—m > |
I I I I
I et T I I
I I I I I
[| | lmaeke o= ((2) smREEn E Auhelnbe=ess | |
I | | User | I I
I RP I I I OP I
I e + I I
I I I I
| [ESEEEEs (&) el Respenge=—-——=—= | |
I I I I
I |- (4) UserInfo Request----- > | |
I I I I
| [EseassEsss (8) UeEELREE HEE@enEE=——"" | |
I I I I
+o—————— + t-——————- I

Figure 2.1. OpenID Connect Protocol flow.

It is worth noting that steps (1), (2) and (3) constitute the Authentication part of the exchange,
whereas steps (4) and (5) comprise the Authorization part.

Authorization Request

In OpenID Connect, the Relying Party (RP) sends an Authorization Request to the OpenlD Provider (OP)
to initiate authentication. For the authentication exchange to succeed, the request MUST contain certain
parameters as defined in the OpenID Connect Core specification [21], listed in[lable 2.1

Table 2.1. Baseline OIDC Authorization Request Parameters

Parameter Requirement Description / Notes

scope REQUIRED Must include the value openid to signal an
OpenID Connect request.

response_type | REQUIRED OAuth 2.0 response type determining the flow used
(e.g., id_token, code).

client_id REQUIRED OAuth 2.0 client identifier issued to the RP by the
OP.

redirect_uri REQUIRED URI to which the OP will send the authentication
response.

state RECOMMENDED | Opaque value to maintain state between request and
callback; mitigates CSRF.

nonce OPTIONAL Binds the client session to the ID Token to prevent
replay attacks.

Upon receiving the request, the Identity Provider initiates the authentication process for the user,
typically by requesting the credentials associated with their account.
Authorization Response

After successful user authentication, the OpenlD Provider redirects the user back to the relying party’s
redirect_uri with the authentication response. The response contains either an authorization code
(Authorization Code Flow) or an ID Token directly (Implicit Flow), along with the state parameter to
prevent CSRF attacks.

In case of successful authentication, the response includes:

* code: Authorization code for token exchange (Authorization Code Flow)
* id_token: JWT containing authentication claims (Implicit Flow)

* state: value to mitigate CSRF attacks (all Flows)

Error responses include an error parameter with standardized error codes such as ’access_denied’ or
’invalid_request’, allowing the relying party to handle authentication failures appropriately.

2.2.2 ID Token and claims
ID Token
An ID Token is a JSON Web Token (JWT). JWTs are compact, URL-safe means of representing claims

that are to be transferred between two parties. It is intended for space-constrained environments. A JWT
is a String, representing a set of claims as a JSON object encoded in a JWKS, enabling the object to be
secured with a digital signature.
A JWT consists of three Base64URL-encoded parts, separated by dots:

1. Header. A JSON object indicating the token type and signing algorithm, for example:

2. Payload. A JSON object of claims.

3. Signature. A digital signature over the header and payload, produced by the OP’s private key.

Example JWT:

Encoded Token:
eyJhbGciOiJSUzIINiIsInR5¢cCI6IkpXVCI9.
eyJzdWIi0iIxMJMONTY30ODkwIiwibmFtZSI6IkEFsaWN1InO.
EkN-DOsnsuRJRO6BxXemmJIDm3HbxrbRzXglbN2S4s0ko

Decoded Components:
Header: {"alg":"RS256", "typ":"JWT"}
Payload: {"sub":"1234567890", "name": "Alice", }

Claim

A claim is a piece of information asserted about a subject. Claims are represented as a pair, consisting of
a claim name and a claim value.
For the Authentication flow defined by OpenlD Connect, some claims are REQUIRED:

Table 2.2. Standard Required Claims in OIDC ID Token

Claim | Description

iss Issuer identifier.
sub Subject identifier.
exp Expiration time.
iat Issuance time.

nonce | Binds the client session to the ID Token; mitigates replay attacks.

While some claims are REQUIRED, adding more (even custom) claims is OPTIONAL. However, all
parties involved in the Authentication exchange MUST agree on the meaning of these claims. This
means that code must be in place to handle these additional claims. All claims not understood by the
relying party MUST be ignored [21]].

2.3 Self-Issued OpenlD Provider

2.3.1 Motivation and Scope

Traditional federated identity systems create privacy and centralization concerns by allowing identity
providers to track user activities across services and by introducing single points of failure. The Self-
Issued OpenlD Provider (SIOP) specification addresses these limitations by enabling users to act as their
own identity providers, generating identity tokens directly from their devices.

A SIOP aims to achieve the following:

 Eliminate identity provider tracking across services.
* Return ownership of digital identity to users.
* Remove single points of failure.

* Maintain interoperability with existing OpenID Connect infrastructure.

2.3.2 Core Authentication Flow

The SIOP authentication flow follows the same high-level steps as the traditional OP model, but without a
centralized identity provider. The RP sends an Authorization Request to the SIOP, and the SIOP responds
with an ID Token containing authentication claims. In the SIOP model:

* The iss (issuer) and sub (subject) claims must be identical, since the subject is also the issuer.

* The sub claim must be a cryptographically verifiable identifier.

Figure|2.2)illustrates the protocol flow as defined in the SIOP specification.

--(1) Self-Issued OpenID Provider Request->
(Authorization Request)

| |
| End-User

|

|

RP |<--(2) AuthN & AuthZ--->| Self-Issued OP
|

<-(3) Self-Issued OpenID Provider Response-
(Self-Issued ID Token)

Figure 2.2. OpenlD Connect SIOP model Protocol flow.

2.3.3 Subject Syntax Types

A Subject Syntax Type defines the format of the identifier used in the sub claim within ID Tokens issued
by a SIOP. Two common types are supported:

* JWK Thumbprint Subject Syntax Type: The subject identifier is computed as the thumbprint
of the JSON Web Key (JWK) used to sign the ID Token [13]]. This allows immediate signature
verification without external key lookup.

* Decentralized Identifier (DID) Subject Syntax Type: Uses W3C DIDs, supporting advanced
features such as key rotation and service endpoints [24] (beyond the scope of this thesis).

In this thesis, the JWK Thumbprint syntax type is used for its simplicity and compatibility with
U2SSO0 cryptographic operations.

2.3.4 1ID Token Structure in SIOP

While the basic ID Token structure in SIOP is similar to traditional OIDC, it has two key differences:
1. The iss and sub claims must be identical.

2. For the JWK Thumbprint syntax type, the ID Token must contain an additional sub_jwk claim
with the public key used to verify the signature.

2.4 Anonymous Self Credentials and U2SSO

User-issued Unlinkable Single Sign-On (U2SSO) relies on a cryptographic construction called Anony-
mous Self-Credentials (ASC) to achieve privacy-preserving authentication with Sybil resistance. ASC
enables users to prove membership in an authorized set of identities without revealing which specific
identity they possess, while simultaneously preventing the creation of multiple accounts with the same
service provider.

The ASC construction builds upon several cryptographic primitives that work together to provide
these seemingly contradictory properties. At its core, the system uses commitment schemes to hide in-
formation while maintaining the ability to prove statements about committed values. Zero-knowledge
arguments then allow users to demonstrate knowledge of valid credentials without revealing the creden-
tials themselves. Finally, the ASC framework combines these primitives into a cohesive protocol that
supports both anonymous registration and efficient authentication.

This section presents the key cryptographic building blocks underlying the U2SSO protocol. Under-
standing these primitives and their interplay is essential for analyzing the security and privacy guarantees
of the U2SSO system.

2.4.1 Pedersen Commitments

Pedersen commitments [[18]] form a cornerstone of the privacy-preserving mechanism in the U2SSO
system, which enables users to commit to secret values without revealing them and maintaining the
ability to prove properties about the committed values.

Definition

Let G be a cyclic group of prime order g with generators g and h, where the discrete logarithm of A with
respect to g is unknown. A Pedersen commitment to a value m € Z, with randomness r € Zj is defined
as:

C(m,r)y=g™-h" 2.1

Properties

Pedersen commitments satisfy several cryptographic properties:

Binding Property: Given the computational difficulty of the discrete logarithm problem, it is compu-
tationally infeasible for an adversary to find two different pairs (m, r) and (m/, r’)
such that C'(m,r) = C(m’,r") with non-negligible probability[18].

Hiding Property: = The commitment C'(m,r) computationally hides the value m. Specifically, for
any two messages mg,m1 € Zg, the distributions {C(mg,r) : r < Z,} and
{C(my,r) : r Z,} are computationally indistinguishable[18].

Homomorphic Pedersen commitments support additive homomorphism:
Property:

C(ml,rl) 'C(TTLQ,TQ) :C(m1+m2,r1+7“2) (2.2)
Application in U2SSO

In the U2SSO system, Pedersen commitments enable users to commit to their master public keys while
participating in zero-knowledge proofs. The homomorphic property is particularly useful for construct-
ing proofs of linear relations between committed values without revealing the underlying secrets. The
commitment scheme is instantiated over the secp256k1 elliptic curve, where the group G is the cyclic
group of points on the curve. The generators g and h are chosen such that no party knows the discrete
logarithm relationship between them, ensuring the security of the commitment schemel[1]].

Multi-Value Commitments

In the CRS-ASC construction, multi-value commitments are employed to allow a single commitment
to hide and bind multiple values using a single blinding key. A multi-value commitment for L values
[v;]Z_, with blinding key k is denoted as:

C = Comed ([vi]l,. k) 2.3)

where crs is the common reference string, Z, is the value space, and S is the blinding key space.

10

2.4.2 Zero-Knowledge Arguments

Zero-knowledge arguments allow a prover to convince a verifier that a statement is true without revealing
any additional information beyond the validity of the statement itself [[10]].

System Components

A zero-knowledge argument system operates through three distinct algorithms:

* Setup Algorithm: Establishes the cryptographic parameters and public information required for
the proof system, including the common reference string and security parameters.

* Prover Algorithm: Takes as input a statement and a witness, and generates a cryptographic proof
that demonstrates the truth of the statement without revealing the witness.

* Verifier Algorithm: Takes as input a statement and a proof, and outputs whether the proof consti-
tutes valid evidence for the statement’s truth.
Security Requirements

Zero-knowledge argument systems must satisfy three fundamental security properties:

Completeness: An honest prover who knows a valid witness can always convince an honest veri-
fier of a true statement with overwhelming probability.

Soundness: No computationally bounded dishonest prover can convince an honest verifier of
a false statement except with negligible probability.

Zero-Knowledge: The verifier learns no information about the prover’s witness beyond the fact that
the statement is true.

Application in U2SSO

In the U2SSO system, cryptographic proofs serve two distinct purposes:

1. Registration: Zero-knowledge arguments prove membership in the anonymity set without reveal-
ing the specific identity, while preventing multiple registrations through nullifier uniqueness.

2. Authentication: After registration, users authenticate using Schnorr signatures with their regis-
tered service-specific secret keys. These signatures provide efficient proof of ownership of the
registered pseudonym without requiring complex zero-knowledge proofs for each login.

2.4.3 Anonymous Self-Credentials (ASC)

Anonymous Self-Credentials represent the core cryptographic construction enabling privacy-preserving
authentication in U2SSO.

Construction Overview (CRS-ASC)

The CRS-ASC system utilizes multi-value Pedersen commitments as master identities (master public
keys). Each master identity commits to deterministically derived nullifiers for each service provider,
with the master secret key serving as the blinding factor.

In CRS-ASC, the master secret key enables deterministic derivation of service-specific nullifiers,
while the master identity is a Pedersen commitment to these nullifiers using the master secret key as the
blinding factor.

An ASC system consists of:

11

* N provers, each possessing a master credential (®;, sk;) where ®; is the master public key and
sk; is the master secret key

» [verifiers, each with a unique verifier identifier v; € V'

* Anonymity set A := [®;] | containing all master identities

Master Public Key Generation
For each user 7, the master identity is computed as:
. L
sk, nul,; ;
i =gy’ 'Hgi "
i=1
where:
* sk; is the master secret key (blinding factor)
* nul;; is the deterministically derived nullifier for service v;

* 40,91, -- -, 9L are independent generators from the common reference string

Registration Protocol

To register with service provider [, a user proves in zero-knowledge:

“I know the secret key corresponding to one of the master identities in the anonymity set {®1, ..., ®,},
and here is the nullifier nul; that was committed within my master identity for service l.”

The binding property of Pedersen commitments ensures that the user must reveal the same nullifier
for any subsequent interaction with the same service provider, preventing multiple registrations (Sybil
resistance).

2.4.4 Security Analysis

The security properties of the CRS-ASC construction have been formally proven in the original work
by Alupotha et al. [[1l]. Specifically, they demonstrate that CRS-ASC satisfies the following security
properties:

Correctness: Honest provers can always generate valid master credentials and successfully reg-
ister pseudonyms with service providers.

Robustness: Honest provers can generate valid proofs even when the anonymity set contains
maliciously generated master identities.

Unforgeability: Adversaries without knowledge of valid secret keys cannot generate valid proofs
for registration.

Sybil Resistance: Each master identity can generate at most one valid nullifier per service provider,
preventing multiple registrations.

Anonymity: Registration proofs do not reveal which specific master identity was used, provid-
ing privacy within the anonymity set.

Multi-Verifier Registrations with different service providers cannot be linked to the same user,
Unlinkability: even if service providers collude.

For detailed proofs and security reductions, the reader is encouraged to refer to [1]].

12

Chapter 3

Anonymous Self Credentials for OpenlD
Connect

This chapter describes a complete proof-of-concept implementation demonstrating the practical feasi-
bility of privacy-preserving authentication through a Self-Issued OpenID Provider. Building upon the
cryptographic system U2SSO proposed by Alupotha et al. [1]], a working system was developed that
integrates U2SSO with the OpenID Connect protocol to enable User-Issued Unlinkable Single Sign-On.

Rather than presenting abstract protocols, this chapter follows a user’s complete journey through
the system, from initial setup through registration and ongoing authentication. By tracing each step
of Alice’s interaction with the system, we demonstrate how privacy-preserving authentication can be
achieved while maintaining compatibility with existing OpenlD Connect infrastructure.

The implementation follows a layered approach, beginning with the development of the “oidcu2sso”
library, a CGo wrapper that bridges U2SSO’s C/C++ cryptographic library with Go-based OpenlID Con-
nect components. This library handles all cryptographic calculations necessary to implement Common
Reference String Anonymous Self Credentials (CRS-ASC) while maintaining full compliance with the
OpenlD Connect protocol.

The complete system consists of three core components: a Self-Issued OpenID Provider that gener-
ates privacy-preserving ID Tokens, a relying party that supports both traditional and self-issued authenti-
cation flows, and a blockchain-based Identity Registry for decentralized credential management. Certain
elements are intentionally simplified to keep the project within the scope of a bachelor thesis, including
network transport security, persistent data storage, and production-grade error handling.

The chapter progresses through Alice’s complete experience: establishing her master identity, reg-
istering with a new service using zero-knowledge proofs, and authenticating efficiently in subsequent
visits.

3.1 System Architecture Overview

The OpenlD Connect User-Issued Unlinkable Single Sign-On library implements a layered architecture
that bridges U2SSO cryptographic primitives with industry-standard authentication protocols. This im-
plementation enables three distinct user journeys: initial setup where users create their master identity,
registration flows where users prove membership in the anonymity set to register with new services, and
authentication flows where returning users prove ownership of their service-specific credentials.

The system consists of three primary architectural components, as illustrated in which
work together to support these user journeys seamlessly.

13

Self-Issued (< ¥ :
Relying
Interface Layer OpenlD
. Party Legend:
Provider
(\ // —> API calls)
\ / - =» Dependencies
<> Protocol comm.
. CGo Wrapper
CGo Bridge Layer Library
v Ttely
. . U2SSO .

Cryptographic Engine Layer L il - libsecp256kl OpenSSL

Figure 3.1. System architecture showing component relationships and data flow.

3.1.1 System Components

From Alice’s perspective, the system appears as a familiar OpenlD Connect flow, she clicks “Sign up
with SIOP” and receives an authentication token. Behind this familiar interface, three architectural layers
work together to preserve her privacy:

Interface Layer: Maintains OpenID Connect compatibility, ensuring that services like Service X
require no modifications to support privacy-preserving authentication.

CGo Bridge Layer: Safely integrates complex cryptographic operations with standard web protocols,
handling the translation between Alice’s high-level authentication requests and
low-level zero-knowledge proof generation.

Cryptographic Implements the U2SSO protocol that enables Alice to prove her legitimacy without
Engine Layer: revealing her identity.

This layered approach ensures that while Alice’s experience remains familiar, the underlying system
provides strong privacy guarantees that traditional federated identity cannot offer.

3.1.2 Protocol Flow Overview

Alice’s interaction with the system follows three distinct phases, each building upon the previous to
create a complete privacy-preserving identity solution:

Phase 1 - Identity Establishment: Alice creates her master cryptographic identity and joins the
anonymity set, establishing her credentials while remaining anonymous among all other users. Alice’s
U2SIOP then stores the anonymity set for proof generation.

Phase 2 - Service Registration: When Alice encounters a new service, she proves her membership
in the legitimate user set without revealing which specific user she is, enabling privacy-preserving ac-
count creation. Alice’s U2SIOP generates zero-knowledge proofs using the anonymity set cached from
Phase 1, while the relying party independently retrieves the current anonymity set from the blockchain-
based identity registry to verify Alice’s proof.

Phase 3 - Streamlined Authentication: For subsequent visits, Alice authenticates efficiently using
service-specific credentials derived from her master identity. This eliminates the need for anonymity set
communication, as shown in

14

Relying Party User Agent (U2SIOP) Identity Registry

User
Request access
Send authorization request
Ask consent _
Give consent
PR s et Sttt
Generate zero-knowledge proof
Send authorization response
Request anonymity set
Return anonymity set
T At AR
Verify proof
Grant access
... >
Relying Party User Agent (U2SIOP) Identity Registry
User
Figure 3.2. Abstract Registration Protocol Flow
Relying Party User Agent (SIOP)
User
Request access
Send authorization request
>
Ask consent
>
Give consent
Generate and sign authentication token
Send authorization response
Verify token signature
Grant access
___ >
Relying Party User Agent (SIOP)
User

Figure 3.3. Abstract Authentication Protocol Flow

3.1.3 Key Architectural Decisions

Memory Management: The library employs a hybrid approach combining explicit C memory manage-
ment with Go’s garbage collection. This design ensures optimal performance for cryptographic opera-
tions while maintaining memory safety at the application level.

15

Cryptographic Context Isolation: Each cryptographic operation maintains isolated secp256k1
contexts, ensuring thread safety and preventing cross-contamination between operations. This is partic-
ularly important given the sensitive nature of master secret keys and service-specific derivations.

Flow-Specific Optimization: The architecture distinguishes between registration and authentication
flows at all levels, from proof generation algorithms to token structures, enabling significant performance
optimizations for common authentication scenarios.

These architectural decisions enable Alice to reclaim control over her digital identity while main-
taining compatibility with existing infrastructure. The following sections trace her complete journey,
beginning with the establishment of her master identity.

3.2 Initial Setup and Master Identity Creation

Before Alice can register with any service or authenticate anywhere, she must first establish her master
identity. This one-time setup process creates the cryptographic foundation for all subsequent interactions
and represents the user’s entry point into the privacy-preserving authentication ecosystem.

Unlike traditional systems where Alice would create accounts with centralized providers like Google
or Facebook, this setup makes Alice her own identity provider. The process involves three steps: gener-
ating cryptographic credentials that will serve as her identity foundation, ensuring she can recover these
credentials if needed, and publishing her public identity to join the global anonymity set.

3.2.1 Master Secret Key Generation and Storage

Alice’s Self-Issued Unlinkable OpenlID Provider (U2SIOP) generates a cryptographically secure 32-byte
master secret key that serves as the foundation for all her future authentication activities. This single key
represents Alice’s digital identity, compromise of this key would allow an attacker to impersonate Alice
across all registered services, making its secure generation and storage paramount.

A c ryptographically secure random number generation provides sufficient entropy while remaining
computationally efficient for client-side generation (see Appendix [A] Listing [A.T). Unlike password-
based systems where Alice might choose weak credentials, this approach guarantees cryptographic
strength while removing the burden of secure credential selection from Alice.

The generated key is stored locally on Alice’s device under her complete control, eliminating the
need to trust external parties with her authentication secrets. This storage model addresses a fundamental
vulnerability of centralized identity systems where credential compromise at the provider affects millions
of users simultaneously.

3.2.2 Credential Recovery

For subsequent uses of her U2SIOP, Alice needs to retrieve her previously generated master secret key.
The implementation provides secure retrieval of the stored 32-byte passkey from persistent storage (see
Appendix [A] Listing [A.2). This enables secure reuse of Alice’s cryptographic identity whenever it is
needed for registration or authentication operations. The function returns both the 32-byte master secret
key and a boolean success indicator. The deterministic nature of the system means that Alice’s master
secret key alone is sufficient to recreate all her service-specific identities.

This approach trades the convenience of centralized account recovery for the security and privacy
benefits of self-sovereign identity. Alice gains complete control over her digital identity but must take
responsibility for credential management, a fundamental characteristic of self-sovereign systems.

3.2.3 Master Identity Registration

With her master secret key established, Alice’s U2SIOP generates the corresponding master public key
that will represent her in the global anonymity set. This step transforms Alice from having local crypto-
graphic credentials to becoming part of the global privacy-preserving authentication ecosystem.

16

The master public key generation represents the most cryptographically sophisticated aspect of the
setup process. The implementation integrates current service identifiers (topics) and cryptographically
binds unique nullifiers for each registered service to Alice’s master identity. This binding ensures that
Alice can prove her legitimacy during registration while preventing her from creating multiple accounts
with the same service, thus achieving privacy and Sybil resistance.

The cryptographic process involves three essential steps:

1. Topic Integration: The current service identifier list establishes which services participate in the
ecosystem

2. Nullifier Binding: Unique nullifiers for each service identifier are cryptographically bound to
Alice’s master secret key

3. Sybil-Resistant Key Generation: The master public key is generated with embedded nullifier
commitments, ensuring single-use per service while preserving anonymity

This nullifier binding mechanism prevents users from creating multiple accounts with the same ser-
vice while maintaining their position within the legitimate anonymity set.
The complete implementation of this process is detailed in Appendix [A] Listing

Joining the Anonymity Set

Alice’s master public key must be published to the blockchain-based identity registry to join the anonymity
set. This publication step requires a small gas fee but establishes Alice’s position among all legitimate
users in the system. The implementation handles the blockchain interaction through smart contract inte-
gration detailed in Section 3.6

The blockchain registry serves two critical functions: it provides a decentralized, tamper-resistant
record of all legitimate identities, and it enables service providers to retrieve the current anonymity set
for verification purposes. Alice’s privacy depends on the size of this anonymity set, larger sets provide
stronger anonymity guarantees.

3.3 Registration Flow

With her master identity established, Alice is ready to register with services in the privacy-preserving
authentication ecosystem. The registration flow enables Alice to prove she is a legitimate user without
revealing her specific identity, while simultaneously preventing her from creating multiple accounts with
the same service.

This section traces through Alice’s first registration with a new service, which we’ll call “Service
X”. Unlike traditional OAuth flows that rely on centralized identity providers, Alice must now prove
her membership in the anonymity set through zero-knowledge cryptographic proofs. The registration
involves four key phases that work together to establish Alice’s account while preserving her privacy.

3.3.1 User Initiates Registration

When Alice clicks “Sign Up with SIOP” on Service X, she triggers a process that fundamentally differs
from traditional OpenID Connect flows. Instead of redirecting to a centralized identity provider like
Google, Service X must prepare for direct cryptographic verification of Alice’s credentials.

Service X generates a cryptographic challenge that will bind Alice’s registration proof to this specific
session, preventing replay attacks. The authorization request extends standard OpenlD Connect parame-
ters with privacy-preserving requirements: a proof type indicating zero-knowledge verification is needed,
the cryptographic challenge, and a service identifier. Otherwise the request parameters are as described

in[Table 2.1]

17

T L - N T S Ot N

This establishes the cryptographic context for Alice’s subsequent proof generation, ensuring that

her registration is bound to this specific session while maintaining compatibility with existing OpenlD
Connect infrastructure.

Alice’s browser is then redirected to her U2SIOP with this authorization request, as shown in [Fig-|

ure 3.4

/auth?challenge=£f04a0db2e9c9cal53e70e0c9bfbcb7bab62ece31ldddbabf44a566e9ffa5b9776
&client_1d=6d7e78af064c86eb9%b9%cblc3611c9ab60a2£9317e3891891e£31770939£78e£8
&nonce=GgAHUhVCixburkDccj2eQWcfA8QjkoAJ4GjOXkSImhA

&proof_type=registration

sredirect_uri=http://localhost:8081/auth/siop/callback

&response_type=id_token

&scope=openid
&service_name=6d7e78af064c86eb9%9cblc3611c9%9ab60a2£9317e3891891e£31770939£78e£8
&state=ScxIaXS14SAA1wZ4wOKBh2UzZyX4Uucb6rpDeuTtoNY

Figure 3.4. Registration Authorization Request

3.3.2 SIOP Processes Registration Request

Alice’s U2SIOP receives the registration challenge and must now generate cryptographic proofs demon-
strating her legitimacy without revealing her identity. This phase represents the core innovation of the
system, proving membership in the anonymity set without revealing which specific identity Alice owns.

The U2SIOP processes the request through three sequential cryptographic operations, each building

upon the previous to create Alice’s privacy-preserving registration response.

Service-Specific Key Derivation

Alice’s U2SIOP derives unique cryptographic credentials specifically for Service X, ensuring that Alice’s
activity cannot be linked across services even if multiple services collude. However, these U2SSO-
derived credentials must be transformed into standard ECDSA format to maintain compatibility with
existing OpenID Connect infrastructure.

This transformation represents a key innovation enabling privacy-preserving authentication to inte-

grate with industry-standard protocols. The TokenKeyFromDigest function performs this critical bridge:

Listing 3.1. SSK to ECDSA Keypair Transformation

-
func TokenKeyFromDigest (digest []byte) (xecdsa.PrivateKey, error) ({

if len(digest) != 32 {
return nil, fmt.Errorf ("digest must be 32 bytes")

// Deterministic mapping: SSK —> I vate key scalar
d := new(big.Int).SetBytes (digest)

curve := elliptic.P256()

// E e d is in valid range [1, N-1] for P-256

n := curve.Params () .N
d.Mod (d, new(big.Int).Sub(n, big.NewInt (1l)))
d.Add (d, big.NewInt (1))

// Generate ECDSA keypair
privateKey := new(ecdsa.PrivateKey)
privateKey.PublicKey.Curve = curve

privateKey.D = d
privateKey.PublicKey.X, privateKey.PublicKey.Y =
curve.ScalarBaseMult (d.FillBytes (make ([]byte, 32)))

18

23

:1{ return privateKey, nil J
}

This transformation implements the mathematical conversion that ensures the same service-specific
secret key always produces the same ECDSA keypair, enabling consistent authentication across sessions
while maintaining cryptographic isolation between services. The deterministic nature is crucial as Alice
must generate identical credentials for each service visit to maintain her established identity.

Zero-Knowledge Proof Generation

With service-specific credentials established, Alice’s U2SIOP must now prove that she is a legitimate
user without revealing her identity. This requires generating a zero-knowledge proof demonstrating that
she possesses the master secret key corresponding to one of the public keys in the anonymity set, without
revealing which specific public key she owns.

The registration proof is generated using the RegistrationProof function, which implements a
zero-knowledge membership proof with nullifiers:

Listing 3.2. Registration Proof Generation

1 func RegistrationProof (topicList [][]lbyte, index int, currentm int,
currentN int, serviceName []byte, challenge []byte, mskBytes []byte, idList
[1[1byte, spkBytes []byte) (string, string, bool) ({

//... context 1init

tion ¢ opic

5 €

RN

/ /]+ "Nre a4 1 AN = I ~cONnv ~q 7
4 //... data preparation and conversion

6 // Zero—-knowledge proof generation with nullifier

7 prooflen := C.secp256kl_zero_mcom_ DBPoE_get_size (&rctx, C.int (currentm))
8 proof := make([]C.uint8_t, prooflen)
9 nullifier := make([]C.uint8_t, 32)

11 if int (C.secp256kl_boquila_prove_DBPoE_memmpk (ctx, &rctx, proofPtr,
nullifierPtr, mpksPtr, mskPtr, chalPtr, namePtr, name_len, &spk,
13 C.int32_t (index), C.int (topic_index), C.int (currentN),

14 C.int (currentm))) == 0 {

15 return "", "", false

8}
R

)
Q
D
0
-
o
o
0]
n
o]

18 //... proof verification

20 return proofHex, nullifierHex, true

- J

The proof generation process proceeds through several cryptographic steps:

1. Context Initialization: Creates secp256k1 cryptographic contexts and retrieves the service iden-
tifier index from the list.

2. Data Preparation: Converts all input parameters (challenge, service name, anonymity set) from
Go types to C structures required by the cryptographic library.

3. Zero-Knowledge Proof Generation: Calls the underlying U2SSO function to generate both a
membership proof of anonymity set membership and a unique nullifier preventing multiple regis-
trations.

The function returns three critical values: the zero-knowledge proof (as hexadecimal string), the
nullifier (as hexadecimal string), and a success boolean indicating whether proof generation completed
successfully.

19

® N o A W N =

Processing Completion

Upon successful completion of both key derivation and proof generation, Alice’s U2SIOP has assem-
bled all cryptographic components necessary for her privacy-preserving registration with Service X. The
U2SIOP now possesses:

» Service-specific credentials that identify Alice uniquely within Service X while remaining unlink-
able to her other service identities

* A zero-knowledge proof demonstrating her legitimacy without revealing her position in the anonymity

set

A nullifier that prevents multiple registrations while preserving anonymity

* Cryptographic binding to the specific registration session preventing replay attacks

These components will be packaged into a Self-Issued ID Token that maintains full compatibility
with OpenID Connect standards while enabling privacy-preserving authentication. The next step involves
constructing this token and returning it to Service X for verification and account creation.

3.3.3 ID Token Construction and Response

With cryptographic proof generated, Alice’s U2SIOP now packages all necessary information into a Self-
Issued ID Token that conforms to the OpenID Connect standard while carrying the privacy-preserving
proof data. The registration token contains both standard OIDC claims and specialized cryptographic
claims that enable Service X to verify Alice’s legitimacy without learning her identity.

JWK Embedding and Token Signing

With the ECDSA keypair generated, Alice’s U2SIOP embeds the public key within the ID Token and
uses the private key for signing. This process establishes the self-issued identity property while enabling
standard JWT verification.

Public Key Embedding: The derived public key is embedded within the ID Token as a JSON Web
Key (JWK) containing the P-256 elliptic curve coordinates:

{"sub_jwk": {

"kty" . "EC" ,

"CIV"Z "P_256"’

"x": "IWTF1VDL036segylx2psRTw3GiIOrTz3iFHqwsV37-A",
"y": "rKjQik_WenpujzNGFdo2P83hzWB_vmm9wOs82XPaSlo",
"use": "Sig",

"alg": "ESZ56"

T

Figure 3.5. Embedded Public Key

Note: CRS-ASC proofs use secp256k1 internally, while ID Tokens are signed with ES256 on
P-256 for OIDC interoperability; the curve split is intentional.

This embedding enables Service X to verify the token signature without requiring prior knowledge
of Alice’s public key or external key distribution infrastructure.

Subject Identifier Generation: To establish Alice’s persistent identity within Service X, the system
computes a JWK thumbprint following RFC 7638: [[13]

Subject = Base64URL(SHA-256(Canonical-JWK)) (3.1)

20

T L - . T SO St Ry R

Where the canonical JWK representation includes only the essential members (crv, kty, x, y)
in lexicographic order, ensuring consistent thumbprint computation across different implementations.
This thumbprint serves as both the issuer and subject claims, establishing the self-issued property while
providing a stable identifier for Alice’s service-specific identity.

Token Signing: Alice’s U2SIOP signs the complete token using the ECDSA private key with the
ES256 algorithm (ECDSA with P-256 and SHA-256):

Signature = ECDSA-Sign(SHA-256(header.payload), ECDSA-Private-Key) (3.2)

This signature proves that Alice possesses the secret key corresponding to the embedded public key,
binds all token claims together to prevent tampering, and enables Service X to verify token authenticity
using only the embedded public key. The signing process follows standard JWT conventions, creating
the familiar three-part token structure:

{BASE64URL (HEADER) } . {BASE64URL (PAYLOAD) } . {BASE64URL (SIGNATURE) }

Registration Token Structure

The registration token extends the standard OpenID Connect ID Token with additional claims necessary
for privacy-preserving authentication, as shown in Unlike traditional ID tokens that rely on
trust in centralized identity providers, Alice’s self-issued token carries cryptographic proofs that Service
X can verify independently. The token structure accommodates both familiar OpenID Connect semantics
and the specialized requirements of zero-knowledge authentication.

"iss": "0anCI1EH-LJjbpKxACVR8Bk47Jd7cNCaaWwGty8HHS8n8",
"sub": "0anCI1EH-LJjbpKxACVR8Bk47Jd7cNCaaWwGty8HH8n8",
"aud": "6d7e78af064c86eb9%b9cblc3611c9ab60a2£9317e3...",
"exp": 1721826955,
"iat": 1721733555,
"nonce": "bDovRs-jKFaViUAcO2-ZBYHezEmDYrgH-19rdZXko7w",
"zk_proof": "099f84192def6b4a59e1c7c83ffa6al0l1£8c9982ead...",
"nullifier": "ald4aedf22dc724e4dbalf38eef49caldfi4lelbbced...”,
"currentN": 1002,
"service_pub_key": "09d7318ledcle588755f1lbddaabae67fa880...",
"proof_type": "registration",
"challenge": "5d8123293c7609e55935986d223600fc%bec...",
"sub_jwk": {

"alg": "ES256",

"crv": "P-256",

"kty": "EC",

"use": "sig",

"x": "4XLcO0b2RQokgmnnvObB_CHosMFimvMDIPv4GdVColcA",

"y": "gqrwFXGKeUrmiGL8mMdD4nulpE7R72N9jbc8fXpiARvVQ"

Figure 3.6. Registration Token Structure

The token structure can be categorized into three distinct claim types that work together to enable
privacy-preserving authentication:

Response Transmission

Alice’s U2SIOP transmits the completed registration token back to Service X via URL fragment redirec-
tion, following the OpenlID Connect implicit flow pattern adapted for self-issued tokens. The response
includes both the signed ID token and the original state parameter for request-response correlation:

21

Claim | Type [Description
Modified Standard Claims

iss OIDC* | Same value as sub claim, establishing self-issued iden-
tity without external providers

sub OIDC* | JWK thumbprint of embedded public key, enabling
cryptographic verification of token authenticity

aud OIDC | Specifies Service X as intended audience, preventing
token misuse if intercepted

nonce OIDC | Standard replay protection

sub_jwk SIOP Alice’s service-specific public key as JSON Web Key

for signature verification

Cryptographic Proof Claims

zk_proof U2SIOP | Zero-knowledge proof demonstrating anonymity set
membership without revealing specific identity

nullifier U2SIOP | Deterministic value binding Alice’s master identity to
Service X, enabling Sybil resistance

challenge U2SIOP | Links cryptographic proof to specific registration ses-
sion, preventing replay attacks

spk U2SIOP | Alice’s service-specific public key for ZK proofs

System Parameter Claims

currentN U2SIOP | Anonymity set size at proof generation time, required
for verification context reconstruction

proof_type U2SIOP | Setto registration to distinguish from authentica-

tion tokens for appropriate verification

Table 3.1. Registration Token Claims Structure (OIDC = Standard OpenlID Connect, OIDC* = Modified
Semantics, SIOP = SIOP Extension, U2S10P = U2SSO Extension)

/auth/siop/callback#id_token={SIGNED_JWT_TOKEN}&state={STATE_VALUE}

This transmission method ensures that the token reaches Service X securely while maintaining com-
patibility with existing OpenlD Connect client libraries. The fragment-based approach prevents the token
from being logged in server access logs and enables client-side processing of the response.

The state parameter enables Service X to correlate this response with Alice’s original registration
request, ensuring that the response corresponds to the correct user session and preventing cross-site
request forgery attacks. Service X can now proceed to verify Alice’s zero-knowledge proof and create
her account if verification succeeds.

Token Properties and Security Guarantees

The completed registration token provides several important security and privacy properties that enable
trustworthy authentication:

Self-Contained Verification: Service X can verify Alice’s legitimacy using only the information
contained within the token and the publicly available anonymity set, without requiring communication
with external identity providers or centralized authorities.

Privacy Preservation: The token reveals only that Alice is a legitimate user (member of the anonymity
set) without disclosing her specific identity or enabling correlation with her activities on other services.

Replay Resistance: The combination of challenge binding, nonce protection, and session-specific
state ensures that the token cannot be reused across different registration attempts or hijacked by attack-
ers.

Alice’s registration token is now complete and in transit to Service X, carrying everything necessary
for privacy-preserving account creation while maintaining the familiar OpenID Connect user experience.

22

3.3.4 RP Verification Process

When Service X receives Alice’s registration token, it must verify the zero-knowledge proof and validate
the token structure before creating her account. The verification process ensures that Alice is a legitimate
user (member of the anonymity set) while maintaining her anonymity and preventing Sybil attacks.

Token Validation and Claim Extraction

Service X first validates the JWT token structure, verifies the signature using the embedded public key,
and extracts the cryptographic claims needed for proof verification. The service must retrieve the current
anonymity set from the blockchain registry to verify Alice’s membership proof.

Zero-Knowledge Proof Verification

The core verification step validates Alice’s zero-knowledge proof using the Registrationverify
function:

Listing 3.3. Registration Proof Verification

1 func RegistrationVerify (topicList [][]byte, proofHex string, nullifierHex
string, currentN int, serviceName []byte, challenge []byte, idList
[1[1byte, spkBytes []byte) bool ({

//... parameter reconstruction and cryptographic context creation

W N

4 //... nullifier processing and format

validation
111ifier pr g validation

7 gt Fransformation and +nnF data ~ S rat1on
Yy set transrormation and proor data preparation

8 // Zero—-knowledge verification of anonymity set membership

9 verifyResult := int (C.secp256kl_boquila_verify_ DBPoE_memmpk (ctx, &rctx,
10 proofPtr, nullifierPtr, mpksPtr, chalPtr, namePtr,

1 name_len, &spk, C.int (topic_index), C.int (currentN),
12 C.int (M)))

(

14 return verifyResult != 0
15 }

The verification process works through several cryptographic steps:

1. Parameter Reconstruction: Recreates the same cryptographic context used during Alice’s proof
generation, ensuring identical verification parameters.

2. Nullifier Processing: Decodes Alice’s nullifier from hexadecimal format and validates its structure
for use in the verification equation.

3. Anonymity Set Transformation: Converts the entire anonymity set from the blockchain into the
cryptographic format required by the verification algorithm.

4. Zero-Knowledge Verification: Calls the underlying U2SSO verification function, which confirms
that Alice knows the secret key of one of the anonymity set members without revealing which one.

Account Creation and Session Establishment

If verification succeeds, Service X can confidently create Alice’s account knowing that:
* Alice is a legitimate user (member of the anonymity set)
* Alice cannot register multiple accounts (nullifier uniqueness)

* Alice’s identity remains private (zero-knowledge proof)

23

* The registration is bound to this specific session (challenge binding)

Service X stores Alice’s service-specific public key and nullifier for future authentication attempts,
then establishes an authenticated session. Alice’s registration with Service X is now complete, and she
can begin using the service while maintaining her privacy and unlinkability from other services.

3.4 Authentication Architecture Evolution

The development of the authentication system underwent significant architectural refinement during im-
plementation. Initially, our approach followed the canonical U2SSO protocol by implementing direct
authentication using the protocol’s native authentication functions.

3.4.1 Imitial U2SSO Authentication Approach

A first implementation utilized U2SSO’s built-in authentication mechanisms. This approach required:

* Generation of schnorr signature
* Transmission of signature data alongside standard OpenID Connect tokens

* Relying party verification using U2SSO’s AuthenticationVerify function

While cryptographically sound, early performance testing revealed several practical limitations:

Computational Overhead: Each authentication required two signatures and verifications, introduc-
ing some latency per authentication attempt.

Protocol Complexity: The authentication tokens required additional U2SSO-specific claims, com-
plicating integration with existing OpenlD Connect infrastructure.

Network Overhead: Authentication proofs increased token size substantially, impacting transmis-
sion efficiency.

3.4.2 Key Improvement: SSK-to-ECDSA Transformation

During the development process, an optimization opportunity emerged: the possibility of deterministi-
cally transforming U2SSO’s service-specific secret keys (SSK) into standard ECDSA private keys with-
out compromising security guarantees.

Initial investigation involved using Ethereum’s crypto.toECDSA function to explore this trans-
formation on the secp256k1 curve, demonstrating the concept’s viability. However, practical deployment
required OpenID Connect compliance, which mandates P-256 elliptic curves for ES256 signatures.

We developed the function which performs the mathematically sound transformation
from secp256k1-based U2SSO keys to P-256 ECDS A keys, ensuring both OIDC compliance and security
preservation.

This breakthrough transformed the authentication architecture. Rather than generating U2SSO au-
thentication proofs for each login attempt, the system could:

1. Transform once: Convert the SSK to an ECDSA keypair during initial registration
2. Authenticate efficiently: Use standard JWT signature verification for subsequent authentications

3. Maintain security: Preserve all U2SSO privacy properties through the mathematical transforma-
tion

Mathematical Soundness of the Transformation. The deterministic nature does not compromise secu-
rity since the input SSK derives from cryptographically secure randomness, and unlinkability is preserved
as the transformation operates independently on each service-specific key, maintaining the property that
keys for different services remain uncorrelated.

24

3.4.3 Comparative Analysis and Decision Rationale

The architectural evolution from U2SSO authentication proofs to ECDSA transformation offers several

advantages:

Table 3.2. Authentication Architecture Comparison

Aspect U2SSO Authentication | ECDSA Transformation
Token complexity High (proof data) Standard (JWT only)
Infrastructure compatibility | Requires U2SSO libraries Standard OIDC
Additional claims v X

Security Equivalence: Both approaches provide identical security guarantees, as the ECDSA signa-
ture proves possession of the same underlying SSK that would be used in U2SSO authentication proofs.

Practical Impact: This architectural decision transforms privacy-preserving authentication from a
specialized cryptographic operation into a standard web authentication flow, dramatically improving
adoption feasibility.

Table [3.2] illustrates the improvement which the new key derivation method enables: full OpenID
Connect compliance with no additional claims needed to embed within the ID Token. The authentication
needs no interaction with the U2SSO system and is now just a regular OIDC authentication.

3.5 Streamlined Authentication Flow

After Alice has successfully registered with Service X, subsequent authentications demonstrate the sys-
tem’s key architectural benefit: leveraging the cryptographic foundations established during registration
to enable significantly simplified authentication flows.

3.5.1 Authentication Request Processing
When Alice returns to Service X six months later, the service initiates an authentication request identical

to registration but with proof_type=auth, signaling that no zero-knowledge proof verification is
required.

Alice’s U2SIOP recognizes this parameter and processes the request using the same cryptographic
components detailed in Section[3.3] but with critical differences:

* No blockchain queries to retrieve the current anonymity set
* No zero-knowledge proof generation or verification

* No nullifier computation

3.5.2 Authentication Token Structure

Authentication tokens use the same JWT signing process as registration but omit all cryptographic proof
claims:

25

O ® N U R W N =

"iss": "0anCI1EH-LjbpKxACVR8Bk47Jd7cNCaaWwGty8HH8n8",
"sub": "0anCI1EH-LJjbpKxACVR8Bk47Jd7cNCaaWwGty8HHS8n8",
"aud": "6d7e78af064c86eb9b9cblc3611c9ab60a2£9317€3891891e£31770939£78e£8",
"exp": 1721826955,
"iat": 1721733555,
"nonce": "WzTRSYwoyuxzX8pzC6ysibmwbfDcM6MRABsPI-qgiTuw",
"sub_jwk": {
"kty": "EC"’
"crv": "P-256" ’
"x": "IwTF1VDLo36segylx2psRTw3GiIOrTz3iFHqwsV37-A",
"y": "rKjQik_WenpujzNGFdo2P83hzWB_vmm9wOs82XPaSlo",
"use": "Sig",
"alg": "ES256"
}
}
Figure 3.7. Authentication Token Structure
Claim Registration | Authentication | Rationale
zk_proof v X No zero-knowledge proof needed
nullifier v X Sybil resistance already established
currentN v X No anonymity set verification
service_pub_key v X SPK not needed for JWT verification
proof_type v X Token type inferred from claim ab-
sence
challenge v X Challenge not used in authentication

Table 3.3. Token Claims Comparison: Registration vs Authentication

The absence of zk_proof, nullifier, currentN, service_pub_key, and proof_type
claims signals to Service X that standard JWT signature verification is sufficient.

Cryptographic Authentication Through JWT Signature

While authentication tokens omit explicit zero-knowledge proofs, they provide cryptographic proof of
Alice’s credential ownership through the JWT signature itself. The signature demonstrates that Alice
possesses the ECDSA private key corresponding to the embedded public key, which in turn proves her
ownership of the underlying service-specific secret key.

This signature-based proof establishes credential ownership through a clear chain of cryptographic
relationships:

1. A valid JWT signature proves Alice possesses the ECDSA private key
2. The ECDSA private key was deterministically derived from her service-specific secret key (SSK)
3. The SSK was deterministically derived from her master secret key (MSK) and the service identifier

4. Therefore, a valid signature ultimately proves Alice possesses the MSK for this service

Performance Characteristics

The authentication verification process provides significant performance advantages compared to regis-
tration verification:

26

Operation Registration | Authentication | Performance Impact

JWT Signature Verification Equivalent

JWK Thumbprint Validation Equivalent

Blockchain Query Eliminates network latency
Anonymity Set Validation Eliminates O(n) verification
Zero-Knowledge Proof Verification Eliminates heavy cryptography
Nullifier Validation Eliminates anti-Sybil computa-
tion

ENENENESENEN
X X X X NN

Table 3.4. Verification Operations Comparison

Alice’s authentication with Service X is now complete. The streamlined verification process demon-
strates how the system achieves practical performance while maintaining the privacy and security prop-
erties established during registration.

3.5.3 Security Properties Maintained

Despite the simplified verification process, authentication preserves essential security properties:
Credential Ownership: JWT signature cryptographically proves Alice possesses her service-specific
credentials established during registration.
Unlinkability: Alice’s service-specific credentials remain isolated from other services.
Session Integrity: Standard OIDC nonce and state parameters prevent replay and CSRF attacks.

The authentication flow successfully demonstrates how privacy-preserving authentication can achieve
both strong security guarantees and practical performance for returning users, with the computational
complexity frontloaded into the initial registration process.

3.6 Supporting Infrastructure: Blockchain Identity Registry

The privacy-preserving authentication system relies on a Ethereum smart contract that serves as both the
identity registry and service identifier management system. This blockchain infrastructure enables the
system to maintain a global anonymity set without requiring centralized authorities, while providing the
cryptographic context necessary for zero-knowledge proof generation and verification.

3.6.1 Eliminating Trusted Third Parties

The privacy-preserving authentication system requires a mechanism for maintaining the global anonymity
set that Alice joined during setup and that Service X queries during verification. Traditional approaches
would introduce a centralized registry, exactly the type of trusted third party that the system aims to
eliminate.

The blockchain-based identity registry solves this fundamental challenge by providing a decentral-
ized, tamper-resistant record of all legitimate identities in the system. This approach ensures that neither
Alice nor Service X must trust any central authority, while maintaining the cryptographic properties
required for zero-knowledge proof verification.

Unlike federated identity systems where identity providers control user access, the blockchain reg-
istry operates as a public utility that no single party can manipulate or shut down.

This decentralized approach directly enables the three core privacy properties of the system: anonymi-
ty (no central authority can link Alice’s identity to her position in the set), unlinkability (no coordination
between services possible without centralized tracking), and Sybil resistance (cryptographic proofs pre-
vent multiple registrations without centralized verification).

27

3.6.2 Anonymity Set Management

The registry maintains two essential data structures that enable Alice’s privacy-preserving authentication:
the identity registry containing master public keys from all legitimate users, and the service service
identifier registry listing all participating services.

Identity Registry Structure

Each registered identity consists of a 33-byte master public key split across two uint256 fields to accom-
modate Ethereum’s 32-byte word limitation, along with metadata for revocation and ownership tracking.
This structure enables Service X to retrieve the complete anonymity set for verification while preserving
user privacy.

Service Topic Management

The service registry maintains cryptographic hashes of participating services rather than plaintext iden-
tifiers, enabling efficient proof verification. This design ensures that the service identifier list Alice’s
master identity commits to remains stable and verifiable.

3.6.3 Implementation Architecture

The implementation demonstrates practical feasibility through a hybrid trust model that balances user
autonomy with ecosystem governance. The smart contract provides three categories of operations with
different permission levels:

Public Operations: Any user can register their master identity or query the anonymity set, ensuring
open access to the privacy-preserving authentication system.

Owner Operations: Users can revoke their own identities if needed, providing essential key lifecycle
management.

System Operations: Administrative functions like service identifier registration require contract
owner authorization, preventing malicious service injection while maintaining ecosystem integrity.

The Go implementation integrates with this infrastructure through automatically generated type-
safe bindings, maintaining local caches of contract state while ensuring consistency through periodic
synchronization. The complete smart contract implementation and Go integration details are provided in

Appendix

3.6.4 Deployment Characteristics

Performance analysis confirms the practical feasibility of blockchain-based identity management. Iden-
tity registration costs approximately 80,000 gas, representing a one-time setup cost for Alice’s lifetime
access to privacy-preserving authentication.

The hybrid design minimizes ongoing costs through efficient read operations. Service X retrieves
anonymity sets through cost-free view functions, while users pay only for their initial registration and
any subsequent identity revocation operations.

This cost structure aligns with the system’s usage patterns: expensive operations (registration) occur
infrequently, while frequent operations (anonymity set queries) impose no ongoing costs on either users
or service providers.

3.6.5 Gas Costs and Access Control

The blockchain infrastructure provides the decentralized foundation necessary for privacy-preserving
authentication while maintaining practical deployment characteristics. The hybrid trust model balances
user autonomy with ecosystem governance, enabling sustainable operation of the privacy-preserving
authentication system.

28

Gas costs vary by operation complexity:

* Identity Registration: 80’000 gas for new storage allocation
* Topic Registration: 80’000 gas for new storage allocation

* Batch Retrieval: 0 gas (view function)

This cost structure aligns with the system’s usage patterns: expensive operations (registration) occur
infrequently, while frequent operations (anonymity set queries) impose no ongoing costs on either users
or service providers.

3.7 Discussion of Security and Privacy Properties

This section analyzes how the CGo wrapper library and OpenID Connect integration preserve the security
and privacy properties of the underlying U2SSO cryptographic system. Rather than formal proofs, an
implementation-focused discussion of how the system maintains the essential security guarantees while
bridging U2SSO with standard web authentication protocols is provided.

3.7.1 Preserved Privacy Properties
Registration Anonymity

Alice’s registration with Service X preserves anonymity because her master public key (MPK) is stored in
the blockchain anonymity set alongside all other users’ public keys. During registration, Alice generates
a zero-knowledge proof that demonstrates she knows the secret key corresponding to one of the MPKs
in this set, but the proof cryptographically hides which specific MPK belongs to her.

The CGo wrapper preserves this property by passing Alice’s master secret key to the underlying
secp256kl_boquila_prove_DBPoE_memmpk function without modification. The OpenID Connect
integration maintains anonymity by embedding the proof in standard JWT claims, ensuring that Service
X receives only the cryptographic proof and Alice’s service-specific public key, never her position in the
anonymity set.

Cross-Service Unlinkability

Alice’s activities across different services remain unlinkable because each service receives a different
service-specific public key (SPK), deterministically derived from her master secret key and the specific
service identifier. Even if multiple services collude, they cannot correlate Alice’s SPKs to determine they
belong to the same user.

The implementation preserves unlinkability through the deterministic service-specific secret key
derivation, which uses the underlying U2SSO function secp256k1_boquila_derive_ssk. Each ser-
vice receives a cryptographically isolated identity that appears random and unrelated to Alice’s identities
on other services.

Sybil Resistance

Alice cannot register multiple accounts with Service X because each registration generates a unique
nullifier deterministically computed from her master secret key and Service X’s identifier. This nullifier
acts as a cryptographic “fingerprint” that remains constant across registration attempts while revealing
nothing about Alice’s identity.

The nullifier property is preserved because the CGo wrapper directly calls the underlying U2SSO
nullifier generation without alteration. Service X stores these nullifiers and rejects any subsequent regis-
tration attempts that produce the same nullifier, effectively preventing multiple accounts while maintain-
ing Alice’s anonymity.

29

3.7.2 Authentication Security Properties
Credential Ownership Proof

During authentication, Alice proves ownership of her service-specific credentials through JWT signature
verification rather than zero-knowledge proofs. This works because the TokenKeyFrombigest func-
tion deterministically derives Alice’s ECDSA service-specific secret key from a digest derived from the
MSK.

The security property holds because valid JWT signatures require possession of the ECDSA private
key, which can only be derived from Alice’s original service-specific secret key. An attacker without
Alice’s SSK cannot generate the corresponding ECDSA keypair and therefore cannot produce valid
authentication tokens.

Session Binding and Replay Resistance

Both registration and authentication tokens include challenge and nonce values that bind proofs to spe-
cific sessions. Registration challenges are incorporated into the zero-knowledge proof generation, while
authentication nonces follow standard OIDC patterns, thus prevening replay attacks.

3.7.3 Security Comparison with Traditional OIDC

Table presents a comprehensive comparison between traditional OpenID Connect and the U2SSO-
based Self-Issued OpenlD Provider across key security and privacy dimensions.

User Authentication: Both systems provide user authentication, demonstrating that U2SIOP main-
tains core identity functionality while enhancing privacy. This compatibility enables existing relying
parties to adopt privacy-preserving authentication without operational changes.

Cross-Service Unlinkability: Traditional OIDC enables cross-service tracking through consistent
user identifiers, while U2SIOP provides unlinkability via isolated service-specific identities that cannot
be correlated across different services.

Registration Anonymity: Traditional OIDC requires identity disclosure during registration, whereas
U2SIOP enables anonymous registration through zero-knowledge proofs of anonymity set membership.

Sybil Resistance: Traditional OIDC relies on centralized provider control for sybil prevention, while
U2SIOP achieves sybil resistance through cryptographic nullifiers that prevent multiple registrations
without central authority.

Decentralized Trust: Traditional OIDC depends on centralized identity providers, creating trust
bottlenecks, while U2SIOP eliminates these dependencies through blockchain-based identity registry
and cryptographic proofs.

Identity Provider Tracking: Traditional OIDC providers can track user activities across services,
while U2SIOP is resistant to such tracking due to service-specific key isolation.

Single Point of Failure: Traditional OIDC creates single points of failure through centralized provi-
ders, while U2SIOP distributes trust across the blockchain network, providing resistance to single point
failures.

Property Traditional OIDC | U2SIOP
User Authentication v v
Cross-Service Unlinkability X v
Registration Anonymity X v
Sybil Resistance X v
Decentralized Trust X v
Identity Provider Tracking Vulnerable Resistant
Single Point of Failure Vulnerable Resistant

Table 3.5. Security and Privacy Property Comparison

30

Chapter 4

Testing and Benchmarking

To evaluate the Cryptographic library and the proof of concept described in Chapter 3] extensive tests and
benchmarking were performed. This chapter shows the results and delivers insights into the feasibility
of U2SSO integration into authentication standards, such as OpenID Connect.

The benchmarking and testing were performed locally on a MacBook Pro (2020) with a 2.3 GHz
Quad-core Intel Core i7, 16 GB DDR4 RAM, and SSD storage to ensure consistent and controlled
testing conditions.

4.1 CGo Wrapper library

This section provides a comprehensive analysis of the Cryptographic wrapper library’s functions. The
benchmarking reveals insights about the computational efficiency and memory management as well as
scalability for each of the core functions. The analysis identifies performance bottlenecks and validates
the system’s suitability for integration into OpenID Connect.

4.1.1 Results and Analysis

1010 F 3
10° E

108 | E

» £ =
E - |
S 107 £
Q = B
12} = | -
g [B
g 1% E
2 i i
£ 107 E
10* E

= I I I I I I I -

3 N} N}
NN & & & s S S
C‘& Q@'& o‘p‘l %@‘1 oy %\ 2 g ®/
A o 4@'& QQ@Q
+ ¥
Operation

Figure 4.1. U2SSO Operations Performance Comparison

31

Table 4.1. Basic Cryptographic Operations Performance

Operation Time (s)
Challenge 1.24 x 1076
Derive SSK 5.18 x 1076
Load Passkey 2.51 x 107°
Create Passkey 1.98 x 1074
Create ID 4.01 x 1073
Reg Verify (N=1000) 3.04 x 10!
Reg Proof (N=1000) 2.71

shows that the performance hierarchy of core U2SSO system operations spans several
orders of magnitude, from lightweight challenge creation to computationally intensive registration proof
generation, which emerges as the system’s most expensive operation.

Challenge generation remains the most efficient operation at 1.236 microseconds, making it suitable
for high-frequency usage. The SSK derivation follows closely at 5.182 microseconds.

The I/O operations demonstrate moderate computational overhead, with passkey loading at 25.136
microseconds and passkey creation at 198.398 microseconds.

ID creation operations require significantly more computation at 4.007 milliseconds, representing
the transition from lightweight cryptographic primitives to more complex identity generation processes.

The registration operations are the most computationally expensive, at almost 3 seconds for anonymity
sets with 1000 users. Timing analysis for authentication operations is described in Section[4.2]

Registration Proof Scaling

Registration Proof Performance Scaling with Anonymity Set Size N

—8— Registration Proof

3000 1 —m— Registration Verification

=== Proof Linear Trend -7
Verify Linear Trend

2500 4

2000 4

1500 A

Time (ms)

1000 -

500 A

0 200 400 600 800 1000
Anonymity Set Size (N)

Figure 4.2. Registration Proof scaling

[Figure 4.2]and [Table 4.2]illustrate the performance impact the anonymity set has on the registration proof
calculation. This shows a limitation in the size of the anonymity set. However, since the registration proof
is not often performed, the trade-off between additional privacy and performance is acceptable for larger
anonymity sets.

The data demonstrates a generally linear scaling relationship between the anonymity set size N and

32

both computational time and memory consumption. As the anonymity set grows from N=10 to N=1000,
proof generation time increases from 69.84ms to 2.712 seconds, while verification time scales from
18.82ms to 304.04ms. Some measurement variance is observed, particularly at larger anonymity set
sizes, likely due to system-level effects such as garbage collection and thermal management.

Computational Complexity Analysis: The linear trend lines in demonstrate that both
proof generation and verification exhibit O(N) scaling characteristics. Despite some measurement vari-
ance, the overall trend confirms the expected linear relationship between anonymity set size and compu-
tational cost. The proof generation process shows a more pronounced scaling impact, with an average
increase of approximately 2.6ms per additional user in the anonymity set.

Verification Efficiency: The verification process demonstrates superior efficiency compared to proof
generation, maintaining practical performance even at larger anonymity set sizes. While verification
times show some variance due to system-level factors, the overall trend remains manageable for service
providers.

Measurement Considerations: The observed variance in timing measurements, particularly the
outlier at N = 800, reflects the challenges of benchmarking cryptographic operations in real-world
environments. These variations are attributed to system-level effects including garbage collection cycles,
thermal throttling, and background processes, which are representative of actual deployment conditions.

Privacy-Performance Trade-off: Since registration happens only once per service, users can tol-
erate longer delays for enhanced privacy. Unlike authentication operations that occur frequently, regis-
tration delays have minimal impact on overall user experience. The ability to achieve anonymity sets of
N = 1000 with computation times under 3 seconds provides a favorable trade-off for privacy-conscious
deployments, where the privacy benefits significantly outweigh the one-time computational cost.

Table 4.2. Registration Proof Performance Scaling Analysis

N Proof Time Verification Time Memory Usage

(ms) (ms) (KB)

10 70 18.8 6.97
50 181 28.4 8.38
100 291 44 4 10.0
150 422 594 11.9
200 604 73.7 13.3
250 686 80.1 15.9
300 786 122 16.6
350 1040 114 18.6
400 1050 134 19.9
450 1190 157 22.6
500 1320 159 24.6
550 1460 159 24.6
600 1710 223 26.6
650 2130 217 27.9
700 2060 281 30.6
750 2190 312 33.3
800 3120 224 33.3
850 2240 286 34.6
900 2460 277 38.6
950 2560 276 38.6
1000 2710 304 46.6

33

4.2 Proof of Concept

To evaluate the performance of the Self-Issued OpenlD Provider, extensive benchmarking was performed
on the system. This section presents performance analysis of the developed U2SIOP, examining both the
registration and the authentication flow.

The performance characteristics of such a U2SIOP implementation are particularly important due
to the additional computational overhead introduced by the zero-knowledge proofs. Unlike traditional
OpenlD Connect flows, which primarily involve token exchange and validation, a U2SIOP system must
generate cryptographic proofs to demonstrate identity. This adds computational complexity, which may
impact user experience.

4.2.1 Test Environment

The performance evaluation was conducted in a controlled local development environment to ensure
consistent and reproducible results. The test configuration included:

» U2SIOP Server: Running on localhost:8080

* RP Server: Running on localhost:8081

* Blockchain: RPC Server: http://127.0.0.1:7545

* Network Configuration: Local loopback interface (minimal network latency)

* Hardware: MacBook Pro (2020), 2.3 GHz Quad-core Intel Core i7 processor, 16 GB 3733 MHz
DDR4 memory, 1 TB SSD storage

* Anonymity Set: 1’002 active IDs as well as eight services registered to the system

This controlled environment eliminates external network variables and provides baseline performance
metrics. However it does neglect any network overhead that would occur in a real-world scenario, as all
exchange happens on a local machine.

4.2.2 Test Scenarios

Two scenarios were evaluated:

1. Registration Flow: Simulates new user registration, requiring initial credential establishment

2. Authentication Flow: Simulates existing user authentication using previously established cre-
dentials

Each scenario was tested with 100 iterations to assess performance consistency. Separate timing mea-
surements were conducted for individual components to isolate performance characteristics and identify
main sources of computational overhead.

The anonymity set was populated using an automated setup script that generates user identities. The
script creates individual passkey files for each user, derives unique identities using the active service
identifier list from the smart contract, and registers these identities to the anonymity set.

4.2.3 Metrics Collection
The benchmark tool collected the following performance metrics for each test iteration:
* Round Trip Time: Complete request-response cycle time
* Token Generation Time: Time required for U2SIOP to generate cryptographic and the token

* Token Validation Time: Time required for the RP to validate the token and verify the proof

* Blockchain Operation Time: Isolated blockchain contract interaction time

34

4.2.4 Results
Round Trip Time Analysis

Table 4.3. U2SIOP Round Trip Time Performance Analysis (100 iterations)

Scenario Avg Time Min Time Max Time
(ms) (ms) (ms)

Registration 18’500 15’700 25’600

Authentication 5.5 23 37

The results demonstrate consistent performance with authentication operations completing significantly
faster than registration operations.
Key findings from the overall performance analysis:

* Authentication operations average 5.5 ms
* Registration operations average 18’500 ms (= 18.5 s)

 Zero failure rate across all 200 test iterations, demonstrating excellent reliability

Component Performance Analysis

The breakdown of individual components within each flow type reveals the computational distribution
within the U2SIOP system.

Registration Flow Component Breakdown

Table 4.4. Registration Flow Component Performance Breakdown (100 iterations)

Avg Round Trip Avg Proof Generation Avg Token Validation
(ms) (ms) (ms)

18500 3’100 15’400

Registration flow shows significantly higher computational requirements:
* Proof Generation: Averages 3’100 ms (16.8% of total time)
* Token Validation: Averages 15’400 ms (83.2% of total time)

Authentication Flow Component Breakdown

Table 4.5. Authentication Flow Component Performance Breakdown (100 iterations)

Avg Round Trip Avg Proof Generation Avg Token Validation
(ms) (ms) (ms)

55 4.4 1.1

Authentication Flow performance demonstrates efficient processing:
* Proof Generation: Averages 4.4 ms (80% of total time)

* Token Validation: Averages 1.1 ms (20% of total time)

35

Blockchain Operations Performance

To identify the specific performance bottleneck, blockchain operations were benchmarked in isolation:

Table 4.6. Isolated Blockchain Operations Performance (100 runs)

Component Avg Time (ms) Percentage of
Blockchain Time

ID List Retrieval 14100 99.5%

Topics Retrieval 66 0.5%

Total Blockchain ~ 14’200 100.0%

Critical findings from blockchain analysis:

¢ ID List Retrieval dominates ID List retrieval at 99.5% of blockchain time

* Blockchain operations account for 76.8% of total registration time (14’200 ms out of 18’500
ms)

4.2.5 Performance Bottleneck Analysis

The detailed benchmarking reveals the true performance bottleneck in the U2SIOP implementation. To-
ken validation time (83.1% of total registration time) primarily consists of blockchain operations rather
than cryptographic computation:

Registration Flow Detailed Breakdown:

¢ Token Generation: 3.1 s (16.8% of total time)
¢ Blockchain Operations: 14.2 s (76.7% of total time)

— ID List Retrieval: 14.1 s (76.3% of total time)
— Topics Retrieval: 66 ms (0.4% of total time)

* Other Protocol Overhead: 1.2 s (JWT parsing, validation, etc. making up 6.5% of total time)

The analysis demonstrates that the blockchain operations, specifically retrieving the complete anonymity
set (1’002 active IDs) from the smart contract, represent the primary performance bottleneck rather than
cryptographic computation.

4.2.6 Conclusion

The performance evaluation reveals several key insights relevant to the practical feasibility of a Self-
Issued OpenlD Provider:

User Experience: Authentication response times around 5.5 ms fall within excellent limits for
web applications. Registration times of 18.5 seconds exceed acceptable user experience thresholds and
represent the primary barrier to practical deployment. However, the proposed caching optimization Sub-
section demonstrates a clear path to reducing registration times to 4-5 seconds for subsequent
operations.

Computational Overhead: The dramatic increase in proof generation time for registration opera-
tions reflects the substantial difference in cryptographic complexity between authenticating with existing
credentials versus establishing new identities. However, the isolated benchmark analysis reveals that
blockchain operations (76.7%) represent the primary bottleneck rather than pure cryptographic compu-
tation (16.9%).

36

Scalability Considerations: The sub-millisecond pure authentication proof generation time (when
isolated, averaging 0.09 ms) demonstrates excellent scalability potential for cryptographic operations,
while the blockchain operations present the primary scaling challenge for registration flows.

Overall, this evaluation demonstrates the feasibility of such a Self-Issued OpenlID Provider, though
with notable performance considerations. The response times for both registration and authentication,
while higher than traditional authentication systems, remain within acceptable timeframes for privacy-
focused applications. A SIOP implementation as described in[29] and Chapter [3|can deliver the enhanced
privacy and security promised by decentralized identity, with a clear performance trade-off that users may
find acceptable for the privacy benefits provided.

4.2.7 Performance Optimization Opportunities

The benchmarking results reveal a significant optimization opportunity that could dramatically improve
the practical viability of the U2SIOP implementation. While the zero-knowledge proof generation per-
forms efficiently (3.1 seconds), the primary performance bottleneck lies in the retrieval of anonymity set
data from the blockchain smart contract.

Current Performance Bottleneck Analysis

As demonstrated in the detailed breakdown above, token validation accounts for 83.1% of the total regis-
tration time (15.4 seconds out of 18.5 seconds), with blockchain operations representing the overwhelm-
ing majority of this overhead (76.7% of total time). The current implementation fetches the complete
anonymity set (1’002 active IDs) as well as all service identifiers from the blockchain for every single
verification operation. This results in multiple expensive RPC calls to the Ethereum client, substantial
data transfer, and blockchain transaction overhead.

Proposed Optimization: Anonymity Set Caching with Identifiers

A significant performance improvement could be achieved by implementing anonymity set caching
with unique identifiers. Since anonymity sets are immutable once established, this optimization strategy
would include:

1. Anonymity Set Identification: Each anonymity set configuration receives a unique identifier
(hash of the set contents or deployment block number)

2. Local Caching: Relying Parties cache anonymity sets locally, indexed by their unique identifiers

3. Cache-First Retrieval: Before fetching from the blockchain, RPs check whether the required
anonymity set is already available in their local cache

The implementation would require minimal enhancements to the smart contract architecture to ex-
pose anonymity set identifiers efficiently. Relying Parties would maintain local caches of anonymity sets
with associated identifiers, performing lightweight identifier lookups before each verification and only
retrieving anonymity set data from the blockchain when encountering a previously unseen identifier.
Since anonymity sets remain fixed after creation, cached data never becomes stale, eliminating the need
for complex invalidation mechanisms.

Expected Performance Impact

This optimization leverages the fact that anonymity sets are immutable once established, and Relying
Parties will frequently encounter the same anonymity sets across multiple verification operations. The
expected performance improvements are:

* Current Performance: 18.5 seconds per registration (regardless of repetition)

37

» With Caching: First encounter with an anonymity set ~18.5 seconds, subsequent operations using
the same anonymity set ~4 to 5 seconds

* Performance Improvement: Approximately 77% reduction in registration time for cache hits

This estimation assumes cached operations would eliminate the 14.2-second blockchain retrieval
overhead while maintaining the 3.1-second ZK proof generation and adding minimal cache validation
overhead.

The optimization maintains all privacy and security guarantees while addressing the primary practical
barrier to deployment.

38

Chapter 5

Conclusion

This thesis has successfully demonstrated the practical feasibility of implementing privacy-preserving
authentication through the integration of the User-Issued Unlinkable Single Sign-On protocol with the
Self-Issued OpenlD Provider specification. By bridging the ongoing cryptographic research provided by
Alupotha et al. with industry standard authentication protocols, this thesis provides a concrete pathway
toward decentralized digital identity management that preserves user privacy while maintaining familiar
authentication flows, already understood by relying parties and end users.

The primary work of this thesis is the development of a complete Self-Issued Unlinkable OpenlD
Provider implementation, which achieves both privacy preservation and Sybil resistance through cryp-
tographic guarantees rather than trusted centralized authorities. Such a U2SIOP enables users to act as
their own identity providers and achieves unlinkability across different services through deterministically
derived pseudonyms, addressing a fundamental flaw of traditional federated identity systems.

A particularly significant contribution emerged from the collaborative development process: the
identification and implementation of a deterministic SSK-to-ECDSA transformation technique. This
demonstrates how privacy-preserving protocols can be optimized for practical deployment without se-
curity compromise. The transformation eliminates per-authentication proof generation overhead while
maintaining all U2SSO privacy properties, achieving authentication times that make privacy-preserving
authentication competitive with traditional systems.

The CGo wrapper library provides a clean interface between the complex cryptographic computa-
tions required by U2SSO and the standardized authentication flows of OpenID Connect. Additionally,
it provides all functionalities necessary to communicate and work with the Identity Registry. Finally, an
implementation of the Identity Registry is provided in the form of a Solidity smart contract, allowing
users to publish their master public keys to the anonymity set and relying parties to publish their service
names to the service identifier list.

The implemented U2SIOP, as well as a relying party which accepts both Self-Issued ID Tokens and
traditional OpenID Connect ID tokens, serves as a proof of concept for the feasibility and readiness for
real-world implementation of such a decentralized identity management system.

The performance evaluation demonstrates that privacy-preserving authentication can be achieved
within acceptable latency bounds. Authentication averaging 5.47 ms fall well within user experience ex-
pectations and would remain responsive even when accounting for real-world network latency. However,
registration operations present a more complex performance profile, averaging 18.5 seconds due primar-
ily to anonymity set retrieval from the blockchain (14.2). This bottleneck could be addressed through
anonymity set caching mechanisms or by optimizing the balance between anonymity set size and re-
trieval efficiency. Such optimizations would significantly reduce registration times but would require
careful consideration of the fundamental privacy-performance tradeoff: smaller anonymity sets enable
faster registration at the cost of reduced anonymity guarantees, while larger sets provide stronger privacy
but impose greater computational overhead. The zero failure rate across all test iterations validates the
reliability of the underlying cryptographic implementations.

The implementation proves that the apparent trade-off between privacy and convenience in digital

39

identity systems is not inevitable. Through maintaining compatibility with existing OpenID Connect
infrastructure, while adding cryptographic guarantees, the system provides a path to privacy-preserving
authentication without the need to completely rebuild identity infrastructure.

The blockchain-based identity registry eliminates the need for trusted central authorities and ensures
Sybil resistance. This decentralized approach addresses the systemic risks identified in Varoufakis’s
critique of digital platform feudalism. It paves the way forward to becoming more independent from
technology giants for basic digital services and could allow users to reclaim some power over their own
data, without sacrificing the convenience provided by single sign-on.

Some limitations must be acknowledged in this implementation. The anonymity set size directly im-
pacts both privacy guarantees and performance. Therein lies an important trade-off. As the anonymity set
increases, so does the proof size and computation time, resulting in significant performance degradation

This performance impact has both inherent and implementation-specific components. The proof
generation overhead is inherent to the U2SSO protocol: larger anonymity sets require more complex
zero-knowledge proofs, making for an unavoidable cryptographic trade-off. However, the 14.2-second
blockchain retrieval bottleneck, which constitutes most of the 18.5-second registration time, is implementation-
specific. Alternative Identity Registry architectures could potentially eliminate this retrieval overhead
while maintaining identical privacy guarantees.

Nevertheless, this may represent an acceptable performance trade-off, as anonymity set size only
impacts registration operations, which occur once per service. The one-time nature of this overhead
means that substantial registration delays may be tolerable in exchange for ongoing privacy benefits
during frequent authentication operations.

An additional limitation lies in the creation of the master credentials. Since the nullifier is pre-
computed for each service registered to the system, a user may use these credentials only for relying
parties registered within the service identifier list at the master public key creation event. There is cur-
rently no way to update the master credentials to new services joining the system without revoking the
public identity and generating a new one, which would generate additional gas fees when writing to the
blockchain.

Additionally, the system relies on the discrete logarithm assumption, making it vulnerable to quantum
attacks. With the continued advancements in quantum computing long-term security guarantees can only
be assured by migration to post-quantum cryptographic primitives.

Several directions for future research emerge from this thesis. Integration with other emerging
standards, such as Verifiable Credentials [25] and selective disclosure [[7] could prove valuable to a
Self-Issued Identity provider and further enhance privacy or even enable attribute-based authentication.
Improvements to scalability through more efficient zero-knowledge systems could reduce performance
degradation.

This thesis demonstrates that self-sovereign digital identity is not merely a theoretical ideal but can
be implemented with existing cryptographic techniques. Through integration of the U2SSO protocol
with OpenID Connect standards, this thesis provides a foundation for privacy-preserving authentication
systems.

The proof of concept shows that users can reclaim control over their digital identities without sacri-
ficing the convenience that has allowed digital landlords to extract rent in the form of personal data from
the user. The successful integration suggests that the barriers to widespread adoption of such privacy-
preserving identity systems are not impossible to conquer, with the challenges moving forward not lying
in technical limitations. Such systems could prove a pathway to the eventual reclamation of digital
identities and enable true digital self-sovereignty in the digital space.

40

Appendix A

Cryptographic Library Functions

A.1 Master Identity Functions

Listing A.1. Master Secret Key Generation

1 func CreatePasskey (filename string) ({

2 msk := make([]C.uint8_t, 32)

3 mskPtr := (xC.uint8_t) (unsafe.Pointer (&msk[0]))

4 C.RAND_bytes (mskPtr, 32)

5 mskBytes := C.GoBytes (unsafe.Pointer (mskPtr), 32)
6 file, err := os.OpenFile(filename, o0s.0O_CREATE|os.O_WRONLY, 0644)
7 if err != nil {

8 log.Fatal (err) }

9 defer func() {

10 if err := file.Close(); err != nil {

11 log.Fatal (err) }} ()

12 if _, err := file.Write (mskBytes); err != nil {

13 panic (err) }}

Listing A.2. Master Secret Key Retrieval

1 func LoadPasskey (filename string) ([]byte, bool, error) ({
2 mskBytes := make([]byte, 32)

3 file, err := os.Open(filename)

4 if err != nil {return nil, false, err}

5 defer func() {

6 if err := file.Close(); err != nil {
7 log.Fatal (err) }} ()

8 n, err := file.Read(mskBytes)

9 if err != nil && err != 10.EOF {

10 log.Fatal (err)}

11 if n == 0 {

12 return nil, false, nil}

13 return mskBytes, true, nil}

Listing A.3. Master Public Key Generation

1 func CreatelID (topicList [][]byte, mskBytes []byte) []byte {

2 msk := make([]C.uint8_t, 32)

3 mskPtr := (xC.uint8_t) (unsafe.Pointer (&msk[0]))
4 for i := 0; i < 32; i++ {

5 msk[i] = C.uint8_t (mskBytes[i])

8 ctx := C.secp256kl_context_create (C.SECP256K1_CONTEXT_SIGN |
C.SECP256K1_CONTEXT_VERIFY)

41

18

gen_seed := (xC.uint8_t) (C.malloc(C.sizeof_uint8_t x 32))
defer C.free(unsafe.Pointer (gen_seed))
C.memset (unsafe.Pointer (gen_seed), C.int (gen_seed_fix), 32) // 11

topicsPtr, topicsSize := convertTopicsToC (topicList)
defer C.free(unsafe.Pointer (topicsPtr))

rctx := C.secp256kl_ringcip_DBPoE_context_create (

ctx,

C.int (10),

C.int (N),

C.int (M),

gen_seed,

topicsPtr,

topicsSize)

mpk := make([]C.pk_t, 1)

if C.secp256kl_boquila_gen_DBPoE_mpk (ctx, &rctx, &mpk[0], mskPtr) == 0 {
fmt .Println ("mpk creation failed")

}

mpkBytes := C.GoBytes (unsafe.Pointer (&mpk[0]),

C.int (unsafe.Sizeof (mpk[0])))

return mpkBytes

Listing A.4. Challenge Generation for Registration

func CreateChallenge() []byte {
chal := make([]C.uint8_t, 32)
chalPtr := (*C.uint8_t) (unsafe.Pointer (&chal[0]))
C.RAND_bytes (chalPtr, 32)
chalBytes := C.GoBytes (unsafe.Pointer (chalPtr), 32)

return chalBytes}

42

Appendix B

Smart Contract Implementation

The complete 0idcU2SSO smart contract implementation:

Listing B.1. Smart Contract Implementation

1 // SPDX-License—Identifier: MIT

2 pragma solidity ~0.8.13;

4 contract 0idcU2SSO {

5 struct ID {

6 uint256 id;

7 uint256 1d33;
8 bool active;

9 address owner;

12 struct Topic {
13 bytes32 topicHash;

14 bool active;

15 address owner;

16 }

.

18 address private _owner;

19 ID[] public idList;
20 Topic[] public topicList;

21 uint256 public nextIdIndex;

22 uint256 public nextTopicIndex;
24 constructor () {

25 _owner = msg.sender;

26 nextIdIndex = 0;

27 nextTopicIndex = 0;

30 /) ========== ID agement Functions ==========

31 function addID (uint256 _id, uint256 _id33) public returns (uint256)
32 idList.push(ID(_id, _id33, true, msg.sender));

33 nextIdIndex = nextIdIndex + 1;

3 return nextIdIndex - 1;

5 }

36

37 function revokeID (uint256 _index) public {

38 require (_index < idList.length, "Index out of bounds");

39 ID storage id = idList[_index];

410 require (msg.sender == id.owner || msg.sender == _owner, "Not

authorized");
41 id.active = false;

43

{

60

62

66

96

99

100
101
102

103

function getIDs (uint256 _index) public view returns (uint256, uint256)
require (_index < idList.length, "Index out of bounds");
ID storage id = idList|[_index];
return (id.id, id.id33);

function getState (uint256 _index) public view returns (bool) {
require (_index < idList.length, "Index out of bounds");
ID storage id = idList[_index];
return id.active;

function getIDSize () public view returns (uint256) {
return nextIdIndex;

function getIDIndex (uint256 _id, uint256 _id33) public view returns
(int256) {
for (uint256 i = 0; i1 < nextIdIndex; i++) {
if ((idList[i].id == _id) && (idList[i].i1d33 == _id33)) {
return int256(i);

}

return -1;

function addTopic(bytes32 _topicHash) public returns (uint256) {
require (msg.sender == _owner, "Only owner can add topics");
topicList.push (Topic(_topicHash, true, msg.sender));
nextTopicIndex = nextTopicIndex + 1;
return nextTopicIndex - 1;

function revokeTopic (uint256 _index) public {
require (_index < topiclList.length, "Index out of bounds");
Topic storage topic = topicList[_index];

require (msg.sender == topic.owner || msg.sender == _owner, "Not
authorized");
topic.active = false;

function getTopic (uint256 _index) public view returns (bytes32) {
require (_index < topicList.length, "Index out of bounds");
Topic storage topic = topicList[_index];
return topic.topicHash;

function getTopicState (uint256 _index) public view returns (bool) {
require (_index < topicList.length, "Index out of bounds");
Topic storage topic = topicList[_index];
return topic.active;

function getTopicSize () public view returns (uint256) {
return nextTopicIndex;

function getTopicIndex (bytes32 _topicHash) public view returns (int256)
{
for (uint256 1 = 0; 1 < nextTopicIndex; i++) {
if (topicList[i].topicHash == _topicHash) {
return int256(i);

44

{

104
105
106
107
108
109
110
111

113
114

116
117
118
119
120

129

130

}

return -1;

function getAllActiveTopics () public view returns (bytes32[] memory)

uint256 activeCount = 0;

// First pass: count active topics
for (uint256 i = 0; 1 < nextTopicIndex; i++) {
if (topicList[i].active) {
activeCount++;

// Second pass: collect active topics
bytes32[] memory activeTopics = new bytes32[] (activeCount) ;
uint256 currentIndex = 0;

for (uint256 i = 0; 1 < nextTopicIndex; i++) {
if (topicList[i].active) {
activeTopics[currentIndex] = topicList[i].topicHash;
currentIndex++;

return activeTopics;

45

46

Bibliography

[1]

(2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Alupotha, M. Barbaraci, I. Kaklamanis, A. Rawat, C. Cachin, and F. Zhang, “Anonymous self-
credentials and their application to single-sign-on,” IJACR Cryptol. ePrint Arch., p. 618, 2025.

S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” Request for Comments
2119, RFC Editor, Mar. 1997.

D. W. Chadwick, “Federated identity management,” in Foundations of Security Analysis and Design
V: FOSAD 2007/2008/2009 Tutorial Lectures (A. Aldini, G. Barthe, and R. Gorrieri, eds.), pp. 96—
120, Berlin, Heidelberg: Springer Berlin Heidelberg, Aug. 2009.

Cloudflare, “What is vendor lock-in? — vendor lock-in and cloud computing,” 2024.

Y. Dimova, T. V. Goethem, and W. Joosen, “Everybody’s looking for SSOmething: A large-scale
evaluation on the privacy of OAuth authentication on the web,” Proceedings on Privacy Enhancing
Technologies, vol. 2023, pp. 452—-467, Oct. 2023.

J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, pp. 251-260, Springer, 2002.

D. Fett, K. Yasuda, and B. Campbell, “Selective Disclosure for JWTs (SD-JWT),” Internet-Draft
draft-ietf-oauth-selective-disclosure-jwt-22, Internet Engineering Task Force, May 2025. Work in
Progress.

A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification and signature
problems,” in Advances in Cryptology — CRYPTO ’86, vol. 263 of Lecture Notes in Computer
Science, pp. 186—194, Springer, Aug. 1986.

R. Gafni and D. Nissim, “To social login or not login? exploring factors affecting the decision,”
Issues in Informing Science and Information Technology, vol. 11, pp. 57-72, Jan. 2014.

S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof sys-
tems,” SIAM Journal on Computing, vol. 18, pp. 186208, 1989.

F. Hao, “Schnorr Non-interactive Zero-Knowledge Proof,” Request for Comments 8235, RFC Edi-
tor, Sept. 2017.

D. Hardt, “The OAuth 2.0 Authorization Framework,” Request for Comments 6749, RFC Editor,
Oct. 2012.

M. B. Jones and N. Sakimura, “JSON Web Key (JWK) Thumbprint.” RFC 7638, Sept. 2015.

W. Li and C. J. Mitchell, “Security issues in OAuth 2.0 SSO implementations,” in Information
Security (S. S. M. Chow, J. Camenisch, L. C. K. Hui, and S. M. Yiu, eds.), (Cham), pp. 529-541,
Springer International Publishing, 2014.

W. Liand C. J. Mitchell, “User access privacy in OAuth 2.0 and OpenlD connect,” in Proceedings of
2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pp. 664—672,
IEEE Press, 2020.

47

[16]

[17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

T. Lodderstedt, M. McGloin, and P. Hunt, “OAuth 2.0 Threat Model and Security Considerations.”
RFC 6819, Jan. 2013.

S. G. Morkonda, S. Chiasson, and P. C. van Oorschot, “Empirical analysis and privacy implications
in oauth-based single sign-on systems,” in WPES °21: Proceedings of the 20th Workshop on Work-
shop on Privacy in the Electronic Society, Virtual Event, Korea, 15 November 2021, pp. 195-208,
ACM, 2021.

T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in Ad-
vances in Cryptology — CRYPTO 91 (J. Feigenbaum, ed.), (Berlin, Heidelberg), pp. 129-140,
Springer Berlin Heidelberg, 1992.

E. Politou, E. Alepis, and C. Patsakis, “Forgetting personal data and revoking consent under the
GDPR: Challenges and proposed solutions,” Journal of Cybersecurity, vol. 4, Mar. 2018.

E. Pollman, “Tech, regulatory arbitrage, and limits,” European Business Organization Law Review,
vol. 20, p. 567, 2019.

N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, “OpenlD connect core 1.0
incorporating errata set 2,” Final Errata Set 2, OpenID Foundation, Dec. 2023.

C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology, vol. 4,
pp. 161-174, Jan. 1991.

J. Spooren, D. Preuveneers, and W. Joosen, “Mobile device fingerprinting considered harmful for
risk-based authentication,” in Proceedings of the Eighth European Workshop on System Security,
EuroSec 2015, Bordeaux, France, April 21, 2015 (J. Caballero and M. Polychronakis, eds.), pp. 6:1-
6:6, ACM, 2015.

M. Sporny, A. Guy, M. Sabadello, and D. Reed, “Decentralized identifiers (DIDs) v1.0,” W3C
recommendation, World Wide Web Consortium (W3C), July 2022. Available at https://www.
w3.org/TR/did-1.0/.

O. Terbu, T. Lodderstedt, K. Yasuda, D. Fett, and J. . Heenan, “OpenlID for Verifiable Presentations
1.0,” standards track draft, OpenID Foundation, July 2023.

H. C. A. van Tilborg and S. Jajodia, eds., Encyclopedia of Cryptography and Security. New York,
NY: Springer, 2 ed., 2011.

Y. Varoufakis, Technofeudalism: What Killed Capitalism. Melville House, 2024.

N. Wang, H. Xu, and J. Grossklags, “Third-party apps on facebook: privacy and the illusion of
control,” in Proceedings of the 5th ACM Symposium on Computer Human Interaction for Manage-
ment of Information Technology, CHIMIT 11, (New York, NY, USA), pp. 4:1-4:10, Association
for Computing Machinery, 2011.

K. Yasuda, M. Jones, and T. Lodderstedt, “Self-Issued OpenID Provider v2 — draft 13,” Standards
Track Draft OpenID Connect Self-Issued v2.1.0 Draft 13, OpenID Foundation, Nov. 2023.

Zitadel, “OIDC: Openid connect client and server library,” 2024. Accessed: 21/07/2025.

48

https://www.w3.org/TR/did-1.0/
https://www.w3.org/TR/did-1.0/

Erklarung

Erkldrung gemdss Art. 30 RSL Phil.-nat. 18

Ich erklédre hiermit, dass ich diese Arbeit selbststindig verfasst und keine anderen als die angegebenen
Quellen benutzt habe. Alle Stellen, die wortlich oder sinngeméss aus Quellen entnommen wurden, habe
ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemiss Artikel 36 Absatz 1
Buchstabe r des Gesetzes vom 5. September 1996 iiber die Universitiat zum Entzug des auf Grund dieser
Arbeit verliehenen Titels berechtigt ist.

Fiir die Zwecke der Begutachtung und der Uberpriifung der Einhaltung der Selbstindigkeitserklirung
bzw. der Reglemente betreffend Plagiate erteile ich der Universitit Bern das Recht, die dazu erforder-
lichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, insbesondere die schriftliche
Arbeit zu vervielfiltigen und dauerhaft in einer Datenbank zu speichern sowie diese zur Uberpriifung von
Arbeiten Dritter zu verwenden oder hierzu zur Verfiigung zu stellen.

Ort/Datum Unterschrift

49

	Introduction
	Background
	The Digital Identity Problem
	Current Federated Identity Limitations and Centralization Concerns
	The Need for Self-Sovereign Solutions

	OpenID Connect
	Core Protocol Flow and Privacy Implications
	ID Token and claims

	Self-Issued OpenID Provider
	Motivation and Scope
	Core Authentication Flow
	Subject Syntax Types
	ID Token Structure in SIOP

	Anonymous Self Credentials and U2SSO
	Pedersen Commitments
	Zero-Knowledge Arguments
	Anonymous Self-Credentials (ASC)
	Security Analysis

	Anonymous Self Credentials for OpenID Connect
	System Architecture Overview
	System Components
	Protocol Flow Overview
	Key Architectural Decisions

	Initial Setup and Master Identity Creation
	Master Secret Key Generation and Storage
	Credential Recovery
	Master Identity Registration

	Registration Flow
	User Initiates Registration
	SIOP Processes Registration Request
	ID Token Construction and Response
	RP Verification Process

	Authentication Architecture Evolution
	Initial U2SSO Authentication Approach
	Key Improvement: SSK-to-ECDSA Transformation
	Comparative Analysis and Decision Rationale

	Streamlined Authentication Flow
	Authentication Request Processing
	Authentication Token Structure
	Security Properties Maintained

	Supporting Infrastructure: Blockchain Identity Registry
	Eliminating Trusted Third Parties
	Anonymity Set Management
	Implementation Architecture
	Deployment Characteristics
	Gas Costs and Access Control

	Discussion of Security and Privacy Properties
	Preserved Privacy Properties
	Authentication Security Properties
	Security Comparison with Traditional OIDC

	Testing and Benchmarking
	CGo Wrapper library
	Results and Analysis

	Proof of Concept
	Test Environment
	Test Scenarios
	Metrics Collection
	Results
	Performance Bottleneck Analysis
	Conclusion
	Performance Optimization Opportunities

	Conclusion
	Cryptographic Library Functions
	Master Identity Functions

	Smart Contract Implementation

