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Na kraju, želim se zahvaliti mom voljenom suprugu, Goranu, koji je
uvek bio uz mene. Hvala ti na ljubavi, strpljenju i ohrabrivanju. Hvala
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Abstract

The increasing popularity of blockchain technology has created a need
to study and understand consensus protocols, their properties, and se-
curity. As users seek alternatives to traditional intermediaries, such as
banks, the challenge lies in establishing trust within a robust and secure
system. This dissertation explores the landscape beyond cryptocurren-
cies, including consensus protocols and decentralized finance (DeFi).

Cryptocurrencies, like Bitcoin and Ethereum, symbolize the global
recognition of blockchain technology. At the core of every cryptocur-
rency lies a consensus protocol. Utilizing a proof-of-work consensus
mechanism, Bitcoin ensures network security through energy-intensive
mining. Ethereum, a representative of the proof-of-stake mechanism,
enhances scalability and energy efficiency. Ripple, with its native XRP,
utilizes a consensus algorithm based on voting for efficient cross-border
transactions. The first part of the dissertation dives into Ripple’s con-
sensus protocol, analyzing its security. The Ripple network operates on a
Byzantine fault-tolerant agreement protocol. Unlike traditional Byzan-
tine protocols, Ripple lacks global knowledge of all participating nodes,
relying on each node’s trust for voting. This dissertation offers a detailed
abstract description of the Ripple consensus protocol derived from the
source code. Additionally, it highlights potential safety and liveness vi-
olations in the protocol during simple executions and relatively benign
network assumptions.

The second part of this thesis focuses on decentralized finance, a
rapidly growing sector of the blockchain industry. DeFi applications
aim to provide financial services without intermediaries, such as banks.
However, the lack of regulation leaves space for different kinds of at-
tacks. This dissertation focuses on the so-called front-running attacks.
Front-running is a transaction-ordering attack where a malicious party
exploits the knowledge of pending transactions to gain an advantage.
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To mitigate this problem, recent efforts introduced order fairness for
transactions as a safety property for consensus, enhancing traditional
agreement and liveness properties. Our work addresses limitations in
existing formalizations and proposes a new differential order fairness
property. The novel quick order-fair atomic broadcast (QOF) protocol
ensures transaction delivery in a differentially fair order, proving more
efficient than current protocols. It works optimally in asynchronous and
eventually synchronous networks, tolerating up to one-third parties cor-
ruption, an improvement from previous solutions tolerating fewer faults.
This work is further extended by presenting a modular implementa-
tion of the QOF protocol. Empirical evaluations compare QOF’s per-
formance to a fairness-lacking consensus protocol, revealing a marginal
5% throughput decrease and approximately 50ms latency increase. The
study contributes to understanding the practical aspects of QOF pro-
tocol, establishing connections with similar fairness-imposing protocols
from the literature.

The last part of this dissertation provides an overview of existing
protocols designed to prevent transaction reordering within DeFi. These
defense methods are systematically classified into four categories. The
first category employs distributed cryptography to prevent side informa-
tion leaks to malicious insiders, ensuring a causal order on the consensus-
generated transaction sequence. The second category, receive-order fair-
ness, analyzes how individual parties participating in the consensus pro-
tocol receive transactions, imposing corresponding constraints on the
resulting order. The third category, known as randomized order, aims to
neutralize the influence of consensus-running parties on transaction or-
der. The fourth category, architectural separation, proposes separating
the task of ordering transactions and assigning it to a distinct service.
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Chapter 1

Introduction

The growing popularity of blockchain technology brings a significant
challenge: how to make it secure and fair. Building trust among users
who aim to break away from traditional intermediaries, like banks or
brokers, relies on a robust and secure system. Recognizing the impact of
significant blockchain platforms like Bitcoin [71] and Ethereum [16], the
blockchain landscape has expanded beyond cryptocurrencies to include
decentralized finance (DeFi) and many other use cases.

Cryptocurrencies represent blockchain technology’s globally recog-
nized application, providing decentralized alternatives to traditional cur-
rencies. Bitcoin1, introduced in 2009, operates on a proof-of-work con-
sensus mechanism wherein miners compete to solve complex mathemati-
cal puzzles, validate transactions, and add new blocks to the blockchain.
This energy-intensive process ensures the security and immutability of
the Bitcoin network by requiring computational effort to append new
transactions to the decentralized ledger. Another known blockchain,
Ethereum2, transitioned in 2022 from a proof-of-work to a proof-of-stake
consensus mechanism to enhance scalability and reduce energy consump-
tion. In proof-of-stake, validators are chosen to create new blocks based
on the amount of cryptocurrency they stake or lock up as collateral, pro-
moting a more energy-efficient and environmentally friendly approach
to securing the network. Ripple3, often associated with its native cryp-
tocurrency XRP, operates as a digital payment protocol for seamless and

1https://bitcoin.org/
2https://ethereum.org/
3https://ripple.com/

https://bitcoin.org/
https://ethereum.org/
https://ripple.com/
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rapid cross-border transactions. Unlike many decentralized cryptocur-
rencies, Ripple utilizes a more traditional consensus algorithm based on
voting rather than mining, providing a more energy-efficient and scalable
solution for financial institutions and remittance services.

Decentralized Finance (DeFi) is a paradigm within the blockchain
ecosystem that seeks to recreate conventional financial services in a de-
centralized and trustless manner. In essence, it leverages blockchain
technology to remove the need for intermediaries such as banks, en-
abling users to engage in financial activities directly with one another.
DeFi encompasses various financial services, including lending, borrow-
ing, trading, and yield farming. Notable examples of DeFi services in-
clude lending platforms like Compound4 and Aave5, where users can
lend or borrow digital assets; decentralized exchanges like Uniswap6

and SushiSwap7, enabling peer-to-peer trading without centralized au-
thorities; and decentralized autonomous organizations (DAOs) such as
MakerDAO8, allowing for decentralized governance and decision-making
within the ecosystem. These services collectively contribute to the de-
mocratization of finance, providing users with greater control and access
to financial instruments without traditional parties.

This dissertation explores these two aspects, consensus and decen-
tralized finance, of the blockchain ecosystem. The first part dives into
the Ripple [26] consensus protocol that runs XRP cryptocurrency, ex-
amining the security and resilience of the protocol. The second part
focuses on the challenge of reordering transactions within decentralized
finance. The dissertation introduces a novel protocol named quick order-
fair atomic broadcast protocol. The designed and implemented protocol
addresses the challenge of transaction reordering within decentralized
finance (DeFi). In addition to this novel protocol, the dissertation offers
a comprehensive overview of defense mechanisms against transaction re-
ordering attacks. By surveying existing defense strategies, this thesis
aims to provide the blockchain community with insights into defending
decentralized financial systems.

The dissertation is organized as follows. Chapter 2 presents prereq-
uisites for this work. Chapter 3 provides a security analysis of the Rip-
ple consensus protocol. Chapter 4 introduces the Quick Order Fairness

4https://compound.finance/
5https://aave.com/
6https://uniswap.org/
7https://www.sushi.com/
8https://makerdao.com/

https://compound.finance/
https://aave.com/
https://uniswap.org/
https://www.sushi.com/
https://makerdao.com/
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(QOF) protocol. Chapter 5 presents the implementation and evaluation
of the QOF protocol. Chapter 6 provides an overview of defense tech-
niques preventing the reordering of transactions. Chapter 7 concludes
the dissertation and outlines future work. We summarize the contribu-
tions of this dissertation by highlighting the key topics in the following.

Security analysis of Ripple consensus [5]. The Ripple network
is one of the most prominent blockchain platforms, and its native XRP
token currently has one of the highest cryptocurrency market capitaliza-
tions. At the moment of writing this thesis, Ripple’s market capitaliza-
tion is worth around 34 billion USD. The Ripple consensus protocol pow-
ers this network and is generally considered a Byzantine fault-tolerant
agreement protocol, which can reach consensus in the presence of faulty
or malicious nodes. In contrast to traditional Byzantine agreement pro-
tocols, there is no global knowledge of all participating nodes in Ripple
consensus; instead, each node declares a list of other nodes that it trusts
and from which it considers votes. Previous work has brought up con-
cerns about the liveness and safety of the consensus protocol under the
general assumptions stated initially by Ripple, and at the moment of
writing this work, there was no appropriate understanding of its work-
ings and properties in the literature. Chapter 3 closes this gap and makes
two contributions. It first provides a detailed, abstract description of the
protocol, which has been derived from the source code. Second, the work
points out that the abstract protocol may violate safety and liveness in
several simple executions under relatively benign network assumptions.

Quick Order Fairness [21]. Leader-based protocols for consensus,
i.e., atomic broadcast, allow some parties to unilaterally affect the fi-
nal order of transactions. This has become a problem for blockchain
networks and decentralized finance because it facilitates front-running
and other attacks. To address this, order fairness for transactions has
been introduced as a new safety property for atomic broadcast comple-
menting traditional agreement and liveness. We relate order fairness to
the standard validity notions for consensus protocols and highlight some
limitations with the existing formalization. Based on this, Chapter 4 in-
troduces a new differential order fairness property that fixes these issues.
We also present the quick order-fair atomic broadcast protocol that guar-
antees transaction delivery in a differentially fair order and is much more
efficient than existing order-fair consensus protocols. It works for asyn-
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chronous and eventually synchronous networks with optimal resilience,
tolerating corruptions of up to one-third of the parties. Previous solu-
tions required there to be less than one-fourth of faults. Furthermore,
our protocol incurs only quadratic cost regarding amortized message
complexity per delivered transaction.

Quick Order Fairness: implementation and evaluation [20].
Consensus with a fair order aims to prevent front-running attacks, and
in particular, the differential order fairness property addresses this prob-
lem and connects fair ordering to the validity of consensus. Chapter 5
revisits the QOF protocol and describes a modular implementation that
uses a generic consensus component. Moreover, an empirical evaluation
is performed to compare the performance of QOF to a consensus proto-
col without fairness. Measurements show that the increased complexity
comes at a cost: throughput decreases by at most 5%, and latency in-
creases by roughly 50ms, using an emulated ideal network. This work
contributes to a comprehensive understanding of practical aspects re-
garding differential order fairness with the QOF protocol. Also, it con-
nects this with similar fairness-imposing protocols like Themis [49] and
Pompē [91].

Reordering defense in decentralized finance. In Chapter 6, we
take a deep dive into the world of decentralized finance (DeFi) and ex-
plore the strategies designed to tackle front-running attacks. Despite
DeFi’s unquestionable advantages, the issue of front-running calls for
our attention. This chapter delves into the basics of the technical chal-
lenges and inventive solutions surrounding front-running attacks in the
DeFi landscape. It also positions the contribution of this thesis within
the broader context of the research community. We bring to the table
an overview of defense techniques and a breakdown of these methods
into four distinct groups. Whether leveraging distributed cryptogra-
phy, ensuring a causal order, or exploring architectural separation as a
standalone service, we aim to present the state-of-the-art in this field.
Nevertheless, it is not just about listing defense methods; our focus
extends to developing a comprehensive understanding of how these pro-
tocols compare against each other. Our goal is to offer the research
community insights into the differences between these protocols. Addi-
tionally, we dive into assessing performance metrics. In doing so, we lay
the groundwork for collaborative efforts beyond just mitigating front-
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running attacks, contributing to the ongoing evolution of DeFi against
emerging challenges.

Publications. The work presented in this thesis is based on the fol-
lowing papers:

• Ignacio Amores-Sesar, Christian Cachin and Jovana Mićić:
Security Analysis of Ripple Consensus,
24th International Conference on Principles of Distributed Systems
(OPODIS 2020), December 2020.

• Christian Cachin, Jovana Mićić, Nathalie Steinhauer and Luca
Zanolini:
Quick order fairness,
Financial Cryptography and Data Security - 26th International
Conference (FC 2022), May 2022.

• Christian Cachin and Jovana Mićić:
Quick Order Fairness: Implementation and Evaluation,
arXiv preprint arXiv:2312.13107, December 2023.





Chapter 2

Preliminaries

This section introduces the basic concepts and definitions used through-
out this thesis. We start by introducing the components of the system
model, which includes assumptions about processes, failures, communi-
cation, and different timing assumptions that can be made about the
system. Finally, we define the abstractions used in the algorithms pre-
sented in this thesis. Note that in this section, we use the notion of
messages as the subject of communication abstractions. This is because
abstractions in this section are generic. When these abstractions are
applied to blockchain systems, we speak of transactions.

2.1 System model

2.1.1 Processes

We model our system as a set of n processes, also called parties or nodes,
which communicate with each other over the network. We define them as
P = {p1, . . . , pn}. Messages are exchanged between processes reliably.
Each process runs a protocol that is defined by a set of instructions.
Processes are computationally bounded, and protocols may use crypto-
graphic primitives. We assume that each process has a unique identifier
known to all other processes. In our system, we consider two types of
processes. Correct or honest processes are those who follow the protocol
as expected. On the contrary, the processes that may crash or deviate
from the protocol are called faulty.
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When we devise an algorithm to implement a distributed program-
ming abstraction, we want to satisfy two properties: safety and liveness.
Safety means that this property can be violated at some time t and never
be satisfied again after that time. In other words, the algorithm should
not do anything wrong. A liveness property ensures that, eventually,
something good will happen. Practical distributed systems should sat-
isfy both properties.

2.1.2 Failures

A failure happens whenever the process does not behave according to
the algorithm. Possible failures include crash failures, where a pro-
cess stops executing the algorithm, a crash with recovery, and arbitrary
faults. This thesis focuses on arbitrary faults, also called Byzantine
faults. When we use this notion, we make no assumptions about the
behavior of faulty processes. They can deviate arbitrarily from the pro-
tocol. An arbitrary fault does not necessarily mean to be malicious. A
software bug or a hardware failure can cause it.

2.1.3 Communication

The abstraction of a link is used to model the network components of
a distributed system. Links in this work are called point-to-point links,
i.e., they provide communication between pairs of processes. We assume
that a low-level mechanism exists for sending messages over reliable and
authenticated perfect links. Our protocol descriptions refer to this as
”sending a message” and ”receiving a message.”

Authenticated perfect links (al) [18, Sec. 2.4] primitive is used to
prevent the forgery of messages on the link between processes, which is
achieved by using cryptographic authentication. It is accessed through
two events: al-send and al-deliver. The first event requests to send
message m to process q. The second event delivers message m sent by
process p.

Definition 2.1 (Authenticated perfect links). A protocol solves au-
thenticated perfect links if it satisfies the following conditions:

Reliable delivery: If a correct process p sends a messagem to a correct
process q, then q eventually delivers m.

No duplication: No message is delivered by a correct process more
than once.



2.1 System model 9

Authenticy: If a correct process q delivers a message m with sender
p and process p is correct, then m was previously sent to q by
process p.

2.1.4 Timing

An important aspect of distributed systems is the timing assumptions
that can be made about the system. This refers to the behavior of
processes and links concerning the passage of time. We distinguish be-
tween three types of timing assumptions: asynchronous, synchronous,
and partially synchronous [18, Sec. 2.5].

Asynchronous system. In considering an asynchronous distributed
system, the fundamental principle involves refraining from making spe-
cific timing assumptions concerning processes and links. In other words,
no assumptions have been made regarding processes having access to
any form of physical clock, and there have been no presumptions about
limits on processing or communication delays. Even without access to
a physical clock, we can still measure the passage of time based on the
transmission and delivery of messages. Such time is called logical time
and uses logical clocks.

Synchronous system. Working with a synchronous system comes to
assuming the following properties:

• Synchronous computation: there is a known upper bound on pro-
cessing delays.

• Synchronous communication: there is a known upper bound on
message transmission delays.

In a synchronous system, the synchronization of clocks among various
processes is achievable in a manner that ensures they are never apart
by more than a specified constant δ, known as the clock synchronization
precision. The alignment of clocks facilitates the coordination of actions
among processes, enabling the execution of synchronized global steps.
We can use synchronized clocks to timestamp events at the instant they
occur. These timestamps can be used to order events that occur at
different processes. If a system exists where delays are constant, it would
be possible to have perfectly synchronized clocks. However, this is not
possible in practice, so events cannot be ordered perfectly.
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Partial synchrony. Most of the time, distributed systems appear to
be synchronous. Still, there are periods when timing assumptions do not
hold, i.e., the system is asynchronous. This is, for example, when the
network is overloaded. These systems are called partially synchronous.
So, instead of assuming that the system is always synchronous, we as-
sume it is eventually synchronous after an asynchronous period. We
expect periods when the system is synchronous and long enough to al-
low the algorithm to do something useful or terminate its execution.

2.2 Abstractions

2.2.1 Reliable broadcast

Sometimes, the sender may fail when sending a message in a distributed
system. In this case, some processes might deliver the message, and
others not. Therefore, they do not agree on the delivery of the message.
The reliable broadcast (rb) [18, Ch. 3] primitive ensures, with respect
to crash faults, that correct processes agree on the set of messages they
deliver, even when the senders of these messages crash while sending
them. Reliable broadcast has two events: rb-broadcast and rb-deliver.
The first event is used by a process p to send a message m to all other
processes. The second event is used by a process q to deliver a message
m previously broadcast by some process p.

Definition 2.2 (Reliable broadcast). A protocol solves reliable broad-
cast if it satisfies the following conditions:

Validity: If a correct process p broadcasts a message m, then p even-
tually delivers m.

No duplication: No message is delivered more than once.

No creation: IIf a process delivers a message m wih sender s, then m
was previously broadcast by process s.

Agreement: If a correct process delivers a message m, then m is even-
tually delivered by every correct process.

2.2.2 FIFO broadcast

Reliable broadcast does not guarantee that all processes deliver the mes-
sages in the same order. The first-in first-out (FIFO) order [18, Sec. 3.9]
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ensures that messages broadcast by the same sender process are deliv-
ered in the order in which they were sent. FIFO-order broadcast has
two events: frb-broadcast and frb-deliver. The first event is used by a
process p to send a message m to all other processes. The second event
is used by a process q to deliver a message m previously broadcast by
some process p.

Definition 2.3 (FIFO-order broadcast). A protocol solves FIFO-
order broadcast if it satisfies the properties of reliable broadcast (Def. 2.2)
and following condition:

FIFO delivery: If some process broadcasts messagem1 before it broad-
casts message m2, then no correct process delivers m2 unless it has
already delivered m1.

FIFO-order broadcast primitive guarantees that messages from the
same sender are delivered in the same sequence as they were broadcast.
However, this does not affect messages from different senders.

2.2.3 Byzantine consistent broadcast

As we saw in Section 2.1, Byzantine processes may deviate arbitrarily
from the protocol. Therefore, an algorithm must be prepared to tolerate
such behavior. The Byzantine Consistent Broadcast (bcb) [18, Sec. 3.10]
primitive solves one of the basic problems in the fail-arbitrary model.
It is accessed through two events: bcb-broadcast and bcb-deliver. The
first event is executed only by a sender s, and it sends a message m to
all other processes. The second event delivers a message m previously
broadcast by p.

Definition 2.4 (Byzantine Consistent Broadcast). A protocol solves
Byzantine consistent broadcast if it satisfies the following conditions:

Validity: If a correct process p broadcasts a message m, then every
correct process eventually delivers m.

No duplication: Every correct process delivers at most one message.

Integrity: If some correct process delivers a message m with sender p
and process p is correct, then m was previously broadcast by p.

Consistency: If some correct process delivers a message m and another
correct process delivers a message m′, then m = m′.
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2.2.4 Byzantine FIFO consistent broadcast channel

Multiple broadcast instances can be combined to the higher-level notion,
which we call Byzantine broadcast channel. In scenarios where a high-
level algorithm employs numerous instances of a low-level primitive, it
becomes essential to tag the implementation-level messages generated
by the primitive with a suitable identifier. In some cases, this identifier
must also be incorporated into cryptographic operations.

Byzantine FIFO consistent broadcast channel (bcch) [18, Sec. 3.12]
allows the processes to deliver multiple messages and ensures consistency
despite Byzantine senders. The interface of such a channel provides two
events. A process invokes bcch-broadcast(m) to broadcast a message m
to all processes. An event bcch-deliver(pj , l,m) delivers a message m
with label l from a process pj .

The label with every delivered message is an arbitrary bit string
generated by the channel. Intuitively, the channel ensures that if a
message is delivered with some label, then the message itself is the same
at all correct processes that deliver this label.

Definition 2.5 (Byzantine FIFO Consistent Broadcast Chan-
nel). A Byzantine FIFO consistent broadcast channel satisfies the fol-
lowing properties:

Validity: If a correct process broadcasts a message m, then every cor-
rect process eventually delivers m.

No duplication: For every process pj and label l, every correct process
delivers at most one message with label l and sender pj .

Integrity: If some correct process delivers a message m with sender pj
and process pj is correct, then m was previously broadcast by pj .

Consistency: If some correct process delivers a message m with label
l and sender pj , and another correct process delivers a message m′

with label l and sender pj , then m = m′.

FIFO delivery: If a correct process broadcasts some message m before
it broadcasts a message m′, then no correct process delivers m′

unless it has already delivered m.

2.2.5 Validated Byzantine consensus

Validated Byzantine consensus(vbc) [19] defines an external validity con-
dition. It requires that the consensus value is legal according to a global,
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efficiently computable predicate P known to all processes. This allows
the protocol to recognize proposed values that are acceptable to an ex-
ternal application. Note that it is not required that the decision value
was proposed by a correct process, but all processes must be able to
verify the validity. A consensus primitive is accessed through the events
vbc-propose(v) and vbc-decide(v), where v ∈ V has a potentially large
domain V and may contain a proof, which allows processes to verify the
validity of v.

Definition 2.6 (Validated Byzantine Consensus). A protocol solves
validated Byzantine consensus with validity predicate P if it satisfies the
following conditions:

Termination: Every correct process eventually decides some value.

Integrity: No correct process decides twice.

Agreement: No two correct processes decide differently.

External validity: Every correct process only decides a value v such
that P (v) = true. Moreover, if all processes are correct and
propose v, then no correct process decides a value different from
v.

2.2.6 Atomic broadcast

Atomic broadcast [18, Sec. 6.1] ensures that all processes deliver the
same messages and that all messages are output in the same order. This
is equivalent to the processes agreeing on one sequence of messages that
they deliver. Atomic broadcast is also called “total-order broadcast” or
simply “consensus” in the context of blockchains because it is equivalent
to running a sequence of consensus instances. Processes may broadcast
a message m by invoking a-broadcast(m), and the protocol outputs mes-
sages through a-deliver(m) events.

Definition 2.7 (Atomic Broadcast). A protocol for atomic broadcast
satisfies the following properties:

Validity: If a correct process a-broadcasts a message m, then every
correct process eventually a-delivers m.

No duplication: No message is a-delivered more than once.
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No creation: If a process delivers a message m with sender s, then m
was previously broadcast by process s.

Agreement: If a message m is a-delivered by some correct process,
then m is eventually a-delivered by every correct process.

Total order: Let m and m′ be two messages such that pi and pj are
correct processes that a-deliver m and m′. If pi a-delivers m before
m′, then pj also a-delivers m before m′.



Chapter 3

Security Analysis of the
Ripple Consensus
Protocol

3.1 Introduction

The XRP Ledger of the Ripple network is one of the oldest and most
established blockchains; its XRP token is nowadays ranked sixth in mar-
ket capitalization (January 2024). The Ripple network primarily aims
at fast global payments, asset exchange, and settlement. Its distributed
consensus protocol is implemented by a peer-to-peer network of valida-
tor nodes that maintain a history of all transactions on the network [83].
Unlike Nakamoto’s consensus protocol [71] in Bitcoin or Ethereum, the
Ripple consensus protocol does not rely on “mining,” but uses a voting
process based on the identities of its validator nodes to reach consen-
sus. This makes Ripple much more efficient than Bitcoin for processing
transactions (up to 1500 transactions per second) and lets it achieve very
low transaction settlement times (4–5 seconds).

However, Ripple’s consensus protocol does not follow the established
models and algorithms for Byzantine agreement [57], [75] or Byzantine
fault-tolerant (BFT) consensus [24]. Those systems start from a com-
mon set of nodes communicating with each other to reach consensus,
and the corresponding protocols have been investigated for decades. In-
stead, the Ripple consensus protocol introduces the idea of subjective
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Figure 3.1: Example of a Ripple network configuration with six nodes
and two UNLs, UNL1 = {1, 2, 3, 4} and UNL2 = {3, 4, 5, 6}. Nodes 1, 2,
and 3 (white) trust UNL1, and nodes 4, 5, and 6 (black) trust UNL2.
Notice that nodes 3 and 4 have more influence than the rest of the nodes
since they are at the intersection of both UNLs.

validators, such that every node declares some trusted validators and
effectively communicates only with those nodes to reach an agreement
on transactions. With this mechanism, Ripple designers aimed to open
up membership in the set of validator nodes compared to BFT consen-
sus. The trusted validators of a node are defined by a Unique Node
List (UNL), which plays an important role in the formalization of the
protocol. Every node maintains a static UNL in its configuration file
and considers only the opinions of nodes in its UNL during consensus.
Figure 3.1 shows an example network, where two UNLs are defined:
UNL1 = {1, 2, 3, 4} and UNL2 = {3, 4, 5, 6}; for instance, nodes 1, 2,
and 3 may trust UNL1, and nodes 4, 5, and 6 may trust UNL2.

Consensus in Ripple aims at delivering the transactions submitted by
clients to all participating nodes in a common global order, despite faulty
or malicious (Byzantine) nodes [86]. This ensures that the sequence
of transactions, grouped into so-called ledgers and then processed by
each node, is the same for all nodes. Hence, the states of all correct
nodes remain synchronized, according to the blueprint of state-machine
replication [85].

Cachin and Vukolić [23] have earlier pointed out that it is impor-
tant to assess the properties of blockchain consensus protocols formally.
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Unfortunately, many systems have been designed and deployed without
following the agreed-on principles of protocol analysis from the litera-
ture. Ripple is no exception to this, as we show in this work.

Specifically, we focus on two properties that every sound protocol
must satisfy [3]: safety and liveness. Safety means nothing “bad” will
ever happen, and liveness means something “good” eventually happens.
Safety ensures that the network does not fork or double-spend a to-
ken. A liveness violation would mean that the network stops making
progress and halts processing transactions, which creates as much harm
as forking.

This work presents a complete, abstract description of the Ripple
consensus protocol (Section 3.3). The model has been obtained directly
from the source code. It is formulated in the language spoken by de-
signers of consensus protocols to facilitate a better understanding of the
properties of Ripple consensus. No formal description of Ripple con-
sensus with comparable technical depth has been available so far (apart
from the source itself).

Second, we exhibit examples of how safety and liveness may be vi-
olated in executions of the Ripple consensus protocol (Sections 3.4 and
3.5). In particular, the network may fork under the standard condi-
tion on UNL overlap stated by Ripple and in the presence of a constant
fraction of Byzantine nodes. The malicious nodes may simply send con-
flicting messages to the correct nodes and delay the reception of other
messages among the correct nodes. Furthermore, the consensus proto-
col may lose liveness even if all nodes have the same UNL and there is
only one Byzantine node. If this occurs, the system has to be restarted
manually.

Given these findings, we conclude that the consensus protocol of the
Ripple network is brittle and does not ensure consensus in the usual
sense. It relies heavily on synchronized clocks, timely message deliv-
ery, the presence of a fault-free network, and an apriori agreement on
common trusted nodes. The role of the UNLs, their overlap, and the
creation of global consensus from subjective trust choices remain un-
clear. If Ripple instead had adopted a standard BFT consensus proto-
col [18], as done by Tendermint [15], versions of Hyperledger Fabric [6],
Libra [61] or Concord [42], then the Ripple network would resist a much
wider range of corruptions, tolerate temporary loss of connectivity, and
continue operating despite loss of synchronization.
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3.2 Related work

Despite Ripple’s prominence and its relatively high age among blockchain
protocols — the system was first released in 2012 — there are only few
research papers investigating the Ripple consensus protocol compared
to the large number of papers on Bitcoin. The original Ripple white
paper of 2014 [86] describes the UNL model and illustrates some ideas
behind the protocol. It claims that under the assumption of requiring
an 80%-quorum for declaring consensus, the intersection between the
UNLs of any two nodes u and v should be larger than 20% of the size
of the larger of their UNLs, i.e.,

|UNLu ∩UNLv| ≥ 1

5
max{|UNLu|, |UNLv|}.

The only earlier protocol analysis in the scientific literature of which
we are aware was authored by Armknecht et al. in 2015 [7]. This work
analyzes the Ripple consensus protocol and outlines the security and
privacy of the network compared to Bitcoin. The authors prove that
a 20%-overlap, as claimed in the white paper, cannot be sufficient for
reaching a consensus, and they increase the bound on the overlap to at
least 40%, i.e.,

|UNLu ∩UNLv| >
2

5
max{|UNLu|, |UNLv|}

In a preprint of 2018, Chase and MacBrough [26] further strengthen
the required UNL overlap. They introduce a high-level model of the
consensus protocol and describe some of its properties, but many details
appear unclear or are left out. This work concludes that the overlap
between UNLs should actually be larger than 90%. The paper also gives
an example with 102 nodes that shows how liveness can be violated,
even if the UNLs overlap almost completely (by 99%) and there are no
faulty nodes. The authors conclude that manual intervention would be
needed to resurrect the protocol after this.

An analysis whose goal is similar to that of our work has been con-
ducted by Mauri et al. [68]. Based on the source code, they give a verbal
description of the consensus protocol, but do not analyze dynamic pro-
tocol properties. Our analysis, in contrast, provides a detailed, formal
description with pseudocode and achieves a much better understanding
of how the “preferred ledger” is chosen. Moreover, our work shows pos-
sible violations of safety and liveness, whereas Mauri et al. address only
on the safety of the consensus protocol through sufficient conditions.
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Other academic work mostly addresses network structure, transac-
tion graph, and privacy aspects of payments on the Ripple blockchain [65],
[69], which is orthogonal to our focus.

3.3 A description of the Ripple consensus
protocol

The main part of our analysis consists of a detailed presentation of the
Ripple consensus protocol in this section and formally in Algorithms 1–
4. Before describing this, we define the task the protocol intends to
solve.

3.3.1 Specification

Informally, the goal of the Ripple consensus protocol is “to ensure that
the same transactions are processed, and validated ledgers are consistent
across the peer-to-peer XRP Ledger network” [82]. More precisely, this
protocol implements the task of synchronizing the nodes so that they
proceed through a common execution by appending successive ledgers
to an initially empty history and where each ledger consists of a number
of transactions. This is the problem of replicating a service in a dis-
tributed system, which goes back to Lamport et al.’s pioneering work
on Byzantine agreement [57], [75]. The problem has a long history,
and a good summary can be found in the book “30-year perspective on
replication” [25].

For replicating an abstract service among a set of nodes, the service is
formulated as a deterministic state machine that executes transactions
submitted by clients or, for simplicity, by the nodes themselves. The
consensus protocol disseminates the transactions among the nodes, such
that each node locally executes the same sequence of transactions on
its copy of the state. The task provided by this protocol is also called
atomic broadcast, indicating that the nodes actually disseminate the
transactions. When each node locally executes the same sequence of
transactions as directed by the protocol, and since each transaction is
deterministic, all nodes will maintain the same copy of the state [85].

More formally, atomic broadcast is characterized by two events deal-
ing with transactions: a-broadcast and a-deliver, which may each occur
multiple times. In the context of Ripple, every node may submit a
transaction tx by invoking submit(tx), and atomic broadcast applies tx
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to the application state on the node through execute(tx). We recall the
definition of the atomic broadcast below.

Definition 2.7 (Atomic Broadcast). A protocol for atomic broadcast
satisfies the following properties:

Validity: If a correct party a-broadcasts a transaction tx, then every
correct party eventually a-delivers tx.

No duplication: No transaction is a-delivered more than once.

Agreement: If a transaction tx is a-delivered by some correct party,
then tx is eventually a-delivered by every correct party.

Total order: Let tx and tx′ be two transactions such that pi and pj are
correct parties that a-deliver tx and tx′. If pi a-delivers tx before
tx′, then pj also a-delivers tx before tx′.

Our specification does not refer to the heterogeneous trust structure
defined by the UNLs and simply assumes all nodes should execute the
same transactions. This corresponds to the implicit assumption in Rip-
ple’s code and documentation. We note that the question of establishing
a global consistency in a distributed system with subjective trust struc-
tures is a topic of current research, as addressed by asymmetric quorum
systems [22] or in the context of Stellar’s protocol [62], for example.

3.3.2 Overview

The following description was obtained directly from the source code.
Its overall structure retains many elements and function names found in
the code so that it may serve as a guide to the source for others and to
explain how it works. If the goal had been to compare Ripple consensus
to the existing literature on synchronous Byzantine agreement protocols,
the formalization would differ considerably.

The protocol is highly synchronous and relies on a common notion of
time. It is structured into successive rounds of consensus, whereby each
round agrees on a ledger (a set of transactions to execute). Each round
roughly takes a predefined amount of time and is driven by a heartbeat
timer, which triggers a state update once per second. This contrasts with
the Byzantine consensus protocols with partial synchrony [33], such as
PBFT [24], which can tolerate arbitrarily long periods of asynchrony
and rely on clocks or timeouts only for liveness. The Ripple protocol
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Figure 3.2: Phases and transitions between phases of a consensus round.

aims to agree on a transaction set within each synchronized round. The
round ends when all nodes collectively declare to have reached consensus
on a proposal for the round. The protocol is then said to close and later
validate a ledger containing the agreed-on transaction set. However,
the transactions in the ledger are executed only after another proto-
col step once the ledger has become fully validated ; this occurs in an
asynchronous process in the background. Transaction execution is only
logically synchronized with the consensus round.

A ledger consists of a batch of transactions that result from a con-
sensus round and contains a hash of the logically preceding ledger.
Ledgers are stored persistently and roughly play the role of blocks in
other blockchain protocols. Each node locally maintains three different
ledgers: the current ledger, which is in the process of building during
a consensus round, the previous ledger, representing the most recently
closed ledger and the valid ledger, which is the last fully validated ledger
in the network.

In more detail, a consensus round has three phases: open, establish,
and accepted . According to the state diagram shown in Figure 3.2, the
usual phase transition goes from open to establish to accepted and then
proceeded to the next consensus round, which starts again from open.
However, it is also possible that the phase changes from establish to
open, if a node detects that it has been forked from the others to a
wrong ledger and resume processing after switching to the ledger agreed
by the network.

Nodes may submit transactions at any time concurrently to executing
the consensus rounds. They are disseminated among the nodes through
a gossip layer that ensures only weak consistency. All transactions that
have been received from gossip are placed into a buffer. Apparently, the
original design assumed that the gossip layer ensures consistency that
prevents Byzantine nodes from equivocating in the sense that correct
nodes never receive different messages from them. This assumption has
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been dropped later [26].
The protocol rounds and their phases are implemented by a state ma-

chine invoked every second when the global heartbeat timer ticks. Mes-
sages from other nodes are received asynchronously in the background
and processed during the next timer interrupt.

The timeout handler (L56) first checks if the local previous ledger is
the same as the preferred ledger of a sufficient majority of the nodes in
the network. If not, the node has been forked or lost synchronization
with the rest of the network and must bring itself back to the state
agreed by the network. In this case, it starts a new consensus round
from scratch.

When the node enters a new round of consensus, it sets the phase
to open, resets round-specific data structures and simply waits for the
buffer to fill up with submitted transactions. Once the node has been in
the open phase for more than half of the duration of the previous con-
sensus round, the node moves to the establish phase (L63–L64; function
closeLedger). It locally closes the ledger, which means to initialize its
proposal for the consensus round and to send this to the other nodes in
its UNL.

During the establish phase, the nodes exchange their proposals for
the transactions to decide in this consensus round (using proposal
messages). Obviously, these proposals may contain different transaction
sets. All transactions on which the proposals from other nodes differ
become disputed. Every node keeps track of how many other nodes in
its UNL have proposed a disputed transaction and represents this infor-
mation as votes by the other nodes. The node may remove a disputed
transaction from its proposal or add one to its proposal based on the
votes of the others and based on the time that has passed. Specifically,
the node increases the necessary threshold of votes for changing its vote
on a disputed transaction depending on the duration of the establish
phase concerning the time taken by the previous consensus round.

The node leaves the establish phase when it has found that there is a
consensus on its proposal (L69–L71; functions haveConsensus and onAc-
cept). The node constructs the next ledger (the “last closed ledger”) by
“applying” the decided transactions. This ledger is signed and broadcast
to the other nodes in a validation message.

The node then moves to the accepted phase and initializes a new con-
sensus round immediately. Concurrently, the node receives validation
messages from the nodes in its UNL. It verifies them and counts how
many other nodes in its UNL have issued the same validation. When
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this number reaches 80% of the nodes in its UNL, the ledger becomes
fully validated, and the node executes the transactions contained in it.

3.3.3 Details

Phase open. The function beginConsensus starts a consensus round
for the next ledger (L50). Each ledger (L11) contains a hash (ID) that
serves as its identifier, a sequence number (seq), a hash of the parent
ledger (parentID), and a transaction set (txns), denoting the transac-
tions applied by the ledger.

The node records the time when the open phase started (openTime,
L54), so that it can later calculate how long the open phase has taken.
This is important because the duration of the open phase determines
when to close the ledger locally. If the time that has passed since
openTime is longer or equal to half of the previous round time (pre-
vRoundTime), consensus moves to phase establish by calling the func-
tion closeLedger (L64). Meanwhile, all nodes submit transactions with
the gossip layer (L46), and each node stores the transaction received
via gossip messages in its transaction set S (L48). We model transac-
tions as bit strings. In some places, and as in the source code, we use
a short, unique transaction identifier (of type int) for each transaction
tx ∈ {0, 1}∗, computed by a function TxID(tx). A transaction set is a
set of binary strings here, but the source code maintains a transaction
set using a hash map containing the transaction data indexed by their
identifiers.

Phase establish. When the node moves from open to establish, it calls
closeLedger that creates an initial proposal (stored in result .proposal)
containing all transactions received from the gossip layer (L79) that
have not been executed yet. A proposal structure (L16) contains the
hash of the previous ledger (prevLedgerID), a sequence number (seq),
the actual set (txns) of proposed transactions (in the source code named
position), an identifier of the node (node) that created this proposal,
and a timestamp (time) when this proposal is created (L79).

The node then broadcasts the new proposal as a proposal message
(L81) to all nodes in its UNL. When they receive it, they will store its
contents in their currPeerProposals collection of proposals (L86), if the
message originates from a node in their respective UNL. The closeLedger
function also sets result .roundTime to the current time (L80). This
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measures the duration of the establish phase and will be used later to
determine how far the consensus process has converged.

Based on the proposals from other nodes, each node computes a set
of disputed transactions (L89). A disputed transaction (DisputedTx,
L5) contains the transaction itself (tx ), a binary vote (ourVote) by the
node on whether this transaction should be included in the ledger, the
number of “yes” and “no” votes from other nodes on the transaction
(yays and nays), taken from their proposal messages, and the list of
votes on this transaction from the other nodes (votes).

A transaction becomes disputed when the node proposes it, and
some other node does not, or vice versa. The node determines these
by comparing its transaction set with the transaction sets of all other
nodes (L91). Every disputed transaction is recorded (as a DisputedTx
structure) in the collection result .disputes (L92–L101).

During the establish phase, the node constantly updates its votes on
all disputed transactions (L68; L103; L124) for responding to further
proposal messages that have been received. A vote may change based
on the number of nodes in favor of the transaction, the convergence
ratio (converge) and a threshold . Convergence measures the expected
progress in one single consensus round and is computed from the du-
ration of the establish phase, the duration of the the previous round,
and an assumed maximal consensus-round time (L67). The value for
the threshold is predefined. The further, the consensus converges, the
higher is the threshold that the number of opposing votes needs to reach
so that the node changes its own vote (L134). Whenever the node’s pro-
posal is updated, the node broadcasts its new proposal to the other
nodes (L120) and the disputed transactions are recomputed (L122).

Afterward, the node checks if consensus on its proposed transaction
set result .txns is reached by calling the function haveConsensus (L69).
The node counts agreements (L138) and disagreements (L139) with re-
sult .txns. If the fraction of agreeing nodes is at least 80% with respect
to the UNL (L141), then consensus is reached. The node proceeds to
the accepted phase by calling the function onAccept (L71).

Phase accepted. The function onAccept (L142) “applies” the agreed-
on transaction set and thereby creates the next ledger (called the “last
closed ledger” in the source code; L143). This ledger is then signed
(L145) and broadcast to the other nodes as a validation message
(L146). This marks the end of the accepted phase, and the node ini-
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tiates a new consensus round (L149).
Meanwhile, in the background, the node receives validation mes-

sages from other nodes in its UNL and tries to verify them (L150). This
verification checks the signature and if the sequence number of the re-
ceived ledger is the same as the sequence number of the own ledger.
All validations that satisfy both conditions and contain the node’s own
agreed-on ledger are counted (L155); this comparison uses the crypto-
graphic hash of the ledger structure in the source code. Again, if 80% of
the nodes have validated the same ledger, and if the sequence number of
that ledger is larger than that of the last fully validated ledger (L156),
the ledger becomes fully validated (L157). The node executes the trans-
actions in the ledger (L160). In other words, the consensus decision has
become final.

Preferred ledger. A node participating in consensus regularly com-
putes the preferred ledger, which denotes the current ledger on which
the network has decided. Due to possible faults and network delays, the
node’s prevLedger may have diverged from the preferred ledger, which
is determined by calling the function getPreferred(validLedger) (L161).
Should the network have adopted a different ledger than the prevLedger
of the node, the node switches to this ledger and restarts the consensus
round with the new ledger.

Notice that the validated ledgers from all correct nodes form a tree
rooted in the initial ledger (genesisLedger). Each node stores all valid
ledgers it receives in a tree-structured variable tree. Whenever the node
receives a validation message containing a ledger L′, it adds L′ to tree
(L152). In order to compute the preferred ledger, we define the following
functions, which are derived from the ledgers in tree and in the received
validation messages:

• tip-support(L) for a ledger L is the number of validators in the
UNL that have validated L. In other words,

tip-support(L) =
∣∣{ j ∈ UNL | validations[j] = L}

∣∣.
• support(L) for a given ledger L is the sum of the tip support of L
and all its descendants in tree, i.e.,

support(L) = tip-support(L)+
∑

L′ is a child of L in tree

tip-support(L′).
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• uncommitted(L) for a ledger L denotes the number of validators
whose last validated ledger has a sequence number that is strictly
smaller than the sequence number of L. More formally,

uncommitted(L) =
∣∣{j ∈ UNL | validations[j].seq < L.seq}

∣∣.
With these definitions, we now explain how getPreferred(Ledger L)

proceeds (L161–L172). If L has no children in tree, it returns L itself.
Otherwise, the function considers the child of L that has the highest
support among all children (M). If the support of M is still smaller
than the number of validators yet uncommitted at this ledger-sequence
number, then L is still the preferred ledger (L167). Otherwise, if the
support ofM is guaranteed to exceed the support of any of its siblingsN ,
even when the uncommitted validators would also support N , then the
function recursively calls getPreferred onM , which outputs the preferred
ledger for M and returns this as the preferred ledger for L. Otherwise, L
itself is returned as the preferred ledger. Observe that when M has no
siblings, conditions in L166 and L168 are equivalent. Then, it is enough
to check if support of M is greater than uncommitted od M .

Functions. For the simplicity of pseudocode, some functions are not
fully explained. These functions are:

• startTimer(timer, duration) starts timer, which expires after the
time passed as duration.

• clock.now() returns the current time.

• Hash creates a unique identifier (often denoted ID) of a data struc-
ture by converting the data to a canonical representation and ap-
plying a cryptographic hash function to this.

• A △ B denotes the symmetric set difference.

• boolToInt(b) converts a logical value b to an integer and returns
b? 0:1.

• signi(L) creates a cryptographic digital signature for ledger L by
node i .

• verifyi(L, σ) checks if the digital signature on L from node i is
valid.



3.4 Violation of safety 27

• siblings(M) returns the set of nodes, different from M , that have
the same parent as M .

Remarks on the pseudocode. Next to every function name, a com-
ment points to a specific file and line in the source code that contains its
implementation. The Ripple source contains a large number of files, and
most of the consensus protocol implementation is actually spread over
multiple header (.h) files, which complicates the analysis of the code.
The references in this work are based on version 1.4.01 of rippled [81].

3.4 Violation of safety

In this section, we address the safety of the Ripple consensus protocol.
We first describe a simple scenario in which consensus is violated in an
execution with seven nodes, one Byzantine. Secondly, we show how this
problem can be generalized to executions with more nodes.

3.4.1 Violating agreement with seven nodes

We use the following scenario with seven nodes to show that the Ripple
consensus protocol violates safety and may let two correct nodes execute
different transactions. Figure 3.3 gives a graphical representation of our
scenario, and we will refer to it later in the text.

Nodes are named by numbers. We let UNL1 = {1, 2, 3, 4, 5} and
UNL2 = {3, 4, 5, 6, 7}, as illustrated by the two hatched areas in the
figure. Nodes 1, 2, and 3 (white) trust UNL1, nodes 5, 6, and 7 (black)
trust UNL2, and they are all correct; node 4 (gray) is Byzantine. With
this setup, we achieve a 60% overlap between the UNLs of any two nodes.

The key idea is that the Byzantine node (4) changes its behavior
depending on the group of nodes it communicates with. It will cause
nodes 1, 2, and 3 (white) to propose some transaction txand nodes 5, 6,
and 7 (black) to propose a transaction tx′ for the next ledger. No other
transaction exists. The Byzantine node (4) follows the protocol as if it
had proposed txwhen interacting with the white nodes and behaves as
if it had proposed tx′ when interacting with the black nodes.

1This release was current at the time when this analysis was performed (2019-
2020).
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Algorithm 1 Ripple consensus protocol for node i

1: Type
2: Enum Phase = {open, establish, accepted}
3: Tx = {0, 1}∗ // a transaction
4: TxSet = 2Tx

5: DisputedTx( // DisputedTx.h:50
6: Tx tx, // disputed transaction
7: bool ourVote, // binary vote
8: int yays, // number of yes votes from others
9: int nays, // number of no votes from others
10: HashMap[int → bool] votes) // collection of votes indexed by node
11: Ledger( // Ledger.h:77
12: Hash ID , // identifier
13: int seq, // sequence number of this ledger
14: Hash parentID , // identifier of ledger’s parent
15: TxSet txns) // set of transactions applied by ledger
16: Proposal( // ConsensusProposal.h:52
17: Hash prevLedgerID , // hash of the previous ledgerx
18: int seq, // sequence number
19: TxSet txns, // proposed transaction set
20: int node, // node that proposes this
21: milliseconds time) // time when proposal is created
22: ConsensusResult( // ConsensusTypes.h:201
23: TxSet txns, // set of transactions consensus agrees on
24: Proposal proposal , // proposal containing transaction set
25: HashMap[int → DisputedTx] disputes, // disputed transactions
26: milliseconds roundTime) // duration of the establish phase

27: State
28: Phase phase // phase of the consensus round for agreeing on one ledger
29: Tree tree // tree representation of received valid ledgers
30: Ledger L // current working ledger
31: Ledger prevLedger // last agreed-on (“closed”) ledger
32: Ledger validLedger // ledger that was most recently fully validated
33: TxSet S // submitted transactions that have not yet been executed
34: ConsensusResult result // data relevant for the outcome of consensus
35: HashMap[int → Proposal] currPeerProposals // collection of proposals
36: HashMap[int → Ledger] validations // collection of validations
37: milliseconds prevRoundTime // initialized to 15s
38: float converge ∈ [0, 1] // ratio of round time to prevRoundTime
39: UNL ⊆ {1, . . . ,M} // validator nodes trusted by node i
40: milliseconds openTime // time when the last open phase started

41: function initialization()
42: prevLedger← genesisLedger // the first ledger in the network
43: S ← {}
44: beginConsensus() // start the first round of consensus
45: startTimer(heartbeat, 1s) // NetworkOPs.cpp:673
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Algorithm 2 Ripple consensus protocol for node i (continued)

46: upon submission of a transaction txdo
47: send message [submit, tx] with the gossip layer

48: upon receiving a message [submit, tx] from the gossip layer do
49: S← S ∪ {tx}

50: function beginConsensus() // Consensus.h:663
51: phase← open // Consensus.h:669
52: result← ({},⊥, [ ], 0) // Consensus.h:674
53: converge← 0 // Consensus.h:675
54: openTime← clock.now() // save the time when this round started
55: currPeerProposals← [ ] // reset the proposals for this consensus round

56: upon timeout(heartbeat) do // Consensus.h:818
57: L′ ← getPreferred(validLedger)
58: if L′ ̸= prevLedger then
59: prevLedger← L′

60: beginConsensus(prevLedger)
61: if phase = open then // Consensus.h:829

62: if (clock.now()− openTime) ≥ prevRoundTime
2

then
63: phase← establish
64: closeLedger() // initialize consensus value in result
65: else if phase = establish then // Consensus.h:833
66: result.roundTime← clock.now()− result.roundTime

67: converge← result.roundTime
max{prevRoundTime,5s}

68: updateOurProposals() // update consensus value in result
69: if haveConsensus() then
70: phase← accepted
71: onAccept() // note this immediately sets phase = open
72: else if phase = accepted then // Consensus.h:821
73: // do nothing
74: startTimer(heartbeat, 1s)

75: // transition from open to establish phase
76: function closeLedger() // Consensus.h:1309
77: L← (⊥, prevLedger.seq + 1,⊥, {})
78: result.txns← S // propose the current set of submitted transactions
79: result.proposal← (Hash(prevLedger), 0, result.txns, i, clock.now())
80: result.roundTime← clock.now()
81: broadcast message [proposal, result.proposal]
82: // a dispute exists for a transaction not proposed by all UNL nodes
83: result.disputes← [ ]
84: for j ∈ UNL such that currPeerProposals[j] ̸= ⊥ do
85: createDisputes(currPeerProposals[j].txns) // Consensus.h:1334

86: upon receiving a message [proposal, prop] such that prop = (nl, ·, ·, j, ·)
87: and j ∈ UNL and nl = Hash(prevLedger) do
88: currPeerProposals[j]← prop // Consensus.h:781
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Algorithm 3 Ripple consensus protocol for node i (continued)

89: function createDisputes(TxSet set) // Consensus.h:1623
90: // all transactions that differ between result .txns and set
91: for tx ∈ result.txns △ set do
92: dt←

(
tx, (tx ∈ result.txns), 0, 0, [ ]

)
// dt is a disputed transaction

93: for k ∈ UNL such that currPeerProposals[k] ̸= ⊥ do
94: if tx ∈ currPeerProposals[k].txns then
95: // records node’s vote for the disputed transaction
96: dt.votes[k]← 1
97: dt.yays← dt.yays+ 1
98: else
99: / records node’s vote against the disputed transaction
100: dt.votes[k]← 0
101: dt.nays← dt.nays+ 1
102: result.disputes[TxID(tx)]← dt

// phase establish
103:function updateOurProposals() // Consensus.h:1361
104: for j ∈ UNL
105: such that (clock.now()− currPeerProposals[j].time) > 20s do
106: currPeerProposals[j]← ⊥ // remove stale proposals
107: // current set of transactions, to update from disputed ones
108: T ← result.txns
109: for dt ∈ result.disputes do // dt is a disputed transaction
110: if updateVote(dt) then
111: dt.ourVote← ¬dt.ourVote
112: if dt .ourVote then // should the transaction be included?
113: T ← T ∪ {dt.tx}
114: else
115: T ← T \ {dt.tx}
116: if T ̸= result.txns then // if txns changed, then update result
117: result.txns← T
118: result.proposal← (Hash(prevLedger), result.proposal.seq+ 1,
119: result.txns, i)
120: broadcast message [proposal, result.proposal]
121: result.disputes← [ ] // recompute disputes after updating
122: for j ∈ UNL such that currPeerProposals[j] ̸= ⊥ do
123: createDisputes(currPeerProposals[j].txns)

124:function updateVote(DisputedTx dt) // DisputedTx.h:197
125: // set threshold based on duration of the establish phase
126: if converge < 0.5 then
127: threshold← 0.5
128: else if converge < 0.85 then
129: threshold← 0.65
130: else if converge < 2 then
131: threshold← 0.7
132: else
133: threshold← 0.95

134: newVote←
(

dt.yays+boolToInt(dt.ourVote)
dt.yays+dt.nays+1

> threshold
)

135: return
(
newVote ̸= dt.ourVote

)
// the vote changes
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Algorithm 4 Ripple consensus protocol for node i (continued)

136:function haveConsensus() // Consensus.h:1545
137: // count number of agreements and disagreements with our proposal
138: agree← |{j|currPeerProposals[j] = result.proposal}|
139: disagree← |{j|currPeerProposals[j] ̸= ⊥∧
140: currPeerProposals[j] ̸= result.proposal}|
141: return

( agree+1
agree+disagree+1

≥ 0.8
)

// 0.8 is defined in ConsensusParams.h

// phase accepted
142:function onAccept() // RCLConsensus.cpp:408
143: L← (prevLedger, result.txns) // L is the last closed ledger
144: validations[i]← L
145: σ ← signi(L) // validate the ledger, RCLConsensus.cpp:743
146: broadcast message [validation, i, σ,L]
147: prevLedger← L // store the last closed ledger
148: prevRoundTime← result.roundTime
149: beginConsensus() // advance to the next round of consensus

150:upon receiving a message [validation, j, σ,L′] such that
151: L′.seq = L.seq and verifyj(L

′, σ) do
152: add L′ to tree
153: validations[j]← L′ // store received validation
154: // count the number of validations
155: valCount← |{k ∈ UNL|validations[k] = L}|
156: if valCount ≥ 0.8 · |UNL| and L.seq > validLedger.seq then
157: validLedger← L // ledger becomes fully validated
158: S← S \ {L.txns}
159: for tx ∈ L.txns do // in some deterministic order
160: execute(tx)

161:function getPreferred(Ledger L) // LedgerTrie.h:677
162: if L is a leaf node in tree then
163: return L
164: else
165: M ← argmax{support(N) | N is a child of L in the tree}
166: if uncommitted(M) ≥ support(M) then
167: return L
168: else if max{support(N) | N ∈ siblings(M)}
169: +uncommitted(M) < support(M) then
170: return getPreferred(M)
171: else
172: return L
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Figure 3.3: Example setup for showing a safety violation in the Rip-
ple consensus protocol. The setup consists of seven nodes, one of them
Byzantine, and two UNLs. Nodes 1, 2, and 3 (white) adopt UNL1, verti-
cally hatched, and nodes 5, 6, and 7 adopt UNL2, horizontally hatched.
Node 4 (gray) is Byzantine.

Assuming that all nodes start the consensus roughly at the same
time and they do not switch the preferred ledger, the protocol does the
following:

• The Byzantine node 4 submits tx and tx′ using gossip and causes
[submit, tx] to be received by nodes 1, 2, and 3 and [submit, tx′]
to be received by nodes 5, 6, and 7 from the gossip layer. During
the repeated heartbeat timer executions in the open phase, all cor-
rect nodes have the same value of prevLedger and send no further
messages.

• Suppose at a common execution of the heartbeat timer execution
(L56) all correct nodes proceed to the establish phase and call
closeLedger. They broadcast the message [proposal,S], with S
containing tx or tx′, respectively (L81). Node 4 sends a pro-
posal message containing tx to nodes 1, 2, and 3 and one con-
taining tx′ to nodes 5-7. Furthermore, every correct node executes
createDisputes with the transaction set txns received in each pro-
posal message, which creates result .disputes (L89). For nodes 1,
2, and 3, transaction tx′ is disputed, and for nodes 5, 6, and 7,
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transaction tx is disputed.

• During establish phase, all nodes update their vote for each dis-
puted transaction (L124). Nodes 1, 2, and 3 consider tx′ but do
not change their no vote on tx′ because only 20% of nodes in their
UNL (namely, node 5) vote yes on tx′; this is less than required
threshold of 50% or more (L134). The same holds for nodes 5, 6,
and 7 with respect to transaction tx. Hence, result .txns remains
unchanged, and no correct node sends another proposalmessage.

• Eventually, function haveConsensus returns true for each correct
node because the required 4/5 = 80% of its UNL has issued the
same proposal as the node itself (L136). Every correct node moves
to the accepted phase.

• During onAccept, nodes 1, 2, and 3 send a validation message
with ledger L = (prevLedger, {tx}), whereas nodes 5, 6, and 7 send
a validation message containing L′ = (prevLedger, {tx′}) (L146).
Node 4 sends a validation message containing tx to nodes 1, 2,
and 3 and a different one, containing tx′, to nodes 5, 6, and 7.

• Every correct node subsequently receives five validation messages
from all nodes in its UNL and finds that 80% among them contain
the same ledger (L150). Observe that no node changes its preferred
ledger after calling getPreferred. This implies that nodes 1, 2, and
3 fully validate L and execute tx, whereas nodes 5, 6, and 7 fully
validate L′ and execute tx′. Hence, the agreement condition of
consensus is violated.

3.4.2 Generalization

We now generalize the previous scenario and show a violation of the
agreement with an arbitrarily large number of nodes. As illustrated
in Figure 3.4, the system consists of M = 2n + f nodes, such that
nodes 1, . . . , n (white) each submit transaction tx, nodes n+1, . . . , n+f
(gray) are Byzantine, and nodes n+f+1, . . . , 2n+f (black) each submit
transaction tx′. Assume all correct nodes have one of two different UNLs,
namely UNLtx = {1, . . . , n+f + ñ} or UNLtx′ = {n− ñ+1, . . . , 2n+f},
each of size n + f + ñ. As the names suggest, nodes 1, . . . , n, which
submit tx, use UNLtx and nodes n+ f +1, . . . , 2n+ f , which submit tx′,
use UNLtx′ .
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The execution proceeds analogously to the one in the previous sec-
tion, with nodes 1, . . . , n behaving like nodes 1, 2, and 3, the f Byzantine
nodes here behaving like node 4, and nodes n+f+1, . . . , 2n+f behaving
like nodes 5, 6, and 7. The strategy of the Byzantines nodes is to follow
the protocol, as if they had submitted transaction tx when they interact
with correct nodes 1, . . . , n, and to behave as if they had submitted trans-
action tx′ when they interact with the correct nodes n+f+1, . . . , 2n+f .

Theorem 3.1. A system of 2n + f nodes, of which f are Byzantine,
running the Ripple consensus protocol according to the scenario defined
above may violate safety if

n+ f

n+ ñ+ f
≥ 0.8. (3.1)

Proof. To prove that safety can be violated, it is enough to show that
the strategy of the Byzantine nodes is successful. This follows from the
same argument as in the previous scenario with seven nodes, according
to the pseudocode in Section 3.3. The condition (3.1) corresponds to
the test for fully validating a ledger (L156).

The bound (3.1) of the theorem corresponds directly to the condition
in the source code. We can reformulate this using ω = 2ñ+f

n+ñ+f to denote

the relative overlap of the UNLs (i.e., the fraction of nodes that are
common between the two UNLs).

Corollary 3.2. The Ripple consensus protocol may violate safety in a
system of 2n+ f nodes if

f ≥ n
5ω − 2

6− 5ω
(3.2)

or equivalently, recalling that the total number of correct nodes is 2n,

f ≥ 2n
5ω − 2

12− 10ω
. (3.3)

Proof. Equation (3.2) follows directly from (3.1) by substituting ñ in
terms of the overlap ω. Furthermore, (3.1) follows from (3.2) by replac-
ing the UNL size through the total number of nodes.

Corollary 3.2 illustrates the number of Byzantine nodes required to
break the protocol’s safety using the presented strategy. The number of
Byzantine nodes required to show the violation is proportional to n, the
number of correct nodes.
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Figure 3.4: The generalized attack scenario with 2n + f nodes. The n
white nodes submit tx and have UNLtx, while the n black nodes submit
tx′ instead and have UNLtx′ . The f Byzantine nodes (gray) behave
differently, depending on whether they interact with white and black
nodes, respectively.

3.5 Violation of liveness

In this section, we show how the liveness of the Ripple consensus protocol
may be violated, even when all nodes have the same UNL and only one
node is Byzantine. One can bring the protocol to a state where it cannot
produce a correct ledger and stops making progress.

Consider a system with 2n correct nodes and one single Byzantine
node. All nodes are assumed to trust each other, i.e., there is one com-
mon UNL containing all 2n+ 1 nodes. Observe that in this system, the
fraction of Byzantine nodes can be made arbitrarily small by increas-
ing n.

As illustrated in Figure 3.5, node n+ 1, which is Byzantine exhibits
a split-brain behavior and follows the protocol for an input transac-
tion txwhen interacting with nodes 1, . . . , n, and operates with a differ-
ent input transaction tx′ when interacting with nodes n+ 2, . . . , 2n+ 1.
This implies that the first half of the correct nodes, denoted 1, . . . , n, will
propose a transaction tx and the other half, nodes n+2, . . . , 2n+1, will
propose transaction tx′. Similar to the execution shown in Section 3.4.1,
the nodes start the consensus protocol roughly at the same time, and
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Figure 3.5: Setup in which liveness is violated in the Ripple network.
The network consists of 2n+1 nodes with one single UNL and 1 Byzan-
tine (black). The n first nodes propose transaction tx while the last n
propose transaction tx′. The Byzantine proposes a transaction tx to the
n first nodes and transaction tx′ to the last n.

they do not switch the preferred ledger. They proceed like this:

• Byzantine node n+1 sends two messages, [submit, tx] and [submit, tx′],
using the gossip layer and causes tx to be received by the first n
correct nodes and tx′ to be received by the last n correct nodes.

• After some time has passed, the correct nodes start to close the
ledger and move to the establish phase. Every correct node sends
a proposal message, containing only the submitted transaction
of which it knows (L81), namely tx for the first n correct nodes and
tx′ for the last n correct nodes.

• During establish phase, the correct nodes receive the proposal
messages from all nodes (including the Byzantine node) and store
them in currPeerProposals (L86). Since they all use the same
UNL, all obtain the same proposal messages from the correct
nodes.

• Each node creates disputes (L89) and updates them while more
proposal messages arrive. Since the proposed transaction sets
differ, each node creates a dispute for tx and for tx′.

• While the proposalmessages are being processed, votes are counted
in updateVotes (L124), using the yays and nays of each disputed
transaction. For a correct node in {1, . . . , n}, notice that the first n
nodes and the Byzantine node vote no for tx′ and the last n nodes
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vote yes. Thus, the fraction of nodes voting yes for tx′ is less than
required threshold (50%), and so the first n nodes continue to vote
no for tx′. Similarly, nodes n+2 to 2n+1 never update their vote
on txand always vote no for tx.

• The haveConsensus function called periodically during the estab-
lish phase checks if at least 80% of the nodes in the UNL agree
on the proposal of the node itself (L136). From the perspective of
each one of the first n correct nodes, n other nodes agree, and n
nodes disagree with its proposal, which contains tx. That is not
enough support for achieving consensus, and the function will re-
turn false. The same holds from the perspective of the last n
correct nodes, which also continuously return false.

• Finally, the correct nodes will continue trying to update votes and
get enough support, but without being able to generate a correct
ledger. No correct node proceeds to validating the ledger. In other
words, the liveness of the protocol is not guaranteed.

3.6 Conclusion

Ripple is one of the oldest public blockchain platforms. For a long time,
its native XRP token has been the third most valuable in terms of its
total market capitalization. The Ripple network is implemented as a
peer-to-peer network of validator nodes, which should reach consensus
even in the presence of faulty or malicious nodes. Its consensus protocol
is generally considered to be a Byzantine fault-tolerant protocol, but
without global knowledge of all participating nodes and where a node
only communicates with other nodes it knows from its UNL.

Previous work regarding the Ripple consensus protocol has already
raised concerns about its liveness and safety. In order to better analyze
the protocol, this work has presented an independent, abstract descrip-
tion derived directly from the implementation. Furthermore, this work
has identified relatively simple cases in which the protocol may vio-
late safety and/or liveness and have devastating effects on the network’s
health. Our analysis illustrates the need for very close synchronization,
tight interconnection, and fault-free operations among the participating
validators in the Ripple network.





Chapter 4

Quick Order Fairness:
Definition and protocol

4.1 Introduction

The nascent field of decentralized finance (or simply DeFi) suffers from
insider attacks: Malicious miners in permissionless blockchain networks
or Byzantine leaders in permissioned atomic broadcast protocols have
the power of selecting transactions that go into the ledger and deter-
mining their final order. Selfish participants may also insert their own,
fraudulent transactions and thereby extract value from the network and
its innocent users. For instance, a decentralized exchange can be ex-
ploited by front-running, where a genuine transaction tx carrying an
exchange transaction is sandwiched between a transaction txbefore and a
transaction txafter. If tx buys a particular asset, the insider acquires it
as well using txbefore and sells it again with txafter, typically at a higher
price. Such front-running and other price-manipulation attacks repre-
sent a serious threat. They are prohibited in traditional finance systems
with centralized oversight but must be prevented technically in DeFi.
Daian et al. [30] have coined the term miner extractable value (MEV)
for the profit that can be gained from such arbitrage opportunities.

The traditional properties of atomic broadcast, often somewhat im-
precisely called consensus as well, guarantee a total order: that all cor-
rect parties obtain the same sequence of transactions and that any trans-
action submitted to the network by a client is delivered in a reasonable
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lapse of time. However, these properties do not further constrain which
order is chosen, and malicious parties in the protocol may therefore
manipulate the order or insert their own transactions to their benefit.
Kelkar et al. [50] have recently introduced the new safety property of
order fairness that addresses this in the Byzantine model. Kursawe [54]
and Zhang et al. [91] have formalized this problem as well and found
different ways to tackle it, relying on somewhat stronger assumptions.

Intuitively, order fairness aims at ensuring that transactions received
by “many” parties are scheduled and delivered earlier than transactions
received by “few” parties. The Condorcet paradox demonstrates, how-
ever, that such preference votes can easily lead to cycles even if the indi-
vidual votes of majorities are not circular. The solution offered through
order fairness [50] may therefore output multiple transactions together
as a set (or batch), such that there is no order among all transactions in
the same set. Kelkar et al. [50] name this property block-order fairness
but calling such a set a “block” may easily lead to confusion with the
low-level blocks in mining-based protocols.

In this work, we investigate order fairness in networks with n par-
ties of which f are faulty for asynchronous and eventually synchronous
atomic broadcast. This covers the vast majority of relevant applications
since timed protocols that assume synchronous clocks and permanently
bounded transaction delays have largely been abandoned in this space.

We first revisit the notion of block-order fairness [50]. In our in-
terpretation, this requires that when n correct parties broadcast two
transactions tx and tx′, and γn of them broadcast tx before tx′ for some
γ > 1

2 , then tx′ is not delivered by the protocol before tx, although
both transactions may be output together. This guarantee is difficult to
achieve in practice because Kelkar et al. [50] show that for the relevant
values of γ approaching one half, the resilience of any protocol decreases.
Tolerating only a small number of faulty parties seems prohibitive in re-
alistic settings.

More importantly, we show that γ cannot be too close to 1
2 because

γ ≥ 1
2+

f
n−f is necessary for any protocol. This result follows from estab-

lishing a link to the differential validity notion of consensus, formalized
by Fitzi and Garay [38]. Notice that block-order fairness is a relative
measure. We are convinced that a differential notion is better suited to
address the problem. We, therefore, overcome this inherent limitation of
relative order fairness by introducing differential order fairness: When
the number of correct parties that broadcast a transaction tx before a



4.2 Related work 41

transaction tx′ exceeds the number that broadcast tx′ before tx by more
than 2f + κ, for some κ ≥ 0, then the protocol must not deliver tx′

before tx (but they may be delivered together). This notion takes into
account existing results on differential validity for consensus [38]. In
particular, when the difference between how many parties prefer one of
tx and tx′ over the other is smaller than 2f , then no protocol exists to
deliver them in fair order.

Last but not least, we introduce a new protocol, called quick order-
fair atomic broadcast, that implements differential order fairness and is
much more efficient than the previously existing algorithms. In particu-
lar, it works with optimal resilience n > 3f , requires O(n2) messages to
deliver one transaction on average and needs O(n2L+n3λ) bits of com-
munication, with transactions of up to L bits and cryptographic λ-bit
signatures. This holds for any order-fairness parameter κ. For com-
parison, the asynchronous Aequitas protocol [50] has resilience n > 4f
or worse, depending on its order-fairness parameter, and needs O(n4)
messages.

To summarize, the contributions of this work are as follows:

• It illustrates some limitations that are inherent in the notion of
block-order fairness (Section 4.4.1).

• It introduces differential order fairness as a measure for defining
fair order in atomic broadcast protocols (Section 4.4.2).

• It presents the quick order-fair atomic broadcast protocol for dif-
ferentially order-fair Byzantine atomic broadcast with optimal re-
silience n > 3f (Section 4.5).

• It demonstrates that the quick order-fairness protocol has quadratic
amortized transaction complexity, which is an n2-fold improve-
ment compared to the most efficient previous protocol for the same
task (Section 4.5.3).

The work starts with a review of previous work (Section 4.2) and by
describing our system model (Section 4.3).

4.2 Related work

Over the last decades, extensive research efforts have explored the state-
machine replication problem. A large number of papers refer to this
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problem, but only a few of them consider fairness in the order of delivered
transactions. In this section, we review the related work on fairness.

Kelkar et al. [50] introduce a new property called transaction order-
fairness which prevents adversarial manipulation of the ordering of trans-
actions. They investigate assumptions needed for achieving this property
in a permissioned setting and formulate a new class of consensus pro-
tocols, called Aequitas, that satisfy order fairness. A subsequent paper
by Kelkar et al. [47] extends this approach to a permissionless setting.
Recently, Kelkar et al. [49] presented another permissioned Byzantine
atomic-broadcast protocol called Themis. It introduces a new technique
called deferred ordering, which overcomes a liveness problem of the Ae-
quitas protocols.

Kursawe [54] and Zhang et al. [91] have independently postulated
alternative definitions of order fairness, called timed relative fairness and
ordering linearizability, respectively. Both notions are strictly weaker
than order fairness of transactions, however [47]. Timed relative fairness
assumes that all parties have access to synchronized local clocks; it can
ensure that if all correct parties saw transaction tx to be ordered before
tx′, then tx is scheduled and delivered before tx′. Similarly, ordering
linearizability says that if the highest timestamp provided by any correct
party for a transaction tx is lower than the lowest timestamp provided by
any correct party for a transaction tx′, then tx will appear before tx′ in
the output sequence. The implementation of ordering linearizability [91]
uses a median computation, which can easily be manipulated by faulty
parties [47].

The Hashgraph [9] consensus protocol also claims to achieve fairness.
It uses gossip internally and all parties build a hash graph reflecting all of
the gossip events. However, there is no formal definition of fairness and
the presentation fails to recognize the impossibility of fair transaction-
order resulting from the Condorcet paradox. Kelkar et al. [50] also show
an attack that allows a malicious party to control the order of the trans-
actions delivered by Hashgraph.

A complementary measure to prevent transaction-reordering attacks
relies on threshold cryptography [19], [32], [80]: clients encrypt their in-
put (transaction) transactions under a key shared by the group of parties
running the atomic broadcast protocol. They initially order the en-
crypted transactions and subsequently collaborate for decrypting them.
Hence, their contents become known only after the transaction order
has been decided. For instance, the Helix protocol [8] implements this
approach and additionally exploits in-protocol randomness for two ad-
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ditional goals: to elect the parties running the protocol from a larger
group and to determine which transactions among all available ones
must be included by a party when proposing a block. This method pro-
vides resistance to censorship but still permits some order-manipulation
attacks.

4.3 System model and preliminaries

4.3.1 System model

Processes. Wemodel our system as a set of n processes P = {p1, . . . , pn},
also called parties, that communicate with each other. Parties interact
with each other by exchanging transactions reliably in a network. A
protocol for P consists of a collection of programs with instructions for
all parties. Parties are computationally bounded and protocols may use
cryptographic primitives, in particular, digital signature schemes.

Failures. In our model, we distinguish two types of parties. Parties
that follow the protocol as expected are called correct. Contrary, the
parties that deviate from the protocol specification or may crash are
called Byzantine.

Communication. We assume that there exists a low-level mechanism
for sending messages over reliable and authenticated point-to-point links
between parties. In our protocol implementation, we describe this as
“sending a message” and “receiving a message”. Additionally, we assume
first-in first-out (FIFO) ordering (Def. 2.3) for the links. This ensures
that transactions broadcast by the same correct party are delivered in
the order in which they were sent by a correct recipient.

Timing. This work considers two models, asynchrony and partial syn-
chrony. Together they cover most scenarios used today in the context
of secure distributed computing. In an asynchronous network, no phys-
ical clock is available to any party and the delivery of transactions may
be delayed arbitrarily. In such networks, it is only guaranteed that a
transaction sent by a correct party will eventually arrive at its desti-
nation. One can define asynchronous time based on logical clocks. A
partially synchronous network [33] operates asynchronously until some
point in time (not known to the parties), after which it becomes stable.
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This means that processing times and transaction delays are bounded
afterwards, but the maximal delays are not known to the protocol.

4.3.2 Byzantine FIFO consistent broadcast channel

We are using a Byzantine FIFO consistent broadcast channel (Def. 2.5)
that allows the parties to deliver multiple transactions and ensures a
notion of consistency despite Byzantine senders. The interface of such
a channel provides two events involving transactions from a domain T :

• A party invokes bcch-broadcast(tx) to broadcast a transaction tx ∈
T to all parties.

• An event bcch-deliver(pj , l, tx) delivers a transaction tx ∈ T with
label l ∈ {0, 1}∗ from a party pj .

The label that comes with every delivered transaction is an arbitrary bit
string generated by the channel. Intuitively, the channel ensures that
if a transaction is delivered with some label, then the transaction itself
is the same at all correct parties that deliver this label. We recall the
definition below.

Definition 2.5 (Byzantine FIFO Consistent Broadcast Chan-
nel). A Byzantine FIFO consistent broadcast channel satisfies the fol-
lowing properties:

Validity: If a correct party broadcasts a transaction tx, then every cor-
rect party eventually delivers tx.

No duplication: For every party pj and label l, every correct party
delivers at most one transaction with label l and sender pj .

Integrity: If some correct party delivers a transaction tx with sender
pj and party pj is correct, then tx was previously broadcast by pj .

Consistency: If some correct party delivers a transaction tx with label
l and sender pj , and another correct party delivers a transaction
tx′ with label l and sender pj , then tx = tx′.

FIFO delivery: If a correct party broadcasts some transaction tx be-
fore it broadcasts a transaction tx′, then no correct party delivers
tx′ unless it has already delivered tx.
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This primitive can be implemented by running, for every sender pi, a
sequence of standard consistent Byzantine broadcast instances (Def. 2.4)
such that exactly one instance in each sequence is active at every mo-
ment. Each consistent broadcast instance is identified by a per-sender
sequence number. When an instance delivers a transaction, the protocol
advances the sequence number and initializes the next instance. The se-
quence number serves as the label. Details of this protocol are described
by Cachin et al. [18, Sec. 3.12.2]; notice that their protocol also ensures
FIFO delivery, although this is not explicitly mentioned there.

In addition to the bcch-broadcast and bcch-deliver events, in our
protocol we use the following methods to access the BCCH primitive:
bcch-create-proof and bcch-verify-proof. Those methods ensure that
missing transactions can be transferred in a verifiable way, and they
are implemented as in the protocol for verifiable consistent broadcast by
Cachin et al. [19]. The input of bcch-create-proof is a list of transactions
and it outputs a string s that contains a proof along with the list of
transactions to be sent. A party that receives a transaction providing
s can input this in bcch-verify-proof to verify the proof contained in s
such that it is impossible to forge a proof for a transaction that was not
bcch-delivered.

Another two methods, bcch-get-length and bcch-get-transactions,
are used to get the number of sent transactions and to extract them.

4.3.3 Validated Byzantine consensus

Validated Byzantine consensus (Def. 2.6) defines an external validity
condition. It requires that the consensus value is legal according to a
global, efficiently computable predicate P , known to all parties. This
allows the protocol to recognize proposed values that are acceptable to
an external application. Note that it is not required that the decision
value was proposed by a correct party, but all parties must be able to
verify the validity. A consensus primitive is accessed through the events
vbc-propose(v) and vbc-decide(v), where v ∈ V has a potentially large
domain V and may contain a proof, which allows parties to verify the
validity of v. We recall the definition below.

Definition 2.6 (Validated Byzantine Consensus). A protocol solves
validated Byzantine consensus with validity predicate P if it satisfies the
following conditions:

Termination: Every correct party eventually decides some value.
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Integrity: No correct party decides twice.

Agreement: No two correct parties decide differently.

External validity: Every correct party only decides a value v such that
P (v) = true. Moreover, if all parties are correct and propose v,
then no correct party decides a value different from v.

We intend this notion to cover asynchronous protocols, which actu-
ally only terminate probabilistically, as well as eventually synchronous
protocols. The difference is not essential to our use of them.

Originally, external validity has been defined for asynchronous multi-
valued Byzantine consensus, which requires randomized implementa-
tions [19]. But the property applies equally to consensus protocols with
partial synchrony.

Among the asynchronous protocols, recent work by Abraham et
al. [1] improves the expected communication (bit) complexity to O(Ln2)
from O(Ln3) in the earlier work [19], where L is the maximal length of
a proposed value.

In Dumbo-MVBA [64] the communication complexity of this primi-
tive is further reduced to O(Ln) through erasure coding, where the input
of each party is split into coded fragments, distributed to every party,
and recovered later.

Byzantine consensus protocols in the partial-synchrony model can
easily be enhanced to provide external validity, when each party verifies
P for every proposed value. For instance, the single-decision versions of
PBFT [24] and of HotStuff [90] achieve best-case complexities O(Ln2)
and O(Ln), respectively; these values increase by a factor of n in the
worst case.

4.3.4 Atomic broadcast

Atomic broadcast (Def. 2.7) ensures that all parties deliver the same
transactions and that all transactions are output in the same order. This
is equivalent to the parties agreeing on one sequence of transactions that
they deliver. Atomic broadcast is also called “total-order broadcast” or
simply “consensus” in the context of blockchains because it is equivalent
to running a sequence of consensus instances. Parties may broadcast
a transaction tx by invoking a-broadcast(tx), and the protocol outputs
transactions through a-deliver(tx) events. We recall the definition below.
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Definition 2.7 (Atomic Broadcast). A protocol for atomic broadcast
satisfies the following properties:

Validity: If a correct party a-broadcasts a transaction tx, then every
correct party eventually a-delivers tx.

No duplication: No transaction is a-delivered more than once.

Agreement: If a transaction tx is a-delivered by some correct party,
then tx is eventually a-delivered by every correct party.

Total order: Let tx and tx′ be two transactions such that pi and pj are
correct parties that a-deliver tx and tx′. If pi a-delivers tx before
tx′, then pj also a-delivers tx before tx′.

4.4 Revisiting order fairness

In this section, we discuss the challenges of defining order fairness and
highlight limitations of order fairness notions from previous works. We
then introduce our refined notion of differential order-fair atomic broad-
cast.

4.4.1 Limitations

Defining a fair order for atomic broadcast in asynchronous networks is
not straightforward since the parties might locally receive transactions
for broadcasting in different orders. We assume here that a correct party
receives a transaction to be broadcast (e.g., from a client) at the same
time when it a-broadcasts it. If a party broadcasts a transaction tx
before a transaction tx′, according to its local order, we denote this by
tx ≺ tx′. Furthermore, we abandon the validity property above in the
context of atomic broadcast with order fairness and assume now that
every transaction is a-broadcast by all correct parties. This corresponds
to the implicit assumption made for deploying order-fair broadcast.

Even if all parties are correct, it can be impossible to define a fair
order among all transactions. This is shown by a result from social
science, known as the Condorcet paradox, which states that there exist
situations that lead to non-transitive collective voting preferences even
if the individual preferences are transitive. Kelkar et al. [50] apply this
to atomic broadcast and show that delivering transactions in a fair order
is not always possible. Their example considers three correct parties p1,
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p2, and p3 that receive three transactions txa, txb, and txc. While p1
receives these transactions in the order txa ≺ txb ≺ txc, party p2 receives
them as txb ≺ txc ≺ txa and p3 in the order txc ≺ txa ≺ txb. Obviously, a
majority of the parties received txa before txb, txb before txc, but also txc
before txa, leading to a cyclic order. Consequently, a fair order cannot
be specified even with only correct parties.

One way to handle situations with such cycles in the order is pre-
sented by Kelkar et al. [50] with block-order fairness: their protocol
delivers a “block” of transactions at once. Typically, a block will con-
tain those transactions that are involved in a cyclic order. Their notion
requires that if sufficiently many parties receive a transaction tx before
another transaction tx′, then no correct party delivers tx after tx′, but
they may both appear in the same block. Even though the order among
the transactions within a block remains unspecified, the notion of block-
order fairness respects a fair order up to this limit.

Kelkar et al. [50] specify “sufficiently many” as a γ-fraction of all
parties, where γ represents an order-fairness parameter such that 1

2 <
γ ≤ 1. More precisely, block-order fairness considers a number of parties
η that all receive (and broadcast) two transactions tx and tx′. Block-
order fairness for atomic broadcast requires that whenever there are at
least γη parties that receive tx before tx′, then no correct party delivers
tx after tx′ (but they may deliver tx and tx′ in the same block).

Kelkar et al. [50] explicitly count faulty parties for their definition.
Notice that this immediately leads to problems: If γη < 2f , for instance,
the notion relies on a majority of faulty parties, but no guarantees are
possible in this case. Therefore, we only count on events occurring at
correct parties here and define a block-order fairness parameter γ to
denote the fraction of correct parties that receive one transaction before
the other.

Moreover, we assume w.l.o.g. that all correct parties eventually broad-
cast every transaction, even if this is initially input by a single party
only. This simplifies the treatment compared to original block-order
fairness, which considers only parties that broadcast both transactions,
tx and tx′ [50]. Our simplification means that a correct party that has
received only one transaction will receive the other transaction as well
later. This party should eventually include also the second transaction
for establishing a fair order. It corresponds to how atomic broadcast is
used in practice; hence, we set η = n − f . In asynchronous networks,
furthermore, one has to respect f additional correct parties that may
be delayed. Their absence reduces the strength of the formal notion of
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block-order fairness in asynchronous networks even more.
In the following, we discuss the range of achievable values for γ. Since

we focus on models that allow asynchrony, we assume n > 3f through-
out this work. Fundamental results on validity notions for Byzantine
consensus in asynchronous networks have been obtained by Fitzi and
Garay [38]. Recall that a consensus protocol satisfies termination, in-
tegrity, and agreement according to Definition 2.6. Standard consensus
additionally satisfies:

Validity: If all correct parties propose v, then all correct parties de-
cide v.

Notice that this leaves the decision value completely open if only one
correct party proposes something different. In their notion of strong
consensus, however, the values proposed by correct parties must be bet-
ter respected, under more circumstances:

Strong validity: If a correct party decides v, then some correct party
has proposed v.

Unfortunately, strong consensus is not suitable for practical purposes
because Fitzi and Garay [38, Thm. 8] also show that if the proposal
values are taken from a domain V, then the resilience depends on |V|.
In particular, strong consensus is only possible if n > |V|f .

Related to this, they also introduce δ-differential consensus, which
respects how many times a value is proposed by the correct parties. This
notion ensures, in short, that the decision value has been proposed by
“sufficiently many” correct parties compared to how many parties pro-
posed some different value. More precisely, for an execution of consensus
and any value v ∈ V, let c(v) denote the number of correct parties that
propose v:

δ-differential validity: If a correct party decides v, then every other
value w proposed by some correct party satisfies c(w) ≤ c(v) + δ.

To summarize, whereas the standard notion of Byzantine consensus re-
quires that all correct parties start with the same value in order to
decide on one of the correct parties’ input, strong consensus achieves
this in any case. It requires that the decision value has been proposed
by some correct party. However, it does not connect the decision value
to how many correct parties have proposed it. Consequently, strong
consensus may decide a value proposed by just one correct party. Dif-
ferential consensus, finally, makes the initial plurality of the decision
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value explicit. For δ = 0, in particular, the decision value must be one
of the proposed values that is most common among the correct parties.
More importantly, differential validity can be achieved under the usual
assumption that n > 3f .

We now give another characterization of δ-differential validity. For a
particular execution of some (asynchronous) Byzantine consensus pro-
tocol, let v∗ be (one of) the value(s) proposed most often by correct
parties, i.e.,

v∗ = argmax
v

c(v).

Lemma 4.1. A Byzantine consensus protocol satisfies δ-differential va-
lidity if and only if in every one of its executions, it never decides a
value w with c(w) < c(v∗)− δ.

Proof. Assume first that the protocol satisfies δ-differential validity and
a correct party decides any value v in the domain. Then every other
value w proposed by a correct party satisfies c(w) ≤ c(v) + δ. In partic-
ular, this implies c(v∗) ≤ c(v)+δ, which is equivalent to, c(v) ≥ c(v∗)−δ.
Hence, the protocol never decides a value x with c(x) < c(v∗)− δ.

To show the reverse direction, suppose x is such that c(x) < c(v∗)−δ
and a correct party decides x. This does not satisfy δ-differential validity
because also v∗ has been proposed by a correct party but c(v∗) > c(x)+
δ.

For consensus with a binary domain V = {0, 1}, this means that a
consensus protocol satisfies δ-differential validity if and only if in every
one of its executions with, say, c(0) > c(1) + δ, every correct party
decides 0.

No asynchronous consensus algorithm for agreeing on the value pro-
posed by a simple majority of correct parties exists, however. Fitzi and
Garay [38, Thm. 11] prove that δ-differential consensus in asynchronous
networks is not possible for δ < 2f :

Theorem 4.2 ([38]). In an asynchronous network, δ-differential con-
sensus is achievable only if δ ≥ 2f .

The above discussion already hints at issues with achieving fair order
in asynchronous systems. Recall that Kelkar et al. [50] present atomic
broadcast protocols with block-order fairness for the asynchronous set-
ting with order-fairness parameter γ (whose definition includes faulty
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parties). The corruption bound is stated as

n >
4f

2γ − 1
. (4.1)

For γ = 1, which ensures fairness only in the most clear cases, there
are n > 4f parties required. For values of γ close to 1

2 , the condition
becomes prohibitive for practical solutions.

In fact, even when using our interpretation, γ cannot be too close
to 1

2 , as the following result shows. It rules out the existence of γ-block-
order-fair atomic broadcast in asynchronous or eventually synchronous
networks for γ < 1

2 + f
n−f .

Theorem 4.3. In an asynchronous network with n parties and f faults,
implementing atomic broadcast with γ-fair block order is not possible
unless γ ≥ 1

2 + f
n−f .

Proof. Towards a contradiction, suppose there is an atomic broadcast
protocol ensuring γ-fair block order with 1

2 < γ < 1
2 + f

n−f . We will
transform this into a differential consensus protocol that violates Theo-
rem 4.2.

The consensus protocol works like this. All parties initialize the
atomic broadcast protocol. Upon propose(v) with some value v, a party
simply a-broadcasts v. When the first value v′ is a-delivered by atomic
broadcast to a party, the party executes decide(v′) and terminates.

Consider any execution of this protocol such that all correct parties
propose one of two values, tx or tx′. Suppose w.l.o.g. that c(tx) = γ(n−f)
and c(tx′) = (1 − γ)(n − f), i.e., tx is proposed c(tx) times by correct
parties and more often than tx′, since γ > 1

2 . It follows that γ(n − f)
correct parties a-broadcast tx before tx′ and (1−γ)(n−f) correct parties
a-broadcast tx′ before tx.

According to the properties of atomic broadcast all correct parties
a-deliver the same value first in every execution. Moreover, the atomic
broadcast protocol a-delivers tx before tx′ by the γ-fair block order prop-
erty. This implies that the consensus protocol decides tx in every exe-
cution and never tx′. Since no further restrictions are placed on tx and
on tx′, this consensus protocol actually ensures δ-differential validity for
some δ < c(tx)− c(tx′) by Lemma 4.1.

However, the c(tx) and c(tx′) satisfy, respectively,

c(tx) = γ(n− f) <
(

1
2 + f

n−f

)
(n− f) = n+f

2

c(tx′) = (1− γ)(n− f) >
(
1− 1

2 − f
n−f

)
(n− f) = n−3f

2
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and, therefore, δ < c(tx)− c(tx′) < n+f
2 − n−3f

2 = 2f . But δ-differential
asynchronous consensus is only possible when δ ≥ 2f , a contradiction.

4.4.2 Differential order-fairness

The limitations discussed above have an influence on order fairness. The
condition on δ to achieve δ-differential consensus directly impacts any
measure of fairness. It becomes clear that a relative notion for block-
order fairness, defined through a fraction like γ, may not be expressive
enough.

We now start to define our notion of order-fair atomic broadcast ; it
has almost the same interface as regular atomic broadcast. The primitive
is accessed with of-broadcast(tx) for broadcasting a transaction tx and
it outputs transactions through of-deliver(T ) events, where T is a set
of transactions delivered at the same time; T corresponds the block of
block-order fairness. We want to count the number of correct parties
that of-broadcast a transaction tx before another transaction tx′ and
introduce a function

b : T × T → N

for all tx and tx′ that were ever of-broadcast by correct parties. The value
b(tx, tx′) denotes the number of correct parties that of-broadcast tx before
tx′ in an execution. As above we assume w.l.o.g. that a correct party
will of-broadcast tx and tx′ eventually and that, therefore, b(tx, tx′) +
b(tx′, tx) = n− f .

Can we achieve that if b(tx, tx′) > b(tx′, tx), i.e., when there are more
correct parties that of-broadcast transaction tx before tx′ than correct
parties that of-broadcast tx′ before tx, then no correct party will of-
deliver tx′ before tx? Using a reduction from δ-differential consensus, as
in the previous result, we can show that this condition is too weak.

Theorem 4.4. Consider an atomic broadcast protocol that satisfies the
following notion of order fairness for some µ ≥ 0:

Weak differential order fairness: For any tx and tx′, if b(tx, tx′) >
b(tx′, tx) + µ, then no correct party a-delivers tx′ before tx.

Then it must hold µ ≥ 2f .

Proof. Towards a contradiction, suppose there is an atomic broadcast
protocol, which ensures that for all transactions tx and tx′ with b(tx, tx′) >
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b(tx′, tx)+µ and µ ≥ 0, no correct party a-delivers tx′ before tx and that
µ < 2f . We will transform this into a differential consensus protocol
that violates Theorem 4.2.

The consensus protocol works like this. All parties initialize the
order-fair atomic broadcast protocol. Upon propose(v) with some value
v, a party simply of-broadcasts v. When the first value v′ is of-delivered
to a party, the party executes decide(v′) and terminates.

Consider any execution of this protocol such that all correct parties
propose one of two values, tx or tx′. Suppose w.l.o.g. that tx is proposed
c(tx) times by correct parties and more often than tx′, which is proposed
c(tx′) times, with c(tx) + c(tx′) = n − f and that c(tx) > c(tx′) + µ. It
follows that b(tx, tx′) = c(tx) correct parties of-broadcast tx before tx′

and b(tx′, tx) = c(tx′) correct parties of-broadcast tx′ before tx, hence,
b(tx, tx′) > b(tx′, tx) + µ.

According to the properties of atomic broadcast, all parties of-deliver
the same value first in every execution. Moreover, the protocol of-
delivers tx before tx′ because b(tx, tx′) > b(tx′, tx) + µ. This implies
that the consensus protocol decides tx in every such execution. Since no
further restrictions are placed on tx and tx′ and since c(tx)− c(tx′) > µ,
this consensus protocol actually implements µ-differential consensus by
Lemma 4.1. However, achieving µ-differential asynchronous consensus
requires that µ ≥ 2f according to Theorem 4.2. But µ < 2f by the
above assumption. This is a contradiction.

On the basis of this result, we now formulate our notion of κ-differentially
order-fair atomic broadcast, using a fairness parameter κ ≥ 0 to express
the strength of the fairness. Smaller values of κ ensure stronger fairness
in the sense of how large the majority of parties that of-broadcast some
tx before tx′ must be to ensure that tx will be of-delivered before tx′ and
in a fair order.

Recall that throughout this work, we assume that if one correct party
of-broadcasts some transaction tx, then every correct party eventually
also of-broadcasts tx. For reasons that are discussed later (in the remarks
after the protocol description in Section 4.5.2), we use a weaker formal
notion of validity, which considers executions with only correct parties.

Definition 4.5 (κ-Differentially Order-Fair Atomic Broadcast).
A protocol for κ-differentially order-fair atomic broadcast satisfies the
properties no duplication, agreement and total order of atomic broadcast
and additionally:



54 Quick Order Fairness: Definition and protocol

Weak validity: If all parties are correct and of-broadcast a finite num-
ber of transactions, then every correct party eventually of-delivers
all of these of-broadcast transactions.

κ-differential order fairness: If b(tx, tx′) > b(tx′, tx) + 2f + κ, then
no correct party of-delivers tx′ before tx.

Compared to the above notion of weak differential order fairness,
we have κ = µ − 2f . We show in the next section how to implement
κ-differentially order-fair atomic broadcast.

4.5 Quick order-fair atomic broadcast pro-
tocol

This section presents first an overview of our quick order-fair atomic
broadcast algorithm in Section 4.5.1. A detailed description of the im-
plementation follows in Section 4.5.2, along with the pseudocode in Al-
gorithm 5–6. Finally, the complexity of the algorithm is discussed in
Section 4.5.3.

4.5.1 Overview

The protocol concurrently runs a Byzantine FIFO consistent broad-
cast channel (BCCH) and proceeds in rounds of consensus. BCCH
allows parties to deliver multiple transactions consistently. An incom-
ing of-broadcast event with a transaction tx triggers BCCH and bcch-
broadcasts tx to the network. Additionally, every party keeps a local
vector clock that counts the transactions that have been bcch-delivered
from each sending party. Every party also maintains an array of lists
msgs such that msgs[i] records all bcch-delivered transactions from pi.

When a party bcch-delivers the transaction tx, it increments the cor-
responding vector-clock entry and appends tx to the appropriate list in
msgs. As soon as sufficiently many new transactions are found in msgs,
a new round starts. Each party signs its vector clock and sends it to
all others. The received vector clocks are collected in a matrix, and
once n − f valid vector clocks are recorded, a new validated Byzantine
consensus (VBC) instance is triggered. The party proposes the matrix
and the signatures for consensus, and VBC decides on a common matrix
with valid signatures. This matrix defines a cut, which is a vector of in-
dices, with one index per party, such that the index for pj determines an
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entry in msgs[j] up to which transactions are considered for creating the
fair order in the round. It may be that the index points to transactions
that a party pi does not store in msgs[j] because they have not been
bcch-delivered yet. When the party detects such a missing transaction,
it asks all other parties to send the missing transaction directly and in
a verifiable way, such that every party will store all transactions up to
the cut in msgs.

Once all parties received the transactions up to the cut, the algorithm
starts to build a graph that represents the dependencies among transac-
tions that must be respected for a fair order. This graph resembles the
one used in Aequitas [50], but its semantics and implementation differ.
The vertices in the graph here are all new transactions defined by the
cut and an edge (tx, tx′) indicates that tx should at most be of-delivered
before tx′.

The graph results from two steps. In the first step, the party creates a
vertex for every transaction that appears in a distinct lists in msgs and it
is not yet of-delivered. In the second step, the algorithm builds a matrix
M such that M [tx][tx′] counts how many times tx appears before tx′ in
msgs (up to the cut). M [tx][tx′] can be interpreted as votes, counting
how many parties want to order tx before tx′. Notice that entries of M
exist only for tx and tx′ where at least one of M [tx][tx′] and M [tx′][tx] is
non-zero.

If the difference between entries M [tx][tx′] and M [tx′][tx] is large
enough, then the protocol adds a directed edge (tx, tx′) to the graph.
The edge indicates that tx′ must not be of-delivered before tx. More
precisely, assuming that transactions tx and tx′ have been observed by
at least n − f parties, such an edge is added for all tx and tx′ with
M [tx][tx′] > M [tx′][tx] − f + κ. The condition is explained through the
following result.

Lemma 4.6. If b(tx, tx′) > b(tx′, tx)+2f+κ, then M [tx][tx′] > M [tx′][tx]−
f + κ.

Proof. At least M [tx][tx′]− f correct parties have of-broadcast tx before
tx′ because M [tx][tx′] may include reports about tx and tx′ in msgs from
up to f incorrect parties. In other words,

b(tx, tx′) ≥ M [tx][tx′]− f ⇐⇒ M [tx][tx′] ≤ b(tx, tx′) + f

At most M [tx][tx′] + 2f correct parties have of-broadcast tx before tx′

because M [tx][tx′] may include reports about tx or tx′ in msgs from up
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to f incorrect parties, and there may be up to 2f correct parties whose
arrays were not considered in this number. That is,

b(tx, tx′) ≤ M [tx][tx′] + 2f ⇐⇒ M [tx][tx′] ≥ b(tx, tx′)− 2f

Suppose b(tx, tx′) > b(tx′, tx) + 2f + κ. The above implies

M [tx][tx′] ≥ b(tx, tx′)− 2f

> b(tx′, tx) + 2f + κ− 2f

= b(tx′, tx) + κ

≥ M [tx′][tx]− f + κ.

Thus, whenever M [tx][tx′] > M [tx′][tx]− f + κ, we need to prevent that
the protocol of-delivers tx′ before tx. We do this by adding an edge
from tx to tx′ to the graph; as shown later, this ensures that tx′ is not
of-delivered before tx.

In the discussion so far, we have assumed that the two transactions
tx and tx′ were received by at least n − f parties. Observe that every
party can only contribute with 1 to either M [tx][tx′] or to M [tx′][tx], but
not to both. However, it may occur that only a few parties receive tx
and tx′ before the cut, which implies that M [tx][tx′] may be very small,
for example. But that count might actually grow later and take on
values up to n− f −M [tx′][tx]. For this reason, we extend the condition
derived from Lemma 4.6 in the algorithm as follows: if n−f−M [tx′][tx] >
M [tx′][tx]−f+κ (which implies that M [tx′][tx] is small, i.e., M [tx′][tx] <
n−κ
2 ), we also add add an edge between tx and tx′. In summary, then,

the algorithm adds an edge from tx to tx′ whenever

max
{
M [tx][tx′], n− f −M [tx′][tx]

}
> M [tx′][tx]− f + κ.

Creating the graph in this manner leads to a directed graph that
represents constraints to be respected by a fair order. Notice that two
transactions may be connected by edges in both directions when the dif-
ference is small and κ < f , i.e., there may be a cycle (tx, tx′) and (tx′, tx).
This means that the difference between the number of parties voting for
one or the other order is too small to decide on a fair order. Longer cycles
may also exist. All transactions with circular dependencies among them
will be of-delivered together as a set. For deriving this information, the
algorithm repeatedly detects all strongly connected components in the
graph and collapses them to a vertex. In other words, any two vertices
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tx and tx′ are merged when there exists a path from tx to tx′ and a path
from tx′ to tx. This technique also handles cases like those derived from
the Condorcet paradox.

Finally, with the help of the collapsed graph, all transactions defined
by the cut are of-delivered in a fair order: First, all vertices without
any incoming edges are selected. Secondly, these vertices are sorted in
a deterministic way and the corresponding transactions are of-delivered
one after the other. Then the partyed vertices are removed from the
graph and another iteration through the graph starts. As soon as there
are no vertices left, i.e., all transactions are of-delivered, the protocol
proceeds to the next round.

Note that cycles may also extend beyond the cut, as shown by Kelkar
et al. [49]. Therefore, the algorithm holds back transactions and does
not of-deliver them while they may still become part of a longer cycle.
This is ensured by counting how many times a transaction appears in
msgs up to the cut. In particular, let C[tx] count this number for a
transaction tx. We require that any transaction is only of-delivered when
C[tx] ≥ n+f−κ

2 , i.e., after tx appears in msgs often enough such that it
cannot become part of a cycle later or already be in a cycle that will
grow later, e.g., through transactions that arrive after the cut.

Example 4.7. Let us consider a system of n = 4 parties, of which three
(p1, p2, and p3) are correct and one (p4) is faulty (f = 1). We fix
the order-fairness parameter κ = 0, the notion is trivially satisfied for
higher values of κ. Every correct party of-broadcasts three transactions
txa, txb, and txc, in an order that forms a Condorcet cycle. The Byzan-
tine party p4 does not of-broadcast. Suppose all transactions have been
bcch-delivered in round r to all correct parties, as shown in Figure 4.1.
Then the protocol obtains the cut c =

[
3 2 1 0

]
.

From Algorithm 5-6 (L219), the matrix M and the corresponding
graph (L222) are

M =

0 0 0
1 0 1
2 0 0


Notice that arbitrarily many transactions that are of-broadcast im-

mediately after txa by p1–p3 might follow and arrive only in a future
round, after cut c. The protocol cannot know this yet and must there-
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Figure 4.1: The execution of Example 4.7, in which three correct parties
p1, p2, p3 of-broadcast transactions that form a cycle, which makes it
impossible to sort them in a fair order. After txa, and after the protocol
has computed cut c, an unbounded number of additional transactions
might follow (see text).

fore postpone of-delivery of txa. As captured by the condition that
C[txb] = 1 < n+f−κ

2 , no transaction is of-delivered in this round. The
protocol continues with another round r′ obtaining a cut c′, cf. Fig-
ure 4.1. Then the matrix M and the graph become

M =

0 2 1
1 0 2
2 1 0


At this point, the protocol of-delivers {txa, txb, txc} together, from a

collapsed vertex, because now C[txi] = 3 ≥ n+f−κ
2 for i ∈ {a, b, c}.

4.5.2 Implementation

Algorithm 5–6 shows the quick order-fair atomic broadcast protocol for a
party pi. The protocol proceeds in rounds, maintains a round counter r
(L173), and uses a boolean variable inround , which indicates whether
the consensus phase of a round is executing (L174).
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Every party maintains two hash maps: msgs (L175) and vc (L176),
in which party identifiers serve as keys. Hash map msgs contains or-
dered lists of bcch-delivered transaction from each party in the system.
Variable vc is a vector clock counting how many transactions were bcch-
delivered from each party.

Rounds. In each round, a matrix L (L177) and a list Σ (L178) are
constructed as inputs for consensus. The matrix L will consist of vector
clocks from the parties and Σ will contain the signatures of the parties.
Additionally, every party maintains a list of integers called cut (L179)
that are calculated in every round. This cut represents an index for every
list in msgs to determine the transaction to be used for creating the fair
order. Initially, all values are zero. Finally, all of-delivered transactions
are included in a set delivered (L180), to prevent a repeated delivery in
future rounds.

The protocol starts when a client submits a transaction tx using an
of-broadcast(tx) event. BCCH then broadcasts tx to all parties in the
network (L183). When tx with label l from party pj is bcch-delivered
(L184), the vector clock vc for party pj is incremented. The attached
label l is not used by the algorithm and only serves to define that all
correct parties bcch-deliver the same transaction following Definition 2.5.
Additionally, transaction tx is appended to the list msgs[j] using an
operation append(tx) (L186).

When the length of pj ’s list in msgs exceeds the cut value for pj ,
new transactions may have arrived that should be ordered (L187). This
tells the protocol to initiate a new round. A new round could also be
triggered later, as described in the remarks at the end of this section.

The first step of round r is to set the flag inround . Secondly, the
protocol digitally signs the vector clock vc and obtains a signature σ.
The values r, σ, and vc are then sent in a status message to all parties
(L188–L190). When party pi receives a status message from pj , it
validates the contained signature σ′ using verify(j, vc′, σ′) (L192). An
additional security check is made by comparing the locally stored round
number r with the round number r′ from the message. If both conditions
hold, the vector clock vc′ is stored as row j in matrix L (L193) and σ′

is stored in list Σ at index j (L194).

Defining a cut. As soon as pi has received n−f valid status-message
(L195), it invokes consensus (VBC, L196) for the round through vbc-
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propose with proposal (L,Σ). The predicate of VBC checks that a
proposal consists of a matrix L and a vector Σ such that for at least
n− f values j, the entry Σ[j] is a valid signature on row j of L. When
the VBC protocol subsequently decides, it outputs a common matrix
L′ of vector clocks and a list Σ′ of signatures (L198). The party then
uses L′ to calculate the cut, where cut[j] is the largest value s such that
at least f + 1 elements in column j in L′ are bigger or equal than s
(L200). In other words, cut[j] represents how many transactions from
pj were bcch-delivered by enough parties. This value is used as index
into msgs[j] to determine the transactions that will be considered for
creating the order in this round.

The algorithm then makes sure that all parties will hold at least
all those transactions in msgs that are defined by cut . Each party de-
tects missing transactions from sender pj from any difference between
vc[j] and cut[j] (L202); if there are any, the party broadcasts a miss-
ing-message to all others. When another party receives such a request
from pj and already has the requested transactions in msgs, it extracts
them into a variable resend (L206). More precisely, it extracts a proof
from the BCCH primitive with which any other party can verify that the
transaction from this particular sender is genuine. This is done by in-
voking bcch-create-proof(resend) (L207); the transactions and the proof
are then sent in a resend-message to the requesting party pj (L208).

When party pi receives a resend-message with a missing transac-
tion from pk, it first verifies the provided proof s′ from the message by
invoking a bcch-verify-proof(s′) function (L211). If the proof is valid, pi
extracts (L213) the transactions through bcch-get-transactions(s′), ap-
pends them to msgs[k], and increments vc[k] accordingly. The party
repeats this until msgs contains all transactions included in the cut.

Ordering transactions. At this point, every party stores all transac-
tions msgs that have been bcch-delivered up to the cut. The remaining
operations of the round are deterministic and executed by all parties
independently. The next step is to construct the directed dependency
graph G that expresses the constraints on the fair order of the transac-
tions. Vertices (V ) in G represent transactions that may be of-delivered
and edges (E) in G express constraints on the order among these trans-
actions. First, all transactions within the cut that are not yet delivered
are added as vertices to the set V (L 215).

Then, for each pair of transactions tx and tx′ in V , the algorithm con-
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Algorithm 5 Quick order-fair atomic broadcast (code for pi).

State
173: r ← 1: current round
174: inround← false
175: msgs← [ ] : HashMap

[
{1, ..., n} → [ ]

]
: array of bcch-delivered txs

176: vc← [ ] : HashMap
[
{1, ..., n} → N

]
: vector clocks for bcch-delivered txs

177: L← [0]n×n: matrix of logical timestamps, constructed from n v. clock
178: Σ← [ ]n: list of signatures from status messages
179: cut← [0]n: the cut decided for the round
180: delivered← ∅: set of delivered transactions

Initialization
181: Byzantine FIFO consistent broadcast channel (bcch)

182:upon of-broadcast(tx) do
183: bcch-broadcast(tx)

184:upon bcch-deliver(pj , l, tx) do
185: vc[j]← vc[j] + 1
186: msgs[j].append(tx)

// perhaps waiting longer
187:upon exists j such that len(msgs[j]) > cut[j] ∧ ¬inround do
188: inround← true
189: σ ← sign(i, vc)
190: send message [status, r, vc, σ] to all pj ∈ P

191:upon receiving message [status, r′, vc′, σ′] from pj
192: such that r′ = r ∧ verify(j, vc′, σ′) do
193: L[j]← vc′

194: Σ[j]← σ′

195:upon
∣∣{pj ∈ P | Σ[j] ̸=⊥}

∣∣ ≥ n− f do
196: vbc-propose

(
(L,Σ)

)
for validated Byzantine consensus in round r

197: Σ← [ ]n

198:upon vbc-decide
(
(L′,Σ′)

)
in round r do // calculate the cut

199: for j ∈ {1, . . . , n} do // for each row in L′

200: cut[j]← max
{
s | {k |

∣∣{L′[k][j] ≥ s}
∣∣ > f}

}
201: for j ∈ {1, . . . , n} do // check for missing transactions
202: if vc[j] < cut[j] then
203: send message [missing, r, j, vc[j]] to all pk ∈ P
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Algorithm 6 Quick order-fair atomic broadcast (code for pi).

204:upon receiving message [missing, r′, k, index] from pj such that r′ = r do
205: if vc[k] ≥ cut[k] then
206: resend← msgs[k][index . . . cut[k]] // copy transactions from pk
207: s← bcch-create-proof(resend)
208: send message [resend, r, k, s] to pj // send missing transactions

209:upon receiving message [resend, r′, k′, s′] from pj
210: such that r′ = r ∧ len(msgs[k]) < cut[k] do
211: if bcch-verify-proof(s′) then
212: vc[k]← vc[k] + bcch-get-length(s′)
213: msgs[k].append(bcch-get-transactions(s′))

214:upon len(msgs[j]) ≥ cut[j] for all j ∈ {1, . . . , n} do
215: V ←

(⋃
j∈{1,...,n} msgs

[
j
][
1 . . . cut[k]

])
\ delivered

216: M ← [ ] : HashMap
[
T × T → N

]
217: C ← [ ] : HashMap

[
T → N

]
218: for tx, tx′ ∈ V do

219: M [tx][tx′]←
∣∣∣{j ∈ {1, . . . , n} ∣∣

220: tx appears before tx′ in msgs
[
j
][
1 . . . cut[k]

]}∣∣∣
221: C[tx]←

∣∣∣{pj ∣∣ tx ∈ msgs
[
j
][
1 . . . cut[k]

]}∣∣∣
222: E ←

{
(tx, tx′)

∣∣∣ max
{
M [tx][tx′], n− f −M [tx′][tx]

}
> M [tx′][tx]− f + κ

}
223: H ← (V,E) // (V,E) = G
224: while H contains some strongly connected subgraph

225: H = (W,F ) ⊆ H do

226: H ← H/F // collapse vertices
227: while ∃w ∈ sort(W ) : indegree(w) = 0 ∧ stable(w) do
228: of-deliver(flatten(w))
229: delivered← delivered ∪ flatten(w)
230: W ←W \ {w}
231: L← [0]n×n

232: inround← false
233: r ← r + 1 // move to the next round

234:function stable(w)

235: return
(
w ∈ T ∧ C[w] ≥ n+f−κ

2

)
∨
∧

w′∈w:w′ ̸∈T stable(w′)

236:function flatten(w)
237: return {tx ∈ w | tx ∈ T } ∪

⋃
w′∈w:w′ ̸∈T flatten(w′)



4.5 Quick order-fair atomic broadcast protocol 63

structs M (L219) such that M [tx][tx′] counts how many times a transac-
tion tx appears before transaction tx′ in the cut. In the same loop, the
algorithm counts how many times transaction tx appears within the cut
and stores this result in array C (L221). Finally, all entries M [tx][tx′]
and M [tx′][tx] are compared and if condition max{M [tx][tx′], n − f −
M [tx′][tx]} > M [tx′][tx]− f +κ holds, then a directed edge from tx to tx′

is added (L222). This edge indicates that tx must not be ordered after
tx′, i.e., that tx is of-delivered before tx′ or together with tx′.

Any transactions that cannot be ordered with respect to each other
now correspond to strongly connected components of G. A strongly
connected component is a subgraph, which for each pair of vertices tx and
tx′ contains a path from tx to tx′ and one from tx′ to tx. In the next step,
a graph H = (W,F ) is created and all strongly connected components in
H are repeatedly collapsed until H contains no more cycles. This is done
by contracting the edges in each connected component and merging all
its vertices (L223–L226).

The algorithm further considers all vertices w without incoming
edges and which satisfy condition C[tx] ≥ n+f−κ

2 , checked in function
stable(w) (L 234). All such w will be sorted in a deterministic way
(L 227). Notice that w may correspond to a transaction from T or
a recursive set of sets of transactions. Therefore function flatten(w)
(L 236) is used to extract transactions and of-deliver them (L 228). All
of-delivered transactions are added to delivered (L229 to prevent a re-
peated partying. Finally, w is removed from H (L230), and a next pass
of extracting vertices with no incoming edge follows. This is repeated
until all vertices have been partyed and of-delivered.

The algorithm then initializes L, sets inround to false, increments
the round number r, and starts the next round (L231-L233).

Remarks. The condition for starting a round in L187 only waits until
one single transaction exists in msgs that was not considered before.
This is necessary for liveness but not very efficient. This number can
be increased such that a new round starts only after K = Θ(n) new
transactions have arrived. Note that this threshold affects the amortized
transaction and bit complexities that are considered in Section 4.5.3.

Recall that our model assumes that every correct party of-broadcasts
all transactions. For simplicity, though, our validity property has been
formulated only for executions without faulty parties. It could be strength-
ened so that it holds for all executions, in which the parties do not of-
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broadcast an unbounded number of them that form a Condorcet cycle.
The protocol can also be changed to satisfy the even stronger live-

ness property of Kelkar et al. [49], which the Themis protocol satisfies.
To deal with Condorcet cycles of unbounded length, one would mod-
ify the interface of order-fair broadcast so that it additionally outputs
of-startblock and of-endblock events that carry no parameters. Fur-
thermore, of-deliver would only output single transactions from T . An
output “block” then consists of all transactions that are of-delivered
between a of-startblock event and the subsequent of-endblock event.
However, long cycles occur very infrequently in realistic scenarios, as
shown by Kelkar et al. [49].

If consensus is not “black box” and treated in a modular way, more
efficient variations of this protocol become possible. In particular, the
ordering rounds may be integrated with a leader-based Byzantine con-
sensus protocol [18]. This implies that multiple leaders in successive
consensus rounds (or “epochs”) may be needed to agree on the cut of
one ordering round. The Themis protocol [49] adopts this pattern.

The protocol satisfies another natural property, which has not been
made explicit before in the literature, but is achieved by several ex-
isting protocols [49], [50], [91], not only by quick order-fair broadcast.
Consider an execution in which the correct parties of-broadcast trans-
actions tx1, . . . , txl such that b(txi, txj) > 2f + κ for i = 1, . . . , l and
j = i + 1, . . . , l and there are no further transactions of-broadcast that
might include tx1, . . . txl in a cycle: Then txi is actually of-delivered be-
fore txj . Note that differential order fairness is a safety condition and
would not prevent that tx1, . . . , txl are of-delivered jointly in one set.

4.5.3 Complexity

In this section, we analyze the complexity of the quick order-fair atomic
broadcast protocol. We use two measures: message complexity and com-
munication (bit) complexity. Moreover, we compare our results with
existing algorithms from the literature.

Message complexity. If the Byzantine FIFO consistent broadcast
channel (BCCH) is implemented using “echo broadcast” [79], it takes
O(n) protocol messages per transaction. Since more than f parties
of-broadcast each transaction and f is proportional to n, the overall
message complexity of BCCH is O(n2). Under high load, batching could
be used to reduce the number of messages incurred by BCCH. In the



4.5 Quick order-fair atomic broadcast protocol 65

protocol itself, every party sends O(n) status, missing, and resend
messages, which also amounts to O(n2) messages.

The cost of validated Byzantine consensus (VBC) depends on the
assumptions used for implementing it. In the asynchronous model, op-
timal protocols [1], [64] achieve O(n2) messages on average. Assum-
ing that K new transactions are delivered in each round, this becomes

O(n
2

K ) per transaction. Choosing K = Ω(n) reduces the amortized cost
of consensus to O(n) messages per transaction. Note that when using
an implementation of VBC with complexity O(n3), as the algorithm of
Cachin et al. [19], we can choose K proportional to n and may again
obtain expected amortized message complexity O(n2).

With a partially synchronous consensus protocol according to Sec-
tion 4.3.3, VBC uses O(n) messages in the best case and O(n2) messages
in the worst case. The total amortized cost of quick order-fair atomic
broadcast per transaction, therefore, is also O(n2) messages in this im-
plementation.

Communication (bit) complexity. If digital signatures are of length
λ and transactions are at most L bits, the bit complexity of BCCH for
one sender is O(nL+n2λ), and since we assume that O(n) parties broad-
cast each message, this becomes O(n2L+ n3λ). Optimal asynchronous
VBC protocols [1], [64] have O(nL+n2λ) expected communication cost,
for their transaction length L. Since the proposals for VBC are n × n
matrices, the bit complexity of this phase is O(n3 + n2λ). Assuming
that K is proportional to n, the amortized bit complexity of VBC per
transaction is O(n2 + nλ). From this, it follows that the amortized bit
complexity of the algorithm per transaction is O(n2L+ n3λ).

Discussion. Table 4.1 gives an overview of message complexities of
algorithms with different notions for fair transaction ordering. We com-
pare our quick order-fair atomic broadcast with the algorithms intro-
duced by Kelkar et al. [50] and Zhang et al. [91]. We leave out from the
overview the protocol by Kursawe [54] since it has a completely different
approach for solving fair transaction ordering.

The asynchronous Aequitas protocol [50, Sec. 7] provides fair order
using a FIFO Broadcast primitive, implemented by OARcast of Ho et
al. [45]. The implementation of OARcast described there uses n AR-
casts [45] for each transaction, where one ARcast causes Θ(n2) network
messages. Since Aequitas requires that every correct party broadcasts
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each transaction, the total complexity increases by another factor of n.
Thus, each transaction incurs a cost of Θ(n4) messages in the gossip
phase. Moreover, one instance of set agreement is executed for each
transaction, and each one of them calls n binary consensus protocols.
Therefore Aequitas uses Ω(n4) messages for delivering one transaction,
which exceeds the cost of quick order-fair broadcast at least by the fac-
tor n2.

Ordering linearizability [91] is defined using a logical order of events
observed on each party. Its implementation in the Pompē protocol,
however, appears to require synchronized clocks in the sense of knowing
bounds on differences between local clocks. Hence, the complexity of
Pompē cannot be compared to that of asynchronous protocols for order
fairness. Irrespective of this difference, its cost isO(n2) messages and one
instance of Byzantine consensus per transaction. The communication
complexity of this protocol is O(n3L) since each party broadcasts a
sequence-message to all others with contents of length O(nL).

Themis [49] relies strongly on a leader pℓ to construct a fair order. If
pℓ does not perform its task timely, the protocol may switch to another
leader, similarly to existing leader-based protocols. For assessing the
complexity of Themis here, we consider the optimistic case, but note
that the complexities stated for some other protocols, in particular for
the quick order-fair broadcast, do not depend on timely leaders.

Themis lets all parties send their local orderings to pℓ first. Suppose
these consist of approximately K = Θ(n) transactions each. Then pℓ
constructs a graph G on these and sends G and some justification in-
formation to all parties. They maintain local graphs, update them in
response, and potentially output some transactions. This incurs a cost
of O(n) messages. Since G contains K nodes and, in general, O(K2)
edges, the average communication complexity is O(n2 +nL) in the best
case.

4.6 Analysis

In this section, we show that the quick order-fair atomic broadcast proto-
col in Algorithm 5–6 implements κ-differentially order-fair atomic broad-
cast. The properties to be satisfied are (Definition 4.5): no duplication,
agreement, total order, strong validity and κ-differential order fairness.

Lemma 4.8. No transaction is of-delivered more than once in Algo-
rithm 5–6.
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Notion Algorithm Avg.
mes-
sages

Avg. com-
munication

Block-Order-
Fairness [50]

Async. Aequitas [50] O(n4) O(n4L)

Ordering
Linearizabil-
ity [91]

Pompē∗ [91] O(n2) O(n3L)

Block-Order-
Fairness [49]

Themis [49] O(n) O(n2 + nL)

Differential
Order Fair-
ness

Quick o.-f. broadcast O(n2) O(n2L+ n3λ)

Table 4.1: Overview of different notions for fair transaction ordering and
corresponding algorithms, with their expected message and communica-
tion complexities. The summary assumes L ≥ λ. (∗ The Pompē protocol
requires synchronized clocks.)

Proof. The check in L215 of the protocol implementation ensures that
no transaction is of-delivered more than once. In the step when the
protocol creates graph vertices, transactions that are already contained
in variable delivered are filtered out. Those transactions will not be
included in the graph and cannot be of-delivered again. Note that even
in the case when a transaction transaction tx is bcch-delivered multiple
times, because of filtering in L215, it is not possible that tx is of-delivered
more than once.

Lemma 4.9. In Algorithm 5–6, if a transaction tx is of-delivered by
some correct party, then tx is eventually of-delivered by every correct
party.

Proof. Suppose that a transaction tx is of-delivered by some correct
party pi in round r. Following the protocol steps, in round r all correct
parties decide on the same L′ (L198). This is guaranteed by the agree-
ment property of the validated Byzantine consensus because no two
correct parties decide differently. Since the matrix L′ is used to con-
struct the cut deterministically, all correct parties construct the same
cut (L200).
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We can then distinguish two cases: In the first case, all correct par-
ties have already bcch-delivered tx and store it in msgs. In the second
case, there are some correct parties that have never heard of tx simply
because of some delays in the network. Then these correct parties send
a missing-message to all parties, requesting the delivery of their missing
transactions. Since every transaction included in the cut was announced
by f + 1 parties, and therefore also by at least one correct party, some
party will respond with a resend-message containing tx. Once all these
transactions are delivered, all correct parties store tx in msgs.

In the next step, every correct party builds graph G. Each vertex
in the graph is constructed deterministically from the same information
by every party, concretely, from the transactions in msgs and excluding
those that are already in the delivered set (L215). Following the protocol,
every correct party will eventually construct the same G and output the
same sequence of transactions, also including tx.

Lemma 4.10. Let tx and tx′ be two transactions such that pi and pj
are correct parties that of-deliver tx and tx′. In Algorithm 5–6, if pi
of-delivers tx before tx′, then pj also of-delivers tx before tx′.

Proof. Consider two distinct transactions tx and tx′ and let pi and pj
be any two correct parties that of-deliver both transactions. Assume
that pi of-delivers tx before tx′. If pi of-delivers tx and tx′ in round r,
then both transactions were included in the cut for pi. Due to the argu-
ment used to establish the agreement property in Lemma 4.9, it must
be that tx and tx′ were also included in the cut for party pj in round r.
The rest of the protocol, i.e., building a graph and of-delivering trans-
actions is deterministic. Therefore, pj delivers these two transactions in
round r and also of-delivers tx before tx′. Extending this argument over
all rounds of the protocol, it follows that every correct party of-delivers
the same sequence of transactions.

Lemma 4.11. If all parties are correct and of-broadcast a finite number
of transactions in Algorithm 5–6, then every correct party eventually of-
delivers these transactions.

Proof. Let pi be some correct party that of-broadcasts a transaction
transaction tx. Due to the validity property of the underlying Byzan-
tine FIFO consistent broadcast channel, every correct party eventually
bcch-delivers tx. According to the algorithm, in every round r a party pi
waits for n− f parties to receive signed vector clocks to proposes a ma-
trix of logical timestamps L for validated Byzantine consensus (L196).
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The termination property of validated Byzantine consensus guarantees
that every correct party eventually decides some value and according to
the agreement property, no two correct parties decide differently. The
resulting common L′ allows then each party to determine if tx is con-
sidered in the current round r. A transaction tx is considered if at least
f +1 parties have bcch-delivered tx and reported it in their vector clock
(L200). Additionally, if tx is considered in the current round but some
party pi has not bcch-delivered tx yet, pi will request that other par-
ties send it the missing transaction (L203). Further, all transactions in
msgs are added as vertices to the graph G (L215). Moreover, because
every party of-broadcasts a finite number of transactions, every possible
graph that is created will be finite. Since tx was of-broadcast by a cor-
rect party pi, all parties are correct and of-broadcast a finite number of
transactions, tx will eventually be of-delivered.

Lemma 4.12. In Algorithm 5–6, if b(tx, tx′) > b(tx′, tx) + 2f + κ, then
no correct party of-delivers tx′ before tx.

Proof. Recall that b(tx, tx′) is the number of correct parties that receive
and of-broadcast tx before tx′. Consider any two transactions tx and tx′

such that b(tx, tx′) > b(tx′, tx) + 2f + κ.
Suppose tx and tx′ are both included in the cut of some round and

none of them has been of-delivered yet. The protocol defines a threshold
based on M for creating an edge between two vertices. Lemma 4.6 shows
that the condition for differential order fairness ensures that M [tx][tx′] >
M [tx′][tx]−f+κ in the protocol, whereM [tx][tx′] counts how many times
tx appears before tx′ in msgs. Moreover, as explained in connection with
Lemma 4.6, the algorithm extends this condition for adding an edge
(m,m′) to

max
{
M [tx][tx′], n− f −M [tx′][tx]

}
> M [tx′][tx]− f + κ, (4.2)

in order to cope with particularly small values of M [tx′][tx]. This may
be the case when the full relative ordering information about tx and tx′,
in the sense that M [tx][tx′] + M [tx′][tx] ≥ n − f , is not yet available
with the cut. The implementation then adds an edge from tx to tx′ to
the graph (L222). This implies that tx′ will not be of-delivered before
tx because the algorithm respects this order by traversing the graph
starting with vertices that have no incoming edges. Therefore, tx is
either of-delivered before tx′ or both transactions are delivered together,
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within the same set. Moreover, observe that (4.2) ensures that graph
generated by the protocol is connected.

Consider now the case that tx′ is not included at all in the cut of the
current round r. We want to show that for all m ∈ V of the graph G, if
tx is of-delivered in round r, there cannot be such an tx′, for which an
edge (tx′, tx) would be added at a later round and which might therefore
violate κ-order fairness. Recall that an edge (tx′, tx) is added to G in a
round whenever (4.2) holds.

To be more precise, we show that the condition in L227 and the prop-
erties of stable() ensure κ-differential order fairness for such tx and tx′.
Let w̄ be a node of the graph as in L227. If every tx in flatten(w̄) appears
at least n+f−κ

2 times in msgs up to the cut, i.e., satisfies stable(tx), it
means that no tx′ (not in the cut) can be ordered before the transac-
tions in G of subsequent rounds. In fact, let m ∈ flatten(w̄) be such
that stable(tx) = true and tx′ not be in the cut. Since stable(tx) holds,
C[tx] ≥ n+f−κ

2 also means that M [tx][tx′] ≥ n+f−κ
2 . Thus,

M [tx′][tx] ≤ n−M [tx][tx′] ≤ n− n+ f − κ

2
=

n− f + κ

2

in any future round as well. But this implies M [tx′][tx] − M [tx][tx′] ≤
−f + κ, and thus, no edge (tx′, tx) is added according to (4.2). The
argument given earlier then shows that order fairness is maintained.
Notice that this takes care of scenarios as in Example 4.7 that include
some transaction t̄x ∈ flatten(w̄) with ¬stable(t̄x). There may exist a
further transaction tx′ not included in the cut such that tx′ must be
ordered not after t̄x.

Lemmas 4.8–4.12 directly imply the following theorem, which con-
cludes the analysis of the protocol.

Theorem 4.13. Algorithm 5–6 implements κ-differentially order-fair
atomic broadcast.

4.7 Conclusion

The quick order-fair atomic broadcast protocol guarantees transaction
delivery in a differentially fair order. It works both for asynchronous
and eventually synchronous networks with optimal resilience, tolerating
corruptions of up to one third of the parties. Compared to existing
order-fair atomic broadcast protocols, our protocol is considerably more
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efficient and incurs only quadratic cost in terms of amortized message
complexity per delivered transaction.





Chapter 5

Quick Order Fairness:
Implementation and
Evaluation

5.1 Introduction

Decentralized finance (DeFi) describes a financial system built on blockchain
technology that aims to recreate and enhance traditional financial ser-
vices without relying on centralized authorities, such as banks or brokers.
In the DeFi ecosystem, users can engage in various financial activities,
including lending, borrowing, trading, and earning interest. DeFi mech-
anisms are implemented by smart contracts running on a decentralized
blockchain network. Many parties jointly power the network through a
consensus protocol robust against attacks by malicious actors.

As described in Section 4.1 DeFi, is not (yet) immune against certain
kinds of fraud such as front-running. Such attacks exploit the decentral-
ized and transparent nature of the consensus and transaction execution
in a blockchain, highlighting the need for a protocol that imposes fairness
in DeFi. Moreover, front-running may occur also on non-programmable
blockchains like the XRP Ledger [87].

Research has proposed several solutions to prevent such attacks. One
is to enforce a causal order using distributed cryptography. A second
approach called receive-order fairness, considers in which order transac-
tions were received by the parties running the consensus protocol and
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enforces corresponding constraints on the order resulting from consen-
sus. A third approach called randomized order removes the influence on
transaction order by the parties running consensus. Finally, the last ap-
proach, called architectural separation, splits the task of ordering trans-
actions and delegates it to a separate service. Chapter 6 provides a
detailed overview of these approaches.

Quick Order-Fair Atomic Broadcast (QOF) [21] is a representative
of the group of receive-order fairness protocols. As described in Chap-
ter 4, it adds a new property called differential order fairness to the
existing properties of atomic broadcast. The protocol works for asyn-
chronous and eventually synchronous networks with optimal resilience
and tolerates faults of up to one-third of the total number of parties.
The resilience to faults does not depend on the fairness notion. Com-
pared to similar solutions, QOF is more efficient. It requires, on average,
O(n2) messages to deliver one transaction. For comparison, the asyn-
chronous Aequitas protocol [50, Sec. 7] needs O(n4) messages and has
resilience n > 4f or worse. Protocol Themis [49] achieves the same re-
silience and also takes O(n2) messages to deliver one transaction, though
a SNARK-based variant reduces this further in the best case. However,
the number of faulty parties tolerated by Aequitas and Themis depends
on the quality of the fairness that is achieved.

This chapter elaborates on the order-fair atomic broadcast and the
QOF protocol. Our primary motivation is to describe an implementation
of the QOF protocol in detail and to measure its cost. Implementing
a prototype is essential for empirically validating the theoretical base
of the proposed solution. More precisely, we describe a modular imple-
mentation of the QOF protocol on top of an existing library for atomic
(i.e., total-order) broadcast called bamboo [39], which realizes the Hot-
Stuff [90] consensus protocol (note that consensus and atomic broadcast
are synonyms here). It uses three components: Byzantine consistent
broadcast, validated Byzantine consensus, and a graph module. The
first module provides consistency for transactions sent by potentially
faulty parties [21]. The validated Byzantine consensus module is built
directly on bamboo and supports external validity. The graph module
maintains a directed acyclic graph and provides functions for capturing
potential dependencies among the transaction. Connecting all modules
and implementing the logic of extracting the fair order of transactions
from the graph structure completes the implementation of the QOF pro-
tocol.

The implementation allows us to evaluate the performance of the
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QOF protocol and assess its efficiency. We measure throughput and
latency and compare it to the baseline HotStuff implementation in bam-
boo [39]. Our experiments indicate that (with four servers) compared to
the HotStuff protocol, QOF reduces the throughput by at most 5% and
increases latency by about 50ms, reflecting the impact of the QOF proto-
col’s increased complexity in an ideal, emulated network. We also draw a
connection between our results and the performance of similar protocols
for imposing a fair order, including Themis [49] and Pompē [91].

Furthermore, we outline how the Quick Order-Fair protocol may be
deployed in practice, offering two integration approaches. The first ap-
proach involves implementing it as a separate service, where clients sub-
mit transactions to ordering nodes. Ordering nodes use the QOF proto-
col to determine a fair order, which validators execute through a smart
contract. The second approach directly integrates QOF into validators,
with clients submitting transactions to validators running the algorithm
and executing transactions on the ledger.

To summarize, this work presents three contributions:

• It describes a practical implementation of the QOF protocol, il-
lustrating many aspects left out in earlier work and providing a
coherent representation of the protocol and its components.

• It examines the protocol’s integration into real-world systems, ex-
plaining possible designs and providing a smart contract blueprint.

• It conducts an empirical evaluation in several dimensions: scalabil-
ity, throughput, and latency. This evaluation affirms the efficacy of
the QOF protocol and provides valuable guidance for its practical
deployment in decentralized systems.

The chapter starts with a review of the existing techniques for pre-
venting MEV (Section 5.2). Then, we describe the Quick Order Fairness
protocol (Section 5.3). Section 5.4 describes the prototype’s building
blocks and implementation. Section 5.5 describes how the protocol can
be integrated into practical systems. Section 5.6 presents the evaluation
results, and finally, Section 5.7 concludes the chapter.

5.2 Related work

Recall from Section 4.2 that several lines of research have been developed
in the past years to address the front-running problem at the consensus
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level of blockchain networks, both in academia and in practice. A de-
tailed treatment is included in Chapter 6. On a high level, we can group
the proposed defense methods into four categories. Methods of the first
kind are explained in Section 6.2, aim to prevent side information leaks
to malicious insiders by using distributed cryptography, which enforces
a causal order on the transaction sequence produced by consensus. The
second kind of defense, known as receive-order fairness (Section 6.3),
considers how the transactions were received by the individual parties
running the consensus protocol and enforces corresponding constraints
on the order resulting from consensus. The third category randomized
order (Section 6.4) removes the influence on transaction order by the
parties running consensus. The last category, architectural separation
(Section 6.5), splits the task of ordering transactions and delegates it to
a separate service.

Heimbach and Wattenhofer [44] give an overview of state-of-the-art
techniques for preventing manipulation of the transaction order. They
present a taxonomy of the techniques and compare them regarding de-
centralization, security, scope, and other properties. Another survey of
knowledge given by Baum et al. [10] describes common front-running at-
tacks and assesses three mitigation categories. Moreover, they introduce
a sandwich attack on input batching techniques that can be mitigated
with private user balances and secret input stores. Both works conclude
that despite the growing number of approaches to address transaction
reordering manipulations on blockchains, an effective technique to miti-
gate the front-running problem still needs to be discovered. The current
state of research indicates that no existing approach can fully meet the
requirements posed by a decentralized blockchain environment.

5.3 Quick Order Fairness protocol

This section reviews the Quick Order Fairness protocol (QOF) (Chap-
ter 4). The protocol functions effectively in both asynchronous and
eventually synchronous networks, demonstrating resilience by tolerat-
ing corruptions in up to a third of the parties. It is accessed with
of-broadast(tx) for broadcasting a transaction tx and outputs transac-
tions through of-deliver(T), where T is a set of transactions delivered at
the same time. If one correct party of-broadcasts some transaction tx,
then every correct party eventually also of-broadcasts tx. We recall the
definition of κ-differentially order-fair atomic broadcast below.
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Definition 4.5 (κ-Differentially Order-Fair Atomic Broadcast).
A protocol for κ-differentially order-fair atomic broadcast satisfies the
properties no duplication, agreement and total order of atomic broadcast
and additionally:

Weak validity: If all parties are correct and of-broadcast a finite num-
ber of transactions, then every correct party eventually of-delivers
all of these of-broadcast transactions.

κ-differential order fairness: If b(tx, tx′) > b(tx′, tx) + 2f + κ, then
no correct party of-delivers tx′ before tx.

The value b(tx, tx′) denotes the number of correct parties that of-
broadcast tx before tx′ in an execution. Parameter f denotes the number
of faulty parties, and fairness parameter κ ≥ 0 expresses the strength
of the fairness. Smaller values of κ ensure stronger fairness in the sense
of how large the majority of parties that of-broadcast some tx before tx′

must be to ensure that tx will be of-delivered before tx′ and in a fair
order.

The protocol consists of three budling blocks: FIFO consistent broad-
cast channel, validated Byzantine consensus, and graph module. Since
the FIFO consistent broadcast channel and validated Byzantine consen-
sus will be described in Section 5.4, we will focus on the graph-building
phase in this section. Concretely, we will describe how the protocol
builds a graph and determines the order of transactions using a toy
example.

5.3.1 Broadcast and consensus

The quick order fairness protocol proceeds in rounds and concurrently
uses a FIFO consistent broadcast channel (bcch) to deliver transac-
tions [21]. Figure 5.1 depicts an example of the first phase of the pro-
tocol. The system consists of a three correct parties, pi, pj , pk, where
parameter κ, respectively, round r is zero. To keep the example simple,
we do not include Byzantine parties.

The protocol starts once the client submits a transaction tx1 (1).
Over time, the client will submit three more transactions: tx2, tx3, and
tx4 (not necessary in this order). The submitted transaction is bcch-
broadcasted (2) to other parties. Every party keeps a local vector clock
vc that counts the transactions that have been bcch-delivered from each
sending party. Every party also maintains an array of lists msgs such
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Figure 5.1: Execution of the protocol shows the first (consensus) phase
of the protocol.

that msgs[i] records all bcch-delivered transactions from pi. Upon bcch-
delivering tx, every party increments vc counter and appends the trans-
action to local array msgs (3). The new round starts when sufficiently
many new transactions are found in msgs. In the next step, each party
signs its vc and sends it to all other parties as status message (4). All
received vector clocks and signatures are stored in matrices L and Σ
(5). A row of matrix L maps to received vc from the party id. Once
n − f status messages are collected, a party proposes L and Σ to the
consensus module (6).

The protocol then runs a validated Byzantine consensus (vbc) pro-
tocol to agree on a matrix L′ and a list Σ′ of signatures that validate L′

(7). In this example, the protocol decides on matrix L′ and uses it to
determine the cut (8). Each matrix column calculates the largest value
such that more than f elements in the column are at least that value.
The cut is then defined as the vector of these values corresponding to
each party. The cut is [4, 3, 2] in this example. The cut determines an
entry in msgs array up to which transactions are considered for creating
the fair order in the round (9). A party may be missing some transac-
tions in the cut. In that case, the protocol will ask other parties to send
the missing transactions. Once the message exchange is completed, the
protocol proceeds to the next phase.
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5.3.2 Building a graph

The next phase is building a graph. Figure 5.2 shows steps of building
a directed dependency graph representing a fair transaction order. Pre-
vious execution steps produced the cut [4, 3, 2]. This means that in the
current round (10), party pi observes tx4 ≺ tx2 ≺ tx3 ≺ tx1, party pj
observes tx4 ≺ tx3 ≺ tx1 and pk observes tx4 ≺ tx1. The first step is to
create vertices of the graph by selecting all unique transactions within
the cut that have not yet been delivered (11). In this example, this will
produce four vertices. The next step is constructing matrix M (12), i.e.,
calculating for every party how many times transaction tx is delivered
before tx′, within the cut. The next step adds edges (13) to the graph
by checking the following condition:

max{M [tx][tx′], n− f −M [tx′][tx]} > M [tx′][tx]− f + κ (5.1)

where M [tx][tx′] is the number how many times is tx delivered before tx′,
f is the number of faulty parties, n is the total number of parties and κ is
fairness parameter. Note that this condition check is done for each pair
of vertices so that edges might be added in both directions. To avoid the
problem of Condorcet cycles, the next step tries to collapse the graph
(14). In this example, there is a path from every vertex to another, so the
whole graph is collapsed into a single vertex. Starting from the vertex
with zero incoming edges, the protocol extracts transactions from the
vertex and checks stable condition, i.e., if every transaction appears more
or equal to n+f−κ

2 times within the cut. In this example, transaction
tx2 appears only once in the cut but should appear at least twice to be
stable (15). Therefore, the protocol cannot deliver anything and moves
to the next round (16).

Figure 5.3 shows a continuation of the execution shown in Figure 5.2.
Meanwhile, more transactions arrived at parties (17), extending the cut
to [4, 4, 4]. As in the previous figure, we add vertices (18), calculate
again matrix M (19), and add edges (20) to the graph following the same
steps. The difference from the last round is that this time, we see fewer
edges in the graph because the protocol has more information about the
order, making it more confident about transaction ordering. After the
collapsing stage (21), we create two vertices (tx4) and (tx1, tx2, tx3). The
protocol starts from vertex (tx4) (with zero incoming edges) and checks
stable condition (22). That is more than enough since the transaction tx4
appears four times in the cut. It is of-delivered first. Then, we remove
vertex tx4 from the graph (23), and the protocol chooses the next vertex
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Figure 5.2: Example execution of building a graph starting from the
first round.

(tx1, tx2, tx3). Again, because the next vertex has multiple transactions
inside, the protocol checks if each satisfies stable condition. We deliver
all three transactions together this time since they fulfill the condition
(24). We then remove the corresponding vertex, leaving nothing else to
deliver.

Figure 5.3: Continuation of the execution from Figure 5.2.
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5.4 Implementation

Implementing the quick order-fair protocol builds on top of three mod-
ules: a Byzantine consistent broadcast module, a validated Byzantine
consensus module, and a graph module. In the following, we describe
the implementation of these modules. The code is written in Go version
1.15.7.

5.4.1 Byzantine consistent broadcast channel

We modularly implement the Byzantine consistent broadcast channel
(bcch) abstraction. For every sender, bcch invokes a sequence of broad-
cast primitives (bcb) so that only one is active at any moment. BCB
relies on authenticated perfect links (al) that communicate with Trans-
mission Control Protocol (TCP).

Figure 5.4: A stack of modules for implementing Byzantine consistent
broadcast channel in Quick Order Fairness protocol.
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Implementation details

The Byzantine consistent broadcast channel implementation follows Al-
gorithm 3.19 of Cachin et al. [18]. Initially, each party creates an in-
stance of bcch, automatically creating an instance of Byzantine consis-
tent broadcast (bcb). Then protocol waits for of-broadcast(tx) event to
happen. Every time this event is triggered, bcch-broadcasts tx using un-
derlying bcb-broadcast(tx) primitive. This primitive implements Signed
Echo Broadcast presented in Algorithm 3.17 [18]. This protocol uses
an authenticated perfect links abstraction and a cryptographic digital
signature scheme. Authenticated perfect links (al) primitive implements
Authenticate and Filter shown in Algorithm 2.4 [18]. It uses a Hash-
based message authentication1 (HMAC) over a TCP network commu-
nication. Specifically, in our implementation, we implement HMAC 256
in the file hmac.go, package hotstuff-impl/crypto.

5.4.2 Validated Byzantine consensus

This module implements validated Byzantine consensus (vbc) intro-
duced by Cachin et al. [19] using the HotStuff [90] implementation in
the project bamboo2. Observe that HotStuff does not provide validation.
We must modify the implementation to cope with the external validity
property. Moreover, HotStuff is implemented as an atomic broadcast
instance: the output for every correct party is a sequence of ordered
transactions. To make this into a consensus protocol, we agree on con-
sidering the first message output by a correct party proposed by the
leader for round r.

Figure 5.5 shows a high-level architecture for implementing validated
Byzantine consensus. A client sends a of-broadcast transaction to the
Quick Order Fairness module. This module communicates with the val-
idated Byzantine consensus module through a vbc-propose.

A validated Byzantine consensus protocol is activated by a vbc-
propose message carrying a value v with a proof π that validates v, i.e.,
π should satisfy a predicate P for v. A correct party only decides for
values validated by a proof π. In our quick order-fair protocol, a correct
party proposes for consensus a matrix L of vector clocks (counting how
many transactions were bcch-delivered from each party) together with
a list Σ containing the signatures of the parties on the vector clocks,

1HMAC is a cryptographic technique with a hash function and a secret key.
2https://github.com/gitferry/bamboo

https://github.com/gitferry/bamboo
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Figure 5.5: A stack of modules for implementing validated Byzantine
consensus in Quick Order Fairness protocol.

which represents the proof π for the validation. We define predicate P
as true whenever Σ correctly verifies L for round r. In particular,

Pr(L,Σ) = true iff ∀vc′ ∈ L, ∀σ′ ∈ Σ : verify(j, vc′, σ′).

In HotStuff, whenever the leader for round r broadcasts a proposal
block containing a list of (possibly different) matrices L or a correct
replica delivers the block proposed by the leader, then verify that Pr(L,Σ)
holds; proceed only if Pr(L,Σ) = true and halt otherwise. HotStuff
uses underlying point-to-point links for internal communication. The
first matrix in the delivered block is decided and used to determine the
cut for round r. More precisely, the validation party occurs in the val-
idated Byzantine consensus module, which vbc-decides on a matrix L′

with a proof π that validates L′.

Implementation details

An abstract vbc module (Def. 2.6) has the following events: vbc-propose(v)
and vbc-decide(v). A correct party first proposes a value and then must
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wait for a decision before it proposes a new value. We recall the defini-
tion below.

Definition 2.6 (Validated Byzantine Consensus). A protocol solves
validated Byzantine consensus with validity predicate P if it satisfies the
following conditions:

Termination: Every correct process eventually decides some value.

Integrity: No correct process decides twice.

Agreement: No two correct processes decide differently.

External validity: Every correct process only decides a value v such
that P (v) = true. Moreover, if all processes are correct and
propose v, then no correct process decides a value different from
v.

Atomic broadcast (Def. 2.7) abstraction is accessible via two events:
abc-broadcast(v) that broadcasts a value v and abc-deliver(v) that de-
livers a decided value v. We recall the definition below.

Definition 2.7 (Atomic Broadcast). A protocol for atomic broadcast
satisfies the following properties:

Validity: If a correct process a-broadcasts a message m, then every
correct process eventually a-delivers m.

No duplication: No message is a-delivered more than once.

Agreement: If a message m is a-delivered by some correct process,
then m is eventually a-delivered by every correct process.

Total order: Let m and m′ be two messages such that pi and pj are
correct processes that a-deliver m and m′. If pi a-delivers m before
m′, then pj also a-delivers m before m′.

Algorithm 7 shows an abstract implementation of vbc using atomic
broadcast (ABC) running on pi. A flag inround is, by default, set to false
and will change only when a consensus round starts. Variables roundp
and roundd count how many times a value is proposed, respectively, and
delivered. A new vbc consensus round starts when vbc-propose(v) is
triggered only when inround is false. Then, counter roundp increases by
one, inround is set to true, and the transaction is broadcasted. Transac-
tion structure is given in Table 5.1. Upon party pi receiving transaction
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w (containing value v) from another party, it checks if the round of re-
ceived transaction is the same as its roundp and if roundp > roundd. If
yes, then roundd is increased by one, inround set to false, and value v
is vbc-decided. Otherwise, the proposal value v is discarded.

Attribute Description
vbc Message tag.
v Proposed value.
roundp Proposing round.

Table 5.1: Structure of a proposed transaction.

Algorithm 7 Abstract implementation of vbc using ABC (code for pi).

State:
238: inround← false // flag if we can start consensus
239: roundp← 0 // counter for how many times proposed (QOF round)
240: roundd← 0 // counter for how many times delivered

241:upon vbc-propose(v) such that not inround do
242: roundp← roundp+ 1 //in QOF this happens after building the graph
243: inround← true
244: // abc-broadcast proposal of pi for vbc instance roundp
245: abc-broadcast([vbc, roundp, v])

246:upon abc-deliver(w) such that w = [vbc, r, v] do
247: // first abc-delivered proposal for this round
248: if r = roundp ∧ roundp > roundd then
249: roundd← roundd+ 1
250: inround← false
251: vbc-decide(v)
252: else
253: // discard proposal value v

Algorithm 8 is a concrete implementation of vbc in QOF within
HotStuff of the bamboo library. As in the previous algorithm, roundp
and roundd keep consensus running correctly. Additionally, view keeps
track of HotStuff round, and matrix votes stores votes for a specific
block.id , given by voter. Upon vbc-propose with value v, the algorithm
starts a new round of vbc consensus by increasing roundp by one and
creates transaction t, which is a tuple of vbc tag, roundp and v. The
created transaction is added to the local mempool of the bamboo library
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of a party pi using the mempool.addNew(t) function.

When party pi becomes leader, it increases view by one and cre-
ates a block. Block is created from payload generated by the function
mempool.some(). This function will get up to 20 transactions from the
mempool and put them in payload . Then, the function makeBlock takes
payload and view to build a block. The block is then sent to all parties
in the message block.

When party pi receives a block from some other party, it uses it to
create a vote. First, using cryptographic function sign, party pi signs
block.id and produces signature σ, which is included in vote. The vote
structure is given in Table 5.2. Then, the created vote is sent inside
vote message to the next leader.

Attribute Description
view Round in which is the vote created.
voter Party that created the vote.
block.id Identifier of a voted block.
σ Signature of the vote.

Table 5.2: Structure of a vote.

When a leader receives the vote, it first verifies it, using the verify
function, and only then it adds the vote into matrix votes. If more than
2
3 of a total number of parties voted for the same block.id , a quorum is
reached, and a quorum certificate (qc) is generated. At the same time,
view is updated. The block can be committed if the qc view is bigger or
equal to three. As we know, HotStuff takes three rounds to commit a
block, so the previous condition comes from this fact. Before committing
the block, the last check is to check if the view of the grandparent’s and
parents’ blocks is correct. Finally, the block is committed by calling
the function commitBlock that takes the grandparent block and current
view as arguments. This function will append a committed block to the
channel called cBlocks.

Every time a new block is committed, the algorithm takes the last
block from cBlocks and extracts the payload in transaction t. If an
extracted tag is vbc, the proposal round of t is the same as the current
proposal round, and roundp > roundd then roundd is increased by one,
and the value stored in t is vbc-decided. Otherwise, the value of the
proposed transaction, respectively, is discarded.
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5.4.3 Graph building

The last phase of the quick order fairness protocol is building a graph
that reflects the fair order of transactions. The graph is implemented as
a directed acyclic graph (DAG), where every vertex represents a transac-
tion (delivered by bcch), and an edge represents a dependency between
two transactions. Package graph holds the implementation of the graph
structure and utility functions.

Implementation details

Algorithm 9 depicts the structure of the implemented graph. The graph
is defined as a map of vertices. The Vertex structure represents each
vertex. The relations between vertices represent the graph’s edges,i.e.,
an edge has no explicit structure. Each vertex keeps track of outbound
edges to other vertices.

Implemented functions in the graph module are given in Table 5.3.
These functions create a graph, add and remove vertices, add edges, col-
lapse a graph, calculate strongly connected components, and implement
other helper functions. This work will focus on the implementation of
collapsing a graph functionality, given in Algorithm 9, since it is the
most complex function in the graph module.

Function Description
NewDirectedGraph Creates a new directed graph.
AddVertex Adds a vertex to a graph.
RemoveVertex Removes a vertex from a graph.
AddEdge Adds an edge between two vertices.
CollapseGraph Collapses a graph into a single vertex.
SCC Implements Strongly Connected Components.
DFS Implements Depth First Search.
Transpose Transposes a graph.
Visit Loops through the graph using DFS and out-

puts SCC.
Indegree Calculates the indegree of a vertex.

Table 5.3: List of implemented graph utility functions.

After a party constructs vertices and edges of the graph G, it will
call function CollapseGraph that will try to collapse the graph G into
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a single vertex (L307). The function CollapseGraph first checks if the
graph has less or equal to one vertex. If yes, it returns the same graph
since there is nothing to collapse. Otherwise, it creates a new graph
H and calculates strongly connected components (SCC) of G (L316).
Then, it loops through all components and adds them as vertices to the
new graph H. Finally, it returns the new graph H.

The function SCC(G) finds strongly connected components, i.e., in
a directed graph, it checks if there is a directed path from every vertex
in the component to every other vertex in the same component (L316).
It loops through all vertices in G and checks if a vertex has been visited.
If this is not the case, it calls DFS function (L331) that will traverse the
graph and mark all visited vertices. Then, it transposes the graph G and
loops through all vertices in the stack. For each vertex from the stack,
it checks if it has already been visited. If not, it calls Visit function that
will loop through the graph using DFS and fill components list. Finally,
it returns the components.

Function DFS(visited, stack,node) implements Depth First Search
(DFS) algorithm (L331). It checks if a given node is already visited.
If not, it marks it as visited and loops through all neighbors of the node.
For each neighbor, it calls the recursively DFS function. Finally, it ap-
pends the vertex to the stack. We choose to implement DFS since it is
a simple algorithm with efficient time complexity.

5.5 Integration

This section discusses how to deploy QOF in a blockchain network. One
approach is implementing it as a separate service through which clients
submit transactions. Alternatively, the network’s validators can inte-
grate it directly with the consensus protocol.

A separate service. In one approach, clients first send transactions
to specific ordering nodes responsible for imposing order fairness (Fig-
ure 5.6). In this scenario, the QOF protocol provides a separate ordering
mechanism, like those implemented by layer-two networks. In contrast
to many layer-two solutions, the ordering nodes implement proper dis-
tributed consensus. The ordering nodes output a sequence of transac-
tions that respects differential order fairness. This information is signed
and sent to validators who run the smart contract that executes trans-
actions on the ledger in the given order. With this approach, the ledger
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protocol is agnostic to the fair ordering process, and a contract may opt
to consume only transactions in a fair order. In this case, the smart
contract should verify the digital signatures of the ordering nodes before
executing transactions. Some pseudocode for a smart contract of this
kind is shown in Algorithm 10.

This approach can readily be integrated with many layer-two net-
works that have recently become popular [55]. These networks in-
crease scalability and efficiency by moving transaction execution off the
main blockchain. Running off-chain, they enable faster and more cost-
effective transactions while retaining the security benefits of the under-
lying blockchain by pushing only the effects of these transactions onto
the main network. Today, layer-two systems typically use a centralized
sequencer that gathers client transactions and organizes them. Subse-
quently, transactions are executed through the roll-up mechanism, and
the resulting updated state is recorded on layer one, the main blockchain,
through a roll-up contract deployed there. As most employ just one se-
quencer, this poses a single point of failure and restricts interoperability
with other, distinct layer-two systems. It is readily possible to distribute
the function of the sequencer across multiple nodes, even to serve mul-
tiple roll-up protocols from the same distributed layer-two sequencer.
Such an approach was recently introduced by Espresso [35].

Figure 5.6: Clients submit transactions to ordering nodes that use the
QOF algorithm as a separate service. The algorithm outputs transac-
tions in fair order and sends them to the validators who run a smart
contract. Smart contract executes transactions on the ledger in a fair
order.

Integration with consensus. The second approach is to directly
build the QOF protocol into the consensus protocol run by the val-
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idators, as shown in Figure 5.7. In this case, clients submit transactions
to the validators that extend their consensus protocol by the QOF al-
gorithm and output transactions in fair order. Then, validators run a
smart contract to execute transactions on the ledger. This approach im-
plements the fairness notion natively and for all smart contracts and re-
alizes the original vision of protecting the system against front-running.
A notable disadvantage is the requirement to change the original proto-
col since the QOF algorithm needs to be integrated. Furthermore, the
very notion of differential order-fairness relies on a known set of valida-
tors. Hence, such an integration is not feasible for truly permissionless
consensus protocols.

In particular, layer-one protocols like Tendermint Core3 are suitable
for integrating QOF protocol based on their trust model. Tendermint
is a Byzantine Fault Tolerant (BFT) consensus protocol that tolerates
up to one-third of failures by stake. Tendermint forms the basis of all
blockchain networks in the Cosmos ecosystem, a collection of interoper-
able networks that comes with tools for efficient and secure communica-
tion and coordination between the individual blockchains. There exist
many other blockchain networks with stake-based consensus, into which
the QOF protocol may be integrated (Algorand4, Cardano5, Internet
Computer/DFINITY6, Avalanche7 and more).

Aptos8 and Sui9 [70] use related consensus models, but differ in
a crucial aspect. Aptos runs Block-STM [41], an engine for parallel
execution for smart contracts, and Sui works in a permissionless setting,
where transactions are sent through a form of consistent broadcast that
does not establish consensus. However, both also use quorums at their
core, like the other protocols mentioned earlier. Since neither Aptos nor
Sui imposes a total order on all transactions, they permit some amount
of concurrent execution, which greatly improves scalability compared to
traditional Byzantine agreement methods. This poses a challenge for
integrating differential order fairness with their execution model, which
remains open at this time.

3https://tendermint.com
4https://algorandtechnologies.com
5https://cardano.org
6https://internetcomputer.org
7https://www.avax.network
8https://aptos.dev
9https://sui.io

https://tendermint.com
https://algorandtechnologies.com
https://cardano.org
https://internetcomputer.org
https://www.avax.network
https://aptos.dev
https://sui.io
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Figure 5.7: Clients submit transactions to the validators running the
QOF algorithm. Validators agree on a fair order of transactions and run
a smart contract to execute transactions on the ledger.

5.6 Evaluation

We evaluate the performance of the QOF protocol for estimating the
cost of adding order fairness. Consensus is implemented by the HotStuff
protocol in both cases. We first describe the experimental setup and
then present the results.

5.6.1 Experimental setup

The starting point of our implementation of quick order fairness was
the HotStuff implementation in the bamboo project [39]. The library10

is implemented in the Go language and has several HotStuff flavors.
Therefore, we modified the original code slightly to integrate it with
the QOF protocol. Concretely, we modified the basic HotStuff protocol.
The exact modifications are shown in the Section 5.4.

As the baseline for the evaluation, we use bamboo’s HotStuff imple-
mentation in the same benchmark setup as the QOF protocol. There-
fore, we can compare the performance of both protocols in the same
environment. We also compare and discuss the performance of QOF
with other protocols such as Themis [49], Pompē [91], and unmodified
bamboo HotStuff [39]. Although these protocols are tested in different

10https://github.com/gitferry/bamboo

https://github.com/gitferry/bamboo
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benchmark setups, we can still get a rough idea of how QOF performs
compared to other protocols.

Our benchmarks measure and analyze the protocol’s latency (in mil-
liseconds) and throughput (transactions per second). An important
question that arises is how to measure these metrics. Should we mea-
sure time from when the client submits a transaction (client latency)
or when a party receives it (server latency)? We chose server latency
because it is more relevant to the protocol’s performance. The client
would additionally depend on the network delay between the client and
the server.

All benchmarks are made on one Linux virtual machine running
Ubuntu 22.04 within an OpenStack hypervisor, with 32 GB memory
and 16 vCPUs of an AMD EPYC-Rome Processor at 2.3GHz and 4500
bogomips. In our benchmark, we vary the number of servers from 4
to 64 to see how the protocol scales. We generate transactions from a
separate client party and send them to all servers.

5.6.2 Results

In this benchmark, we report the latency and throughput of the quick
order fairness protocol and compare it to the baseline HotStuff protocol.
We focus first on scalability and then evaluate how the payload size of a
transaction and network delay affect the protocol’s performance. Finally,
we compare the performance of the QOF protocol to other protocols.

Scalability. A scalability benchmark is crucial for assessing a system’s
ability to handle increased workloads effectively. Figure 5.8 shows how
the throughput in both protocols changes with the increase in the num-
ber of servers. With four servers, QOF reduces the throughput compared
to HotStuff by about 300 transactions per second or approximately 5%.
Throughput reduction shrinks as the number of servers increases; with
64 servers, the reduction is about 6%.

Figure 5.9 depicts the increase of latency with the increase of server
numbers. Here, we observe that QOF increases latency by about 36 ms
for four servers, which is around three times higher than HotStuff, and
this difference continues to grow as the number of servers increases. The
difference is primarily due to the increased computational load for pro-
cessing the graph, which becomes more complex with more vertices and
servers. Moreover, quick order fairness employs a Byzantine consistent
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Figure 5.8: Performance scalability of HotStuff and Quick Order Fairness
protocols, showing how throughput degrades with changing number of
servers.

broadcast channel that adds latency and computational cost compared
to the HotStuff implementation.

Figure 5.9: Performance scalability of HotStuff and Quick Order Fair-
ness protocols, showing how latency increases with changing number of
servers.

Transaction payload size. In this benchmark, we analyze how the
payload size of a transaction affects the performance of the quick order
fairness protocol and HotStuff. We vary the payload size of a transaction
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from 256 bytes to 2048 bytes and show the results for the setup with
four servers. Figure 5.10 shows the throughput of the protocol. The
throughput data shows a gradual decrease as the payload size increases,
with the throughput experiencing a reduction of approximately 14%.
Figure 5.11 shows the protocol latency, and we see that the latency is
constant for all payload sizes. We conclude that the payload size does not
affect the performance of the quick order fairness and HotStuff protocol.

Figure 5.10: The figure shows how the throughput of the quick order
fairness and HotStuff protocol changes for different payload sizes. We
vary the payload size from 246 to 2048 bytes.

Network delay. In this test, we introduce additional network delay as
it might happen in the real-world environment. We vary the network de-
lay from 0 to 20 milliseconds. Specifically, the delay is determined within
a range defined by the configuration settings, introducing variability that
mirrors the unpredictability of actual network latencies. This approach
enhances the realism of the test environment, enabling a more compre-
hensive evaluation of the system’s performance under diverse network
delay scenarios. Measurements taken in a network with four servers are
shown in Figures 5.12 and 5.13, in terms of throughput and latency,
respectively. The results indicate a substantial impact of network delay
on system performance. As network delay increases from 0 to 20 ms,
throughput decreases significantly while latency experiences a substan-
tial increase. These findings underscore the sensitivity of throughput
and latency to network delays, emphasizing the importance of minimiz-
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Figure 5.11: The figure shows how the latency of the quick order fairness
and HotStuff protocol changes for different payload sizes. We vary the
payload size from 246 to 2048 bytes.

ing network latency for optimal system performance.

Figure 5.12: The figure shows how the throughput of the quick order
fairness and HotStuff protocol changes for different network delays. The
network delay changes from 0 to 20 milliseconds.

Comparison to other works. Comparing our benchmarks to other
evaluations from the literature poses a challenge since the benchmark
setups differ. Therefore, we can only get a rough idea of how the quick
order fairness protocol performs compared to other protocols. In this
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Figure 5.13: The figure shows how the latency of the quick order fairness
and HotStuff protocol changes for different network delays. The network
delay changes from 0 to 20 milliseconds.

comparison, we look at the performance of the Themis [49], Pompē [91]
HotStuff variant, and unmodified HotStuff implemented in bamboo [39].

All benchmarks were conducted on diverse virtual machine providers,
each instance equipped with 16 vCPUs and 32 GB of memory (except for
Pompē, which utilized a machine with 64GB memory). We restrict our
comparison to a common data point in all benchmark scenarios involving
32 servers executing the respective protocols.

Themis demonstrates remarkable performance, achieving a through-
put 21 times higher than QOF. However, it is crucial to note that this
substantial difference is influenced by the dedicated virtual machine per
server in Themis, allowing much more parallelization. In contrast, QOF
employs a setup where all 32 servers run within one VM, sharing the
same vCPU.

The second-best performance is observed in the HotStuff variant
of Pompē, surpassing QOF by approximately four times in terms of
throughput, with a reduction in latency by a factor of three. This per-
formance difference is presumably also influenced by the allocated ded-
icated VMs per server and by variations in the HotStuff implementa-
tion. Pompē leverages the original HotStuff implementation [60] written
in C++.

Finally, we executed the HotStuff variant of bamboo within the same
virtual machine as QOF. Specifically, in the scenario involving 32 servers,
bamboo HotStuff achieves a throughput two times higher than QOF.
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These performance results for bamboo HotStuff can be attributed to
the complex graphs constructed by QOF. Furthermore, introducing a
Byzantine-consistent broadcast channel incurred additional latency and
computational costs compared to the HotStuff implementation.

5.7 Conclusion

Through the practical implementation of the QOF protocol, the work
offers an executable representation, enhancing the protocol’s accessi-
bility and applicability. The systematic exploration of the protocol’s
integration into real-world systems, complete with smart contract pseu-
docode, lays a foundation to integrate the QOF protocol. The empirical
evaluation, containing critical dimensions like scalability, throughput,
and latency, not only confirms the protocol’s efficacy but also provides
invaluable insights for its practical deployment. Future work should op-
timize the codebase to enhance throughput and latency, ensuring the
QOF protocol is ready for real-world deployment. Despite a slight re-
duction in throughput compared to the HotStuff protocol, the QOF
protocol’s complexity is justified by its resilience against front-running
attacks. This work contributes practically and theoretically, extending
the understanding and applying the quick order fairness protocol in de-
centralized systems.
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Algorithm 8 Concrete implementation of vbc in QOF within HotStuff
of bamboo (code for pi).

State:
254: roundp← 0: counter of how many times value is proposed (QOF round)
255: roundd← 0: counter of how many times value is decided
256: view← 0: counter of HotStuff protocol rounds
257: votes← [0]n×n: matrix of votes for each block.id and voter

258:upon vbc-propose(v) do
259: roundp← roundp+ 1 //in QOF this happens after building the graph
260: // instead of abc-broadcast, add the proposal of pi for the vbc instance
261: // as a new transaction to the mempool
262: t← (vbc, roundp, v)
263: mempool.addNew(t)

264:upon becoming leader do
265: view← view+ 1
266: payload← mempool.some() // get up to 20 transactions
267: block← makeBlock(payload, view)
268: send message [block, block] to all p ∈ P // vbc.go L348

269:upon receiving message [block, block] from pj do
270: σ ← sign(i, block.id)
271: vote← makeVote(view, i, block.id, σ) // hotstuff.go L105
272: send message [vote, vote] to next view // to next leader

273:upon receiving message [vote, vote] from pj
274: such that verify(j, vote.block.id, vote.σ) do // hotstuff.go L123
275: votes[vote.block.id][vote.voter]← vote
276: if #(votes[vote.block.id]) > #(P) · 2

3
then // quorum.go L66

277: qc← (vote.view, vote.block.id)
278: view← qc.view+ 1
279: if qc.view ≥ 3 then
280: parentBlock← getParentBlock(qc.block.id)
281: grandparentBlock← getParentBlock(parentBlock.block.id)
282: if grandparentBlock.view+ 1 = parentBlock.view
283: and parentBlock.view+ 1 = qc.view then
284: // a block is appended to cBlocks
285: cBlocks← commitBlock(grandparentBlock, view)

286:upon cBlocks is updated do
287: commitedBlock← cBlocks[0] // get latest committed block
288: t← commitedBlock.payload[0]
289: (tag, round, val)← t
290: if tag = vbc ∧ round = roundp ∧ roundp > roundd then
291: roundd← roundd+ 1
292: vbc-decide(val) // vbc.go L299
293: else
294: // discard proposed value
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Algorithm 9 Abstract implementation of collapsing a graph.

295:Type:
296: Graph(
297: HashMap[string → Vertex] vertices) // Collection of vertices.
298: Vertex(
299: string key, // Unique identifier of a vertex.
300: bcchMessage data, // Transaction delivered by bcch.
301: HashMap[string → Vertex] vertices) // Connected vertices.
302: bcchMessage(
303: []byte message, // Transaction delivered by bcch.
304: int round, // Round in which the message was delivered.
305: int fromProcess, // Party that delivered the message.
306: string id) // Unique identifier of a message.

307:upon CollapseGraph(G : Graph) do
308: if #(G.vertices) ≤ 1 then
309: return G
310: else
311: H ← NewDirectedGraph()
312: components← SCC(G)
313: for c ∈ components do
314: H.AddVertex(c)
315: return H

316:function SCC(G : Graph)
317: vertices← G.vertices
318: visited, components, stack← [ ]
319: for i ∈ {0, . . . ,#(vertices)} do
320: node← vertices[i]
321: if visited[node] = false then
322: DFS(visited , stack , node)
323: transposed← G.Transpose()
324: visited← [ ]
325: for #(stack) ̸= 0 do
326: // removes and returns the last element
327: v ← stack[#(stack)− 1]
328: if visited[v] = false then
329: transposed .Visit(visited , v, components)
330: return components

331:function DFS(visited , stack , node)
332: if visited[node] = false then
333: visited[node]← true
334: for neighbour ∈ node.vertices do
335: DFS(visited , stack , neighbour)
336: stack.append(node)
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Algorithm 10 Pseudocode of a smart contract.

337:// T is a set of ordered transactions; σ is a signature
338:upon receiving message [transactions, T, σ] do
339: if verify(T, σ) = true then
340: for tx ∈ T do
341: execute(tx)



Chapter 6

Defending Against
Reordering in
Decentralized Finance

6.1 Introduction

In this chapter, we focus again on the field of blockchain called de-
centralized finance (DeFi), which is very popular nowadays. DeFi is
a promising field with many advantages over the traditional financial
system. For example, it is censorship-resistant, permissionless, trans-
parent, and open-source. Censorship resistance means DeFi systems
are resilient to external attempts to control or restrict transactions. A
permissionless system implies that individuals can participate in DeFi
without prior approval or intermediaries. Transparency in DeFi ensures
that all transactions are publicly recorded on a blockchain. Open-source
denotes that the code and protocols governing DeFi platforms are pub-
licly accessible, allowing collaborative development and innovation by a
diverse community of contributors.

However, it also has some disadvantages. One of them is the front-
running problem as we saw in Chapters 4 and 5. Let us say that Alice
(a victim) wants to buy some amount of ETH. Eve (an attacker) ob-
serves mempool1 by analyzing the pending transactions queued for con-

1The mempool, or memory pool, is a temporary storage area for unconfirmed
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firmation, extracting relevant details, and strategically predicting mar-
ket movements based on the anticipated impact of specific transactions,
such as Alice’s purchase of ETH. Eve uses this chance to gain profit by
performing a so-called sandwich attack. She will create two transactions:
one is a buying transaction with a higher gas fee than Alice’s transac-
tion, and the second one is a selling transaction that will be executed
after the price goes up. Therefore, Eve will earn profit from selling the
coin.

The profit that can be gained from this attack has been named max-
imal or miner extractable value (MEV) by Daian et al. [30]. According
to the Flashbots explorer2, the total MEV extracted from September
2020 until September 2022 is around 675 million USD. This number has
been increasing until this day. Therefore, it is crucial to find a solution
to this problem. The previous example was a simple example of a front-
running attack. Many other types of front-running attacks are more
complicated and more profitable [93]. This kind of attack is forbidden
in the traditional financial system but must be prevented technically in
DeFi.

The proposed defense methods can be categorized into four groups.
The first category employs distributed cryptography to prevent side
information leaks to malicious insiders, ensuring a causal order (Sec-
tion 6.2) on the consensus-generated transaction sequence. The sec-
ond category, known as receive-order fairness (Section 6.3), analyzes
how individual parties participating in the consensus protocol receive
transactions, imposing corresponding constraints on the resultant order.
Chapters 4 and 5 addressed this category. The third category, called
randomized order (Section 6.4), seeks to eliminate the influence of con-
sensus validators on transaction order. The final category, architectural
separation (Section 6.5), proposes to separate the task of ordering trans-
actions and delegate it to a separate service. There is a significant inter-
est in the research community to explore protection mechanisms against
front-running attacks. The rest of this chapter describes some existing
solutions and their advantages and disadvantages.

transactions in a blockchain network, holding transactions until they are selected by
miners to be included in the next block.

2https://explore.flashbots.net/

https://explore.flashbots.net/
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6.2 Causal-order fairness

One of the first notions of fairness (in the context of this work) was
introduced back in 1994 by Reiter and Birman [80]. The causal definition
requires from the protocol that if some transaction tx caused or may have
caused some other transaction tx′, then tx should always be committed
first to preserve the causal ordering defined by Lamport [56]. They
define causality as following: ”if deliver(m′) is executed at a correct or
honest server s when deliver(m) has not yet been executed at s, then
m′ was issued before m was decrypted anywhere.” [80]. Later works by
Cachin et al. [19] and Duan et al. [32] redefined the causal definition.
All of these solutions require that transaction proposals are encrypted
so malicious parties cannot learn the content of the transaction before
it is committed.

6.2.1 Threshold cryptography

The foundations of blockchain systems can be traced back to distributed
systems and cryptography. The problem of replicating services in a dis-
tributed system is well known. The main challenge is to ensure that
all replicas agree on the same state. Reiter and Birman presented in
their work [80] the first solution that satisfies availability and integrity
together while maintaining a causal order in the distributed system.
An innovative aspect of their research is eliminating the need for client
authentication towards servers. Authors constructed a protocol that
combines an atomic broadcast protocol and a public-key threshold cryp-
tosystem.

A (k, n)-threshold cryptosystem creates a public key and n shares
of the corresponding private key in a way that any message m that is
encrypted using the public key, each share can be used to generate a
partial result of m, where any k of these partial results can be combined
to decrypt m. The system is secure if possessing k − 1 or less shares
does not lead to decrypting a new ciphertext and is resistant to known
plaintext attacks.

The main idea of their protocol, which uses the RSA threshold cryp-
tosystem, is that each client encrypts every message m using a public
key of the server and attempts to force k servers to cooperate to decrypt
it. Each correct server abstains from broadcasting its partial result of
m until the delivery sequence up to m is fixed locally. Therefore, even
if a malicious server collects k partial results, the delivery sequence is
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already fixed, and the malicious server cannot change it. The protocol
achieves causality only if each server requires k partial results to decrypt
a message.

This research has generated numerous possibilities for subsequent
work and has motivated other researchers to delve deeper into this field
of computer science. One of the critical questions at the time was how to
make their protocol more practical, given that it relied on atomic broad-
cast protocols, and how to make it secure against Chosen-Ciphertext
Attack (CCA) and use more standard encryption.

Cachin et al. [19] extended previous work by presenting secure causal
atomic broadcast (SC-ABC). They defined new notions: message in-
tegrity, message consistency, and message secrecy, which, together with
safety and liveness, guarantee causal order.

The proposed protocol employs the same encryption to guarantee
a causal order among delivered messages and has a two-step delivery
process (schedule and reveal). Protocol requires that only after a party
schedules a ciphertext, it can reveal and broadcast its decryption share.
It is not possible to have two consecutive schedule or reveal events.

Specifically, the SC-ABC protocol uses an (f + 1, n)-threshold cryp-
tosystem for which parties share the decryption key. First, a trusted
dealer generates a public key for the cryptosystem and distributes the
corresponding private key shares to the parties. Then, it creates a unique
label ID for each message by applying encryption using the public key.
Since all instances of SC-ABC share the same public key, using labeled
ciphertexts is necessary to distinguish different instances. Then, a ci-
phertext c is broadcasted to all parties. Upon delivery of c, the party
computes a decryption share and sends it to all other parties together
with c. It waits for f + 1 messages relevant to c. When it receives
f + 1 messages, it decrypts c and delivers the message. After receiving
the acknowledgment, the party processes the next delivery event and
generates the corresponding acknowledgment.

The secure causal atomic broadcast protocol is secure against adap-
tive CCA attacks and works for n > 3f . However, the problem of expen-
sive public-key threshold cryptosystems still left space for improvement.

6.2.2 Commit-reveal protocols

The previous techniques employ public-key encryption as a critical com-
ponent, which may not be efficient for some scenarios. Duan et al. [32]
proposed three novel secure causal Byzantine Fault Tolerant (BFT) pro-
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tocols without using public-key cryptography. They introduced a pro-
tocol that can use any order-fair BFT protocol and any non-malleable
commitment with associated data. The other two new protocols em-
ploy asynchronous robust secret sharing. This section will focus on the
first construction (in the paper called CP1) since this solution is very
prominent and has been discovered many times anew. It can thus be
considered folklore.

The main idea of the CP1 protocol is to use a non-malleable commit-
ment with associated-data scheme (NM-CAD). First, let us explain what
a commitment scheme is. A commitment scheme is a cryptographic tech-
nique used to allow one to commit to a chosen value, which is revealed
only after the committer decides to open the commitment. The NM-
CAD scheme has three operations: Cgen, Commmit, and Open. Cgen
generates a commitment key ck. Commmit takes as input commitment
key ck, a message m and a header h and produces a pair (c, d) where
c is a commitment and d is a decommitment (opening). Open takes as
input ck, h, c, m and d and produces a decision bit. The associated data
(header) of the commitment resembles the label concept from threshold
cryptosystems.

The key concept behind CP1 is as follows: during the scheduling
phase, a commitment is made to a specific value m along with an iden-
tifier (ID) using the underlying BFT protocol. In the revealing phase,
both the valuem and the corresponding opening d are processed through
the same BFT protocol using the same identifier ID. In more detail, a
system fixes a commitment key ck. A client picks an ID as the com-
mitment header h for a message m and computes (c, d) using Commit.
Then it sends (ID, schedule, c) to parties. Parties then verify the mes-
sage and header, run BFT protocol to schedule the commitment and
notify a client that they have delivered the message m. Once the client
receives f + 1 such notification messages, it starts the reveal process
by sending a message (ID, reveal, (m, d)) to the parties. Again, parties
verify the correctness of m and d, use the Open method from NM-CAD
and run the BFT protocol to deliver the message m. Parties then can
process the m and respond to the client.

The main advantage of CP1 compared to the previous solution is
that it does not rely on a trusted setup or interactive setup and can
be realized using only symmetric cryptography, which is much more
efficient. A disadvantage of this protocol might be that clients may fail
to send messages and openings on time, or replicas could delay or drop
them. To avoid this, authors propose an optimization such that in the
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reveal process, once a correct party verifies m and d, it forwards them
to the rest of the replicas. However, this does not resolve the issue of a
faulty client that deliberately holds back the opening.

6.2.3 Time-lock encryption

Although the previous solution reveals the transactions after the order is
fixed, it still has open issues. For example, an adversary may choose not
to reveal the transaction, so the final ordering may not be optimal. To
overcome this problem, Khalil et al. introduced the TEX protocol [51]
that solves the problem as mentioned earlier by using a verifiable delay
function (VDF) [13]. For instance, if a client does not reveal a transac-
tion promptly, other parties in the system can decrypt it by solving a
somewhat hard cryptographic puzzle.

The concept of timed-release cryptography was introduced by Rivest et
al. in 1996 [84]. The authors’ initial idea was to encrypt a message so no
one can decrypt it until some defined upfront time has passed. In their
work, they propose two ways to implement timed-release crypto. One
is the use of time-lock puzzles, and the other one is the use of trusted
agents. In this section, we will focus on the first approach.

The idea of time-lock puzzles requires creating a puzzle that reveals a
decryption key after a certain amount of time. The challenge is designing
it so that using large parallel computers only solves the puzzle after the
dedicated time passes. The puzzle should be automatically solved at
a given time, but a computer needs to work continuously on solving it
before the key is revealed.

However, the previous solution does not scale to many participants,
and TEX protocol [51] assumes synchrony at the commitment phase.
Therefore, Doweck and Eyal [31] defined a new problem called Multi-
Party Timed Commitments (MPTC) and presented two solutions to it.
The first solution, called Timed Capsule, proves its correctness with-
out relying on trust, incentives, or synchrony. The second solution,
called Capsule Chain, is a frontrunning-resistant blockchain protocol
that adapts Time Capsule. Nevertheless, this protocol is not perfect.
Some open questions still tackle the problem of mining advantage, en-
sured output, transaction fees, and aborted blocks.

A more recent work from 2022 by Chiang et al. introduces the Fair-
PoS [27] protocol, which is the first consensus protocol that achieves
input fairness in the permissionless setting proposed. It is secure against
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an adaptive adversary3 and works in semi-synchronous networks. In this
paper, authors introduce a new notion called input fairness. The input
fairness holds for ”all blocks if (1) the adversary cannot decrypt an hon-
estly encrypted input in block B before B is in the k-common-prefix and
(2) encrypted inputs in B are eventually decrypted by all honest parties”.

The input fairness guarantees that an adversary cannot observe the
plain text before finalizing the transaction. This is achieved by encrypt-
ing inputs using delay encryption. Classic time-lock puzzles require a
dedicated extraction process for each client input, which could be more
problematic at higher throughputs. On the contrary, delay encryption
allows encryption of all inputs in a block under a single unknown key.
This key can be extracted as time elapses. Moreover, only one key ex-
traction is needed for each block. However, the extraction procedure
requires access to specialized hardware to ensure timely execution. In
practice, clients are light and have limited resources, so this solution is
impractical and would give an advantage to the clients with more re-
sources. Therefore, the authors propose a novel key extraction protocol.
This protocol requires staking parties to insert the extracted keys from
previous blocks into child blocks of the same chain within a fixed sched-
ule. The parties can only extend a chain if past key extractions are
completed on time.

To conclude this section, we observe some disadvantages of the above-
described approaches. For instance, transactions may be executed much
later than when submitted to the network. In the time-lock puzzle
approach, delay must adapt to network delay and the adversary’s com-
putational power.

6.3 Receive-order fairness

Leader-based protocols for consensus, i.e., atomic broadcast, allow some
processes to unilaterally affect the final order of transactions, as we have
already seen in Chapters 4 and 5. The concept of receive-order fairness is
based on a committee in which every party has its local view of received
transactions. The committee then agrees on the order of transactions,
using consensus, and outputs them in the agreed fair order. The common
challenge for all of those solutions is the Condorcet paradox [40]. In

3An adaptive adversary controls the network delay and may corrupt parties during
the protocol execution.



108 Defending Against Reordering in Decentralized Finance

the following part of this section, we will describe some of the existing
solutions. Note that [50], [54], [91] were published around the same time.

6.3.1 Wendy

Kursawe [54] investigated the concept of relative order fairness, explor-
ing methods to ensure fairness in the sequencing of transactions. The
author also shows the impracticality of achieving fairness according to
one of the more intuitive definitions. Subsequently, Kursawe introduces
Wendy, a suite of low-overhead protocols designed to implement various
fairness concepts. Introduced protocols have optimal resiliency in the
asynchronous model (n > 3f) and optimal latency. The presented pro-
tocols can be added to any existing consensus protocol with a known set
of validators.

For instance, one of the new proposed fairness definitions is timed
relative fairness. This definition has slightly weaker fairness but allows
much stronger liveness guarantees. The definition assumes that all par-
ties have access to a local clock, so if there is a time T such that all
hones parties saw transaction tx before time T , and transaction tx′ after
time T , then tx must be scheduled before tx′. The author claims that
parties do not have to have synchronized local clocks, but the clocks
must count forward, and there are no two identical timestamps. Using
GPS as a time source is sufficient to make this approach practical.

Wendy’s protocol must ensure that if tx needs to be scheduled before
tx′, then tx must be scheduled before tx′ in an earlier or the same block.
Since timestamps are incorporated into the block, the local ordering of
requests within a block can be carried out after the block is delivered.

6.3.2 Pompē

Zhang et al. [91] introduced a new primitive called Byzantine ordered
consensus. This primitive extends the Byzantine fault tolerant (BFT)
protocol specification to express guarantees about the total order it gen-
erates. Assuming that parties use as their ordering preference the time
they first see a transaction, authors proposed a new definition of order
fairness, called ordering linearizability. This property ensures that if the
highest timestamp from all correct parties for transaction tx is lower
than the lowest timestamp from all correct parties for transaction tx′,
then tx is ordered before tx′.
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The authors also proposed a new protocol called Pompē that im-
plements Byzantine ordered consensus. Besides satisfying the standard
safety and liveness properties of BFT, Pompē introduces an ordering
phase that enforces ordering linearizability. In the ordering phase, the
protocol utilizes timestamps to establish a total transaction order. To
lock a position for a transaction in this total order, a party pi initiates
a two-step process. In the first step, pi, having a transaction tx, gath-
ers signed timestamps on tx from a quorum of 2f + 1 parties, and the
median timestamp among these signatures becomes the assigned times-
tamp for tx, determining its position in the total order. This step ensures
that the assigned timestamp is upper- and lower-bounded by timestamps
from the correct parties, a crucial aspect for achieving linearizability. In
the second step, pi broadcasts tx and its assigned timestamp, waiting
for acceptance by a quorum of 2f +1 parties. A transaction tx accepted
by this quorum is guaranteed inclusion in the totally ordered ledgers
of correct parties and has its position in the ledgers determined by the
assigned timestamp. However, the implementation of ordered lineariz-
ability is based on a median calculation, which malicious processes can
easily manipulate, as shown in later work by Kelkar et al. [47].

6.3.3 Aequitas and Themis

Around the same time as the previous two works, Kelkar et al. [50]
introduced a new property called transaction order-fairness which pre-
vents adversarial manipulation of the ordering of transactions. They
first introduce receive-order-fairness [50, Definition 1.1] informally as:
“if sufficiently many (at least γ–fraction) parties receive a transaction tx
before another transaction tx′, then all honest nodes must output tx be-
fore tx′”. However, the authors show the impossibility result of achieving
this definition and propose a new relaxed definition called block-order-
fairness [50, Definition 1.3]. In this definition, instead of delivering one
transaction before another, both transactions can be delivered simulta-
neously in the same block. This definition also solves the problem of the
Condorcet paradox, presented in Subsection 6.3.6.

Kelkar et al. presented a new class of consensus protocols, Aequitas,
that satisfy block-order-fairness. These protocols can be realized as
leader-based and leaderless protocols and work in synchronous and asyn-
chronous settings, resulting in four protocols. Aequitas protocols use two
primitives: FIFO broadcast and set Byzantine agreement. The protocols
proceed in three stages:
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1. Gossip stage: each party gossips its local transaction ordering to
all other parties.

2. Agreement stage: parties reach a consensus on the group of parties
whose local orderings are to be considered when determining the
global ordering of a specific transaction.

3. Finalization stage: parties finalize the global ordering of a trans-
action by utilizing the set of local orderings determined in the
agreement stage.

Aequitas protocol achieves impractically high O(n3) communica-
tion complexity and provides only a weaker liveness property. In Sec-
tion 4.4.1, we further discuss the limitations of Aequitas protocol.

A subsequent paper by Kelkar et al. [47] extends this approach to a
permissionless setting. Kelkar et al. [49] presented another permissioned
Byzantine consensus protocol, called Themis, that works in partially
synchronous setting and tolerates faults of up to one-fourth of the total
number of parties. It achieves the same fairness property as Aequitas
but provides stronger liveness.

Themis achieves the batch-order-fairness property, with the param-
eter 1

2 < γ ≤ 1, specifies that if γ fraction of honest parties receive a
transaction tx before tx′ from the client, then tx should be ordered no
later than tx′. Batches emerge due to non-transitive Condorcet cycles
in the message receipt times among parties. Nevertheless, the authors
observe that cycles can persist for an arbitrary length of time, posing a
liveness challenge for the Aequitas protocol. Therefore, instead of wait-
ing to see all transactions to order them (like in Aequitas), Themis uses
the technique of unspooling. This technique allows the protocol to out-
put a batch in parts while still ensuring that all transactions in the same
batch are output in an uninterrupted sequence.

Themis implements batch-order-fairness using a new primitive called
deferred ordering. Using deferred ordering, blocks generated by a leader
contain transactions that are fully ordered alongside only partially or-
dered transactions. Partially ordered transactions await total ordering
by a subsequent honest leader. The finalization of these partially ordered
transactions occurs within the network delay and does not necessitate
waiting indefinitely for the ordering of future transactions, such as the
occurrence of Condorcet cycles.

Compared to Aequitas communication complexity, Themis achieves
a much lower communication complexity of O(n2). Moreover, Kelkar et
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al. proposed in the full version [48], another more theoretical design
of Themis called SNARK-Themis, which uses SNARKs to achieve a
communication complexity of O(n). SNARKs (Succinct Non-Interactive
Arguments of Knowledge) are cryptographic proofs used in blockchain to
verify computations without revealing sensitive information. However,
this protocol requires a trusted setup.

6.3.4 Quick Order Fairness

Cachin et al. [21] relate order fairness to the ƒstandard validity notions
for consensus protocols and highlight some limitations with the existing
formalization. Based on this, authors introduce a new differential order
fairness property that fixes these issues. They also present the quick
order-fair atomic broadcast protocol that guarantees payload message
delivery in a differentially fair order and is much more efficient than ex-
isting order-fair consensus protocols. It works for asynchronous and for
eventually synchronous networks with optimal resilience, tolerating cor-
ruptions of up to one-third of the processes. Previous solutions required
there to be less than one-fourth of faults. Furthermore, the protocol
incurs only quadratic cost regarding amortized message complexity per
delivered payload. The complete protocol definition is given in Chapter 4
and implementation in Chapter 5.

6.3.5 Fino

Another line of research commits to transaction ordering without see-
ing the content of a transaction, i.e., transaction content is hidden in
a way that malicious parties cannot analyze and exploit it. This prop-
erty is called blind order-fairness. An orthogonal line of research has
shown a very good performance for BFT protocols designed around Di-
rected Acyclic Graphs (DAG). DAGs provide high throughput, decouple
transactions from metadata ordering, and guarantee a causal ordering of
broadcasted messages. Malkhi and Szalachowski show in their work [66]
how these two promising lines of research can be combined to mitigate
the MEV problem.

The paper introduces a new protocol called Fino, a DAG-based BFT
protocol that implements the Order-then-Reveal technique to achieve
blind order fairness. In this protocol, clients encrypt transactions and
send them to BFT parties. In this way, consensus protocol commits to an
ordering of transactions blindly. The authors propose two techniques for
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implementing Order-Then-Reveal; one is with threshold cryptography,
and the other one is with verifiable secret sharing.

Fino integrates protection against MEV into a BFT protocol de-
signed for the partial synchrony model, utilizing a DAG transport. BFT
participants regularly aggregate pending encrypted transactions into a
batch and employ the DAG transport to disseminate them. The cru-
cial point for executing Order-then-Reveal on a DAG is that each view
needs to wait until the reconstruction and verification of transactions
from the previous view are successfully completed. In this manner, each
view serves a dual purpose: initially, it blindly commits a new batch
of transactions to the total ordering, and subsequently, it causally fol-
lows sufficient shares to reveal all previously committed transactions,
establishing a deterministic opening.

6.3.6 Bounded unfairness

A new class of receive-order fairness definitions called bounded unfair-
ness, introduced by Kiayias et al. [52], aims to minimize the distance
between any pair of unfairly ordered transactions in the output of a dis-
tributed ledger. Their research shows that finding an optimal solution
is connected to the graph properties, especially to bandwidth metric of
strongly connected components in the transaction dependency graph.
Therefore, the authors introduce a new property directed bandwidth
order-fairness and a new protocol called Taxis that works in the per-
missionless setting. The paper presents two variants: one that matches
the property but lacks in performance and liveness and a second that
achieves liveness and better complexity but uses a relaxed version of the
directed bandwidth called timed directed bandwidth.

The ≺ symbol describes the ”order before” relation between transac-
tions. This relation is irreflexive, asymmetric, and transitive. To achieve
order fairness, we must know how sufficiently many parties received a
transaction before the other party. This parameter is called the order
fairness parameter and is denoted by φ ∈ R+. For two transactions tx
and tx′, definition of (φ,B)-fairness (where B is a bound in N) says that
tx ≺φ tx′ if φ-fraction of input profiles rank tx before tx′.

Let T denote the set of all possible transactions with elements tx. A
transaction profile is a bijection R : T → [m] where m = |T|. Consider-
ing the set of n parties, we denote R as a list of all transaction profiles.
Output ordering σ is defined as σ = F (R), where F is a serialization
function that takes an indefinite number of transaction profiles R as
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input.
The input profile is defined for each protocol party and ranks all

received transactions in the order they were received. The goal is that
tx cannot be serialized more than B positions later than tx ’. This is
achieved when the output ordering σ satisfies the following condition:

σ(tx)− σ(tx′) ≤ B. (6.1)

The standard order fairness is satisfied for B = 0 and relaxed for
B > 0. The goal is to minimize B, i.e., the number of unfair states in
a state machine replication (SMR) context. Therefore, B is a function
of the parties’ input profiles and given pair of transactions. If and only
if tx ≺φ tx′ holds, the input profile defines a transaction dependency
graph G, which includes an edge from tx to tx ’. The authors observe
that (φ,B)-fairness problem relates to graph bandwidth over graph G.
The bandwidth problem tries to find a permutation of vertices in a
graph to minimize the maximum distance between any pair of adjacent
vertices. The directed bandwidth tries to minimize the length of edges
that violate fairness. Therefore, bound B is defined as a function of the
directed bandwidth of the strongly connected component that has two
transactions or 0 if there is no such component.

6.3.7 Condorcet attack

Even though there exist several receive-order fairness solutions, they
are not perfect. Each solution must deal with the so-called Condorcet
paradox. The Condorcet paradox is a situation in which protocol can-
not decide on a fair order of transactions. Let us assume there are
three processes and three transactions are broadcasted. Each process
receives transactions in a different order. The first process receives
transactions as [tx1, tx2, tx3], the second process receives transactions as
[tx2, tx3, tx1], and the third process receives transactions as [tx3, tx1, tx2].
This is the case when a cycle in a graph appears. Some solutions deal
with such cases in a way that they output them together. For instance,
Aequitas [50] uses term block-order fairness because they output cycles
within the same “block” 4.

However, this is not a perfect solution and a recent research paper by
Vafadar and Khabbazian describes Condorcet attack [88]. In this attack,
an adversary tries to break the fair ordering by injecting Condorcet

4Term block can be confused with low-level blocks in mining-based protocols.
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cycles and trapping honest transactions inside the cycle. The authors
show how the attack works and propose three methods to mitigate the
attack.

A malicious client executes the attack in three steps:

• In the initialization phase, the malicious client assigns a subset of
transactions to each party from one partition. Different parties
receive different sets of transactions. The client then determines
an order for each subset and sends it to the corresponding parties
in the partition.

• In the pause phase, the client waits a specific amount of time
to ensure that honest transactions arrive so they will be trapped
between malicious transactions.

• In the finalization phase, the client closes the Condorcet cycle by
sending a new set of transactions to each party in a determined
order.

Performing such an attack on the Aequitas protocol results in out-
putting the whole cycle as a block of transactions and executing them
alphabetically (as defined in the protocol), which might break the order
in which honest transactions arrived. On the other hand, Themis [49]
attempts to break links in the Hamiltonian cycle to prevent cycles.

Therefore, the authors propose three techniques to prevent the Con-
dorcet attack:

• Ranked pairs batch-ordering choose a maximal subset of E′ edges
of the input graph G = (V,E), with high weights such that G′ =
(V,E′) is a directed acyclic graph (DAG). The limitation of this
strategy is that it works only when all parties are honest.

• Post-decryption resolution is a technique that allows parties to
resolve the order of transactions after decryption and partition
them into independent groups. The limitation of this strategy is a
significant computational overhead.

• Broadcast technique attempts to break the attack pattern by im-
mediately broadcasting received messages to all parties. Therefore,
transactions arriving in the attack’s last phase are irrelevant be-
cause parties have already received them. The limitation of this
strategy is that it is not applicable if the adversary has strong
control over the network and can delay broadcasted transactions.
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6.4 Randomized order

The blockchain community widely knows about the concept of randomiz-
ing transaction order within a block. Yanai [2] and others have explored
this concept and implemented it in practical applications. For example,
Randomspam [78] recognizes the potential for spamming attacks linked
to randomized transactions. In these situations, attackers strategically
insert numerous low-cost transactions to enhance the chances of precisely
placing some of these transactions at a lucrative transaction point. This
section will describe some existing solutions that use randomization to
prevent front-running attacks.

6.4.1 Partitioned and permuted protocol

Alpos et al. [4] presented a novel decentralized solution Π3 called ”Parti-
tioned and Permuted Protocol.” The main idea is that the final order of
transactions in the block is determined by a permutation Σ, which the
miners generate. However, the problem is that miners can still influence
the order of transactions most beneficially if Σ is known before creating
a block. The authors solve this problem by revealing Σ only after the
block to be permuted has been mined. If Σ is revealed after creating the
block, leaders could collude, try different permutations, and choose the
most beneficial. Therefore, leaders commit to their contributions to the
permutation before the block is mined. In this way, the bias introduced
by the miners is bounded. The described protocol implements a delayed
reward release mechanism to incentivize leaders to behave honestly. If
they diverge from the execution of the protocol, their reward is lost.

Leaders may still behave dishonestly because running a sandwich at-
tack is sometimes more profitable than getting the reward. To increase
the protection, authors implemented transaction chunking. Each trans-
action is split intom chunks, so the probability of profitable permutation
is decreased. Moreover, with the increase in the number of chunks, the
probability of profitable permutation approaches zero.

The Π3 protocol requires no external resources. It can be imple-
mented on top of any blockchain protocol, and the construction occurs
with minimal overhead except for a slight latency increase. The standard
security properties of an underlying blockchain remain unchanged.
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6.4.2 Frontrunning in the XRP ledger

Front-running attacks are not exclusive to programmable blockchains;
even non-programmable blockchains, such as Ripple, can fall victim [87].
In the initial XRP Ledger version, attackers exploited lower transaction
IDs to ensure execution precedence over victims. Ripple’s developers
addressed this issue by introducing a new transaction ordering strat-
egy that employs a pseudo-random shuffle. This strategy incorporates
a random salt derived from accepted transactions, ensuring consistent
ordering computation across all participants.

The shuffling algorithm operates as follows: it first computes an ac-
count key for each transaction by combining its account ID and salt
through the XOR operation. The algorithm then arranges the transac-
tions through pairwise comparisons based on certain criteria. If the ac-
count keys differ, the transactions are ordered in ascending order. If the
transaction sequence numbers differ, they are arranged in ascending or-
der. If all else is equal, the transactions are ordered by their transaction
hash. The result is a pseudo-randomly shuffled list of transactions, with
transactions from the same account grouped in their original submission
order. In the XRP Ledger, transactions are processed sequentially by
parties. Even if a transaction fails, it still appears in the ledger with a
tec-class result code placed at the end of the canonical list. After pro-
cessing all transactions, failed ones are retried but remain at the end of
the canonical list.

Tumas et al. [87] identified two attack strategies, indicating that the
shuffling algorithm enhances security against naive attacks but does not
entirely prevent them. The authors investigated historical main net data
to assess the potential upper limit of profit, approximating 1.4 million
USD, that attackers could have gained by consistently front-running
opportunities on the XRP Ledger over two months.

6.4.3 Uniform random execution

Randomizing the transactions order extends beyond security measures;
for example, Chitra et al. [28] proposed the Uniform Random Execution
mechanism for privacy enhancement in constant function market makers
(CFMMs). This protocol randomly splits and permutes the ordering of
large trades to provide user privacy.

CFMMs are widely adopted for decentralized trading, facilitating
hundreds of billions of dollars. However, these mechanisms lack pri-
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vacy features for users. Authors quantify the trade-off between pric-
ing and privacy in CFMMs. They explore a straightforward privacy-
enhancing approach called Uniform Random Execution that provides
(ϵ, δ)-differential privacy. The privacy parameter ϵ relies on the curva-
ture of the CFMM trading function and the volume of executed trades.
This mechanism applies to any blockchain system, allowing smart con-
tracts to access a verifiable random function.

6.5 Architectural separation

The separation of services (roles) in the architecture of a blockchain is
yet another promising approach to prevent front-running. The main
idea is to either have a separate service that orders transactions or to
separate the task of ordering transactions into two roles: block builder
and block proposer. In the following part of this section, we will describe
some existing solutions starting with use of multiparty computation [2],
[11], [12], [53], [63]. Then we will describe proposer-builder separation
[17], [43]. At the end of this section, we will describe solutions that use
trusted hardware [59] and transaction ordering policy for centralized
sequencers [67].

6.5.1 Multiparty computation

Distributed computation across multiple parties, known as multiparty
computation (MPC), allows computation on private data without re-
vealing this data to other parties. MPC is an established technology
that is native and close to practical deployment. MPC protocols and
implementations have been developed with practical considerations in
mind, making them suitable for integration into operational systems
and applications. This technology can tackle the problem of transaction
ordering as well.

Fairness in MPC is interpreted as a condition that either all parties
get output or none. Kiayias et al. [53] introduced a new robust MPC
protocol with compensation. In this protocol, compensation is used to
guarantee fairness. Moreover, the protocol works in a constant number
of rounds.

Lu et al. proposed a new asynchronous MPC implementation called
HoneyBadgerMPC [63], arguing that the previous implementations do
not address fairness in their solutions. However, HoneyBadgerMPC
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guarantees fairness and output delivery in a malicious setting without
depending on timing assumptions. AsynchroMix mixing service em-
ploys HoneyBadgerMPC and runs in asynchronous epochs, where in
each epoch, the system selects a subset of clients and mixes their in-
puts before publishing them. HoneyBadgerMPC uses an asynchronous
broadcast protocol to receive inputs and initiate mixing epochs in a dis-
tributed way.

Blinder, anonymous committed broadcast has been proposed by Abra-
ham et al. [2]. Blinder guarantees security (anonymity) and robustness
and is censorship resistant (honest client cannot be blocked from par-
ticipating). The authors agree that one of this protocol’s applications is
preventing front-running in decentralized exchanges. Blinder overcomes
this problem as all transactions are committed and opened only after all
trade orders are submitted. Moreover, since the protocol has anonymity,
it can be used as a communication medium for future anonymized solu-
tions for distributed exchanges.

Insured MPC is yet another construction, presented by Baum et
al. [11]. The protocol results in the output being fairly delivered to the
parties, or there is proof that a set of parties misbehaved while running
MPC. The resulting proof is used for financial punishments of malicious
parties and can be verified by third parties.

Baum et al. [12] extended the previously mentioned Insured MPC
and created an efficient, universally composable privacy-preserving de-
centralized exchange immune to front-running. A set of servers runs a
private cross-chain exchange order-matching protocol in this exchange.
When parties are correct, the on-chain complexity is similar to the com-
plexity of a centralized exchange. In case of an active adversary, clients
get a refund and do not lose their funds. This work involves an ex-
periment and shows that the results are efficient enough to be used in
practice. The main building blocks are MPC and threshold signatures
with identifiable abort.

The main drawback of all previously listed approaches is the same –
the validity of a transaction can be checked only after it is revealed.

6.5.2 Proposer-builder separation

According to one of the Ethereum5 founders, Vitalik Buterin, the best-
known solution for preventing MEV is proposer-builder separation (PBS)

5https://ethereum.org/

https://ethereum.org/
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paradigm [17]. Initially, Ethereum was designed in a way that a block
proposer builds and proposes a block in the network. However, the block
proposer has too much power, can censor transactions, and mount front-
running attacks. Therefore, the proposer-builder separation is proposed.

Buterin proposed a new concept that separates the task into block
building and block proposing by introducing three roles: builder, pro-
poser, and relays. The role of the block builder is to select and order
transactions in a block with the most value for the proposer. The pro-
poser then chooses a block with the highest value and proposes it to
the Ethereum network. The builder and proposer are connected via a
relayer, which receives blocks from builders and forwards them to pro-
posers. PBS draft specification aims to achieve two main goals: cen-
sorship resistance and decentralization of block validation. The pro-
posed paradigm got attention with the merge in September 2022 when
Ethereum was transformed from Proof-of-Work to Proof-of-Stake.

A few months after the merge, Heimbach et al. [43] published an
analysis on whether PBS achieves its promises and how it would work
in practice. One of the design goals of PBS is decentralizing block vali-
dation by not giving large parties an advantage in block building. The
reality is different. The professionalized builder has an advantage in
building profitable blocks. Another finding shows a high degree of cen-
tralization for relays and builders.

Moreover, Heimbach et al. show that PBS does not achieve the
promised censorship resistance in practice. They found that a signifi-
cant proportion of blocks are built by censoring relays. Another question
arises from trust in relays since they are responsible for holding blocks
from builders in escrow for validators. They keep the block’s content
private until the validator proposes it to the network. They show that
only one among all relayers delivers the promised value. According to
the current roadmap [77], PBS is still in the research phase with essential
design questions to be solved.

6.5.3 Fairness using trusted hardware

Trusted hardware refers to specialized hardware components, such as
secure enclaves, that provide a secure and isolated environment for sen-
sitive computations or data storage. These components enhance the
overall security of systems by safeguarding critical operations against
unauthorized access or tampering, offering a higher level of confidence
in the integrity and confidentiality of computing processes.
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The concept of using trusted hardware to guarantee a fair order is
introduced by Li et al. [59]. Authors use a trusted execution environment
(TEE) [29], [58], [76] to operate the mempool. The benefits are the
following:

1. Sequencing algorithms are coded into TEEs, ensuring compatibil-
ity with arbitrary rules.

2. Once the transaction enters the TEE, it is faithfully ordered ac-
cording to predefined rules.

3. Transactions are encrypted and remain undisclosed until proposed
in a block, mitigating front-running attacks during transaction
submission.

Li et al. provide a generic fairness definition called verifiable fairness.
This definition relaxes the sequencing rules from the previous fairness
definitions, and by generalizing these rules to a publicly known predi-
cate, the definition becomes more flexible and inclusive. Moreover, it
allows the adoption of application-specific sequencing rules without ne-
cessitating the formulation of a new definition. The paper introduces
verifiable fairness with accountability that guarantees that given an ar-
bitrary rule, any client can verify according to the rule that a party
faithfully sequences a list of transactions.

The work proposes a solution that satisfies the verifiable fairness defi-
nition and implement a functional prototype by using Go Ethereum [36]
and OpenSGX [46]. At the high level, the proposed solution works
as follows. Initially, the parties establish their TEEs and transfer the
mempool data into these secure enclaves. To submit a transaction tx,
the client acquires the public key pk of the TEE at party pi. Subse-
quently, the client encrypts the transaction tx using pk and transmits
the ciphertext to pi.

Upon receiving the ciphertext, pi forwards the encrypted transac-
tions to its TEE-based mempool. The mempool decrypts the transac-
tion using sk, corresponding to pk, and adds tx to its secure memory.
Simultaneously, TEE generates a signature for tx using its secret key
and transmits it (via party pi) to the client, serving as a receipt con-
firming the inclusion of tx in the mempool. When party pi requires a
list of ordered transactions, the TEE retrieves and organizes a list of
pending transactions l from its secure memory through the Select and
Order algorithms. The Order algorithm outputs an ordered sequence
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of transactions based on a defined ordering rule, which any party in the
system knows. Subsequently, the TEE signs the ordered result r us-
ing the secret key and produces a signature σr. The result r and the
signature σr are then returned to party pi.

Now, pi can engage in the consensus protocol. Upon receiving pi’s
proposal, other parties verify the validity of the order by checking σr. If
pi behaves honestly, tx will ultimately be committed on-chain. After tx
is committed, pi initiates an operation to remove tx from the mempool.

Although TEE brings only benefits to their solution, there are still
some disadvantages to using TEEs. The problem is an untrustworthy
TEE host which can behave maliciously. Although the host cannot
view the transaction content or manipulate their order, it can withhold
encrypted transactions from entering the TEE or prevent that output
from the TEE reaches the other nodes. Therefore, all participants have
to trust the hardware vendor for security. Another problem is poor
performance, which is confirmed by the evaluation of the prototype im-
plementation. A benchmark shows that the prototype is slightly slower
than the original Ethereum node. Finally, many attacks on SGX as TEE
are known [37], [74], [92].

6.5.4 TimeBoost

Centralized sequencers use ordering policies to order transactions before
they are executed. Some existing ordering policies used in blockchain are
first-come, first-serve (FCFS), per-block transaction bidding, and block
auctions. However, those policies have several disadvantages. There-
fore, Mamageischvili et al. proposed a new ordering policy called Time-
Boost [67].

TimeBoost calculates a scoring function that considers timestamps
and bids and orders transactions based on this score. More specifically,
the scoring function is defined as

S(tx) = π(b)− t, (6.2)

where π is a bidding function, b is a bid, and t is a timestamp. The
bidding function is

π(b) =
gb

b+ c
, (6.3)

where g is time and c is some constant. By increasing the bid, users
decrease their effective timestamp, i.e., increase their score. The main
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idea is that the transaction with the highest score is executed first. There
is also a limit on how much time can be bought. Therefore, no trans-
action can outbid a transaction received earlier, ensuring a low transac-
tion finalization time. Moreover, TimeBoost can work with encrypted
transactions. This can be implemented using threshold decryption by a
committee or trusted hardware.

Although this line of research is orthogonal to the research of decen-
tralized protocols ([21], [49], [50]), they propose the use of decentralized
protocols for agreeing on the scoring of transactions. In other words,
they can be used as input for TimeBoost to agree on the timestamp and
the bid of transactions.

6.5.5 Rationally binding commitments

As we saw in previous sections, there is extensive research on fair order-
ing in a data-independent fashion. However, all protocols have the same
limitation: they work only under the assumption that enough parties in
the protocol are honest.

To overcome this problem, Wadhwa et al. [89] constructed a novel
concept of rationally binding transactions that assumes rationality in-
stead of honesty, i.e., a rational party may take any action that maxi-
mizes its utility (profit). They also constructed an automated market
maker (AMM) called AnimaguSwap that uses rationally binding trans-
actions to prevent front-running attacks.

The paper first presents a framework that captures existing order-
ing protocols for data-independent ordering, such as fair ordering and
content-oblivious protocols. Using this framework, authors prove the im-
possibility of constructing such protocols in a way that they are secure in
the presence of rational parties. The authors proposed two solutions to
overcome the impossibility. The first approach is to use TEEs to restrict
the parties from reconstructing the transaction before it has been com-
mitted on the chain. The second approach is AnimaguSwap, which can
achieve data-independent ordering in the presence of rational parties.

The protocol requires parties (stakers) to put down monetary in-
vestment, stake, that can be burned in case of misbehavior. One party
works as a “flipper”. The user samples a random bit b ∈ {0, 1} to create
a rationally binding commitment to transaction tx. Depending on the
chosen bit, a user creates a transaction that is either the intended trans-
action tx or a related but different transaction tx∗. The flipper receives
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b as a deniable message6 from the user, sings the bit, and sends it back
to the user as an acknowledgment. The user then creates a transaction
and shares it with other parties. In order to open the commitment, par-
ties reveal the shared transaction, and the flipper reveals b. After this,
the transaction is executed. The flipper is incentivized to behave hon-
estly because if it reveals a wrong b, it will get slashed since parties can
use the acknowledgments as evidence. Concretely, in AnimaguSwap, if
user transaction tx is selling an asset, the reverse transaction tx∗ is buy-
ing the same asset. When parties decide to collude, they have to guess
which transaction will be executed, so it is not profitable to execute the
sandwich attack.

6.6 Practical systems

Earlier sections explore theoretical solutions, but certain systems also
aim to defend against reordering attacks in practice. In this section, we
will describe some of them. Starting with Chainlink’s proposal for build-
ing a Fair Sequencing Services [14], we will continue with Espresso Sys-
tems and Offchain Labs’ effort to create a decentralized sequencer [34].
Finally, we look at the Oasis network [73] and their approach to pre-
venting MEV attacks.

6.6.1 Fair sequencing services

The research team of blockchain company Chainlink7 proposed in their
whitepaper a new concept called Fair Sequencing Services (FSS) [14].
They intend to build a fair DeFi ecosystem and to support developers
in building DeFi contracts protected from market manipulations.

Chainlink proposes that FSS should have three components: moni-
toring, sequencing and posting of transactions. Monitoring means that
oracle nodes both monitor the mempool of the mainchain and allow
off-chain submissions. Sequencing means that oracle nodes order trans-
actions according to an ordering policy. Finally, when transactions are
ordered, they are posted to the main chain.

There are two possible ways to realize fair transaction sequencing
in FSS. One is to implement order-fairness protocol, such as protocols
described in Section 6.3. When writing the whitepaper, authors suggest

6This is needed because the flipper itself can generate a message.
7https://chain.link/

https://chain.link/
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using some of the existing order-fairness algorithms, for instance, Ae-
quitas [50]. However, this algorithm is not ideal for practical use due
to significant communication overhead. The authors believe that in the
future, a practical framework for order fairness could be implemented in
FSS.

The second method is secure causality preservation, described in Sec-
tion 6.2. However, this method requires additional cryptographic meth-
ods in FSS. It aims to hide the transaction data, wait until the order is
final, and only then reveal the transaction data. However, these tech-
niques do not hide metadata. Chainlink claims that metadata, such as
an IP address or an Ethereum address, can still be used for performing
front-running. Therefore, they propose, as a future work, an exploration
of combining two described methods.

6.6.2 Espresso systems

Recall that Section 6.5.4 described a centralized sequencer called Time-
Boost. However, centralized sequencers in Layer 2 (L2) roll-ups pose
a problem, as they are a single point of failure, threatening the entire
roll-up if they malfunction. Additionally, applications from different L2
ecosystems are more challenging to interoperate. To overcome these
problems, a new concept of decentralized sequencer called Espresso se-
quencer is proposed by Espresso Systems [35]. Consisting of two fun-
damental components, the Espresso sequencer incorporates the HotShot
Consensus and Tiramisu data availability, which are responsible for se-
quencing transactions and guaranteeing data availability.

In a recent document [34], Espresso Systems and Offchain Labs (au-
thors of TimeBoost) announced a collaborative effort to create a decen-
tralized version of the TimeBoost transaction ordering sequencer. The
document details the proposed roadmap and development steps for in-
tegrating decentralized Timeboost with the Espresso Sequencer, with
plans to start discussions, present design considerations, build integra-
tions, conduct research and development, and eventually make the pro-
tocol available for roll-ups using the Espresso Sequencer. However, there
is currently no further information available on the system’s current op-
erational status or deployment in practice.
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6.6.3 Oasis network

The Oasis network [73] is a Layer 1 proof-of-stake smart-contract plat-
form designed to offer scalability and privacy in blockchain applications.
The platform features a modular design that facilitates the integration
of different consensus mechanisms and allows independent parallel run-
times, known as ParaTimes, to employ various verifiable and confiden-
tial computing techniques simultaneously. ParaTimes is implemented
using TEEs for private computation. TEEs act as secure and isolated
environments where the execution of smart contracts takes place. This
TEE-based ParaTime allows for cost-effective, confidential execution of
smart contracts while maintaining the ability to verify the correctness
of computations. The TEEs ensure the execution environment is secure,
providing privacy for sensitive data and preventing unauthorized access
or manipulation of the contract’s logic. TEEs are crucial in achieving
the Oasis network’s goal of enabling privacy.

In terms of defending against reordering, Oasis employs a multi-
faceted approach to prevent MEV attacks in its ecosystem [72]. Utiliz-
ing an MEV Blocker, applications on the Oasis platform automatically
ensure protection against MEV. Integration of the Oasis Privacy Layer
(OPL) enhances user security by enabling confidential communication
and asset transfers within applications. Using a confidential mempool,
running in TEEs adds a layer of protection by resisting front-running
and other attacks. By strategically separating verification processes on-
chain and executing computations in a separate, confidential, and MEV-
resistant environment, Oasis reduces the risk of MEV exploits for its
users.

6.7 Conclusion

Finding a comprehensive solution to the front-running challenge in DeFi
requires understanding the strengths and limitations inherent in various
proposed approaches. We group these approaches into four categories:
causal order, receive-order fairness, randomized order, and architectural
separation.

For example, while time-lock puzzle encryption seems simple, it risks
delayed transaction execution. MPC faces constraints, allowing val-
idation only post-revelation, leaving room for exploitation. Despite
promises, PBS encounters practical issues like censorship resistance and
relay reliability. TEEs, while advantageous, pose challenges with un-
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trustworthy hosts and concerns about energy consumption. DeFi lacks
a one-size-fits-all solution; choosing the suitable defense method depends
on specific needs. A collaborative effort in the research community is
vital for developing adaptive, resilient solutions and contributing to es-
tablishing a robust DeFi ecosystem.



Chapter 7

Conclusion

This dissertation addressed two segments of blockchain technology: con-
sensus protocols and decentralized finance. The first part of this disserta-
tion focused on understanding the Ripple consensus protocol, analyzing
its safety and liveness properties. The second part of this dissertation
addressed front-running attacks in decentralized finance, proposing a
theoretical and practical solution to the problem and giving an overview
of other existing solutions.

Analyzing Ripple, one of the oldest public blockchain platforms re-
veals some issues despite its significant place in the world of cryptocur-
rencies. While its native XRP token has long held a prominent position
in market capitalization, concerns about the liveness and safety of the
Ripple consensus protocol have emerged. This work provided an in-
dependent, abstract protocol description, highlighting potential safety
and liveness violations. Our analysis underscored the requirement for
close synchronization, seamless interconnection, and fault-free opera-
tions among the validators actively participating in the Ripple network.

Another problem, often seen in decentralized finance, called a front-
running attack, is also addressed in this dissertation. In a front-running
attack, a malicious party tries to manipulate the order of transactions
in a block to gain a financial advantage. The proposed solution, the
quick order-fair atomic broadcast protocol, offers a promising solution to
transaction reordering challenges. Operating efficiently in asynchronous
and eventually synchronous networks, with optimal resilience against
faulty parties, this protocol performs better than similar fair ordering
protocols. The practical implementation of the QOF protocol enhances
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its applicability, with empirical evaluations confirming its efficiency and
providing insights for real-world deployment. Despite a reduction in
throughput compared to similar protocols, the QOF protocol’s resilience
against front-running attacks justifies its complexity, practically and the-
oretically contributing to decentralized systems.

The last chapter of this dissertation addressed front-running chal-
lenges in DeFi, which involved the strengths and limitations of proposed
approaches. The conclusion is that there is no one-size-fits-all solution
to the front-running problem. Each defense method has its strengths
and weaknesses. So, the key is to choose the right solution based on the
specific needs of each situation. It is like picking different tools for differ-
ent jobs — finding the best fit for each case in the DeFi landscape. The
dynamic nature of DeFi and blockchain technology necessitates a col-
laborative effort within the research community to develop adaptive and
resilient solutions. As the field continues to evolve, the journey towards
enhancing security measures remains an ongoing process, encouraging
innovation and contributing to establishing a robust DeFi ecosystem.
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