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Es war in diesen denkwürdigen Nächten des Spielens, dass ich Miguel,
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en una querida vecina, y a Enrico, quien siempre estuvo a mi lado como
mi propia sombra. Matteo y abhi quienes también me hicieron sentir
como en casa desde el momento en que llegué a Cambridge.
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Abstract

Consensus protocols form the bedrock of various distributed systems
integral to modern life, ranging from basic clock synchronization to so-
phisticated blockchains. Yet, the proliferation of consensus protocols
reveals a fundamental limitation: their scalability.

In centralized systems, boosting performance can often be achieved with
the addition of more participants. However, in decentralized systems,
this approach can be counterproductive. The delicate equilibrium be-
tween safety and liveness becomes more restricting as the number of
participants increases, especially in the permissionless setting, due to
fortifications against sybil attacks. This thesis endeavors to make a con-
tribution towards scaling permissionless protocols in a vast landscape of
efforts currently addressing the topic.

Commencing with an exhaustive examination of Nakamoto consen-
sus and an attempt to address throughput and latency constraints
via GHOST, we establish a unified model for both protocols. This
model manifests the intricate interplay between safety, liveness, and
performance, paving the way for a family of protocols that arbitrarily
approximate the performance of GHOST while remaining resilient
against balance attacks, a primary vulnerability of GHOST. Nev-
ertheless, the scope for improvement within the Nakamoto-GHOST
paradigm remains constrained by the limitations of GHOST.

Avalanche boosts throughput orders of magnitude higher than
Nakamoto and GHOST while maintaining latency in the order of
seconds, employing a directed acyclic graph (DAG) instead of a chain.
Despite its impressive performance, formal analyses of its safety and
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liveness were absent, except for the work encompassed in this thesis.
Our deep analysis of Avalanche consensus reveals a significant liveness
vulnerability, prompting us to enhance its mechanism with Glacier
without compromising performance.

DAG protocols have revolutionized consensus protocols in the per-
missioned setting in recent years. These protocols achieve remarkable
throughput but carry an increase in latency. In this work, we introduce
an atomic broadcast protocol that continues this line of work but
achieves latency similar to leader-based protocols.

These studies serve as inspiration for further results in this thesis. Lever-
aging techniques used to address consensus protocol performance, we de-
vise a construction that mitigates sandwich attacks in longest-chain con-
sensus protocols. Additionally, our exploration of Avalanche, alongside
Conflux, a less familiar protocol, lays the groundwork for the last con-
tribution in this thesis. We craft another construction that transforms a
blockchain protocol into a DAG protocol, proving formally that for every
blockchain protocol, a corresponding DAG protocol exists that achieves
higher throughput, similar or lower latency, and maintains safety and
liveness under the same assumptions. Furthermore, this construction
allows to determine a set of protocols with the potential to be optimal.
Furthermore, the atomic broadcast protocol introduced in this work falls
in this category.
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Chapter 1

Introduction

It’s the job that’s never started as
takes longest to finish.

Samwise Gamgee

The blockchain and distributed ledger technology landscape has expe-
rienced significant growth and innovation in the past decade, spurred
by the pursuit of systems offering enhanced throughput, reduced la-
tency, and improved scalability while upholding the essential tenets of
security and decentralization. The need for more comprehensive inves-
tigations becomes particularly pronounced within the realm of permis-
sionless protocols, where constraints related to throughput and latency
pose more significant challenges. As the evolution of cryptocurrencies
and blockchain networks continues, researchers have embarked on ex-
plorations of various consensus protocols and structural frameworks to
tackle these multifaceted challenges.

The genesis of this journey can be traced back to the moment when
Nakamoto unveiled the Bitcoin protocol [88], laying the foundation for
a permissionless consensus protocol that implements a robust decen-
tralized payment system. Since that pivotal moment, a plethora of al-
ternative protocols have emerged, each with the objective of enhanc-
ing Nakamoto consensus. At the heart of these decentralized payment
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systems lies the maintenance of a distributed data structure known as
the blockchain, maintained by participants often referred to as miners.
Transactions are grouped into blocks and subsequently appended to the
blockchain when specific conditions are fulfilled.

Most improvements to Nakamoto consensus are geared toward augment-
ing throughput without degrading security since Nakamoto consensus is
severely limited in this sense [43]. One notable example is the GHOST
protocol [104], which enables off-chain blocks to contribute to security
by considering subtrees of blocks, in contrast to Nakamoto consensus,
which relies only on chains. Thus allowing forked blocks, blocks with the
same parent block, to enhance the security of their parent. Neverthe-
less, the approach of GHOST does not take into account the structure of
blocks within a subtree, introducing a vulnerability to consensus, which
can be exploited by an adversary with strong influence over the network,
as exemplified in a balance attack [89].

Whenever a miner produces a block, the miner places it in some position
with respect to the previously produced blocks (by including their hashes
in the new block). Thus, a protocol execution constructs a tree, in which
every node is a block bi and an edge (bi , bj ) denotes that bi includes the
hash of bj . This tree can be used to understand the placement of newly
mined blocks in Nakamoto consensus and in GHOST within a common
framework. The chain that the miners extend is called the main chain.
The key difference between such protocols lies in the way this main
chain is selected. Nakamoto selects the longest chain, whereas GHOST
selects a chain in which each block has the biggest subtree among its
forked blocks. The chain selection of Nakamoto does not consider the
number of blocks in each subtree, and GHOST does not consider the
depth of each subtree. This common framework allows the study of
chain-selection rules in which both the size and depth of the subtrees
influence the chain selection. These rules can potentially obtain the
performance of GHOST while maintaining the robustness of Nakamoto.

Amidst this ever-evolving environment, Avalanche [99] emerges as one
of the alternatives to first-generation networks, such as those built
on Nakamoto consensus (Bitcoin) or variants of GHOST (Ethereum).
Avalanche offers a consensus protocol renowned for its exceptional
speed and scalability, delivering high throughput, low latency, and
a lightweight client. Unlike many established distributed ledgers,
Avalanche departs from the proof of work paradigm, opting for a de-
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liberately metastable mechanism that operates by recurrently sampling
the network, guiding honest participants toward a common output.
This unique approach enables Avalanche to achieve peak throughput of
up to 20,000 transactions per second with a latency of less than half a
second [99].

This novel mechanism, however, imposes more stringent security con-
straints on Avalanche compared to other networks. While traditional
Byzantine fault-tolerant consensus tolerates corruption of up to a third
of the participants [91], and proof-of-work protocols tolerate similar cor-
ruptions [56, 54], Avalanche can withstand only up to the square root of
the number of participants behaving maliciously. Furthermore, transac-
tions in Avalanche do not exhibit total ordering, setting it apart from
most other cryptocurrencies that implement a form of atomic broad-
cast [27]. The structure of the protocol, organized around a DAG in-
stead of a linear chain, introduces the potential for parallelism, and
corresponding throughput improvement. Understanding the Avalanche
consensus holds a dual significance; it not only guarantees the security of
the protocol but also potentially unlocks a new dimension of scalability
for permissionless protocols.

Furthermore, DAG protocols have demonstrated surprising promise in
the permissioned setting. Traditional consensus protocols, exemplified
by Paxos [91], PBFT [33], or Hotstuff [111], primarily follow a leader-
based approach. In this model, a single party proposes a value, and
the remaining participants validate this proposal. Consequently, the
workload of the protocol becomes unevenly distributed among the par-
ticipants, making the leader for a given instance a potential bottleneck.
In contrast, Keidar et al. [63] initiated a line a work [45, 105, 64], allow-
ing every party to create blocks forming a DAG, which is later ordered.
DAG protocols have exhibited remarkable performance improvements
in various implementations [45, 105]. The main issue of these proto-
cols lies in their high latency when compared to traditional leader-based
protocols.

A similar situation occurs in the permissionless setting, mostly proof of
work, where every party is allowed to create a block. However, when
blocks fork, all the computational resources spent in the blocks that do
not end up in the main chain are wasted. Thus, DAG protocols could
also revolutionize the permissionless setting.
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Yet, it remains an open question whether the DAG approach represents
the optimal direction for enhancing the performance of permissionless
protocols. This very question serves as the central motivation behind
this work, a question we aim to address comprehensively in the pages
that follow.

Contributions

This dissertation is a compendium of five distinct works, four of them
delving into diverse facets of blockchain scalability, with the fifth work
adapting and extending the techniques unveiled in the preceding works
to the prevention of sandwich attacks, a prevalent category of maximal
extractable value attacks. These works contribute to the evolving land-
scape of blockchain technology and enhance the security and efficiency
of blockchain networks.

In this overarching introduction, we provide an overview of the key
themes and contributions of these works, drawing connections and high-
lighting the significance of the research they collectively represent.

Medium: A bridge from Nakamoto to GHOST [9]. The first
work introduces the Medium Protocol, a consensus mechanism that takes
inspiration from both Nakamoto consensus and the GHOST protocol.
It leverages the structure of the block tree to create a weight-based ap-
proach for selecting the main chain. This approach generalizes the prin-
ciples of Nakamoto consensus and GHOST, allowing for a fine-tuned
balance between security and throughput. The work provides a detailed
analysis of Medium’s security properties, demonstrating its resilience
against various attacks on consensus. By evaluating weight coefficients,
the study illustrates how Medium can adapt to different network condi-
tions while maintaining robust security and an improved understanding
of the trade-offs between security and throughput in blockchain net-
works.

An analysis of Avalanche consensus [10]. The second work
explores the Avalanche blockchain, an innovative and energy-efficient
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alternative to first-generation protocols like Bitcoin and Ethereum.
Avalanche distinguishes itself by its fast and scalable consensus protocol
that forgoes the resource-intensive proof-of-work mechanism in favor
of a deliberately metastable mechanism based on a directed acyclic
graph (DAG). This mechanism repeatedly samples the network,
guiding honest participants toward a common output, ensuring high
throughput and low latency. However, Avalanche’s unique approach
imposes stricter security constraints, tolerating only a limited number
of malicious parties. Notably, this work addresses the security and
liveness of the Avalanche protocol, highlighting a vulnerability related
to transaction dependencies. The study identifies a weakness that could
potentially be exploited to delay transactions significantly, rendering
the protocol impractical in real-world scenarios. To mitigate this
vulnerability, the work suggests a modification known as Glacier.

DAG superiority [7]. The third work digs deeper into the potential
of DAG consensus protocols, building upon the foundational idea that
these protocols can significantly enhance the throughput and latency
of blockchain networks. Traditional consensus protocols, represented
by chain-based systems like Bitcoin, have made substantial progress in
terms of throughput and latency. However, they face inherent limita-
tions when block production rates increase. The work introduces a novel
construction that takes a DAG or chain-based protocol and transforms
it into a new DAG protocol while ensuring that every created block is
eventually included in the blockchain. This transformation enhances
throughput and latency without compromising the protocol’s safety or
liveness. The study offers a comprehensive analysis of the proposed con-
struction and demonstrates that it provides an elegant improvement of
chain-based protocols, showing that DAG protocols achieve better per-
formance under the same assumption.

An atomic broadcast protocol1. The fourth work addresses a key
issue with DAG protocols in the permissioned context: latency. The
latency is primarily attributed to the usage of reliable broadcast prim-
itive for the common core functionality. Cordial miners [64], reduced

1This work has been done during my internship at Google Cambridge under the
supervision of abhi shelat and Matteo Frigo.
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this latency by eliminating the broadcast requirement. However, Kei-
dar et al. [64] still utilized the common core primitive, thereby limiting
the reduction in latency. Our work introduces a protocol that employs
a weaker form of the common core, eliminating the need for reliable
broadcast. This weaker version proves sufficient for implementing atomic
broadcast, thanks to the properties of the common coin. To the best of
our knowledge, our novel protocol achieves the lowest best-case latency
among all DAG protocols based on the common core while retaining
their throughput characteristics.

Sandwich-attack prevention [6]. The fifth work tackles the criti-
cal problem of sandwich attacks, which exploit transaction order control
within a block by miners. It presents a novel construction that takes
an existing blockchain protocol as input and outputs a new blockchain
protocol with identical security properties yet effectively mitigates the
profitability of sandwich attacks. This construction accomplishes its
goal by removing the miner’s full control over transaction order within
a block. Importantly, this approach is entirely decentralized and does
not rely on trusted third parties or heavy cryptographic primitives. As
a result, it introduces only a modest linear increase in latency and min-
imal computational overhead. The techniques employed in this work
draw inspiration from various approaches developed previously to ad-
dress scalability issues in consensus protocols.

The unifying thread. Collectively, these works contribute to the
evolving field of blockchain technology by addressing fundamental chal-
lenges associated with consensus, throughput, and security. While the
analysis of Avalanche, the DAG study, and the Medium Protocol each
tackle different aspects of these challenges, they share a common objec-
tive: to improve the efficiency, scalability, and robustness of blockchain
networks, culminating with an atomic broadcast protocol. This dis-
sertation serves as a bridge between the theoretical underpinnings and
practical implications of blockchain technology, offering a deeper under-
standing of the complex dynamics at play in these systems.

In the following chapters, we delve into each of these works in detail,
presenting their methodologies, findings, and contributions. Through
this exploration, we aim to obtain important insight into the evolving
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landscape of blockchain technology and its critical role in shaping the
future of decentralized systems.





Chapter 2

Preliminaries

It was merely the substitution of
one piece of nonsense for another.

Ministry of Plenty’s figures

Most of the work described in this thesis has been built upon a common
set of primitives. This chapter captures these primitives. We start by
describing the adversarial and communication models. Secondly, we
introduce a set of primitives used in this thesis.

2.1 Parties and adversary

We consider a set of n parties, P = {P1, ...,Pn} running a protocol Π
that exchange messages through a network. In this work, we consider
two different adversarial models and three network assumptions.

Byzantine model. In the Byzantine setting, parties are modeled as
interactive Turing machines (ITM ). An interactive Turing machine is
a Turing machine with an input and an output tape that allows the
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Turing machine to communicate with other Turing machines and make
decisions based on the content of their input tape. The adversary is
modeled as another ITM that corrupts up to f parties at the beginning
of the execution. These corrupted parties obey the adversary; in other
words, they may diverge from the normal execution of the protocol.
Corrupted parties are often referred to as Byzantine and non-corrupted
as honest.

Rational model. For N ∈ N, we consider the N party game Γ =
(N , (Si), (ui)) where Si is a finite set of strategies for each party i ∈ [N ].
Let S := S1 × · · · × SN denote the set of outcomes of the game. The
utility function of each party i , ui : S → R, evaluates the payoff of
party i given an outcome of Γ. In this context, a mixed strategy for any
party i is a probability distribution in µ(Si). A strategy profile for Γ is
s := s1 × · · · × sN where si is a mixed strategy of party i . The expected
utility for a party i with respect to the mixed strategy profile s is defined
as ui(s) = Ea1←s1,··· ,aN←sN [ui(a1), · · · , ui(aN )]. In the rational model,
we model the parties as agents behaving in a way that optimizes their
expected utility. This model is used and explained in further detail in
Chapter 7.

2.2 Communication models

In different chapters, we consider different network assumptions based on
the nature of the respective protocols. We consider synchronous-rounds
in the majority of the work presented here, an asynchronous model in
Chapter 6, and an exponential delay model in Chapter 4.

2.2.1 Synchronous-rounds model

In this model, communication among the parties is implemented by a dif-
fusion functionality, which is structured into synchronous rounds. The
functionality keeps a distinct RECEIVEi string for each party Pi and
makes it available to Pi at the start of every round. The purpose of the
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string RECEIVEi is to serve as a repository for all the messages received
by Pi .

When a party, say Pi , instructs the diffusion functionality to
BROADCAST a set of messages, it signifies that Pi has completed its
round. In response, the functionality marks Pi as having completed its
operations for that specific round. The adversary, whose actions are
described in detail below, possesses the ability to access the string of any
party at any point during the execution. Additionally, the adversary
can observe every message broadcast by any party instantaneously.
Furthermore, the adversary has the capability to insert messages
directly and selectively into RECEIVEi for any party Pi , ensuring that
only Pi receives the message at the outset of the following round. This
behavior models what is often termed a rushing adversary.

Once all non-corrupted parties have concluded their respective rounds,
the diffusion functionality aggregates all messages that were broadcast
by non-corrupted parties during that round. These aggregated mes-
sages are then appended to the RECEIVEi strings for all parties; this is
the reason for the name synchronous rounds. Subsequently, each non-
corrupted party updates its local view at the conclusion of every round.
If a non-corrupted party sends a message in round r , all parties receive
the message by round r + 1.

Furthermore, even if the adversary causes a message to be received se-
lectively by only some non-corrupted parties in round r , the message is
received by all non-corrupted parties by round r + 2. The update of the
local view may also encompass the output of events when given criteria
defined by the protocol are fulfilled.

2.2.2 Asynchronous model

In this model, communication among parties is again facilitated by a dif-
fusion functionality under the control of an adversary. The functionality
maintains a separate RECEIVEi string for each party Pi , accessible to
parties at any point. When party Pi requests the diffusion functional-
ity to BROADCAST a set of messages, the messages are stored. The
adversary can read the stored messages and schedule their delivery at
will, with the only constraint being that all messages must be delivered
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within a finite time frame, in contrast with the model defined in Sec-
tion 2.2.1. Additionally, the adversary can deliver a broadcast message
to different parties at different points in time. There is no concept of
rounds in this model.

2.2.3 Exponential-delay model

In this model, parties may access a low-level functionality for sending
messages over authenticated point-to-point links between each pair of
parties. In the protocol, this functionality is accessed through two events
send and receive. Parties may also access a second low-level functionality
for broadcasting messages through the network by gossiping, accessed
by the two events gossip and hear in the protocol. Both primitives
are subject to network and timing assumptions. Messages are delivered
according to an exponential distribution; that is, the amount of time
between the sending and the receiving of a message follows an expo-
nential distribution with unknown parameter to the parties. However,
messages from corrupted parties are not affected by this delay and will
be delivered as fast as the adversary decides. This model differs from
the traditional definition of partial synchrony [50] since the adversary
does not possess the ability to influence the delay of honest messages.

2.3 Abstractions

Broadcast primitives are a fundamental building block in the protocols
designed nowadays. In this section, we formalize these abstractions, as
well as their interfaces. Our focus lies mostly on non-deterministic pro-
tocols; thus, the properties of all the abstractions introduced here are
satisfied with all but negligible probability. Furthermore, we restrict the
set of messages to transactions that are submitted by a set of users.
However, since we do not impose restrictions on the content of transac-
tions, this does not constitute a loss of generality.
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2.3.1 Notation

The abstractions presented in this work interact through specific ap-
plication programming interfaces. These interfaces are identified by a
prefix denoting the particular abstraction. For instance a protocol im-
plementing reliable broadcast contains a prefix rb- in the events of its
interface.

In situations where multiple protocols, such as Π and Π′, implementing
the same abstraction coexist within the same context, we replace the
prefix with the name of the protocol to avoid confusion, using prefixes
such as Π- or Π′-. When the context is evident, we omit the prefix to
lighten the notation.

2.3.2 Reliable broadcast

The reliable broadcast primitive is often used when parties want to broad-
cast transactions among each other. This primitive guarantees that ev-
ery honest party delivers a transaction only if the other honest parties
eventually deliver the transaction. However, the order in which every
honest party delivers them may differ.

Our reliable broadcast primitive is accessed through the events
rb-broadcast and rb-deliver and is equipped with an “external” validity
predicate V that determines whether a transaction is valid [28].

Definition 1 (Reliable broadcast). A protocol solves reliable broad-
cast with validity predicate V if it satisfies the following conditions,
except with negligible probability:

Validity: If a honest party rb-broadcasts a transaction tx, then it even-
tually rb-delivers tx.

Agreement: If a honest party rb-delivers a transaction tx, then all
honest parties eventually rb-deliver tx.

Integrity: For any transaction tx, every honest party rb-delivers tx at
most once, and only if tx was submitted by some user.

External validity: If an honest party ab-delivers a transaction tx, then
V (tx) = true.
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A well-known algorithm implementing reliable broadcast with only three
rounds of communication is Bracha broadcast [25]. The applications
of reliable broadcast are limited by the lack of order in the delivered
transactions.

2.3.3 Atomic broadcast

Atomic broadcast is an enhancement of reliable broadcast (Definition 1)
in which every honest party delivers the transactions in the exact same
order. This is crucial feature is needed in scenarios in which different
order of delivery of transactions produces different results.

Our atomic broadcast primitive is accessed through the events
ab-broadcast and ab-deliver and is equipped with an “external” validity
predicate V that determines whether a block is valid.

Definition 2 (Atomic broadcast). A protocol solves atomic broadcast
with validity predicate V if it satisfies the following conditions, except
with negligible probability:

Validity: If a honest party ab-broadcasts a transaction tx, then it even-
tually ab-delivers tx.

Agreement: If a honest party ab-delivers a transaction tx, then all
honest parties eventually ab-deliver tx.

Integrity: For any transaction tx, every honest party ab-delivers tx at
most once, and only if it was submitted by some user.

Total order: If honest parties Pi and Pj both ab-deliver transactions
tx and tx′, then p ab-delivers tx before tx′ if and only if Pj ab-
delivers tx before tx′.

External validity: If an honest party ab-delivers a transaction tx, then
V (tx) = true.

It is worth mentioning that this primitive is equivalent to consensus [27].
In other words, an atomic broadcast protocol is sufficient to implement
consensus, and conversely, a consensus protocol is also sufficient to im-
plement atomic broadcast.
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2.3.4 Generic Broadcast

Enforcing a total order of transactions can potentially negatively im-
pact the performance of the protocol. Moreover, in certain scenarios,
pairs of transactions do not require ordering, as their outcomes remain
the same regardless of the order of delivery. The generic broadcast ab-
straction [93], defined by an equivalence relationship on the set of trans-
actions, ensures a partial order of delivered transactions. When two
transactions are related, an honest party delivers them in the same or-
der. However, if they are not related, honest parties may deliver them
in different orders.

Our generic broadcast primitive is accessed through the events
gb-broadcast(tx) and gb-deliver(tx). Similar to other primitives, it
defines an “external” validity property and introduces a predicate V
that determines whether a transaction is valid.

Definition 3 (Generic broadcast). A protocol solves generic broad-
cast with validity predicate V and relation ∼ if it satisfies the following
conditions, except with negligible probability:

Validity: If a honest party g-broadcasts a transaction tx, then it even-
tually g-delivers(tx).

Agreement: If a honest party delivers a transaction tx, then all honest
parties eventually deliver(tx).

Integrity: For any transaction tx, every honest party delivers(tx) at
most once, and only if it was submitted by some user.

Partial order: If honest parties Pi and Qi both deliver transactions tx
and tx′ such that tx ∼ tx′, then Pi delivers(tx) before it delivers(tx′)
if and only if Pj delivers(tx) before it delivers(tx′).

External validity: If a honest party delivers a transaction tx, then
V (tx) = true.

Note that different instantiations of the relation ∼ transform the generic
broadcast primitive into well-known primitives. For instance, when no
pair of transactions are related, generic broadcast degenerates to reli-
able broadcast (Definition 1). Whereas when every two transactions
are related, a generic broadcast transforms into an atomic broadcast
(Definition 2).
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2.3.5 Block-based atomic broadcast

In this work, we consider a variant of atomic broadcast (Definition 2)
that includes the concept of a block in the interface and properties [6].
Parties broadcast transactions and deliver blocks using the events
bab-broadcast(tx) and bab-deliver(b), respectively, where block b
contains a sequence of transactions [tx1, . . . , txm ]. The protocol outputs
an additional event bab-mined(b,P), which signals that block b has
been mined by party Pi , where Pi is defined as the miner of b. The
event bab-mined(b,P) can be understood as the creation of block b
by party Pi . Notice that bab-mined(b,P) signals only the creation
of a block and not its delivery. In addition to predicate VT() that
determines the validity of a transaction, we also equip our protocol with
a validity predicate VB() to be applied to blocks. These predicates and
functions are determined by the higher-level application or protocol.

Definition 4 (Block-based atomic broadcast). A protocol imple-
ments block-based atomic broadcast with validity predicates VT() and
VB() and block-creation function FB() if it satisfies the following prop-
erties, except with negligible probability:

Validity: If a correct party invokes a bab-broadcast(tx), then every
correct party eventually outputs bab-deliver(b), for some block b
that contains tx.

No duplication: No correct party outputs bab-deliver(b) for a block b
more than once.

Integrity: If a correct party outputs bab-deliver(b), then it has previ-
ously output the event bab-mined(b, ·) exactly once.

Agreement: If some correct party outputs bab-deliver(b), then even-
tually every correct party outputs bab-deliver(b).

Total order: Let b and b′ be blocks, and Pi and Pj correct parties that
output bab-deliver(b) and bab-deliver(b′). If Pi delivers b before
b′, then Pj also delivers b before b′.

External validity: If a correct party outputs bab-deliver(b), such that
b = [tx1, . . . , txm ], then VB(b) = true and VT(txi) = true,
for i ∈ 1, . . . ,m. Moreover, if FB(tx1, . . . , txm) returns b, then
VB(b) = true.

The block-based atomic broadcast primitive can be equipped with a
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fairness property to guarantee that a potential adversary cannot insert
an arbitrary number of consecutive blocks in the output.

Definition 5 (Fairness). A block-based atomic broadcast protocol is
fair if it satisfies the following property, except with negligible probabil-
ity:

Fairness: There exists C ∈ N and µ ∈ R>0, such that for all N ≥ C
consecutive delivered blocks, the fraction of the blocks whose miner
is correct is at least µ.

The block-based atomic broadcast primitive serves as a fundamental
model for protocols like blockchain protocols. These protocols promi-
nently feature the concept of blocks as a core component. Specifically,
we leverage this primitive when crafting constructions that alter the
block content of a given blockchain protocol.

2.3.6 Common coin

The common coin primitive [27] can be understood as a weaker form
of consensus [27]. A common coin allows parties to agree on a random
value from an already predefined set of values with a given probability.
Our common coin abstraction is accessed through the events c-release()
and c-output().

Definition 6 (Common coin). A protocol solves common coin with
domain D and bias ε if it satisfies the following conditions, except with
negligible probability:

Termination: Every correct party eventually c-output() a coin value.

Unpredictability: The probability that an adversary predicts the
c-output() value before at least one honest party invokes c-release()
is at most 1

|D| + ε.

Matching: With probability at least δ, every correct party c-outputs
the same value. If δ = 1, the coin is called perfect

No bias: If all correct parties c-output() the value, the distribution of
the coin is uniform over D.
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Note that the common coin primitive is not the same as consensus, as
the output of the coin may not be a proposed value. However, one
of the most prominent applications of a common-coin protocol is to
implement consensus or atomic broadcast (Definition 2) in asynchrony,
circumventing the FLP-Impossibility [55].

In this work we assume perfect coins with ε arbitrarily small. Such coins
can be constructed efficiently in a distributed setting [106].

2.3.7 Common core

The common core is another weak form of consensus that has been intro-
duced by Canetti [32]. This primitive has been recently reconsidered as
building block for DAG-based consensus protocols [63, 45, 105, 64]. In
this abstraction, every party has a value (Pi , vi) as input and produces
an output set Ui consisting of pairs of input values (Pj , vj ) with the con-
dition that the output set of all the honest parties intersects contains a
set U ∗ of at least 2f + 1 different elements.

Our common core abstraction is accessed through the events
core-broadcast(v) and core-deliver(U ). Every party broadcasts its
input value at the beginning.

Definition 7 (Common core). A protocol solves common core if it
satisfies the following conditions with all but negligible probability:

Validity: Every honest party Pi eventually delivers a set Ui .

Common core: There exists a core set U ∗ of size at least 2f + 1 that
is included in the delivered set of every honest party.

Integrity: If honest party Pi includes (Pj , vj ) in its delivered set Ui ,
and j is honest, then vj its input.

Agreement: If two honest parties include the pairs (Pj , v) and (Pj , v
′)

in their delivered sets, then v = v ′.

In the common core, honest parties agree on a common set that is part
of their outputs. However, the common core is a weaker primitive than
consensus [27] or atomic broadcast (Definition 2) because the core set is
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unknown to the parties. In particular, the common core primitive only
guarantees its existence.

The gather protocol [32] is a deterministic protocol implementing the
common core in four rounds of communication. This algorithm is up-
graded with a common coin (Definition 6) by Keidar et.al. [63] starting
a new line of DAG-based protocols.





Chapter 3

Medium: A bridge from
Nakamoto to GHOST

It is so easy to remember our
differences, Par’chin, I sometimes
forget the similarities.

Ahmann Jardir

3.1 Introduction

Since Nakamoto revealed the Bitcoin protocol [88] as a blueprint for a
decentralized payment system, many other protocols have been intro-
duced with the goal of improving Nakamoto consensus. The basic prin-
ciple of these decentralized payment systems is that a distributed data
structure, called the blockchain, is maintained by parties (also called
miners) that run a distributed protocol. Transactions are grouped into
blocks, which are later added to the blockchain when specific proper-
ties have been fulfilled. Most improvements to Nakamoto consensus
aim at processing more transactions and achieving higher throughput



22 Medium: A bridge from Nakamoto to GHOST

without degrading security because Nakamoto consensus is severely lim-
ited in this sense [43]. The GHOST protocol [104], for example, lets
all mined blocks contribute to the security by considering subtrees of
blocks, whereas Nakamoto consensus relies only on the blocks in the
longest chain. GHOST, however, does not take into consideration how
the blocks are structured and counts all blocks in a subtree in the same
way. This introduces a potential vulnerability to consensus, which can
be exploited by an adversary with strong influence over the network, as
exemplified in a balance attack [89].

Whenever a miner produces a block, the miner places it in some position
with respect to the previously produced blocks (by including their hashes
in the new block). Thus, a protocol execution constructs a tree, in which
every node is a block bi and an edge (bi , bj ) denotes that bi includes the
hash of bj . This tree can be used to understand the placement of newly
mined blocks in Nakamoto consensus and in GHOST within a common
framework. The chain that the miners extend is called the main chain.
The key difference between such protocols lies the way how this main
chain is selected.

As a miner in Nakamoto consensus always selects the longest chain in the
tree (technically, the one with the most work, but we ignore this subtlety
here) and extends this chain by one block. The security relies intuitively
on the rule that only the longest chain grows unless two parties mine
concurrently and thereby create a fork. This may happen when a party
mines without receiving the last block mined before. Forks limit the
throughput of a network, and they typically occur more often when the
block production rate increases compared to the message delay in the
network.

On the other hand, GHOST determines the main chain by extracting
more information from the tree. Starting from the genesis block, it
iteratively selects the block with the heaviest subtree (defined by the
number of blocks in the subtree of the block) until it reaches a leaf block.
When a miner produces a new block, it appends this to the last block
selected by this rule. The intuition is that also forked blocks (and their
miners) contribute to the security of the blocks they point to. However,
all blocks are counted in the same way regardless of their position in
the subtree. This actually loses considerable information about the tree
structure and may introduce vulnerabilities.
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In this chapter, we introduce the Medium protocol1 that takes into ac-
count the structure of the block tree in a way that generalizes both
Nakamoto consensus and GHOST. Medium computes a weight for a
subtree using a polynomial in a weight coefficient c, which determines
the influence of the tree structure on chain selection. This results in a
family of Medium protocols, each one uniquely defined by some c.

Specifically, we introduce a weight function

ω : B × T → R>0 (3.1)

for a block B ∈ B in a tree T ∈ T , defined by ω(b,T ) = cd(b), where
d(b) denotes the depth of b in T and c ≥ 1. The selection rule of
GHOST can be interpreted as the particular case of c = 1 (up to the way
of breaking ties for trees with equal weight), and Nakamoto consensus
results in the limit for c →∞. Thus, Medium generalizes GHOST and
Nakamoto consensus, so that they can be compared in a comprehensive
way to all protocols in the Medium family.

The weight function intuitively takes up the idea behind GHOST that
every block contributes to the security and combines it with Nakamoto
consensus’ feature that deeper blocks are more relevant. Thus, forked
blocks also influence the main chain selection process, but longer chains
are still more desirable.

The weight coefficient determines the extent to which forks contribute
to main chain selection in relation to the contribution of chain length.

We show that Medium is secure against well-known attacks on GHOST.
In particular, a balance attack always fails after a finite number of
rounds. We show that protocols with larger weight coefficients are, in
general, safer from attacks, but may have lower throughput. There is,
thus a continuum of weight coefficient values, leading to the ability to
find a protocol with optimized throughput and safety, depending on the
network and the user’s requirements.

To analyze the security of Medium, we adopt the model of Kiayias and
Panagiotakos [69], which allows us to prove security against attacks on
consensus, such as double spending [88], block withholding [54], and

1Medium, in occultism, a person reputedly able to make contact with the world
of spirits, especially while in a state of trance [52].
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eclipse [60]. Specifically, we prove that the Medium protocol family
satisfies three main properties in a synchronous network. Firstly, the
weight and length of the main chain increase over time. This means
that the protocol is live, adding ever more transactions to the blockchain,
and also that the cost of reverting past transactions increases with time.
Secondly, the main chain contains at least a fraction of honest blocks,
i.e., blocks not mined by the adversary. This ensures that transactions
of honest parties are eventually added to the main chain and executed.
Lastly, the main chain of all the honest parties contains a common prefix
that increases over time. This means that once a transaction has been
in the main chain for long enough, it remains in the main chain. We use
these properties to ultimately construct a decentralized payment system,
where the blockchain is a robust public transaction ledger, following the
notions of Kiayias et al. [56, 69].

The results illustrate how Medium forms a bridge between Nakamoto
consensus and GHOST, allowing a deeper understanding of them;
Medium can also improve other constructions that rely on Nakamoto
consensus or GHOST.

Acknowledgement. The material contained in this chapter corre-
sponds to the work ‘Generalizing weighted trees: a bridge from Bitcoin
to GHOST’ [9] published at AFT21.

3.2 Related work

Garay et al.’s Bitcoin Backbone [56] is the first in-depth formalization
of the Nakamoto consensus and represents an important step for under-
standing the security of blockchains. They analyze the protocol in syn-
chronous and in partially synchronous networks. Kiayias and Panagio-
takos [69] expand the model and demonstrate the security of Nakamoto
consensus and GHOST against a variety of attacks.

In these security models, the adversary has only limited capability to
prevent communication between honest parties. For instance, in the
analysis of the eclipse attack [69], the adversary may only control the
communication between a fraction of the miners. More powerful attacks,
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however, could split the network in two and prevent any exchange be-
tween the parts. Such attacks threaten the security of Nakamoto consen-
sus and have even more severe consequences for GHOST. In particular,
Natoli and Gramoli [89] point out this issue under the name of a balance
attack. Bagaria et al. [16] show that such an attack on GHOST can
perpetuate a fork indefinitely, leading to miners splitting their power
between the two sides of the fork and the network never reaching con-
sensus. The difference between these attacks is that Bagaria et al. [16]
assume the adversary has the ability to partition the network for a given
amount of time. It is exactly such an attack that we aim to prevent by
choosing a proper weight coefficient.

We note that Kiayias and Panagiotakos [69] present a unified descrip-
tion and security analysis of the GHOST protocol and Nakamoto con-
sensus. This analysis relies on using a weighted norm, however, and
their analysis only holds for linear weight functions. For blockchains,
this means the weight of a subtree must increase linearly in relation to
the number of blocks. This condition limits their analysis to boundary
cases (e.g., Nakamoto consensus and GHOST); it cannot be applied to
Medium’s polynomial weight functions. We present a different approach,
which adopts much of their notation and builds on their methodology
and models. This should facilitate a comparison of the two protocols,
including the spectrum between them.

The existence of protocols achieving a higher throughput than both
Nakamoto consensus and GHOST is a well-known fact. Some of the
most prominent examples are: BitcoinNG [53], Conflux [79], and
Prism [16]. The reason for studying the spectrum between GHOST
and Nakamoto consensus is that the previously mentioned protocols
use either Nakamoto consensus or GHOST as a building block. Hence,
given that Medium has either better security or better throughput than
Nakamoto consensus or GHOST, these sophisticated protocols may
inherit Medium’s properties.

BitcoinNG [53] uses Nakamoto consensus to elect leaders. These leaders
have the ability to generate many blocks. However, the security of the
protocol depends completely on these leader-election blocks. Hence, a
different rule for leader election at a higher security level, or with a
higher ratio of leaders per unit of time, translates into an immediate
upgrade of this protocol.
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The main innovation behind Conflux [79] is its ability to include aban-
doned blocks in the ledger. Conflux uses the GHOST’s rule to agree on
a main chain. Consequently, Conflux uses a secondary set of references
in order to topologically order the complete DAG. Conflux then purifies
this DAG to eliminate all the possible double-spendings and builds the
ledger. Once again, a better rule for the selection of the main chain
improves the totality of the protocol.

With regard to Prism [16], finally, the situation is slightly more com-
plex because its selection rule is more sophisticated. In this protocol,
a block is not classified as valid or invalid depending on the value of
its header. Instead, it is classified into several groups depending on the
value of the hash function. One of these groups is invalid, another one
allows the block to contribute with its transactions, but not to the chain
selection, and another group contributes only to this chain selection.
The security of this protocol relies exclusively on this last group; the
chain selection inside this group follows a variation of Nakamoto con-
sensus. Hence, Medium’s chain-selection rule could again be exploited
to upgrade Prism.

3.3 Model

3.3.1 General definitions

Similarly to the Bitcoin Backbone protocol [56], the execution of the pro-
tocol takes place in rounds. At the start of each round, parties receive
the messages sent to them in the previous round, then the parties per-
form specific operations and finish the round by specifying the messages
they want to broadcast.

A block is defined as a tuple of the form b = [s, x , i , ctr] with
s ∈ {0, 1, }κ, x ∈ {0, 1}∗, ctr ∈ N and i ∈ {1, ...,n} (where n is the
total number of parties). Two cryptographic hash functions G(·) and
H (·), which are modeled as random oracle functionalities [20] are used
to define the validity of a block.

A block, mined by party Pi is defined as valid if it satisfies the condition

(H (ctr,G(s, x , i)) < D) ∧ (ctr ≤ q),
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where D is the difficulty parameter and q is the maximum number of
hash queries in a round.

A chain C is a sequence of valid blocks, starting from the root block
(genesis(C )) and extending to a final, head block (head(C )). For a chain
to be valid each block in the chain must be valid and fulfill the condition
that if a block b = [s, x , i , ctr] extends block b′ = [s ′, x ′, i ′, ctr′] in the
chain, then s = H (ctr′,G(s ′, x ′, i ′)).

We say a new block has been mined if a valid block can be found that
extends a chain in this valid manner. Since the difficulty parameter is
D , the success probability of a single hashing query is p = D

2κ , where κ
is the length of the hash.

Miners that attempt to mine on the blockchain are referred to as parties.

There are a total of n mining parties, of these the adversary controls a
maximum of f , the parties controlled by the adversary are called cor-
rupted. Parties running the protocol are called honest and only com-
municate at the end of a round. When an honest party mines a block
this block is referred to as an honest block. When an corrupted party,
controlled by the adversary, mines a block it is referred to as a corrupted
block.

A round is called successful if an honest party mines a block in that
round, and uniquely successful if only one honest party mines in that
round.

The length of the chain C is denoted by `(C ). When looking at a chain
C , we say C extends another chain C ′ if C ′ is a prefix of C , we can then
write C ′ � C . The depth of a block b in the blockchain is the length of
the path from that block to the genesis block. The tree of blocks mined
by these parties is called the block tree, each party has a local view of
the block tree which is comprised of all the valid mined blocks that it
knows about. A fork in the tree occurs when two parties mine on the
same block, extending the same chain. Which chain and therefore which
block in the tree is mined on is decided by each party according to the
protocol, this chain is referred to as the main chain and is chosen by the
main chain selection algorithm. How the protocol handles forks must be
defined in such an algorithm.
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3.3.2 Communication and mining

We base our security analysis on the model used in the Bitcoin Backbone
paper [56]. This model is an enhancement of the Synchronous-rounds
model (Section 2.2.1) and Byzantine model (Section 2.1) in which parties
have limited access to a random oracle functionality.

The random oracle is a functionality that can be queried in two different
ways. If queried with input x as calculation, the random oracle returns
a random string of a given length κ if it was not queried with x before.
If was previously queried with input x it returns the same output as
before. However, it can also be queried as verification with inputs (x , y),
the random oracle outputs 1 if it was queried, for calculation, before
with input x and the corresponding output was y . Otherwise it outputs
0. (The separate verification queries let this differ from the standard
random-oracle model, but this is necessary in our context [56].)

Any party has access to q queries of the random oracle for calculation,
the adversary has q queries per corrupted party. The number of queries
for verification is unbounded for honest parties, however the adversary
has no access to verification queries. This has been called the q-bounded
flat model [56].

3.4 The Medium protocol

The Medium protocol proceeds roughly like the Nakamoto consensus
and GHOST protocols [69] by arranging the received blocks into a tree,
as also formalized by the Bitcoin Backbone protocol [56]. Nakamoto
consensus then selects the longest branch in the tree as its main chain,
and GHOST constructs its main chain by greedily selecting the block
with the heaviest subtree by number of blocks. In Medium, the main
chain is determined by always following the heaviest weighted subtree,
using the Medium weight function introduced here.

Definition 8 (Weight). The weight of a block b in a tree T is given
by

ωc(b,T ) = cd(b),
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where d(b) denotes the depth of b in T when the Medium protocol is
instantiated with weight coefficient c.

Definition 9 (Tree Weight). The weight of a tree T is the sum of the
weights of all blocks of T ,

ωc(T ) =
∑

b′ ∈ T

ωc(b′,T ).

Notice that the contribution of each block to the tree weight depends on
the position of the block in the tree. We define T (b) to be the subtree
rooted at a block b and refer to the weight of T (b) as the tree weight b.

3.4.1 Detailed description

In more detail, each party starts a round with a local view of the block
tree and its current main chain C . To determine the new main chain,
the protocol recursively iterates over the block tree, starting from the
genesis block. At each block, the protocol extends the main chain with
the child that has the heaviest tree weight, that is, by choosing the
(polynomially weighted) heaviest subtree. Ties are broken by choosing
the root of the subtree that results in the longest main chain, or if this
would be the same, then by selecting the block that has been received
earlier. Extending the main chain through proof-of-work (POW ) occurs
similarly to the Bitcoin Backbone protocol.

The miner starts the round and checks the input string RECEIVEi for
new blocks. The miner then runs update() to extend its local tree and
validate any received blocks. Then it runs the Medium() algorithm, as
illustrated in Algorithm 1, to determine its main chain. If update() has
added a new block to the local tree, the miner broadcasts this new block
again at the end of the round.

After this is completed the miner can start running the POW algorithm
to try to mine a new block that can extend the main chain and fulfill the
needed properties for validity. If the party mines such a block it uses the
diffusion functionality to send a message with the block information to
all parties at the end of the round, we call this broadcasting the block.
By broadcasting the blocks the party has accepted during a round again
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Algorithm 1 Main chain selection algorithm

1: function Medium(T , ωc) // a tree T and a weight function ωc

2: b← root(T )
3: if desc(b) = ∅ then
4: return b
5: else // break ties by larger depth of trees
6: b← argmax{ωc(T (b′)) : b′ ∈ desc(b)}
7: return b‖Medium(T (b), ωc) // concatenate blocks

8: function ωc(T ) // weight function ωc with coefficient c
9: b← root(T )
10: sum← 0
11: for b′ ∈ desc(b) do
12: sum← sum + ωc(T (b′))
13: return c · sum + 1

at the end of the round the protocol ensures other honest parties also
receive the same blocks and can update their own trees accordingly. This
ensures that if an adversary broadcasts in round r to an honest party by
the end of round r + 1 all other parties also receive the block. A formal
description is included in Appendix 3.9.

3.4.2 Choice of the weight coefficient

To make it harder for the adversary to perpetrate the balance attack.
we may choose weight coefficients c > 1 of a particular shape. Given
a tree T , we can express its tree weight ωc(T ) as a polynomial in c of
degree `,

ωc(T ) = a0c0 + a1c1 + ...+ a`c
`,

where ` is the depth of the tree and the coefficient ai expresses how
many blocks there are at level i in the tree. We observe that ai ≥ 1
for i ∈ {0, ..., `}; furthermore the total number of blocks in the tree is
N =

∑
i ai . We can use these polynomials to compare the weight of two

different trees, T1 and T2. Two trees have equal weight whenever

0 = ωc(T1)− ωc(T2)

= (a0,1 − a0,2) + ...+ (amax{`1,`2},1 − amax{`1,`2},2)cmax{`1,`2}
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Clearly, the weight of the two trees is the same if c is a root of the
polynomial resulting from their difference. If we want two trees of given
depth ≤ ` to have the same weight if and only if they have the same
structure, we need to consider a weight coefficient c that it is not a root
of any polynomial of degree ` or less.

Consider the polynomial fn,p(X ) = X n − p with p a prime number and
n ≥ 1, by Eisenstein’s criteria [51], this polynomial is irreducible on Z.
We define the set

S` = {c : fn,p(c) = 0|c ∈ R,n ≥ `, p prime}, (3.2)

any constant taken from this set is a root of an irreducible polynomial
of degree at least `. Hence, to make sure that two trees of depth ≤ `
have the same weight if and only if they have the same structure, it is
enough to consider any element from S`.

3.4.3 Relation with Nakamoto consensus and
GHOST

Above we explained how to select the weight coefficient to guarantee
that trees of some bounded depth have the same weight if and only if
they have the same structure. However, there are different choices of c
that are interesting to study.

If we select c = 1, our protocol reduces to the GHOST protocol. Addi-
tionally, the polynomial associated to the tree structure reduces to the
number of blocks. In other words, we lose a huge amount of information
regarding tree structure.

In the other extreme, if we consider increasing values of c, the weight of
a block in the tree is the same as the weight of c blocks in the previous
level. This difference increases with c, thus, when c is large, we need
a large number of blocks in the previous level to match the weight of
a single block. This shows, intuitively, that the Medium protocol be-
haves like Nakamoto consensus for c → ∞ because the longest path in
a subtree dominates its weight.

An execution that illustrates differences between Nakamoto consensus,
GHOST, and Medium is shown in Figure 3.1.
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Figure 3.1. In this example, where every blocks represents an equal
amount of hashing work, different chains are selected by Nakamoto con-
sensus (left), GHOST (right), and Medium (center) with c = 2. Full
(blue) block denote the main chain and dashed (grey) blocks denote off-
chain blocks. Nakamoto consensus simply selects the longest chain, but
much less hashing power may have gone into this than into the other
subtree. GHOST, however, selects the blocks in the larger subtree. One
drawback of GHOST is the big loss of information about the structure of
the ignored subtrees. Medium selects a chain that represents more hash-
ing power, than the chain chosen by Nakamoto consensus; at the same
time, more structural information about the tree is taken into account
by Medium than by GHOST.

3.5 Security analysis

The aim of this security analysis is to show that Medium is a robust
transaction ledger, in other words, Medium satisfies liveness and persis-
tence. To do this, we shall show that if a block is in the main chain and
a sufficient number of blocks have been mined on this main chain after
that block, so that these subsequent blocks weigh a predefined amount,
then that block can be added to the ledger. This means, the block
remains in the main chain of any honest party except with negligible
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probability. We also show that in sufficiently many consecutive rounds
there is always one honest block that enters the main chain and becomes
stable.

We show this by establishing that the weight of the block tree increases
in a specific manner during the execution of the protocol. This is done
with the help of a typical execution. This denotes an execution in which
for any set of enough consecutive rounds, the random variables do not
diverge form the expected value in a significant quantity. An execution
is not typical with negligible probability. We also analyze how the tree
produced by running the Medium protocol behaves, which permits us to
specify the corresponding increase in weight. We determine upper and
lower bounds for this weight increase, which hold except with negligible
probability. We use these bounds to establish our version of the common
prefix property. If we remove blocks according to a specific weight con-
dition from the main chains of two honest parties, the resulting chains
are a prefix of each other. Furthermore, if we remove blocks according
to this weight condition for one honest party at round r , this chain is
a prefix of the main chain of any honest party in all later rounds. By
determining the minimal number of rounds needed to let the block tree
grow by a specific amount, we can also show how the implied main chain
becomes stable. With this knowledge, we will finally show that a mini-
mal number of honest blocks are produced in every consecutive subset
of these rounds, that they are in the main chain, and that they remain
stable.

3.5.1 Typical execution

We shall now introduce the formal notion of a typical execution [56], the
idea is that if we have enough consecutive rounds, we can show that they
fulfill certain properties with a high probability. Furthermore, we note
that if we have have a set of consecutive rounds of a certain size, we can
show that every subset of consecutive rounds within it, if large enough,
also fulfills these properties. To define these properties we introduce the
following notation, aligned with the Bitcoin Backbone paper [56].

We define Xijk to be a Boolean random variable that denotes whether
in round i the j -th query of the k -th honest party is successful. Further-
more, let Zijk be a Boolean random variable for the same case but for
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Overview of Parameters and Variables

q Number of POW calls in a round for each party
p Probability of POW call to be successful and block mined
κ Length of hash, determines difficulty parameter D = p2κ

n Number of mining parties (we assume a flat setting)
f Maximum number of parties controlled by the adversary
δ Honest Majority Parameter, δ ∈ (0, 1) with f ≤ (1− δ)(n − t)
β Hashing power of the adversary per round, β = tpq
α Hashing power of the honest parties per round, α = (n − t)pq
h Total hashing power per round, h = α+ β

γ Probability that a round is successful γ = 1− (1− p)(n−t)q

γu Probability that a round is uniquely successful, γu > (1− γ
3
f )

ε Typical execution parameter, ε ∈ (0, 1)
λ Consecutive rounds needed for a typical execution
c Weight coefficient c > 1 and c ∈ R
K Weight parameter for the common weighted prefix property, K ∈ R

the k -th corrupted party mining. We also let Yi denote whether or not
exactly one honest party mines in round i , and let X̃i represent whether
or not any honest party mines in round i . A round with Yi = 1 is
called uniquely successful. Given these, we define Xi =

∑n−t
k=1

∑q
j=1 Xijk

and Zi =
∑t

k=1

∑q
j=1 Zijk . For a set S of (consecutive) rounds, we de-

fine X (S ) =
∑

r ∈ S Xr and similarly for Z (S ), X̃ (S ) and Y (S ). In
summary, we obtain the following:

X (S) Total number of blocks mined by an honest party
in consecutive rounds S .

X̃ (S) Total number of times an honest party
mines in a round, for consecutive rounds S .

Z (S) Total number of blocks an adversary mines
in consecutive rounds S .

Y (S) Number of rounds in S that are uniquely successful.

We make the same honest majority assumption as in the Bitcoin Back-
bone [56], that there exists δ ∈ (0, 1) such that f ≤ (1− δ)(n − f ). Let
also

α = E[Xi ] = pq(n − f )

β = E[Zi ] = fpq

γ = E[X̃i ]
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from which it follows that E[Y ] = γu = q(n − f )p(1 − p)q(n−f )−1 >
(1 − γ

3 h). We assume that 3γ + 3ε < δ ≤ 1, where γ is the probability
that a round is successful and ε ∈ (0, 1).

We also use Garay et al.’s notions of insertions, predictions, and
copies [56]. In particular, an insertion occurs when, given a tree T
with two consecutive blocks b and b′ a block b∗ created after b′ so that
b, b∗, and b′ form three consecutive blocks of a valid chain inside the
tree. A copy occurs if the same block exists in two different positions
in the tree. A prediction occurs when a block extends one which was
computed at a later round.

Definition 10. An (ε, λ)-typical execution for ε ∈ (0, 1) and λ ≥ 2/γ,
over a set S of at least λ consecutive rounds satisfies:

1. (1− ε)E[X (S )] < X (S ) < (1 + ε)E[X (S )]

2. (1− ε)E[X̃ (S )] < X̃ (S ) < (1 + ε)E[X̃ (S )]

3. (1− ε)E[Y (S )] < Y (S )

4. Z (S ) < Y (S ) and Z (S ) < (1 + ε)E[Z (S )]

5. There are no insertions, predictions, or copies.

6.
∑q

j=1 Xijk ≤ 1 for every honest party Pk .

We note that the points (2)–(5) correspond to the conditions for a typical
execution as defined by Garay et al. [56].

Theorem 1. An execution is (ε, λ)-typical with probability

1− e−Ω(qε2γλ+κ+q) .

Proof. The proof is analogous to the proof in the Bitcoin Backbone
paper [56]. It follows directly from applying a Chernoff bound to X (S ),
Z (S ) and X̃ (S ). We note Xijk , X̃i and Zijk are all independent Bernoulli
trials. In all trials the probability that one of these is outside the given
range is at most 2e−µε

2/3, where µ is the respective expected value.
Garay et al. [56] show that the expected values of these variables can
all be rewritten to have an upper bound that is a factor of γ. Thus, an
execution fulfills the first four criteria with probability 1 − e−Ω(qε2γλ).
They further showed that insertions, deletions and copies occur with
probability bounded by e−Ω(κ), as insertions and copies happen if a
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block extends two distinct blocks, which means a collision has occurred
and a prediction occurs at an equally small likelihood.

The final condition is directly influenced by the choice of q , and as p is
already small, a Chernoff bound can be used to show that this occurs
with probability bounded by e−Ω(q).

Using the Union bound, we combine the previous three bounds to finish
the proof.

From now on, unless explicitly noted otherwise, all statements we make
assume the conditions of a typical execution hold. In other words, we
can find parameters ε, γ, λ, q and κ so that the properties hold with
probability 1− e−Ω(qε2γλ+κ+q).

3.5.2 Properties of Medium

For analyzing the protocol, we define some of its main properties in the
model of Garay et al. [56].

Definition 11 (Normalized tree weight). For a block b in tree T ,
we define the normalized tree weight of b, or ω̄c(T (b)), to be the weight
of the subtree on b (or the tree weight of b) divided by the weight of b,
or

ω̄c(T (b)) =
ωc(T (b))

cd(b)
.

Definition 12 (k-dominant prefix). We define the k-dominant prefix
of the chain C , or C dk , as the chain C without any blocks b for which
ωc(T (b)) < k , with the parameter k ∈ R. If there is no block b in chain
C with τc(T (b)) ≥ k , C dk is defined to be the genesis block.

We note that blocks are always removed from the head of the chain when
computing the k-dominant prefix of a chain. We can now come to the
properties.

Definition 13 (Normalized tree weight growth). For parameters
τ ∈ R, s ∈ N, for any honest block b mined in round r , and for a set
of consecutive rounds S with size |S | = s starting just after round r it
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holds that when b is in the main chain of every honest party Pi during
S , then the normalized weight of b increases by at least weight τ in the
local view of every honest party Pi .

Definition 14 (Chain growth). There exist parameters g > 0 and
r0 ∈ N such that in round r ≥ r0, every honest party adopts a chain of
length at least g · r .

Definition 15 (Common weighted prefix). There exists a parameter
K ∈ R so that for any pair of honest parties P1 and P2 that adopt main
chains C1,C2 at rounds r1 ≤ r2 in their respective local views, it holds

C
dK
1 � C2.

Definition 16 (Fresh block). At round r there exists a parameter
u ∈ N so that for any subset u consecutive rounds, there is at least one
block mined by an honest party which is in the main chain of all honest
parties in every round r ′ ≥ r .

In the remainder of this section, we establish the chain growth, weight
growth, common weighted prefix, and fresh block properties. From
these, it is possible to show that a robust public transaction ledger exists
on top of our protocol, which satisfies liveness and persistence; we do
this in the next section.

3.5.3 Foundation lemmas and chain growth

We use block trees as defined by Kiayias and Panagiotakos [69]. T P
r is

the tree formed from the blocks that honest party Pi has received up to
round r . Tr is the tree containing all blocks broadcast by any party up
until round r . T̂r is the tree that contains Tr and also includes all blocks
mined by honest parties at round r . This means that for any honest
party Pj , we have

T P
r ⊆ Tr ⊆ T̂r ⊆ T P

r+1.

This follows intuitively from the fact that each honest party has a subtree
of all broadcast blocks up to round r in their local view at the start of
round r , thus T P

r ⊆ Tr . This subtree always contains all honest blocks
broadcast in the previous round. As honest parties broadcast all newly
mined blocks and blocks they received before round r at the end of round
r , Tr ⊆ T P

r+1 must hold.
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It is important to note the adversary can choose to only broadcast its
blocks to certain honest parties, so two honest parties P1 and P2 may
have received different blocks in round r − 1, which means T P1

r 6= T P2
r .

Thus the main chains of two honest parties may also differ in length. Tr
is the tree containing all blocks broadcast by any party up until round
r , the length of the main chain of this tree is unique, as there can only
be multiple main chains in Tr if each has the same length and weight.

We define `mc(Tr ) to be the length of the main chain in Tr . The length
of the main chain in T̂r is also unique (as honest parties extend the main
chain by at most one block in a typical execution). As in T P

r , the length
of the main chain in T P

r+1 is not necessarily unique.

The next remark introduces a different perspective that simplifies the
upcoming proofs.

Remark 1. Given two chains C1,C2 in the local view of some honest
party Pi , such that one of them is the main chain, w.l.o.g. C1. The fact
that C1 is the main chain means that at some point in the chain C2 there
is a block b2 that has a sibling b1 ∈ C1 that has a heavier subtree. This
follows directly from the fact that all the chains start with the genesis
block and in every interaction the algorithm selects the block with the
heaviest subtree.

We shall start our analysis by discussing chain length growth behavior
during a typical execution.

Lemma 2. If an honest party mines in round r and the adversary does
not broadcast in round r − 1 it holds that

`mc(T̂r ) = `mc(Tr ) + 1.

Additionally, if this is an uniquely successful round all parties have the
same local view and have the same main chain in T̂r .

Proof. This is clear from the protocol, honest parties always mine on
the main chain, which is chosen by recursively selecting the block with
the heaviest subtree and heaviest subtree resulting in the longest main
chain if there are ties. Unless an adversary broadcasts in round r − 1
all honest parties mine on the same main chain unless there was a block
with more than one descendant that had a subtree of the same weight,
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resulting in two different main chains of the same length. Thus, if any
honest parties are successful in round r , they extend the chain they are
mining on by length 1 (only by length 1, due to point 5 of a typical
execution (Definition 10)). As there can only be multiple main chains
in the local views of honest parties if they all have the same length any
chain that is mined on in round r by an honest party has the same
length. Furthermore, the block that was mined in that round adds to
the weight of the subtrees of all the previous blocks in the chain, thus
a main chain in T̂ is a chain that was mined on, which now has length
`mc(Tr ) + 1.

Furthermore, it is clear that if only one party mines, only one main
chain is extended and thus there cannot be another main chain in the
local view of an honest party as we have assumed the adversary has not
broadcast in the round before.

With this we can prove the following lemma.

Lemma 3. Assume that an honest block b0, mined in round r0, stays in
the main chain of all the honest parties for a set of consecutive rounds
S starting at round r0 + 1, then the length increase of the main chain
of a given party Pi , at the beginning of the first round just after S , is
lower and upper bounded (l(S ) is the increase in length of the main chain
during the set of rounds S) by:

Y (S )− Z (S ) ≤ l(S ) ≤ X̃ (S ) + Z (S ).

In other words, the length increase is lower bounded by the number of
uniquely successful rounds minus the number of adversarial blocks re-
leased in S, and, upper bounded by the number of successful rounds plus
the number of adversarial blocks released in S.

Proof. First of all, notice that only the blocks releases in the subtree of b
are relevant. Since all the honest parties agree that b is in the main chain
during all the execution, this means that blocks releases by the adversary
mined previously to b can safely be ignored. We analyze first the lower
bound, Y (S ) − Ẑ (S ) ≤ l(S ). The result follows by induction over the
number of uniquely successful rounds Y (S ). First of all, notice that any
adversarial block produced before round r0 is completely irrelevant since
the assumption is that b0 remains in the main chain. In other words it is
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enough to analyze the structure of the subtree of b0 and the adversarial
blocks produced after or in rounds r0.

• Case Y (S ) = 0, the bound is trivially satisfied.

• Case Y (S ) = 1. Since the hypothesis is that block b0 stays in
the main chain of any honest party, the unique uniquely successful
block mined is a descendant of b0. This implies that the main
chain, which before the set of rounds S finished in b0, no longer
finishes with b0 (b0 is no longer a leaf).

• Case Y (S ) = 2. This follows from the fact that b0 stays in the
main chain during all the execution and the existence of a chain
of length two.

• Assume that the statement holds up to n − 1. However, assume
that the statement is not true for n. Precisely, denote by r1 the
round in which the last uniquely successful block of S was mined,
and define a set of rounds

S ′ := {r ∈ N|r0 < r < r1}.

We obtain a system of two equations,{
l(S ) < Y (S )− Ẑ (S )

l(S ′) ≥ Y (S ′)− Ẑ (S ′).

By definition of S ′, we observe that Y (S ′) = Y (S )−1 and Ẑ (S ′) =
Ẑ (S )−k , where k is the number of adversarial blocks released after
the last uniquely successful block in S . Then we get{

l(S ) < Y (S )− Ẑ (S )

l(S ′) ≥ Y (S )− 1− Ẑ (S ) + k .

Since the minimum increase in length is one, and negating the
second inequality, this means{

l(S ) + 1 ≤ Y (S )− Ẑ (S )

−l(S ′) ≤ −Y (S ) + 1 + Ẑ (S )− k .

Adding both equations gives

l(S ) + 1− l(S ′) ≤ 1− k .
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and
k ≤ l(S )− l(S ′).

This is a contradiction since k ≥ 0. Thus, l(S ) ≥ l(S ′) and we see
that {

l(S ) < Y (S )− Ẑ (S )

l(S ) ≥ l(S ′) ≥ Y (S )− 1− Ẑ (S ) + k .

Taking into consideration that the minimum increase in length is
one and that k is non-negative, it holds{

l(S ) < Y (S )− Ẑ (S )

l(S ) > Y (S )− Ẑ (S )

We conclude that the statement holds for Y (S ) = n. This com-
pletes the inductive step and proves the lower bound in the lemma.

The upper bound follows trivially from the fact that the best case for
length growth is when the adversary collaborates with the honest parties.

Lemma 4. Assume a set of consecutive rounds S after an honest b0 is
mined in round r0, with |S | ≥ λ. Assume b0 is part of the main chain
during the set of rounds S, then the length increase of the main chain f
any honest party Pi is lower bounded by

(1− ε)E[Y (S )]− (1 + ε)E[Z (S ).]

Proof. Follows from Lemma 3 and the properties of an (ε, λ) -typical
execution.

Corollary 5 (Chain growth). The chain growth property (Defini-
tion 14) holds with parameters r0 = λ and g = (1− ε)γu − (1 + ε)β.

Proof. We apply Lemma 3 together with the fact that the genesis
block is always part of the main chain for every honest party and
S = {r ∈ N|r ′ ≤ r} satisfies that |S | ≥ λ. Thus, the conditions of
an (ε, λ)-typical execution hold. These conditions also imply that
((1− ε)γu − (1 + ε)β) · r = (1− ε)E[Y (S )]− (1 + ε)E[Z (S )] > 0, where
S is the set of rounds until r .
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3.5.4 Weight growth property

In this section we commence the full analysis to prove that Medium
satisfies the normalized tree weight growth property.

We introduce notation needed to formalize bounds on the weight increase
of the blocks in the main chain.

Definition 17. Given a block b and a round r such that b is in the
main chain of some honest party Pi we define

`b := min
Pihonest

{`mc(T P
r )} − d(b).

`B is the minimum distance from block b to the head of the main chain
in the local view of party Pi . We define `L as the maximal distance from
a block b in the main chain of any honest party to any head of a chain
in its subtree.

Lemma 6. For any honest block b mined in round r and any set of
consecutive rounds S starting just after r, consisting of at least λ rounds,
the normalized weight increase ∆ω̄c(T (b)) respects

∆ω̄c(T (b)) <

d(1+ε)(γ+β)|S |e∑
i=1

k(i , |S |) ci .

Where

k(i , |S |) =


1 if i < d(1 + ε)(γ + β)|S |e −

⌈ (1+ε)(α−γ)|S |
(1+ε)γ

⌉
(1 + ε)α if i ≥ d(1 + ε)(γ + β)|S |e −

⌈ (1+ε)(α−γ)|S |
(1+ε)γ

⌉ .

If b is in the main chain of every honest party during S, then the nor-
malized weight increase is also lower bounded by

b((1−ε)γu−(1+ε)β)|S |c∑
i=1

ci < ∆ω̄c(T (b)).

Both bounds in the local view of any honest party Pi .
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Proof. On the one hand, the maximum weight increase occurs when the
adversary collaborates with the honest parties and the honest parties
mine in the subtree of b, and both the adversary and the honest parties
succeed as often as possible. This respects the conditions of an (ε, λ)-
typical execution and we can apply Lemma 3.

From Lemma 3, there is an upper bound in the length increase of the
main chain of any honest party that considers b as part of the main
chain: l(S ) ≤ X̃ (S ) + Ẑ (S ) < (1 + ε)(γ + β)|S |, using the conditions
of an (ε, λ)-typical execution. Furthermore, the weight is maximized
when all the forked blocks occur as deep as possible in the tree. Again,
by the properties of an (ε, λ)-typical execution, the number of blocks
in the tree is bounded by (1 + ε)(α + β)|S |, and the number of honest
blocks mined per round is upper bounded by (1 + ε)α. We have at most
(1+ε)(α−γ)|S | forked blocks, and in every level of the tree up to (1+ε)γ
blocks. We conclude that the best case for weight increase occurs when

the last d (1+ε)(α−γ)|S |
1+ε)γ e levels of the tree contain all the forked blocks.

Defining k(i , |S |) as in the statement,

k(i , |S |) =


1 if i < d(1 + ε)(γ + β)|S |e −

⌈ (1+ε)(α−γ)|S |
1+ε)γ

⌉
(1 + ε)α if i ≥ d(1 + ε)(γ + β)|S |e −

⌈ (1+ε)(α−γ)|S |
1+ε)γ

⌉ .

Hence,

∆ω̄c(T (b)) <

d(1+ε)(γ+β)|S |e∑
i=1

k(i , |S |) ci .

On the other hand, the minimum weight increase occurs when the main
chain of some party Pi whose local view includes b in the main chain,
is as short as possible. From Lemma 3, we observe that l(S ) ≥ Y (S )−
Z (S ), and using the conditions of an (ε, λ)-typical execution, it follows
l(S ) > ((1 − ε)γu − (1 + ε)β)|S |. Furthermore, the worst case for the
weight increase is when the adversary achieves this with allowing any
superfluous block to the subtree of b. Hence

∆ω̄c(T (b)) >

b((1−ε)γu−(1+ε)β)|S |c∑
i=1

ci .
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We can now apply these bounds to achieve the normalized tree weight
growth property.

Theorem 7 (Normalized tree weight growth). The normalized tree
weight growth property holds with parameters s = |S | ≥ λ and

τ =

b((1−ε)γu−(1+ε)β)|S |c∑
i=1

ci .

Proof. This follows directly from Lemma 6.

3.5.5 Common weighted prefix property

Lemma 6 has further applications than the ones discussed in Sec-
tion 3.5.4.

Remark 2. Any block b requires at least λ consecutive rounds to get a
normalized subtree-weight of at least

d(1+ε)(γ+β)λe∑
i=1

k(i , λ) ci .

This is a direct consequence of Lemma 6.

This inequality constitutes the baseline to our proof of the common
weighted prefix property. Before we go into this, we introduce two com-
plementary lemmas.

Lemma 8. Assume there exists a fork in T P
r , where Pi is any honest

party. Denote by C1 and C2 two unique chains produced by this fork,
which have the same prefix prior to this fork; assume that the last block
in this common prefix was mined in round r ′ ≤ r. Denote by b1 and b2

the first block in each chain after the fork. Further assume ωc(T P
r (b1)) <

ωc(T P
r (b2)), `(C1) = `(C2) + s for s > 0. Then, the adversary had to

release s blocks from round r ′ − 1 to r − 1.
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Proof. To prove this statement we assume that there are no blocks in
the subtree T P

r (b2) that are at a greater depth than the length of C2.
Still assuming this assumption holds let now assume the statement of
the lemma does not hold and find a contradiction.

Take any block bi in C1 at depth `(C2) + i , for i ∈ [1, s], this block was
mined at r ′ ≤ ri ≤ r . We shall show that for each of the blocks bi the
adversary had to release at least one block for there to exist a tree of
such a shape at round r .

If bi is corrupted we do not have to show anything, thus we assume bi
is honest. This means for at least one honest party P ′

ωc(T P ′

ri (b1)) ≥ ωc(T P ′

ri (b2)).

Now, since we know that in round r

ωc(T P
r (b2)) > ωc(T P

r (b1)) > ωc(T P
r (b1)) ≥ ωc(T P ′

ri (b1)) +

s∑
j=i

c`(C2)+j

we know that between rounds ri −1 and r there must have been at least
s− i +1 blocks mined on C2. (This follows from

∑s−i
j=0 cs−j > s− i +1).

We examine two cases.

1. The first is, if the adversary did not broadcast in round ri−1. This
means all parties have the same local view of Tri . Thus, an honest
party can only mine on C2 (to produce the missing s− i +1 blocks
on C2) at round ri , if Tri (b1) and Tri (b2) have the same weight and
result in main chains of the same length, but this contradicts bi
being the only block at this depth . Thus, the blocks must have
been mined after round ri , but after round ri , b1 is the sibling
with the heaviest tree weight, thus no honest party would have
mined on C2. Thus, the adversary must have released s − i + 1
blocks on the subtree of b2 for this fork to occur, or, if i 6= s it
can switch the local view of another honest party before further
blocks are released on C1. If it does this after round ri it needs to
compensate the weight produced on C1 in this round and has to
release more than one block (as blocks in the subtree on b2 have a
strictly lower depth). Otherwise the adversary could have changed
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the local view of another honest party before ri , this is the second
case.

2. If the adversary did broadcast in round ri − 1 it is possible to
create two different local views by only releasing blocks to certain
honest parties and have honest parties mine blocks on C2 in that
round. As the adversary must expend at least a block for this
it just remains for us to show it cannot ’compensate’ multiple bi
in this manner. (We note that under the conditions of an (ε, λ)-
typical execution honest parties do not mine on their own blocks
during a round and can only extend the length of a chain by 1
block).

If honest parties release enough blocks for b2 to have a heavier
tree weight than b1 after round ri , i.e. ωc(T̂ri (b1)) < ωc(T̂ri (b2))
we note honest parties do not mine on C1 without the adversary
releasing further blocks. If we would like the following bi+1 to be
honest we come back to this case, if i = s we are done. Alterna-
tively, the honest parties could mine enough weight for b1 to have
equal or heavier tree weight than b2 after round ri , if there are less
than k < s − i corrupted blocks needed for b2 to have a higher
tree weight than b1 in round r than the adversary has won. As
we assumed blocks on the subtree of b2 cannot weigh more than
c`(C1) this leads us to the condition that k >

∑s
j=i+1 cj (as fur-

ther blocks must be released on C1), and thus k > s− i −1, which
would be a contradiction.

It remains to show this still holds if there are blocks in the subtree
T P
r (b2) that are at a greater depth than the length of C2. We show this

follows recursively from our statement. If there was a block in T P
r (b2) at

a greater depth there would be a fork in this subtree with blocks b3 and
b∗2 broadcast in round r∗ ≥ r ′ resulting in two chains, C2 and another
C3 with `(C3) = `(C2) + s∗, s∗ > 0 and T P

r (b∗2) > T P
r (b3). We apply

this until there are no blocks in the heavier subtree with a longer length
than the length of the main chain and then apply our proof. Then, such
a subtree is only possible if the adversary broadcast at least s∗ blocks
from round r∗ − 1 to r − 1. Using this our proof still holds.

Thus, for every block bi in C1 at depth `(C1) + i , for i ∈ [1, s] there is
a corresponding corrupted block and the adversary must broadcast at
least s blocks to produce such a fork.
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We are now able to discuss the behavior of chains when removing blocks
of a specific tree weight, we shall show the weighted common prefix
property must hold by proving the following lemma. As we must take
multiple cases of different possible tree structures into account the proof
is quite lengthy.

Lemma 9. Suppose at round r of an (ε, λ)-typical execution, an honest
party has a chain C1 and a chain C2 is adopted by an honest party, such
that C2 differs from C1 in a block b2 with ω(T (b2)) ≥ ω(T (b1)). That
is, the blocks before b2 in C2 are the same as in C1 and C1 has b1 in the

place of b2. Then C
dK
1 � C2 and C

dK
2 � C1 for weight

K =

d(1+ε)(γ+β)λe∑
i=1

k(i , λ) ci .

Proof. We assume by contradiction, either C
dK
1 � C2 or C

dK
2 � C1.

Consider the last block of the common prefix of C1 and C2 that was
computed by an honest party at round r∗ and at depth ` (this block
could be genesis). We define S = {i : r∗ ≤ i ≤ r} and note that
|S | ≥ λ, due to Lemma 6. We shall show that this implies Z (S ) ≥ Y (S )
which is a contradiction. (We note that Z (S ) ≥ Y (S ) is only dependent
on the size of S , thus Z (S ′) ≥ Y (S ) holds for S ′ if |S ′| = |S |, here we
define S ′ = {i : r∗ − 1 ≤ i ≤ r − 1}. )

To do this we shall examine an injection between the uniquely successful
rounds in S (their number given by Y (S )) and the blocks needed to
“balance them” on the other chain, so that at round r two different
honest parties can have two different local views of the main chain.

We look at a uniquely successful round ri , where the honest party who
mined bi at this round mines on the main chain in their current local
view. We look at 3 different cases for the main chain C at T P

ri that the
honest party Pi mines on. We first assume the honest party mines on
chain C1 or C2, without loss of generality we assume that the honest
party is mining on chain C1, by `i(C1) we denote the length of the chain
at that round in the local view of the honest party mining in that round.
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• Case 1: `i(C1) > `i(C2) to balance this block on C2 the adversary
must release more than one block on the other side, due to blocks
at lower depths having more weight.

• Case 2: `i(C1) = `i(C2) to balance this block on C2 the adversary
must release one block at that level or more (if there is already a
weight difference, or it cannot mine a block at the depth)

• Case 3: `i(C1) < `i(C2) from Lemma 8 we know that for T P
ri (b1)

to weigh more than T P
ri (b2) (and have a common root produced in

round r∗) but be shorter by a length of s > 0 the adversary must
have already broadcast s parties, even if in the best case the

cs+1 >

s∑
i=1

ci =
(cs − 1)c

(c − 1)

which holds for c < 2 and the adversary can ’balance’ s blocks
with 1 block, he must still broadcast s blocks to produce this kind
of subtree, and thus still needs at least as many corrupted blocks
as uniquely successful rounds to create this fork.

In all these cases we see that Z (S ) ≥ Y (S ) must occur for the adversary
to win, which contradicts the assumption of a typical execution.

We still need to review what happens when the the honest party Pi

mines on a different chain than C1 or C2, we call this chain C3, for
this to happen C3 must be the main chain in its local view at the
uniquely successful round ri and there are blocks b3,1 and b3,2 so that
ωc(T P

ri (b3,1)) ≥ ωc(T P
ri (b′1)) and ωc(T P

ri (b3,2)) ≥ ωc(T P
ri (b′2)) where b3,1

is the first block on C3 after it forks from C1 and b3,2 the first after C3

forks from C2, the blocks b′1 and b′2 are the first blocks in C1 and C2

after the fork of their respective chains from C3.

• Case 1: `i(C3) ≥ `i(C2) and `i(C3) ≥ `i(C1) to balance this
block on C2 and C1 the adversary must release at least one block
on both C2 and C1.

• Case 2: `i(C3) ≥ `i(C2) and `i(C3) < `i(C1), or `i(C3) ≥ `i(C1)
and `i(C3) < `i(C2). For `i(C3) ≥ `i(C2) resp. `i(C3) ≥ `i(C1)
at least one block has to be released on C2 resp. C1 to bal-
ance the block on C3. How many blocks were needed to produce
`i(C3) < `i(C1) while ωc(T P

ri (b3,1)) > ωc(T P
ri (b′1)) is slightly more
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complicated. To apply Lemma 8 we must go back to the round
where the root of C3 and C1 entered the block tree, which could
be before r∗. Therefore, we observe the following, C1 is at least
s1 > 0 longer than C3, as we are in an (ε, λ)-typical execution in-
sertions do not occur, therefore the rounds these blocks were mined
in must have been after round r∗. We know the adversary must
have broadcast at least s1 blocks from rounds r∗ − 1 to ri − 1 for
such a tree structure to exist, the same is true for the case where
`i(C3) < `i(C2).

• Case 3: `i(C3) < `i(C2) and `i(C3) < `i(C1) as already shown
this means that for both sides the length difference s > 0 must be
produced earliest at round r∗ − 1 by at least an equal number of
blocks.

In all these cases we deduce that Z (S ′) ≥ Y (S ) this contradicts the as-
sumption of an (ε, λ)-typical execution and we have proved the weighted
common prefix lemma.

From this, the common weighted prefix property follows directly.

Theorem 10 (Common weighted prefix). Let

K =

d(1+ε)(γ+β)λe∑
i=1

k(i , λ) ci (3.3)

be the normalized tree weight. Then, for any pair of honest parties P1

and P2 adopting chains C1 and C2 at rounds r1 ≤ r2 in their respective

local views, respectively, it holds C
dK
1 � C2.

Proof. We assume the theorem is not true and find a contradiction. This
means that there are rounds r1 ≤ r2 where honest parties P1 and P2

adopt chains C1 and C2 as their main chains respectively but C
dK
1 � C2.

From Lemma 9 we know that for all chains C̃i in the local view of an
honest party in round r1 it must hold that C

dK
1 � C̃i and C̃

dK
i � C1 .

It follows that C̃i � C2, which means that C2 is not an extension of a
chain that was in the local view of an honest party at round r1.

This means that there must exist a round r ≥ r1 where an honest party

adopted a chain C ′ over a chain C s.t. C
dK
1 � C but C

dK
1 � C ′ (implied
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by C
dK
1 � C2) , however in this round we can again apply Lemma 9 that

C dK � C ′, furthermore, as C is an extension of a chain that was in the
main chain of an honest party at round r1 we know that since blocks

in the chain could not decrease weight, thus C
dK
1 � C dK must hold,

which implies C
dK
1 � C ′ and is a contradiction. Thus we have proved

the common weighted prefix property.

It still remains for us to show the fresh block property, which we shall
prove with our own version of the Chain Quality Lemma.

3.5.6 Fresh block property

Finally we prove that honest blocks eventually enter the ledger.

Theorem 11 (Fresh block). The fresh block property is satisfied with
parameter

u =
R̂2 + 2R̂

(1− ε)2γ
+ λR (3.4)

where R̂ = bR2 c and R is the maximal constant that fulfills the equation

R+1∑
i=1

ci ≤
d(1+ε)(γ+β)λe∑

i=1

k(i , λ) ci .

Proof. We use a similar proof strategy as the one applied for the common
weighted prefix property 10. We analyze the honest blocks produced in
a successful round during these u consecutive rounds, and show that
an honest block mined in a successful round enters the main chain and
remains there in all subsequent rounds. This is proven thanks to the
constrains of the number of corrupted blocks produced by the adversary
in an (ε, λ)-typical execution.

However, the structure of the tree at the start of these u rounds plays
a role in how many honest blocks can be ’balanced’ by the adversary.
Assume the best case for the adversary that there exists another chain
that is R blocks longer than the current main chain, this chain differs
from the main chain at a fork produced in round r (this could be prior
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to the start of the u rounds), so that the weight of the subtree at bmc

(that results in the main chain) must be greater than the weight of the
subtree on bR (that results in the R-blocks-longer chain). By releasing
a block at depth R + 1, the adversary can compensate up to H honest
blocks, where H is the largest constant that satisfies

H∑
i=1

ci ≤ cR+1.

We note H is at maximum R. Whenever such a chain exists it is a vul-
nerability. However, we can show the length of such a chain is bounded
in an (ε, λ)-typical execution, if

R∑
i=0

ci > K =

d(1+ε)(γ+β)λe∑
i=1

k(i , λ) ci

the common weighted prefix property no longer holds, as if the adversary
released a block at depth R + 1 only to certain honest parties then they
would adopt this longer chain as their main chain. However, the K -
prefix of this chain is not an extension of the other main chain, which
is a contradiction. Thus, the maximal possible length of such a chain is
bounded by the maximal constant R that solves the equation

∑R
i=0 ci ≤

K . Furthermore in an (ε, λ)-typical execution at the start of these u
consecutive rounds there can be no chain that is longer than R.

After compensating H honest blocks, mined in uniquely successful
rounds by one corrupted block, in an (ε, λ)-typical execution the
adversary has at most H − 2 blocks left, which it can use to build a
fork with a chain that is H − 2 longer than the current main chain and
compensates a certain number of honest blocks H ′ (at maximum R−2),
mined in uniquely successful rounds. Using the additional corrupted
blocks mined during these rounds the adversary can build a fork with a
H ′ − 2 longer chain, this can continue until the adversary has used all
the ’additional’ blocks. In the worst case it takes

R̂∑
i=0

(2i + 1) = R̂2 + 2R̂

uniquely successful rounds, with R̂ = bR2 c, for all the adversary’s addi-
tional blocks to be used. After this point the adversary always has to
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release strictly more than one block to compensate the weight produced
in each uniquely successful round to prevent the block mined in that
round from entering the main chain. From the properties of an (ε, λ)-
typical execution, we know that in u − Rλ rounds, there are at least
R̂2 + 2R̂ uniquely successful rounds, as

(1− ε)(u − Rλ)γ = R̂2 + 2R̂.

Moreover, there is at least one honest block entering the main chain.

Enough blocks must now be mined on this honest block for it to have a
large enough tree weight for it to be in the K -prefix of the main chain.
As the adversary has no ’additional’ blocks in every successful round it
must release at least one block to prevent that block from entering the
main chain. We consider groups of λ blocks.

• In the first group one honest block (more specifically A := αλ(1−
ε)− βλ(1 + ε) blocks) enters the main chain.

• In the second group, if the adversary removes the extra block(s)
from the previous group, 2A honest blocks enter.

• In the (R + 1)-th group, (R + 1)A blocks enter the main chain,
thus the first of these blocks has a normalized tree weight of at

least
∑(R+1)A−1

i=0 ci , which is greater than K and thus enters in
the K -prefix and is stable.

3.6 Robust public transaction ledger

The content x of each block b has not played any role in the security
analysis of the Medium protocol described in Section 3.5. The proper-
ties achieved by the block in the Medium protocol are independent of
their content. However, transactions submitted by users are the main
component of the ledger. In this section, we model Medium as atomic
broadcast (Definition 2), recalled below.

Definition 2 (Atomic broadcast). A protocol solves atomic broadcast
with validity predicate V if it satisfies the following conditions, except
with negligible probability:
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Validity: If a honest party ab-broadcasts a transaction tx, then it even-
tually ab-delivers tx.

Agreement: If a honest party ab-delivers a transaction tx, then all
honest parties eventually ab-deliver tx.

Integrity: For any transaction tx, every honest party ab-delivers tx at
most once, and only if it was submitted by some user.

Total order: If honest parties Pi and Pj both ab-deliver transactions
tx and tx′, then p ab-delivers tx before tx′ if and only if Pj ab-
delivers tx before tx′.

External validity: If an honest party ab-delivers a transaction tx, then
V (tx) = true.

In this work, we do not specify an external validity predicate V for
the transactions. The protocol can be instantiated with several validity
predicates. A party running the Medium protocol ab-broadcasts(tx)
when it mines a block b = [s, x , i , ctr] such that tx ∈ x . Furthermore,
we assume that parties update their state based on the transactions
submitted by the users. A party ab-delivers(tx) each valid non-delivered
transaction contained in a block in the K -prefix of its main chain. The
order in which the ab-delivery occurs is according to the natural order
defined by blocks in the chain and transactions inside the blocks. The
validity of a transaction is performed according to the external validity
predicate V .

Theorem 12. The Medium protocol implements atomic broadcast.

Proof. We assume an (ε, λ)-typical execution. We structure the proof
property by property:

Validity: Assume that an honest party Pi ab-broadcasts(tx). By defi-
nition of ab-broadcast(tx), Pi mined a block b = [s, x , i , ctr] such
that tx ∈ x . If b eventually becomes part of the K -prefix of the
main chain of Pi , it ab-delivers(tx), and the validity property is sat-
isfied. However, b may not become part of such K -prefix. However,
The Fresh block property (Definition 16, Theorem 11) implies that
at any round r , there exists an honest block mined after round r
that becomes part of the K -prefix of every party, in particular Pi .
Since honest parties reinsert transactions included in the blocks
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that are not part of the main chain, transaction tx is eventually
included in a block that becomes part of the K -prefix of the main
chain of Pi . Thus, Pi eventually ab-delivers(tx).

Agreement: Assume that an honest party ab-delivers(tx) in round r .
By definition, there exists a block b = [s, x , i , ctr] such that tx ∈ x
in the K -prefix of the main chain Ci of Pi , let us denote this prefix
by C . Consider an honest party Pj with main chain Cj . The
common prefix property (Definition 15, Theorem 10) guarantees

that C = C
dK
i � Cj for Cj the main chain of party Pj in any round

r ′ ≥ r . The normalized tree weight growth property (Definition 13,
Theorem 7) implies the weight of any block b′ that remains in C
increases at least τ · s after s rounds. Apply the normalized tree
weight growth property to block b, note that the common prefix
property implies that b remains in the main chain of party Pj .
The weight of block b in the view of Pj eventually surpasses K .
Thus, Pj eventually ab-delivers transaction tx, and the agreement
property is satisfied.

Integrity: Given a transaction tx in a block in the K -prefix of the main
chain of party Pi , transactions tx is only ab-delivered if it has not
previously been ab-delivered and it has been submitted by a user.
We conclude that the integrity property is satisfied.

Total order: Given two honest parties Pi , Pj such that both ab-deliver
transactions tx and tx′. Party Pi ab-deliver tx and tx′ because
they are contained in a block in the K -prefix of its main chain.
Assume that Pi ab-delivers(tx) in round ri and Pj does in round
rj ≥ ri , denote Ci and Cj to be the main chain of Pi and Pj in the
respective rounds. The common prefix property (Definition 15,

Theorem 10) implies that C
dK
i � Cj . Furthermore, since trans-

actions are ab-delivered according to the natural order defined by
the chain, Pi delivers tx′ before tx if and only if tx′ occurs before

tx in C
dK
i . Since C

dK
i � Cj the same applies to Pj . We conclude

that both Pi and Pj ab-deliver tx and tx′ in the same order. Thus,
the total order property is satisfied.

External validity: Honest parties only ab-deliver transactions that
satisfy the validity predicate V . Thus, the external validity prop-
erty is satisfied.

Since an execution (ε, λ)-typical with all but negligible probability (The-



3.7 Throughput 55

orem 1), we conclude that Medium implements atomic broadcast.

Note that since both Nakamoto consensus and GHOST can be consid-
ered special cases of the Medium protocol, Theorem 12 serves as a proof
that Nakamoto consensus and GHOST implement atomic broadcast.

3.7 Throughput

The particular characteristics of Nakamoto consensus, GHOST, and
Medium allow to compare the throughput of these protocols in a unified
and simplified manner. Namely, all protocols select one main chain as
the correct one and ignore every block that is not part of it.

Bagaria et al. [16] show that for Nakamoto consensus, throughput is
bounded by a security constraint which ensures that the malicious chain
cannot grow faster in expectation than the honest main chain,

α(1− ψf ) > β. (3.5)

The variable ψf stands for the probability that a block forks, i.e. the
probability that a successful round is not uniquely successful. With-
out this constraint,, an adversary would be able to build a secret chain
that eventually becomes longer than the main chain of any honest party.
It is clear that the throughput of the Nakamoto consensus protocol is
limited when this probability is small. A low forking probability is cor-
related with a low mining ratio (number of blocks mined per unit of
time). Therefore, Nakamoto consensus’ throughput is limited by this
constraint.

In the case of Medium, since the weight of a block increases exponentially
with its depth in the tree, one might suspect that the security constraint
is the same as in Nakamoto consensus. However, this is not exactly the
case.

On the one hand, if a hypothetical adversary had access, for unlimited
time, to some set of corrupted parties, the above constraint (3.5) still
applies. The reason for this is that despite the contribution of the forked
blocks, the secret chain of the adversary becomes at some point long
enough to compensate for this.
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On the other hand, if we consider a more realistic scenario, in which the
adversary is allowed to perform this attack for some set of consecutive
rounds rounds S only, the result is slightly different.

Lemma 13. The expected weight of a subtree with N blocks and depth
`, starting at depth `0 produced by honest parties running the Medium
protocol is N

`

∑`
i=1 ci+`0 .

Proof. When honest parties run the protocol, the main chain is always
the longest and they only split mining power when a fork occurs. In a
given round, the probability of multiple honest parties mining is con-
stant. If all parties mine on a chain at depth d , the probability that
there are multiple blocks mined at depth d is given by this constant.
When only honest parties mine, after a successful round parties always
increase the depth they are mining at, thus at every depth the proba-
bility of there being multiple blocks is constant.

A subtree of depth ` has at least weight
∑`

i=1 ci+`0 , the tree is rooted
at depth `0. The rest of the blocks, in total N − `, can be at any depth
in the subtree, therefore they follow a uniform distribution. This means
that the expected weight is N−`

`

∑`
i=1 ci+`0 for these blocks, adding this

to the weight of the previous blocks gives us the expected weight of the
subtree.

From now on, assume that the adversary builds a secret chain after
some honest block b0, and all the weights are normalized by cdepth(b0).
Writing s = |S |, the expected value of honest (malicious) blocks in a set
of consecutive rounds S is αs (βs, respectively). The relative weight of
this secret chain (Cs) is

dβse∑
i=1

ci =
c(cdβse − 1)

c − 1
' c(cβs − 1)

c − 1
.

Regarding the honest subtree, its expected number of blocks is αs and
its depth αs(1−ψf ), since a block does not fork, and increases the depth
of the subtree, with probability 1−ψf ). Using Lemma 13, the expected
weight of this subtree can be written as
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bαsc
bαs(1− ψf )c

bαs(1−ψf )c∑
i=1

ci ≥ αs

αs(1− ψf )

bαs(1−ψf )c∑
i=1

ci

≥ 1

(1− ψf )

bαs(1−ψf )c∑
i=1

ci

>

bbαs(1−ψf )cc∑
i=1

ci ≥ c(cbαs(1−ψf )c − 1)

c − 1

' c(cαs(1−ψf ) − 1)

c − 1
>

c(cβs − 1)

c − 1
.

The last inequality follows from (3.5). Hence, we conclude that even
given some probability of a fork ψf , an adversary is more likely to succeed
attacking Nakamoto consensus than Medium. This implies that, at the
same level of security, Medium can tolerate higher mining ratio.

Furthermore, we run simulations of the throughput of Medium for differ-
ent values of c and compare this with Nakamoto consensus and GHOST.
The results are shown in Figure 3.2. GHOST achieves a higher ratio of
honest blocks than both Medium and Nakamoto consensus; however,
this has to be contrasted with GHOST’s susceptibility to a balance at-
tack, as discussed in the next section.

3.8 Analysis of a balance attack

We first describe the details of the attack that we consider. It is struc-
tured as follows, with details shown in Algorithm 2:

1. The adversary cuts the communication between two sets of par-
ties P1 and P2 with approximately equal hashing power. This
partitions the network in two.

2. The honest parties continue running the protocol for τ rounds,
but only receive blocks produced within their own partition. The
parties build independent subtrees in each partition.



58 Medium: A bridge from Nakamoto to GHOST

Figure 3.2. The fraction of honest blocks in the main chain depending
on the number of corrupted parties, with fixed mining ratio such that
npq = 1. The adversary’s strategy is to build a heavier secret chain
during eight rounds and to release this afterwards. The throughput of
Medium (M) is shown for coefficients c of about 5, 1.1, and 1.0001 (the
exact values are 10

√
10001521, 100

√
10001521, and 100000

√
10001521, i.e., n-

th roots of a prime according to Section 3.4.2). Throughput is higher
with smaller values of c, and the black line corresponds to GHOST
(almost overlapping Medium for c ≈ 5, and the red line corresponds to
Nakamoto consensus (almost overlapping with Medium for c ≈ 1.0001).
As expected, Medium lies between GHOST and Nakamoto consensus.



3.8 Analysis of a balance attack 59

3. During these τ rounds, the adversary divides its hashing power
between the partitions. Every block produced by the adversary is
added to a bank of reserve blocks, B1 or B2, in the corresponding
partition.

4. After τ rounds, the adversary enables communication among all
parties again and tries to balance the two trees. This means that it
releases blocks from the banks (or freshly mined blocks) with the
goal of preventing that the parties agree on the same main chain
across the former partitions. Notice that every block released like
this may be broadcast selectively, so that it is only received by
some honest parties initially. Even if the adversary may not be
able to perfectly balance the trees with this strategy, it can release
blocks to make one tree heavier than the other only in the local
view of the parties in one partition.

5. Once the adversary runs out of blocks in the banks, the attack is
over and the adversary cannot further balance the trees. Eventu-
ally, the honest parties converge on one subtree and on a single
chain.

Simulations of the resistance of the Medium protocol against this attack
are shown in Figure 3.3. The figure shows for how long the adversary can
keep the fork alive and thus prevent the parties from agreeing after the
partition has healed. Since deeper blocks weigh more, the adversarial
strategy is to mine as deeply as possible in each partition. The duration
of the fork in Medium can be almost an order of magnitude lower than
in GHOST and comparable with Nakamoto consensus.

Theorem 14. Under the assumptions of an (ε, λ)-typical execution2,
the duration of the balance attack on Medium is bounded by Rλ rounds,
where where R is the solution of

bτ =
(cR(1+ε)λβ − 1)

(c(1+ε)λβ − 1)
.

bτ is the sum of the number of blocks the adversary has in the banks
after τ rounds, before he has released blocks to balance the fork.

Furthermore, if τ ≥ λ then bτ < (1 + ε)pqtτ and the bound can be

2The properties showed in Section 3.5 may not hold due to the partition of the
network. However, the conditions of (ε, λ)-typical execution still hold.
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Algorithm 2 DBLP:conf/dsn/natolig17 attack of τ rounds

Partition the network in two parts for τ rounds.
Denote the trees in each partition by T1 and T2.
Assume T1 and T2 are rooted at blocks b1 and b2.
The adversary splits his mining power between partitions
Adversary creates banks B1 and B2.
` denotes the length of the main chain in subtree Ti

n ← 0 // number of rounds after the first τ
14: while true do
15: if ∃i , j : [ω(bi) > ω(bj )] ∨ [ω(bi) = ω(bj ) ∧ `(Ti) > `(Tj )] do
16: ∆← ω(bi)− ω(bj )
17: if ∃B′ ⊆ Bj : [ω(B′) ≥ ∆] ∧ [`(Tj ∪ B′) > `(Ti ∪ B′)] do
18: Release subset B′ of minimal weight to partition j
19: else //adversary lost
20: return
21: n ← n + 1
22: Honest parties and adversary mine on their respective local view

rewritten as

R <
logc [(1 + ε)pqtτ(c(1+ε)λβ − 1) + 1]

(1 + ε)λβ
.

Proof. The best case for the adversary is when after each round the two
subtrees are equally balanced, in weight and length. It is clear that
after each uniquely successful round the tree becomes unbalanced, and
thus the adversary is forced to release at least one block to balance the
subtrees. For any set of consecutive round of size at least λ, it holds
that Z (λ) < Y (λ), thus for every λ consecutive rounds there is at least
one round where the adversary has to broadcast blocks from the bank.

We shall further show that the blocks in an adversary’s bank always
loose weight over time. We know that the length of the main chain of a
subtree i increases by one after a uniquely successful round, to balance
the other subtree j the adversary has to release blocks of equivalent or
greater weight than the weight of the newly mined block in subtree i . If
the adversary were to release blocks that balance this block but decrease
the length of the main chain in subtree j it has to compensate a greater
weight next time an honest party mines on i as the honest parties in j
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Figure 3.3. Simulations of how long a fork can be perpetuated by the
adversary in the different protocols. A fork is created and maintained for
100 rounds, during which two partitions of the network are isolated from
each other. The adversary compensates the weight of the heavier fork
greedily, using the smallest number of blocks from its bank. This means
that it more likely releases “heavier” blocks. The simulation shows four
different values of the total mining ratio pqn. Again, we show Medium
for c of about 5, 1.1, and 1.0001 (as in Figure 3.2). Notice that with
c close to 1, the duration of the fork in Medium is almost an order
of magnitude lower than in GHOST and comparable with Nakamoto
consensus.

mine at a much lower depth. (Furthermore, if c is chosen so that blocks
of a lower depth cannot fully balance blocks of a higher depth, as soon
as the adversary releases blocks from the bank that are less deep in the
chain it can longer fully balance the two chains and starts to be force to
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release blocks in each subsequent round, regardless if an honest mines,
meaning an even faster decrease of the bank and the attack failing even
earlier.) Thus, we assume the main chains increase in length in any
round that the adversary can balance them without using the bank, and
the chain thus grow by Z (λ) is λ rounds. Furthermore, we assume that
the adversary can use it’s bank in the first uniquely successful round
before it has lost weight. After Rλ rounds the adversary have to release

R−1∑
i=0

c(1+ε)λβi =
(cR(1+ε)λβ − 1)

(c(1+ε)λβ − 1)

blocks from the bank.

If τ ≥ λ, the new bounds follow from the conditions of (ε, λ)-typical
execution applied to the first τ rounds.

Theorem 14 shows that the duration of the attack is bounded. However,
the bound may not be tight in almost every execution.

3.9 Protocol details

We follow the approach of Kiayias and Panagiotakos [69] and use three
external functions to describe our protocol, V(·), I(·) and R(·). We call
these functions the input validation predicate, the input contribution
function and the chain reading function respectively. As in GHOST and
Nakamoto consensus, V(·) controls that the content of a block fulfills spe-
cific criteria. We recall that a block is represented in the form [s, x , i , ctr].
V(·) only returns true if all criteria hold for a block (the contents of a
block are given in the x variable). The I(·) function in its simplest form
tells a party what contents should be inserted into the next block to
be mined. It receives as input a tuple, (state,M,C , round,RECEIVEi),
where state stands for state data,M for a set of transactions inputed by
the users of the protocol and maintained by the party, C for the main
chain, and messages received RECEIVEi . Finally, the chain reading
function R(·) reads the contents of the main chain C . The BROAD-
CAST() function is the way a party Pi can send a message via the
diffusion functionality to all other parties.



3.9 Protocol details 63

Algorithm 3 Medium protocol, as run by honest party i .

23: T ← genesis
24: state← ε
25: for round = 1, 2, 3... do
26: [Tnew , b]← update(T ,blocks found in RECEIVEi)
27: C ← Medium(Tnew , ωc) // ωc is the global weight function
28: [state, x ]← I(state,M,C , round,RECEIVEi)
29: Cnew ← POW(x , i ,C )
30: if T 6= Tnew then
31: BROADCAST(b)
32: T ← Tnew

33: if C 6= Cnew then
34: T ← update(Tnew ,head(Cnew ))
35: BROADCAST(head(Cnew ))
36: output R(C ) // outputs the list of transactions in the chain

Algorithm 4 PoW function, with input (x , i ,C ), or block content x ,
party i and main chain C . This function parameterized by q , D , and
cryptographic hash functions G(·) and H(·).
37: function PoW(x , i ,C )
38: if C = ε then
39: s ← 0
40: else
41: [s ′, x ′, i ′, ctr′]← head(C )
42: s ← H(ctr′,G(s ′, x ′, i ′))
43: ctr← 1
44: b← ε
45: h ← G(s, x , i)
46: while (ctr ≤ q) do
47: if (H(ctr, h) < D) then
48: b← [s, x , i , ctr]
49: break
50: ctr← ctr + 1
51: return C ||B
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Algorithm 5 Tree update function, with input a block tree T and a
set of blocks b. Further parameters are q , D , G(·) and H(·).
52: function update(T , b)
53: (b′, b∗)← (∅, ∅)
54: for [s ′, x ′, i ′, ctr′] in b do
55: if V(x ′) then // input x fulfills validation criteria
56: b′ ← b′ ∪ [s ′, x ′, i ′, ctr′]
57: for [s, x , i , ctr] in T do
58: for [s ′, x ′, i ′, ctr′] in b′ do
59: if s ′ = H(ctr,G(s, x , i))
60: ∧H(ctr′,G(s ′, x ′, i ′)) < D ∧ ctr′ ≤ q then
61: // [s ′, x ′, i ′, ctr′] is valid and extends the tree
62: insert [s ′, x ′, i ′, ctr′] into T
63: as descendent of [s, x , i , ctr]
64: b∗ ← b∗ ∪ [s ′, x ′, i ′, ctr′]
65: return [T , b∗]

3.10 Conclusion

Medium is a family of protocols that implement a robust transaction
ledger. Medium shares interesting properties with the well-known
Nakamoto consensus and GHOST protocols. More precisely, Medium
achieves better throughput than Nakamoto consensus, but not better
than GHOST. However, with a proper choice of the weight coefficient c,
Medium tolerates a balance attack some orders of magnitude better
than GHOST. We conclude that Medium is a protocol that lies between
GHOST and Nakamoto consensus and inherits the good properties
from either side.

Future work may refine the security analysis of Medium, as the prop-
erties established here may not be tight. Alternatively, a Markov-chain
based analysis [72] could be used. Another extension would be to con-
sider dynamic sets of parties [35].



Chapter 4

An analysis of Avalanche
consensus

Losto Caradhras, sedho, hodo,
nuitho i ’ruith!

Gandalf the Grey

4.1 Introduction

The Avalanche blockchain with its fast and scalable consensus protocol
is one of the most prominent alternatives to first-generation networks
like Bitcoin and Ethereum that consume huge amounts of energy. Its
AVAX token is ranked 22nd according to market capitalization in Octo-
ber 2023 [41]. Avalanche offers a protocol with high throughput, low la-
tency, excellent scalability, and a lightweight client. In contrast to many
well-established distributed ledgers, Avalanche is not backed by proof of
work. Instead, Avalanche bases its security on a deliberately metastable
mechanism that operates by repeatedly sampling the network, guiding
the honest parties to a common output. This allows Avalanche to reach
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a peak throughput of up to 20’000 transactions per second with a latency
of less than half a second [99].

This novel mechanism imposes stricter security constraints on Avalanche
compared to other networks. Traditional Byzantine fault-tolerant con-
sensus tolerates up to a third of the parties to be corrupted [91] and
proof-of-work protocols make similar assumptions in terms of mining
power [56, 54]. Avalanche, however, can tolerate only up to square root
of the parties behaving maliciously. Furthermore, the transactions in
the “exchange chain” of Avalanche (see below) are not totally ordered,
in contrast to most other cryptocurrencies, which implement a form of
atomic broadcast [27]. As the protocol is structured around a directed
acyclic graph (DAG) instead of a chain, it permits some parallelism.
Thus, the parties may output the same transactions in a different order,
unless these transactions causally depend on each other. Only the latter
must be ordered in the same way.

The consensus protocol of a blockchain is of crucial importance for its
security and for the stability of the corresponding digital assets. Analyz-
ing such protocols has become an important topic in current research.
Although Bitcoin appeared first without formal arguments, its security
has been widely understood and analyzed meanwhile. The importance
of proving the properties of blockchain protocols has been recognized for
a long time [30].

However, there are still protocols released today without the backing of
formal security arguments. The Avalanche whitepaper [99] introduces a
family of consensus protocols and offers rigorous security proofs for some
of them. Yet the Avalanche protocol itself and the related Snowman
protocol, which power the platform, are not analyzed. Besides, several
key features of this protocol are either omitted or described only vaguely.

In this chapter, we explain the Avalanche consensus protocol in detail.
We describe it abstractly through pseudocode and highlight features that
may be overlooked in the whitepaper (Sections 4.3–4.4). Furthermore,
we use our insights to formally establish safety properties of Avalanche.
Per contra, we also identify a weakness that affects its liveness. In par-
ticular, Avalanche suffers from a vulnerability in how it accepts transac-
tions that allows an adversary to delay targeted transactions by several
orders of magnitude (Section 4.5), which may render the protocol useless
in practice. The problem results from dependencies that exist among the
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votes on different transactions issued by honest parties; the whitepaper
does not address them. The attack may be mounted by a single ma-
licious party with some insight into the network topology. Finally, we
suggest a modification to the Avalanche protocol that would prevent
our attacks from succeeding and reinstantiate liveness of the protocol
(Section 4.6). This version, which we call Glacier, restricts the sam-
pling choices in order to break the dependencies, but also eliminates the
parallelism featured by Avalanche.

The vulnerability has been acknowledged by the Avalanche developers.
The deployed version of the protocol differs however from the protocol
in the whitepaper in a crucial way. It implements another measure that
prevents the problem, as we explain as well (in Section 4.8).

4.2 Related work

Despite Avalanche’s tremendous success, there is no independent re-
search on its security. Recall that Avalanche introduces the “snow fam-
ily” of consensus protocols based on sampling [99, 14]: Slush, Snowflake,
and Snowball. Detailed proofs about liveness and safety for the snow-
family of algorithms are given. The Avalanche protocol for asset ex-
change, however, lacks such a meticulous analysis. The dissertation of
Yin [110] describes Avalanche as well, but does not analyze its security
in more detail either.

Recall that Nakamoto introduced Bitcoin [88] without any formal analy-
sis. This has been corrected by a long line of research, which established
the conditions under which it is secure (e.g., by Garay, Kiayias, and
Leonardos [56, 57] and by Eyal and Sirer [54]).

The consensus mechanisms that stand behind the best-known cryptocur-
rencies are meanwhile properly understood. Some of them, like the
proof-of-stake protocols of Algorand [58] and the Ouroboros family that
powers the Cardano blockchain [70, 46], did apply sound design prin-
ciples by first introducing and analyzing the protocols and only later
implementing them.

Many others, however, have still followed the heuristic approach: they
released code first and were confronted with concerns about their secu-
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rity later. This includes Ripple [12, 8] and NEO [108], in which several
vulnerabilities have been found, or Solana, which halted multiple times
in 2021–2022. Stellar comes with a formal model [81], but it has also
been criticized [73].

Protocols based on DAGs have potentially higher throughput than
those based on chains. Notable examples include PHANTOM and
GHOSTDAG [103], the Tangle of IOTA [95], Conflux [80], and oth-
ers [63]. However, they are also more complex to understand and
susceptible to a wider range of attacks than those that use a chain.
Relevant examples of this kind are the IOTA protocol [83], which has
also failed repeatedly in practice [107] and PHANTOM [103], for which
a vulnerability has been shown [79] in an early version of the protocol.

Acknowledgement. The material contained in this chapter corre-
sponds to the work ‘When Is Spring Coming? A Security Analysis of
Avalanche Consensus’ [10] published at Opodis22.

4.3 Model

4.3.1 Avalanche platform

We briefly review the architecture of the Avalanche platform [14]. It
consists of three separate built-in blockchains, the exchange or X-Chain,
the platform or P-Chain, and the contract or C-Chain. Additionally
there are a number of subnets. In order to participate in the protocols
and validate transactions, a party needs to stake at least 2’000 AVAX
(about 24’000 USD in November 2023 [41]).

The exchange chain or X-Chain secures and stores transactions that
trade digital assets, such as the native AVAX token. The X-Chain is
also used for cross-chain operations between P-Chain and C-Chain .
This chain implements a variant of the Avalanche consensus protocol
that only partially orders the transactions and that is the focus of this
work. All information given here refers to the original specification of
Avalanche [99].
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The platform chain or P-Chain secures platform primitives; it manages
all other chains, designates parties to become validators or removes them
again from the validator list, and creates or deletes wallets. The P-Chain
implements the Snowman consensus protocol: this is a special case of
Avalanche consensus that always provides total order, like traditional
blockchains. It is not explained in the whitepaper and we do not describe
it further here.

The C-Chain hosts smart contracts and runs transactions on an
Ethereum Virtual Machine (EVM). It also implements the Snowman
consensus protocol of Avalanche and totally orders all transactions and
blocks.

4.3.2 Communication and adversary

We consider a Byzantine adversary (Section 2.1) in the exponential delay
communication model (Section 2.2.3), which we briefly recall below.

Parties have access to two low-level primitives: point to point links to
send and receive a messages. And a gossip primitive to gossip and hear
messages. Messages are delivered according to an exponential distribu-
tion, that is, the amount of time between the sending and the receiving
of a message follows an exponential distribution with unknown param-
eter to the parties. However, messages from corrupted parties are not
affected by this delay and will be delivered as fast as the adversary
decides.

4.3.3 Abstractions

Since Avalanche, as introduced in its whitepaper [99] does not batch
transactions into blocks, in this chapter we make a distintion between
payload transaction and transaction. The payload transactions of
Avalanche are submitted by users and built according to the unspent
transaction output (UTXO) model of Bitcoin [88]. A payload trans-
action tx contains a set of inputs, a set of outputs, and a number of
digital signatures. Every input refers to a position in the output of a
transaction executed earlier; this output is thereby spent (or consumed)
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and distributed among the outputs of tx. The balance of a user is given
by the set of unspent outputs of all transactions (UTXOs) executed
by the user (i.e., assigned to public keys controlled by that user). A
payload transaction is valid if it is properly authenticated and none of
the inputs that it consumes has been consumed yet (according to the
view of the party executing the validation).

Blockchain protocols are generally formalized as atomic broadcast, since
every party running the protocol outputs the same ordered list of trans-
actions. However, the transaction sequences output by two different par-
ties running Avalanche may not be exactly the same because Avalanche
allows more flexibility and does not require a total order. Avalanche
only orders transactions that causally depend on each other. Thus, we
abstract Avalanche as a generic broadcast (Definition 3) according to
Pedone and Schiper [93], we recall the definition below.

Definition 3 (Generic broadcast). A protocol solves generic broad-
cast with validity predicate V and relation ∼ if it satisfies the following
conditions, except with negligible probability:

Validity: If a honest party g-broadcasts a transaction tx, then it even-
tually g-delivers(tx).

Agreement: If a honest party delivers a transaction tx, then all honest
parties eventually deliver(tx).

Integrity: For any transaction tx, every honest party delivers(tx) at
most once, and only if it was submitted by some user.

Partial order: If honest parties Pi and Qi both deliver transactions tx
and tx′ such that tx ∼ tx′, then Pi delivers(tx) before it delivers(tx′)
if and only if Pj delivers(tx) before it delivers(tx′).

External validity: If a honest party delivers a transaction tx, then
V (tx) = true.

The instantiation of the equivalence relationship and the validity pred-
icate are specified in the following definitions.

Definition 18 (Related). Two payloads tx and tx′ are said to be re-
lated, denoted by tx ∼ tx′, if tx consumes an output of tx′ or vice versa.

Definition 19 (External validity). A payload tx satisfies the validity
predicate of Avalanche if all the cryptographic requirements are fulfilled
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and there is no other delivered payload with any input in common with
tx.

For the remainder of this work, we fix the external validation predi-
cate V to check the validity of payloads according to the logic of UTXO
mentioned before.

In our context, broadcasting corresponds to submitting a payload trans-
action to the network, whereas delivering corresponds to accepting a
payload and appending it to the ledger.

The Avalanche protocol augments payload transactions to protocol
transactions. A protocol transaction additionally contains a set of
references to previously executed protocol transactions, together with
further attributes regarding the execution. A protocol transaction in
the implementation contains a batch of payload transactions, but this
feature of Avalanche is ignored here, since it affects only efficiency.
Throughout this chapter, transaction refers to a protocol transaction,
unless the opposite is indicated, and payload means simply a payload
transaction. Protocol transactions are denoted by T and payload by tx.

A transaction references one or multiple previous transactions, unlike
longest-chain protocols, in which each transaction has a unique par-
ent [88]. An execution of the Avalanche protocol will therefore create a
directed acyclic graph (DAG) that forms its ledger data structure.

Given a protocol transaction T , all transactions that it references are
called the parents of T and denoted by parents(T ). The parents of T
together with the parents of those, recursively, are called the ancestors
of T , denoted by ancestors(T ). Analogously, the transactions that have
T as parent are called the children of T and are denoted by children(T ).
Finally, the children of T together with their recursive set of children
are called the descendants of T , denoted by descendants(T ).

Note that two payload transactions tx1 and tx2 in Avalanche that con-
sume the same input are not related, unless the condition of Defini-
tion 18 is fulfilled. However, two Avalanche payloads consuming the
same output conflict. For each transaction T , Avalanche maintains a
set conflictSet[T ] of transactions that conflict with T .
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Figure 4.1. The UTXO model, conflicting transactions, and related
transactions in Avalanche. The eight transactions are labeled T1, ...,T8.
Each transaction is divided into three parts: the left part is a tag Ti

to identify the transaction, the middle part is its set of inputs, and the
right part is its set of outputs. The solid arrows indicate the references
added by the protocol, showing the parents of each transaction. For
instance, T5 references T2 and T3 and has them as parents. The dashed
double-arrows indicate related transactions. For example, T5 and T2 are
related because u3 is created by T2 and consumed by T5. The conflict
sets are denoted by the shaded (red) rectangles. As illustrated, conflict
sets can be symmetric, as for T4 and T5, where the conflict sets are
identical (conflictSet[T4] = conflictSet[T5]) or asymmetric, as for T6,
T7, and T8 where conflictSet[T6] ∪ conflictSet[T7] = conflictSet[T8].
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4.4 A description of the Avalanche protocol

Avalanche’s best-known quality is its efficiency. Permissionless consen-
sus protocols, such as those of Bitcoin and Ethereum, are traditionally
slow, suffer from low throughput and high latency, and consume large
amounts of energy, due to their use of proof-of-work (PoW). Avalanche
substitutes PoW with a random sampling mechanism that runs at net-
work speed and that has every party adjust its preference to that of a
(perceived) majority in the system. Avalanche also differs from more
traditional blockchains by forming a DAG of transactions instead of a
chain.

4.4.1 Overview

Avalanche is structured around its polling mechanism. In a nutshell,
party Pi repeatedly selects a transaction T and sends a query about it
to k randomly selected parties in the network. If a majority of them send
a positive reply, the query is successful and the transaction contributes to
the security of other transactions. Otherwise, the transaction is still pro-
cessed but does not contribute to the security of any other transactions.
Then the party selects a new transaction and repeats the procedure. A
bounded number of such polls may execute concurrently. Throughout
this work the terms “poll” and “query” are interchangeable.

In more detail, the protocol operates like this. Through the gossip func-
tionality, every party is aware of the network membership N . A party
locally stores all those transactions processed by the network that it
knows. The transactions form a DAG through their references as de-
scribed in the previous section.

Whenever a user submits a payload transaction tx to the network, the
user actually submits it through a party Pi . Then, Pi randomly selects
a number of leaf nodes from a part of the DAG known as the virtuous
frontier ; these are the leaf nodes that are not part of any conflicting
set. Party Pi then extends tx with references to the selected nodes
and thereby creates a transaction T from the payload transaction tx.
Next, Pi sends a Query message with T to k randomly, according to
stake, chosen parties in the network and waits for their replies in the
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form of Vote messages. When a party receives a query for T and if
T and its ancestors are preferred, then the party replies with a positive
vote. The answer to this query depends exclusively on the status of T
and its ancestors according to the local view of the party that replies.
Moreover, the definition of preferred is non-trivial and will be explained
further below. If the polling party receives more than α > k

2 positive
votes, the poll is defined to be successful.

Every party Pi running the Avalanche protocol sorts transactions of its
DAG into conflict sets.

Definition 20 (Conflict set). The conflict set conflictSet[T ] of a given
transaction T is the set of transactions that have an input in common
with T (including T itself).

Note that even if two transaction T and T ′ consume one common
transaction output and thus conflict, their conflict sets conflictSet[T ]
and conflictSet[T ′] can differ, since T may consume outputs of further
transactions. (In Figure 4.1, for example, T8 conflicts with T6 and T7,
although T7 conflicts with T8 but not with T6.)

Decisions on accepting transactions are made as follows. For each of
its conflict sets, a party selects one transaction and designates it as
preferred. This designation is parametrized by a confidence value d [T ] of
T , which is updated after each transaction query. If the confidence value
of some conflicting transaction T ∗ surpasses d [T ], then T ∗ becomes the
preferred transaction in the conflict set.

It has been shown [59, 99] that regardless of the initial distribution of
such confidence values and preferences of transactions, this mechanism
converges. For the transactions of one conflict set considered in isolation,
this implies that all honest parties eventually prefer the same transaction
from their local conflict sets. (The actual protocol has to respect also
dependencies among the transactions; we return to this later.)

To illustrate this phenomenon, assume that there exist only two trans-
actions T and T ′ and that half of the parties prefer T , whereas the
other half prefers T ′. This is the worst-case scenario. Randomness in
sampling breaks the tie. Without loss of generality, assume that parties
with preferred transaction T are queried more often. Hence, more par-
ties consider T as preferred as a consequence. Furthermore, the next
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time when a party samples again, the probability of hitting a party that
prefers T is higher than hitting one that prefers T ′. This is the “snow-
ball” effect that leads to ever more parties preferring T until every party
prefers T .

This preferred transaction is the candidate for acceptance and incorpo-
ration into the ledger. The procedure is parametrized by a confidence
counter for each conflict set, which reflects the probability that T is
the preferred transaction in the local view of the party. The party in-
crements the confidence counter whenever it receives a positive vote to
a query on a descendant of T ; the counter is reset to zero whenever
such a query obtains a negative vote. When this counter overcomes a
given threshold, T is accepted and its payload is added to the ledger.
We now present a detailed description of the protocol and refer to the
pseudocode in Algorithm 6–9.

4.4.2 Data structures

The information presented here has been taken from the whitepaper [99],
the source code [15], or the official documentation [14].

Notation. We introduce the notation used in the remaining sections
including the pseudocode. For a variable a and a set S, the notation

a
R← S denotes sampling a uniformly at random from S. We frequently

use hashmap data structures: A hashmap associates keys in a set K with
values in V and is denoted by HashMap[K → V]. For a hashmap F , the
notation F [K ] returns the entry stored under key K ∈ K; referencing
an unassigned key gives a special value ⊥.

We make use of timers throughout the protocol description. Timers are
created in a stopped state. When a timer has been started, it produces
a timeout event once after a given duration has expired and then stops.
A timer can be (re)started arbitrarily many times. Stopping a timer is
idempotent.

Global parameters. We recall that we model Avalanche as run by
an immutable set of parties N of size n. There are more three global
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parameters: the number k of parties queried in every poll, the majority
threshold α > k

2 for each poll, and the maximum number maxPoll of
concurrent polls.

Local variables. Queried transactions are stored in a set Q, the sub-
set R ⊂ Q is defined to be the set of repollable transactions, a feature
that is not explained in the original whitepaper [99]. The number of
active polls is tracked in a variable conPoll. The parents of a transac-
tion are selected from the virtuous frontier, VF , defined as the set of all
non-conflicting transactions that have no known descendant and whose
ancestors are preferred in their respective conflict sets. A transaction is
non-conflicting if there is no transaction in the local DAG spending any
of its inputs. For completeness, we recall that conflicting transactions
are sorted in conflictSet[T] formed by transactions that conflict with T ,
i.e., transactions which have some input in common with T .

Transactions bear several attributes related to queries and transaction
preference. A confidence value d [T ] is defined to be the number of posi-
tive queries of T and its descendants. Given a conflict set conflictSet[T ],
the variable pref[conflictSet[T ]], called preferred transaction, stores the
transaction with the highest confidence value in conflictSet[T ]. The vari-
able last[conflictSet[T ]] denotes which transaction was the preferred one
in conflictSet[T ] after the most recent update of the preferences. The
preferred transaction is the candidate for acceptance in each conflict
set, the acceptance is modeled by a counter cnt[conflictSet[T ]]. Once
accepted, a transaction remains the preferred one in its conflict set for-
ever.

4.4.3 Detailed description

Each transaction does through three phases during the consensus proto-
col: query of transactions, reply to queries, and update of preferences.
All of the previous phases call the same set of functions.

Functions. The function updateDAG(T ) sorts the transactions in the
corresponding conflict sets. The function preferred(T ) (L 163) outputs
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true if T is the preferred transaction in its conflict set and false oth-
erwise. The function stronglyPreferred(T ) (L 165) outputs true if and
only if T , and everyone of its ancestors is the preferred transaction in
its respective conflict set.

The function acceptable(T ) (L 167) determines whether T can be ac-
cepted and its payload added to the ledger or not. Transaction T is
considered accepted when one of the two following conditions is fulfilled:

• T is the unique transaction in its conflict set, all the transactions
referenced by T are considered accepted, and cnt[conflictSet[T ]] is
greater or equal than β1.

• cnt[conflictSet[T ]] is greater or equal than β2.

Finally, the function updateRepollable() (L 171) updates the set of re-
pollable transactions. A transaction T is repollable if T has already
been accepted; or all its ancestors are preferred, a transaction in its con-
flict set has not already been accepted, and no parent has been rejected

Transaction query. A party in Avalanche progresses only by query-
ing transactions. In each of these queries, party Pi selects a random
transaction T (L 98), from the set of transactions that Pi has not pre-
viously queried by Pi . Then, it samples a random subset S[T ] ⊂ N of k
parties from the set of parties running the Avalanche protocol and sends
each a [query,T ] message. In the implementation of the protocol, Pi

performs numPoll simultaneous queries. The repoll functionality (L 98–
113) consists of performing several simultaneous transactions. When Pi

does not know of any transaction that has not been queried, Pi queries
a transaction that has not been accepted yet. The main idea behind
this functionality is to utilize the network when this is not saturated.
The repoll functionality (L 98–113) constitutes one of the most notable
changes from Avalanche’s whitepaper [99].

Query reply. Whenever Pi receives a query message with transaction
T , party Pi replies with a message [vote, u,T , stronglyPreferred(T )]
containing the output of the binary function stronglyPreferred(T ) ac-
cording to its local view (L 165).
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Update of preferences. Party Pi collects the reply messages
[vote, v ,T , stronglyPreferred(T )], and counts the number of positive
votes. On the one hand, if the number of positive votes overcomes
the threshold α (L 118), the query is considered successful. In this
case party Pi loops over T and all its ancestors T ′, increasing the
confidence level d [T ′] by one. If T ′ is the preferred transaction in
its conflict set, then party Pi increases the counter for transaction
cnt[conflictSet[T ′]] by one. Subsequently, Pi checks whether T ′ has also
previously been the preferred transaction in its conflict set. And when
T ′ is not the preferred transaction according to the most recent query,
party Pi will set the counter to one (L 118–132), in order to ensure
that cnt[conflictSet[T ′]] correctly reflects the number of consecutive
successful queries of descendants of T ′.

On the other hand, if Pi receives more than k − α negative votes,
party Pi loops also over T and its ancestors, and sets their counters
cnt[conflictSet[T ′]] to zero as if to indicate that T ′ and the other trans-
actions should not be accepted yet. (L 133–138).

Acceptance of transactions. Party Pi accepts transaction T when
its counter cnt[conflictSet[T ]] reaches a certain threshold β1 or β2. If
T is the only transaction in its conflicting set and all its parents have
already been accepted, then Pi accepts T if cnt[conflictSet[T ]] ≥ β1,
otherwise Pi waits until the counter overcomes a higher value β2.

No-op transactions. The local DAG is modified whenever a poll is
finalized. In particular, only the queried transaction ans its ancestors
are modified. Avalanche makes use of no-op transactions to modify all
the transactions in the DAG. After finalizing a poll, party Pi queries the
network with all the transactions in the virtuous frontier whose state has
not been modified, in a sequential manner.

4.4.4 Life of a transaction

We follow an honest transaction T through the protocol. The user
submits the payload transaction tx to some party Pi , then Pi adds
references refs to the payload transaction, creating a transaction T =
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(tx, refs). These references point to transactions in the virtuous frontier
VF . Transaction T is then gossiped through the network and added
to the set of known transactions T (L 87–93). Party Pi may also hear
about new transactions through this gossip functionality. Whenever this
is the case, Pi add the transaction to its set of known transactions T
(L 94–97).

Party Pi eventually selects T to be processed. When this happens, Pi

samples k random parties from the network and stores them in S[T ].
Party Pi queries parties in S[T ] with T and starts a timer timeout[T ].
T is added to Q (L 98–113).

Parties queried with T reply with the value of the function
stronglyPreferred(T ) (L 165). This function answers positively

Algorithm 6 Avalanche (party Pi), state

Global parameters and state
66:N // set of parties
67: maxPoll ∈ N // maximum number of concurrent polls, default 4
68: k ∈ N // number of parties queried in each poll, default value 20
69:α ∈ {d k+1

2 e, ..., k} // majority threshold for queries, default 15
70: β1 ∈ N // threshold for early acceptance, default value 15
71: β2 ∈ N // threshold for acceptance, default value 150
72: T ← ∅ // set of known transactions
73:Q ⊂ T ← ∅ // set of queried transactions
74:R ⊂ Q ← ∅ // set of repollable transactions
75:D ⊂ T ← ∅ // set of no-op transactions to be queried
76: VF ⊂ Q ← ∅ // set of transactions in the virtuous frontier
77: conPoll ∈ N← 0 // number of concurrent polls performed
78: conflictSet : HashMap[T → 2T ] // conflict set
79: S : HashMap[T → N ] // set of sampled parties to be queried
80: votes : HashMap[T × N → {false,true}] // replies of queries
81: d : HashMap[T → N] // confidence value of a transaction
82: pref : HashMap[2T → T ] // preferred transaction among conflicts
83: last : HashMap[2T → T ] // preferred transaction in the last query
84: cnt : HashMap[2T → N] // counter for acceptance
85: accepted : HashMap[T → {false,true}] // transaction accepted
86: timer : HashMap[T → {timers}] // timer for a query
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Algorithm 7 Avalanche (party Pi), part 1

87: upon broadcast(tx) do
88: if V (tx) then
89: T ← (tx,VF) // up to a maximum number of parents
90: T ← T ∪ {T}
91: accepted[T ]← false
92: updateDAG(T )
93: gossip message [broadcast,T ]

94: upon hearing message [broadcast,T ] do
95: if T 6 ∈ T do
96: T ← T ∪ {T}
97: accepted[T ]← false

98: upon conPoll < maxPoll do
99: conPoll← conPoll + 1
100: if D 6= ∅ then // prefer no-op transactions
101: T ← least recent transaction in D
102: else if T \ Q 6= ∅ then // any not yet queried transaction

103: T
R← T \ Q

104: d[T ]← 0
105: else // take one queries transaction
106: updateRepollable()

107: T
R← R

108: S[T ]← sample(N \ {Pi}, k) // according to stake
109: send message [Query,T ] to all parties v ∈ S[T ]
110: D ← D ∪ {(⊥,VF \ {T})} // create a no-op transaction
111: start timer[T ] // duration ∆query

112: Q ← Q∪ {T}
113: updateDAG(T )

114:upon receiving message [Query,T ] from party Pj do
115: send message [Vote, u,T , stronglyPreferred(T )] to party Pj

116:upon receiving message [Vote, v ,T ,w ] such that v ∈ S[T ] do
117: votes[T , v ]← w // w ∈ {false,true}
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Algorithm 8 Avalanche (party Pi), part 2

118:upon ∃T ∈ T :
∣∣{v ∈ S[T ] | votes[T , v ] = true}

∣∣ ≥ α do
//query of T is successful

119: stop timer[T ]
120: votes[T , ∗]← ⊥ // remove all entries in votes for T
121: S[T ]← [ ] // reset S for T
122: d [T ]← d [T ] + 1
123: for T ′ ∈ ancestors(T ) do // all ancestors of T
124: d [T ′]← d [T ′] + 1
125: if d [T ′] > d [pref[conflictSet[T ′]]] then
126: pref[conflictSet[T ′]]← T ′

127: if T ′ 6= last[conflictSet[T ′]] then
128: last[conflictSet[T ′]]← T ′

129: cnt[conflictSet[T ′]]← 1
130: else
131: cnt[conflictSet[T ′]]← cnt[conflictSet[T ′]] + 1
132: conPoll← conPoll− 1

133:upon ∃T ∈ T :
∣∣{v ∈ S[T ] | votes[T , v ] = false}

∣∣ > k − α do
// query of T failed

134: stop timer[T ]
135: votes[T , ∗]← ⊥ // remove all entries in votes for T
136: S[T ]← [ ] // reset S for T
137: for T ′ ∈ ancestors(T ) do // all ancestors of T
138: cnt[conflictSet[T ′]]← 0

139:upon ∃T ∈ T such that acceptable(T) ∧ ¬accepted[T ] do
// T can be accepted

140: (tx, parents)← T
141: if V (tx) then
142: accepted[T ]← true
143: deliver tx

145:upon timeout from timer[T ] do // not enough votes received
146: Q ← Q \ {T}
147: votes[T , ∗]← ⊥ // remove all entries in votes for T
148: S[T ]← [ ] // do not consider more votes from this query
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Algorithm 9 Avalanche, auxiliary functions

149: function updateDAG(T )
150: VF ← set of non-conflicting leaves in the DAG
151: conflictSet[T ]← ∅
152: for T ′ ∈ T with a common input with T do
153: conflictSet[T ]← conflictSet[T ] ∪ {T ′}
154: conflictSet[T ′]← conflictSet[T ′] ∪ {T}
155: if conflictSet[T ] = {T} then // T is non-conflicting
156: pref[conflictSet[T ]]← T
157: last[conflictSet[T ]]← T
158: cnt[conflictSet[T ]]← 0
159: conflictSet[T ]← conflictSet[T ] ∪ {T}

160: function getParents(T )
161: (tx, parents)← T
162: return parents // set of parents stored in T

163: function preferred(T )

164: return T
?
= pref[conflictSet[T ]]

165: function stronglyPreferred(T )
166: return

∧
T ′ ∈ ancestors(T)

preferred(T ′)

167: function acceptable(T )
168: return

(∣∣conflictSet[T ]
∣∣ = 1 ∧ cnt

[
conflictSet[T ]

]
≥ β1

)∧
T ′ ∈ parents(T)

acceptable(T ′) ∧ ∨cnt
[
conflictSet[T ]

]
≥ β2

169: function isRejected(T )
170: return ∃T ′ ∈ T such that acceptable(T ′)

171: function updateRepollable()
172: R ← ∅
173: for T ∈ T do
174: if acceptable(T ) ∨

∧
T ′ ∈ parents(T)

stronglyPreferred(T ′)

∧¬isRejected(T ′) then
175: R ← R∪ {T}
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(true) if T is strongly preferred, i.e., if T and all of its ancestors are
the preferred transaction inside each respective conflict set. A negative
answer (false) is returned if either T or any of its ancestors fail to
satisfy these conditions.

Party Pi then stores the answer from party Pj to the query in the
variable votes[T ][v ].

• If Pi receives more than α positive votes, Pi runs over all the
ancestors of T . If the ancestor T ′ was the most recent (or “last”)
preferred transaction in its conflict set, its counter is increased by
one. Otherwise, T ′ becomes the most recent preferred transaction
and its counter is reset to one (L 118–132).

• If Pi receives at least k − α false votes, Pi resets the counter for
acceptance of all its ancestors cnt[T ′]← 0 (L 133–138).

• If timer timeout[T ] is triggered before the query is completed, the
query is aborted instead. The votes are reset and every party is
removed from the set S[T ], so no later reply can be considered
(L 145–148).

In parallel to the previous procedure, party Pi may perform up to
conPoll concurrent queries of different transactions.

Once T has been queried, it awaits in the local view of party Pi to
be accepted. Since by assumption T is honest, conflictSet[T ] = {T}.
Hence T is accepted when cnt

[
conflictSet[T ]

]
reaches β1, if all the an-

cestors of T are already accepted, or β2 otherwise (L 167–168). We
recall that cnt[conflictSet[T ]] is incremented whenever a query involving
a descendant of T is successful. However, when a non-descendant of T is
queried, it may trigger a no-op transaction (L 100) that is a descendant
of T .

If there is no new transaction waiting to be queried, i.e., T \Q is empty,
the party proceeds with a repollable transaction (L 105–107). A repol-
lable transaction is one that has not been previously accepted but it is
a candidate to be accepted (L 171–174).
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4.5 Security analysis

Avalanche deviates from the established PoW protocols and uses a dif-
ferent structure. Its security guarantees must be assessed differently.
The bedrock of security for Avalanche is random sampling.

4.5.1 From Snowball to Avalanche

The Avalanche protocol family includes Slush, Snowflake, and Snow-
ball [99] that implement single-decision Byzantine consensus. Every
party proposes a value and every party must eventually decide the same
value for an instance. The Avalanche protocol itself provides a “payment
system” [99, Sec. V]; we model it here as generic broadcast.

The whitepaper [99] meticulously analyzes the three consensus protocols.
It shows that as long as f = O(

√
n), the consensus protocols are live and

safe [99] based on the analysis of random sampling [100]. On the other
hand, an adversary controlling more than Θ(

√
n) parties may have the

ability to keep the network in a bivalent state.

However, the Avalanche protocol itself is introduced without a rigor-
ous analysis. The most precise statement about it is that “it is easy
to see that, at worst, Avalanche will degenerate into separate instances
of Snowball, and thus provide the same liveness guarantee for virtuous
transactions” [99, p. 9]. In fact, it is easy to see that this is wrong be-
cause every vote on a transaction in Avalanche is linked to the vote on
its ancestors. The vote on a descendant T ′ of T depends on the state
of T .

We address this situation here through the description in the previous
section and by giving a formal description of Snowball in Appendix 4.7.
We notice that one can isolate single executions of Snowball that occur
inside Avalanche as follows. Consider an execution of Avalanche and
a transaction T and define an equivalent execution of Snowball as the
execution in which every party Pi proposes the value 1 if T is preferred
in their local view, proposes 0 if another transaction is, and does not
propose otherwise. Every party also selects the same parties in each
round of snowball and for a query with T , for a query with a transaction
that conflicts with T , or for any query with a descendant of these two.
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Lemma 15. If party Pi delivers an honest transaction in Avalanche,
then Pi decided 1 in the equivalent execution of Snowball with threshold
β1. Furthermore, Pi delivers a conflicting transaction in Avalanche,
then Pi decides 1 in Snowball with threshold β2.

Proof. By construction of the Avalanche and Snowball protocols in the
whitepaper [99], the counter for acceptance of value 1 in Snowball is
always greater or equal than the counter for acceptance in Avalanche.
Since a successful query in Avalanche implies a successful query in Snow-
ball, if an honest transaction in Avalanche is delivered, the counter in the
equivalent Snowball instance is at least β1. Analogously, if a conflicting
transaction in Avalanche is delivered, then the counter in Snowball is at
least β2. Hence, a party in Snowball would decide 1 with the respective
thresholds.

Looking ahead, we will introduce a modification of Avalanche that en-
sures the complete equivalence between Snowball and Avalanche. We
first assert some safety properties of the Avalanche protocol.

Theorem 16. Avalanche satisfies integrity, partial order, and external
validity of a generic broadcast for payload transactions under relation ∼
and UTXO-validity.

Proof. The proof is structured by property:

Integrity: We show that every payload is delivered at most once. A
payload tx may potentially be delivered multiple times in two ways:
different protocol transactions that both carry tx may be accepted
or tx is delivered multiple times as payload of the same protocol
transaction.

First, we consider the possibility of accepting two different transac-
tions T1 and T2 carrying tx. Assume that party Pi accepts trans-
action T1 and party Pj accepts transaction T2. By definition, T1

and T2 are conflicting because they spend the same inputs. Using
Lemma 15, party Pi and Pj decide differently in the equivalent
execution in Snowball, which contradicts agreement property of
the Snowball consensus [99].

The second option is that one protocol transaction T that con-
tains tx is accepted multiple times. However, this is not possible
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either because tx is delivered only if accepted[T ] = false; vari-
able accepted[T ] is set to true when transaction T is accepted
(L 139–143).

Furthermore, a transaction that has not been submitted by a user
in invalid, thus never delivered.

Partial order: Avalanches satisfies partial order because no payload is
valid unless all payloads creating its inputs have been delivered
(L 139–143). Transactions T and T ′ are related according to Def-
inition 18 if and only if T has as input (i.e., spends) at least one
output of T ′, or vice versa. This implies that related transactions
are delivered in the same order for any party.

External validity: The external validity property follows from L 139,
as a payload transaction can only be delivered if it is valid, i.e.,
its inputs have not been previously spent and the cryptographic
requirements are satisfied.

Theorem 16 shows that Avalanche satisfies the safety properties of a
generic broadcast in the presence of an adversary controlling O(

√
n)

parties. A hypothetical adversary controlling more than Ω(
√

n) parties
could violate safety. It is not completely obvious how an adversary could
achieve that. Such an adversary would broadcast two conflicting trans-
actions T1 and T2. As we already discussed, and also explained in the
whitepaper of Avalanche [99], such an adversary can keep the network
in a bivalent state, so the adversary keeps the network divided into two
parts: parties in part P1 consider T1 preferred, and parties in part P2

prefer T2. The adversary behaves as preferring T1 when communicat-
ing with parties is P1 and as preferring T2 when communicating with
parties in P2. Eventually, a party u ∈ P1 will query only parties in P1

or the adversary for β2 queries in a row. Thus, Pi will accept transac-
tion T1. Similarly, a party v ∈ P2 will eventually accept transaction T2.
Party Pi will deliver the payload contained in T1 and Pj the payload
contained in T2, hence violating agreement.

An adversary controlling at most O(
√

n) can also violate agreement, but
the required behavior is more sophisticated, as we explain next.
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4.5.2 Delaying transaction acceptance

An adversary aims to prevent that a party Pi accepts an honest trans-
action T . A necessary precondition for this is cnt[conflictSet[T ]] ≥ β1.
Note that whenever a descendant of T is queried, cnt[conflictSet[T ]] is
modified. If the query is successful (L 118), then cnt[conflictSet[T ]] is in-
cremented by one. If the query is unsuccessful, cnt[conflictSet[T ]] is reset
to zero. Remark, however, cnt[conflictSet[T ]] cannot be reset to one as
a result of another transaction becoming the preferred in conflictSet[T ]
(L 127) because T is honest, as there exist no transaction conflicting
with T .

Our adversary thus proceeds by sending to Pi a series of cleverly gen-
erated transactions that reference T . We describe these steps that will
delay the acceptance of T .

1. Preparation phase. The adversary submits conflicting transac-
tions T1 and T2. For simplicity, we assume that she submits first
T1 and then T2, so the preferred transaction in both conflict sets
will be T1. The adversary then waits until the target transaction
T is submitted.

2. Main phase. The adversary repeatedly sends malicious transac-
tions referencing the target T and T2 to Pi . These transactions
are valid but they reference a particular set of transactions.

3. Searching phase. Concurrently to the main phase, the adversary
looks for transactions containing the same payload as T . If some
are found, she references them as well from the newly generated
transactions.

For simplicity, we assume that the adversary knows the acceptance
counter of T at Pi , so she can send a malicious transaction whenever
T is close to being accepted. In practice, she can guess this only with a
certain probability, which will degrade the success rate of the attack. We
also assume that the query of an honest transaction is always successful,
which is the worst case for the adversary.

After Pi submits T , the adversary starts the main phase of the attack. If
Pi queries an honest transaction T̂ , and if T̂ references a descendant of
T , then cnt[conflictSet[T ]] increases by one. If it does not, then T̂ may
cause Pi to submit a no-op transaction referencing a descendant of T .
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Algorithm 10 Liveness attack: Delaying transaction T

Initialization
176: create two conflicting transactions T1 and T2

177: gossip two messages [broadcast,T1] and [broadcast,T2]
178: A ← ∅

179:upon hearing message [broadcast,T ] do // target transaction
180: A ← {T}

181:upon cnt[conflictSet[T ]] = bβ1

2 c in the local view of Pi do

182: create T̂ such that T2 ∈ ancestors(T̂ ) and for all T ′ ∈ A,

also T ′ ∈ ancestors(T̂ )

183: send message [broadcast, T̂ ] to party Pi// pretend to gossip

184:upon hearing message [broadcast, T̃ ]do // T̃ resubmission

185: A ← A∪ {T̃}

Hence, honest transactions always increase cnt[conflictSet[T ]] by one,
this is the worst case for an adversary aiming to delay the acceptance of
T .

If Pi queries a malicious transaction T̂ , honest parties reply with their
value of stronglyPreferred(T̂ ). Since T2 is an ancestor of T̂ and not
the preferred transaction in its conflict set (as we have assumed that
T1 is preferred), all queried parties return false. Thus, Pi sets ac-
ceptance counter of every ancestor of T̂ to zero (L 133), in particular,
cnt[conflictSet[T ]] ← 0. However, since T̂ does not reference the virtu-
ous frontier, Pi submits a no-op transaction that references a descendant
of T , thus increasing cnt[conflictSet[T ]] to one.

We show that when the number of transactions is low, in particular when
|T \ Q| ≤ 1 for every party, then Avalanche may lose liveness.

Theorem 17. Avalanche does not satisfy validity nor agreement of
generic broadcast with relation ∼ with one single malicious party if
|T \ Q| ≤ 1 for every party.

Proof. We consider again the adversary described above that targets T
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and Pi .

• Validity. Whenever cnt[conflictSet[T ]] in the local view of Pi

reaches bβ1

2 c, the adversary sends a malicious transaction to party
Pi , who immediately queries it (since |T \Q| ≤ 1). It follows that
Pi sets cnt[conflictSet[T ]] to zero and increases it intermediately
afterwards, due to a no-op transaction. This process repeats in-
definitely over time and prevents Pi from delivering the payload
in T .

• Agreement. Assume that an honest party broadcasts the pay-
load contained in T . The adversary forces a violation of agreement
by finding honest parties Pi and Pj such that cnt[conflictSet[T ]] =
β1 − 1 at Pj and cnt[conflictSet[T ]] < β1 − 1 at Pi (such parties
exist because in the absence of an adversary, as cnt[conflictSet[T ]]
increases monotonically over time). The adversary then sends an
honest transaction Th that references T to Pj and a malicious
transaction Tm , as described before, to Pi . On the one hand,
party Pj queries Th , increments cnt[conflictSet[T ]] to β1, accepts
transaction T , and delivers the payload. On the other hand, party
Pi queries Tm and sets cnt[conflictSet[T ]] to one. After that, the
adversary behaves as discussed before. Notice that Pj has deliv-
ered the payload within T but Pi will never do so.

An adversary may thus cause Avalanche to violate validity and agree-
ment. For this attack, however, the number of transactions in the net-
work must be low, in particular, |T \Q| ≤ 1. In July 2022, the Avalanche
network processed an average of 647238 transactions per day1. Assum-
ing two seconds per query, four times the value observed in our local
implementation, the recommended values of 30 transactions per batch,
and four concurrent polls, the condition |T \ Q| ≤ 1 is satisfied 88% of
the time.

However, the adversary still needs to know the value of the counter for
acceptance of the different parties.

1https://subnets.avax.network/stats/network

https://subnets.avax.network/stats/network
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4.5.3 A more general attack

We may relax the assumption of knowing the acceptance counters and
also send the malicious transaction to more parties through gossip. After
selecting a target transaction, the adversary continuously gossips mali-
cious transactions to the network instead of sending them only to one
party. For analyzing the performance of this attack, our figure of merit
will be the number of transactions to be queried by an honest party (not
counting no-ops) for confirming the target transaction T . The larger this
number becomes, the longer it will take the party until it may accept T .
We assume that T \ Q 6= ∅ and that a fraction γ of those transactions
are malicious at any point in time2. A non-obvious implication is that
the repoll function never queries the same transaction twice.

Lemma 18. Avalanche requires every party to query at least β1 trans-
actions before accepting transaction T in the absence of an adversary.

Proof. The absence of an adversary carries several simplifications.
Firstly, there are no conflicting transactions, thus every transaction
is the preferred one in its respecting conflict set and every query is
successful. Secondly, due to the no-op transactions, the counter for
acceptance of every transaction in the DAG is incremented by one after
each query. Finally, a transaction T is accepted when its counter for
acceptance reaches β1, since the counter of the parent of any transaction
reaches β1 strictly before T (L 167).

Lemma 19. The average number of queried transactions before accept-
ing transaction T in the presence of the adversary, as described in the
text, is at least

β1 +
1 + (2 + β1γ)(1− γ)β1 − (1− γ)2β1(1 + β1γ)

γ(1− γ)β1(1− (1− γ)β1)
.

Proof. We recall that in the worst-case scenario for the adversary, the
query of an honest transaction increments the counter for acceptance of

2Avalanche may impose a transaction fee for processing transactions. However,
since the malicious transactions cannot be delivered, this mechanism does not prevent
the adversary from submitting a large number of transactions.
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the target transaction T by one, while the query of a malicious transac-
tion, effectively, resets the counter for acceptance to one, as a result of
a no-op transaction.

Let a random variable W denote the number of transactions queried
by Pi until T is accepted, and let X ∈ {0, 1} model the outcome of
the following experiment. Party Pi samples transactions until it picks a
malicious transaction or until it has sampled β1−1 honest transactions.
In the first case, X takes the value zero, and otherwise, X takes the
value one. By definition, X is a Bernoulli variable with parameter p =
(1 − γ)(β1−1). Thus, the number of attempts until X returns one is a
random variable Y with geometric distribution, Y ∼ G(p), with the
same parameter p. We let Wa be the random variable denoting the
number of queried transactions per attempt of this experiment. The
expected number of failed attempts is E[Y ] = 1

(1−γ)β1
. Furthermore, the

probability that an attempt fails after sampling exactly k transactions,
for k ≤ β1, is

P[Wa = k |X = 0] =
γ(1− γ)k−1

1− (1− γ)β1
.

Thus, the expected number of transactions per failed attempt can be
expressed as

E[W |X = 0] =
1− (1− γ)β1 (1 + β1γ)

γ(1− (1− γ)β1)
. (4.1)

The expected number of transaction queried during a successful attempt
is at least β1 by Lemma 18. Finally, the total expected number of queried
transactions can be written as the expected number of transaction per
failed attempt multiplied by the expected number of failed attempts plus
the expected number of transactions in the successful attempt,

E[W ] = E[Wa |X = 0] · (E[Y ]− 1) + E[Wa |X = 1] · 1. (4.2)

From equations (4.1) and (4.2) and basic algebra, we obtain

E[W ] = β1 +
1 + (2 + β1γ)(1− γ)β1 − (1− γ)2β1(1 + β1γ)

γ(1− γ)β1(1− (1− γ)β1)
.

This expression is complex to analyze. Hence, a graphical representa-
tion of this bound is given in Figure 4.2. It shows the expected smallest
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number of transactions to be queried by an honest party (not counting
no-ops) until it can confirm the target transaction T . The larger this
gets, the more the protocol loses liveness. It is relevant that this bound
grows proportional to 1

(1−γ)β1
, i.e., exponential in acceptance thresh-

old β1 since (1− γ) < 1.

Figure 4.2. Expected delay in number of transactions needed to con-
firm a given transaction with acceptance threshold β1 = 15, the recom-
mended value [14], and assuming that the queries of honest transactions
are successful. The (green) horizontal line shows β1, the expected de-
lay without attacker. The (blue) dotted line represents the expected
confirmation delay in Avalanche depending on the fraction of malicious
transactions. The (orange) squared line denotes the delay in Glacier
(Section 4.6).

The Avalanche team has acknowledged our findings and the vulnerability
in the abstract protocol. The protocol deployed in the actual network,
however, differs from our formalization in a way that should prevent the
problem. We describe the deployed version of Avalanche in Section 4.8.
The next section describes another variation of Avalanche that provably
eliminates the problem.
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4.6 Fixing liveness with Glacier

The adversary is able to delay the acceptance of an honest transaction T
because T is directly influenced by the queries of its descendants. Note
the issuer of T has no control over its descendants according to the
protocol. A unsuccessful query of a descendant of T carries a negative
consequence for the acceptance of T , regardless of the status of T inside
its conflict set. This influence is the root of the problem described earlier.
An immediate, but inefficient remedy might be to run one Snowball
consensus instance for each transaction. However, this would greatly
degrade the throughput and increase the latency of the protocol, as
many more messages would be exchanged.

We propose here a modification, called Glacier, in which an unsuccessful
query of a transaction T carries negative consequences only for those
of its ancestors that led to negative votes and caused the query to be
unsuccessful. Our protocol is shown in Algorithm 11. It specifically
modifies the voting protocol and adds to each Vote message for T a
list L with all ancestors of T that are not preferred in their respective
conflict sets (L 188–192). When party Pi receives a negative vote like
[Vote, v ,T , false,L], it performs the same actions as before. Addi-
tionally, it increments a counter for each ancestor T ∗ of T to denote
how many parties have reported T ∗ as not preferred while accepting T
(L 199). If Pi receives a positive vote, the protocol remains unchanged.

If the query is successful because Pi receives at least α positive votes
on T , then it proceeds as before (Algorithm 8, L 118). But before Pi

declares the query to be unsuccessful, it furthermore waits until having
received a vote on T from all k parties sampled in the query (L 200).
When this is the case, Pi only resets the counter for acceptance of those
ancestors T ∗ of T that have been reported as non-preferred by more
than k − α queried parties (L 204–206). If T ∗ is preferred by at least
α parties, however, then Pi increments its confidence level as before
(L 208).

Considering the adversary introduced in Section 4.5.3, a negative reply
to the query of a descendant of the target transaction T does not carry
any negative consequence for the acceptance of T here. In particular,
the counter for acceptance of transaction T is never reset, even when a
query is unsuccessful, because T is the only transaction in its conflicting
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set, then always preferred. Thus, transaction T will be accepted after β1

successful queries, if all its parents are accepted, or β2 successful queries
if they are not accepted. Assuming that queries of honest transactions
are successful, on average β

1−p transactions are required to accept T for

β ∈ [β1, β2] depending on the state of the parents of T . For simplicity
we assume that the parents are accepted, thus, the counter needs to
achieve the value β1. If this were not the case, then it is sufficient to
substitute β1 with β in the upcoming expression. Avalanche requires on

average β1 + 1+(2+β1γ)(1−γ)β1−(1−γ)2β1 (1+β1γ)
γ(1−γ)β1 (1−(1−γ)β1 )

transactions to accept T

by Lemma 19. The assumption that the query of honest transactions is
always successful is more beneficial to Avalanche than to Glacier, since
in Avalanche such a query resets the counter for acceptance of T . But
in Glacier, the query simply leaves the counter as it is. The value of
the acceptance threshold β1 is also more beneficial for Avalanche since
the number of required transactions increases linearly in Glacier and
exponentially in Avalanche. Figure 4.2 shows a comparison of both
expressions.

In Glacier, the vote for a transaction is independent of the vote of its
descendant and ancestors, even if a query of a transaction carries an
implicit query of all its ancestors. Thus, Lemma 15 can be extended.

Lemma 20. Party Pi delivers a transaction T with counter for accep-
tance cnt[conflictSet[T ]] ≥ β1 in Glacier if and only if Pi decides 1 in
the equivalent execution of Snowball with threshold cnt[conflictSet[T ]].

Proof. Consider a transaction T in the equivalent execution of Snow-
ball. The counter for acceptance of the value 1 in Snowball is always
the same as the counter for acceptance of transaction T in Glacier be-
cause of the modifications introduced by Glacier. Thus, following the
same argument as in Lemma 15, transaction T is accepted in Glacier
with counter cnt[conflictSet[T ]] if and only if 1 is decided with counter
cnt[conflictSet[T ]] in the equivalent execution of Snowball.

Theorem 21. The Glacier algorithm satisfies the properties of generic
broadcast in the presence of an adversary that controls up to O(

√
n)

parties.

Proof. Lemma 15 is a a special case of Lemma 20. Theorem 16 shows
that Lemma 15 and the properties of Snowball (Section 4.7) guarantee
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that Avalanche satisfies integrity, partial order, and external validity. In
the same way, Lemma 20 guarantees that Glacier satisfies these same
properties. Thus, it is sufficient to prove that Glacier satisfies validity
and agreement.

Validity: Assume that an honest party broadcasts a payload tx. Be-
cause the party is honest, the transaction T containing tx is valid
and non-conflicting. In the equivalent execution of Snowball, ev-
ery honest party that proposes a value proposes 1. Hence, using
the validity and termination properties of Snowball, every honest
party eventually decides 1. Using Lemma 20, every honest party
eventually delivers tx.

Agreement: Assume that an honest party delivers a payload transac-
tion tx contained in transaction T . Using Lemma 20, an honest
party decides 1 in the equivalent execution of Snowball. Because of
the termination and agreement properties of Snowball, every hon-
est party decides 1. Using Lemma 20 again, every honest party
eventually delivers payload tx

We conclude that Glacier satisfies the properties of generic broadcast.

With the modification to Glacier, Avalanche can be safely used as the
basis for a payment system. The only possible concern with Glacier
could be a decrease in performance compared to Avalanche. However,
Glacier does not reduce the performance but rather improves it. Glacier
only modifies the update in the local state of party Pi after a query has
been unsuccessful. The counter of acceptance of a given transaction T in
Glacier implementation is always greater or equal than its counterpart in
Avalanche. This follows because a reset of cnt[conflictSet[T ]] in Glacier
implies the same reset in Avalanche. Such a reset in Glacier occurs
if the query of a descendant of T fails and T was reported as non-
preferred by more than k −α parties, whereas in Avalanche it is enough
if the query of the descendant failed. In Avalanche, cnt[conflictSet[T ]]
is incremented if the query of a descendant of T succeeds, and the same
occurs in Glacier. Thus, cnt[conflictSet[T ]] in Glacier is always greater or
equal than in Avalanche. We recall that a transaction is accepted when
cnt[conflictSet[T ]] reaches a threshold depending on some conditions
of the local view of the DAG, but these are identical for Glacier and
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Avalanche. Hence, every transaction that is accepted in Avalanche is
accepted in Glacier with equal or smaller latency. This implies not only
that the latency of Glacier is smaller than the latency of Avalanche, but
also that the throughput of Glacier is at least as good as the throughput
of Avalanche.

4.7 The Snowball protocol

The Snowball protocol is the Byzantine-resistant protocol introduced
together with Avalanche in the whitepaper [99]. We shortly summarize
this protocol in Algorithm 12.

Snowball possesses almost the same structure as Avalanche, but it is
a protocol for consensus, not for broadcast. This Byzantine consensus
primitive is accessed through the events propose(b) and decide(b). Any
party is allowed to propose a value b ∈ {0, 1}. Since Snowball is a prob-
abilistic algorithm, the properties of our abstraction need to be fulfilled
only with all but negligible probability.

Definition 21. A protocol solves Byzantine consensus if it satisfies the
following conditions, except with negligible probability:

Validity: If all parties are honest and propose the same value Pj , then
no honest party decides a value different from Pj ; furthermore, if
some party decides Pj , then Pj was proposed by some party.

Termination: Every honest party eventually decides some value.

Integrity: No honest party decides twice.

Agreement: No two honest parties decide differently.

At the beginning of the protocol, party Pi may propose a value b, if
Pi does not propose b =⊥. Snowball is structured in rounds around
the same sample mechanism as Avalanche. Party Pi starts a round by
sampling k parties at random and querying them for the value they are
currently considering for b. If the value of a queried party is undefined,
the queried party adopts the value that it is been queried with and
replies accordingly. If more than α votes for value b′ are collected, the
query is finalized and Pi updates its local state by incrementing d [b′].
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If b′ is the same value as the value b in the local view of Pi , the counter
for acceptance is incremented. However, if b′ 6= b and d [b′] > d [b], the
party updates its local value b and resets the counter to zero. Party Pi

finishes consensus when the acceptance counter reaches the value β.

Considering the adversary introduced in Section 4.3.2 controlling up to
O(
√

n) parties, it can be shown that Snowball satisfies the properties of
Byzantine consensus.

Theorem 22. Snowball satisfies Byzantine consensus.

Proof. The proof is provided in the Appendix A of the whitepaper of
Avalanche [99].
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Algorithm 11 Modifications to Avalanche (Algorithm 6–9) for Glacier
(party Pi)

State
186:nonpref : HashMap[T × T → N]

// votes on T reporting that T ′ is not preferred

// replaces L 114
187:upon receiving message [Query,T ] from party Pj do
188: L← [ ] // contains the non-preferred ancestors of T
189: for T ′ ∈ ancestors(T ) do
190: if ¬preferred(T ′) then
191: append T ′ to L
192: send message [Vote, v ,T , stronglyPreferred(T ),L] to party Pj

// replaces code at L 116
193:upon receiving message [Vote, v ,T ,w ,L] from a party v ∈ S[T ] do
194: votes[T , v ]← w
195: for T ′ ∈ L do
196: if nonpref[T ,T ′] =⊥ then
197: nonpref[T ,T ′]← 1
198: else
199: nonpref[T ,T ′]← nonpref[T ,T ′] + 1

// replaces code at L 133
200:upon ∃T ∈ T such that

∣∣votes[T , v ]
∣∣ = k

∧
∣∣∣{v ∈ S[T ] | votes[T , v ] = false

}∣∣∣ > k − α do

201: stop timer[T ]
202: votes[T , ∗]← ⊥ // remove all entries in votes for T
203: S[T ]← [ ] // reset the HashMap S
204: for T ′ such that nonpref[T ,T ′] 6= ⊥ do// all ancestors of T
205: if nonpref[T ,T ′] > k − α then
206: cnt[conflictSet[T ′]]← 0
207: else // nonpref[T ,T ′] ≤ α
208: cnt[conflictSet[T ′]]← cnt[conflictSet[T ′]] + 1
209: nonpref[T , ∗]← ⊥
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Algorithm 12 Snowball (party Pi)

Global parameters and state
210:N // set of parties
211:newRound ∈ {false,true} // when to start a round
212:decided ∈ {false,true} // when to finish the protocol
213:k ∈ N // number of parties queried in each poll
214:α ∈ N // majority threshold for queries
215:cnt ∈ N // counter for acceptance
216:β ∈ N // threshold for acceptance
217:S : HashMap[T → N ] // set of sampled parties to be queried
218:d : HashMap[{0, 1} → N] // confidence value of a transaction
219:votes : HashMap[{0, 1} → N] // number of votes for a value

Algorithm
220:upon propose(b′) do
221: decided← false
222: newRound← true
223: b ← b′

224:upon newRound ∧ ¬decided do // still not decided
225: newRound← false
226: votes[∗]← 0
227: if b 6=⊥ then
228: S ← sample(N \ {Pi}, k) // sample k random parties
229: send message [Query, b] to all parties k ∈ S
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Algorithm 13 Snowball (party Pi)

230:upon votes[b′] ≥ α do // b′ = 0 or b′ = 1
231: d [b′]← d [b′] + 1
232: if b = b′ then // the outcome is our proposal
233: cnt← cnt + 1
234: else
235: if d [b′] > d [b] then
236: b ← b′

237: cnt← 1
238: newRound← true

239:upon n = k ∧ votes[0] < α ∧ votes[1] < α do // no majority
240: cnt← 0
241: newRound← true

242:upon receiving message [Query, b′] from party k do
243: if b = ⊥ then
244: decided← false
245: b ← b′

246: send message [Vote, b] to party k // reply with b

247:upon receiving message [Vote, b′] from a party k ∈ S do
248: votes[b′]← votes[b′] + 1

249:upon cnt = β ∧ ¬decided do // enough confidence for b
250: decide(b)
251: decided← true
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4.8 The Avalanche protocol as imple-
mented

The actual implementation of Avalanches addresses the liveness prob-
lems differently from Glacier and works as follows. Consider the protocol
in Section 4.4. In the implementation, a party Pi queries k parties with
transaction T as before. When some party Pj is queried with T , then Pj

first adds T to its local view. Then it replies with a Vote message, but
instead of including a binary vote, it sends the whole virtuous frontier
according to its local view. Party Pi collects the responses as in Sec-
tion 4.4 and stores the virtuous frontiers received in the Vote messages.
Then it counts how many queried parties have reported some transac-
tion T ′, or a descendant of T ′, as part of their virtuous frontier in the
variable ack[T ,T ′]. If more than α parties have reported T ′, then Pi

adds T ′ to the set G[T ′] and updates its state, as for a successful query
in the original protocol (L 271–277). For the remaining transactions,
i.e., all the transactions in Q outside G[T ′], the counter is set to zero
(L 279–281); this is equivalent to the effect of a negative query in the
original protocol.

This fix addresses the liveness issue shown in Section 4.5.2 since a po-
tential adversary loses the ability to submit a transaction that causes a
reset of the acceptance counter of an honest transaction. As explained
in Section 4.3.2, the adversary could reset the counter for acceptance
of honest transactions by simply submitting a transaction T referring
to the target transaction T and both transactions of a double spending
T1 and T2 because T is not strongly preferred. However, in the imple-
mented protocol, the parties reply with the virtuous frontier regardless
of the queried transaction. Due to this, the adversary cannot influence
the reply of the queried parties by creating malicious transactions.

Since the Cortina update (April 6th, 2023)3, the Avalanche platform
uses Snowman4, a linearization of the Avalanche consensus, as basis for
their distributed ledger.

A detailed analysis of this protocol is beyond the scope of this work.

3https://www.avax.network/blog/cortina-x-chain-linearization
4https://github.com/ava-labs/avalanchego/blob/master/snow/README.md

https://www.avax.network/blog/cortina-x-chain-linearization
https://github.com/ava-labs/avalanchego/blob/master/snow/README.md
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Algorithm 14 Modifications to Avalanche (Algorithm 6–9) in the
Avalanche implementation (party Pi)

State
252:ack : HashMap[T × T → N]

// number of votes on T reporting that T ′ is not preferred
253:G : HashMap[T × N → 2T ]

// ancestors of positively reported transactions

// replaces code at L 114
254:upon receiving message [Query,T ] from party Pj do
255: if T 6 ∈ T then // party Pi sees T for the first time
256: updateDAG(T )
257: send message [Vote, u,T ,VF ] to party Pj

// replaces code at L 116
258:upon receiving message [Vote, v ,T ,VF ′] from a party v ∈ S[T ] do

// VF ′ is the new vote
259: votes[T , v ]← VF ′
260: for T ′ ∈ votes[T , v ] do// ancestors of the reported transactions
261: G[T , v ]← G[T , v ] ∪ ancestors(T ′)
262: for T ′ ∈ G[T , v ] do // number of parties that reported T ′

263: if ack[T ,T ′] =⊥ then
264: ack[T ,T ′]← 1
265: else
266: ack[T ,T ′]← ack[T ,T ′] + 1
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Algorithm 15 Modifications to Avalanche (Algorithm 6–9) in the
Avalanche implementation (party Pi)

// replaces code at L 118 and L 133
267:upon ∃T ∈ T such that

∣∣{votes[T , v ]}
∣∣ = k // all parties replied

268: stop timer[T ]
269: votes[T , ∗]← ⊥ // remove all entries in votes for T
270: for T ′ ∈ Q do
271: if ack[T ,T ′] ≥ α then
272: d [T ′]← d [T ′] + 1
273: if d [T ′] > d [pref[conflictSet[T ′]]] then
274: pref[conflictSet[T ′]]← T ′

275: if T ′ 6= last[conflictSet[T ′]] then
276: last[conflictSet[T ′]]← T ′

277: cnt[conflictSet[T ′]]← 1
278: else
279: cnt[conflictSet[T ′]]← cnt[conflictSet[T ′]] + 1
280: else
281: cnt[conflictSet[T ′]]← 0
282: ack[T , ∗]← ⊥ // remove all entries in ack for T
283: G[T , ∗]← ⊥ // remove all entries in G for T
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4.9 Conclusion

Avalanche is well-known for its remarkable throughput and latency that
are achieved through a metastable sampling technique. The pseudocode
we introduce captures in a compact and relatively simple manner the
intricacies of the system. We show that Avalanche, as originally intro-
duced, possesses a vulnerability allowing an adversary to delay transac-
tions arbitrarily. We also address such vulnerability with a modification
of the protocol, Glacier, that allows Avalanche to satisfy both safety and
liveness.

The developers of Avalanche have acknowledged the vulnerability, and
the actual implementation does not suffer from it due to an alternative
fix. Understanding this variant of Avalanche remains open and is subject
of future work.



Chapter 5

DAG superiority

These big words are all very
impressive, but where are the
results?

Obelix

5.1 Introduction

In the ever-evolving landscape of distributed systems, achieving consen-
sus among a set of parties has become a fundamental challenge that has
garnered significant attention in recent years. Consensus protocols are
a universal primitive in distributed computing, ensuring that a network
of interconnected parties can collectively agree on a shared state de-
spite potential failures or malicious actors. However, as the demands on
distributed systems continue to grow, the need for consensus protocols
that can deliver both higher throughput and lower latency has become
increasingly pressing. This need is particularly relevant in permissionless
consensus protocols as used by cryptocurrencies and blockchain proto-
cols, which face stringent demands on their throughput and latency.
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Traditional consensus protocols have exhibited considerable advance-
ments in both throughput and latency since the first practical consensus
protocols [77, 33]. One of the most promising lines of work are DAG con-
sensus protocols as introduced by the “All you need is DAG” paper [63]
and subsequently extended by Narwhal and Tusk [45], Bullshark [105],
and Cordial Miners [64]. A common characteristic of these protocols
is their capacity to enable every participant to generate blocks that
reference previous blocks, forming a directed acyclic graph (DAG). In
permissionless protocols like Bitcoin [88], every party (miner) can create
a block upon successfully solving the cryptographic puzzle. Therefore,
the concept of constructing a DAG that is later ordered, as proposed by
Keidar et al. [63], holds the potential to enhance the throughput and la-
tency of permissionless consensus protocols. In essence, DAG protocols
may surpass traditional permissionless consensus protocols, which form
a chain.

The evident approach to improving the throughput of chain protocols is
to increase the block ratio, i.e., the number of block produced per unit
of time, effectively accelerating the execution of the protocol as there is
less time between created blocks. This goal can be pursued by lowering
the difficulty in Proof-of-Work (PoW ) protocols. However, increasing
the block ratio may harm the protocol since it elevates the likelihood of
forks where two different parties create blocks extending the chain. An
abandoned block is one that is never output by the protocol, whenever a
chain protocol forks, an abandoned block is produced. Therefore, despite
the increased number of generated blocks, the number of abandoned
blocks concurrently rises, adversely affecting the protocol’s throughput.
Moreover, it is imperative to recognize that the block ratio cannot be
augmented arbitrarily without compromising the protocol’s security.

In this chapter, we introduce a construction that takes as input a DAG
protocol or a chain protocol Π, which may produce abandoned blocks,
and produces a new DAG protocol Π′ with the property that every
created block is eventually output. Specifically, Π′ creates the same
number of blocks as the base protocol Π and outputs every created
block of Π. We show that the safety and liveness of Π′ reduces to the
safety and liveness of Π. In simpler terms, Π′ is as safe and live as
Π. Furthermore, we establish that Π′ has lower or equal latency as Π,
while achieving strictly higher throughput. Our main contribution lies in
a formal proof that chain protocols cannot achieve optimal throughput,
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i.e., for any chain protocol Π, there is a DAG protocol Π′ that is safe and
life under the same assumptions as Π, with the same or better latency
and better throughput.

Acknowledgement. The material contained in this chapter corre-
sponds to the work ‘We will DAG you’ [7] submitted at FC24.

5.2 Related work

DAG protocols represent a recent breakthrough within the domain of
permissioned consensus protocols [63, 45, 105, 64]. While DAG proto-
cols have been previously introduced in the permissionless context, their
adoption and success have been somewhat restrained due to their inher-
ent complexity when compared to traditional chain protocols. Several
well-known DAG protocols have exhibited vulnerabilities, highlighting
challenges in their success. For instance, IOTA [95], one of the pioneering
DAG protocols, has been susceptible to vulnerabilities such as Parasite-
chain attacks [95, 94]. Another promising protocol, GhostDAG [103],
has also revealed vulnerabilities in its design [79]. Even Avalanche [99],
the most successful DAG protocol in terms of market capitalization,
originally had vulnerabilities in its design [10].

An intriguing DAG protocol to note is Conflux [80], which leverages the
GHOST consensus rule [104] and augments blocks with additional ref-
erences to transform a chain protocol into a DAG. Li et al. [80] have
demonstrated that Conflux’s security is directly inherited from the se-
curity of GHOST. However, it is worth mentioning that the GHOST
protocol has exhibited lower resilience than other consensus protocols in
the presence of network malfunctions [89, 16].

Our contribution to this landscape is a formal proof of the superior per-
formance of DAG protocols, facilitated by a construction that can be
conceptualized as an extension of the Conflux construction [80]. Specif-
ically, when we instantiate the throughput closure using GHOST [104],
we arrive at Conflux [80].
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5.3 Abstractions

We consider a set of n parties P = {P1,P2, . . .} that interact with each
other by exchanging messages through the network. A protocol Π for
P consists of a collection of programs with instructions for all parties.
In particular we are interested in the study of chain protocol and DAG
protocol protocols, i.e., protocol that rely on a chain or a DAG to deliver
blocks. These two concepts are formally defined below.

Chain and DAG protocols are pivotal tools employed to establish robust
and secure ledgers, and as such, they must adhere to specific fundamental
requirements.

Traditionally, the gold standard concept is atomic broadcast [27], which
ensures that all parties deliver the same set of transactions in the same
order. In this chapter, we consider block-based atomic broadcast (Defi-
nition 4) that includes the concept of a block in the interface and prop-
erties [6]. Concept that we recall below.

Definition 4 (Block-based atomic broadcast). A protocol imple-
ments block-based atomic broadcast with validity predicates VT() and
VB() and block-creation function FB() if it satisfies the following prop-
erties, except with negligible probability:

Validity: If a correct party invokes a bab-broadcast(tx), then every
correct party eventually outputs bab-deliver(b), for some block b
that contains tx.

No duplication: No correct party outputs bab-deliver(b) for a block b
more than once.

Integrity: If a correct party outputs bab-deliver(b), then it has previ-
ously output the event bab-mined(b, ·) exactly once.

Agreement: If some correct party outputs bab-deliver(b), then even-
tually every correct party outputs bab-deliver(b).

Total order: Let b and b′ be blocks, and Pi and Pj correct parties that
output bab-deliver(b) and bab-deliver(b′). If Pi delivers b before
b′, then Pj also delivers b before b′.

External validity: If a correct party outputs bab-deliver(b), such that
b = [tx1, . . . , txm ], then VB(b) = true and VT(txi) = true,
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for i ∈ 1, . . . ,m. Moreover, if FB(tx1, . . . , txm) returns b, then
VB(b) = true.

The block-based atomic broadcast abstraction can be implemented by
protocols based on different approaches. These difference are not cap-
tured in Definition 4, but can relevant for the performance of the proto-
col. The two families of protocols of interest for this chapter are chain
protocol and DAG protocol protocols. The distinguishing factor between
them lies in the set of references to previously mined blocks. Specifically,
for a given block b, we denote the set of bab-mined blocks referenced
by b as parents(b), commonly known as the parents of b. Furthermore,
the set of bab-mined blocks reachable through references from b is rep-
resented as ancestors(b) and is often referred to as the ancestors of b. A
block b is a descendant of its ancestors. A block with no descendants is
also called leaf.

Definition 22 (Chain protocol, DAG protocol). A block-based
atomic broadcast protocol Π is a DAG protocol protocol if Π-mined
blocks contain references to other Π-mined blocks, meaning that the
set of references is not empty. Π is a chain protocol protocol if every
Π-mined block refers to exactly one Π-mined block and for every honest
party Pi there is a Π-delivered block b such that every Π-delivered by
Pi is b or in ancestors(b). In essence, Π-delivered blocks form a chain.

Figure 5.1 illustrates an example of both chain and DAG protocols.

To set the stage, we make the assumption that both chain and DAG
protocols begin with an initial, hard-coded block referred to as the gen-
esis block. This genesis block is special in that it possesses an empty set
of references. It is important to note that, according to Definition 22,
chain protocols inherently are DAG protocols. The blocks mined in
chain protocols produce a tree, a particular kind of DAG. Therefore, for
the remainder of this chapter, we will use the term “DAG protocol” to
encompass both DAG protocol and chain protocols, acknowledging this
inclusion.

One significant implication of abstracting DAG protocols as block-based
atomic broadcast (Definition 4) is that the protocol must define a func-
tion that operates on the directed acyclic graph (DAG) that produces a
list of delivered blocks. It is worth mentioning that certain DAG proto-
cols, such as the original Avalanche protocol [99, 10], do not output an
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Figure 5.1. Comparison between a chain protocol and a DAG protocol.
Blocks in blue (continuous lines) are the bab-delivered blocks, whereas
grey (dashed) blocks are bab-mined but not bab-delivered. The protocol
on the left is a chain protocol, each block refers to exactly one block and
there is a block (b9) such that every currently bab-delivered block is b9

or an ancestor of it. The protocol on the right is a DAG protocol, block
b9 references multiple blocks.
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ordered list of transactions but the list output by different parties may
differ up to permutation. While DAG protocols can also be modeled
as generic broadcast [93], situations arise where complete transaction
ordering, as seen in calls to smart contracts, becomes necessary. For the
purposes of this chapter, we focus on protocols that can be effectively
modeled as block-based atomic broadcast. The results we derive in this
context generalize straightforwardly to protocols modelled as generic
broadcast.

5.4 Model

DAG protocols base their security on different techniques such as proof of
work (PoW ), proof of stake (PoS ) [46], proof of space-time (PoST ) [40],
or proof of elapsed time (PoET ) [24]. For the sake of simplicity, we
restrict our model to PoW. Nevertheless, our model can readily be ex-
tended to incorporate other techniques.

Parties. Consistent with prior chapters, our protocol operates without
explicit knowledge of the number or identities of the parties. The parties
themselves remain unaware of these details as well. We assume a static
network consisting of n parties, where up to f parties to be corrupted
by the adversary, thereby exhibiting arbitrary behavior.

Blocks. A transaction tx, comprises a set of inputs, a set of outputs,
and a collection of digital signatures, as in Bitcoin [88]. Transactions
have size |tx|, and they are grouped into blocks, as introduced in Def-
inition 4. Each block encompasses a specific number of transactions,
denoted as m, a number of references to previously bab-mined blocks,
quantified as nrefs, and further parameters essential for the proper ex-
ecution of protocol Π. It is noteworthy that the size of a reference,
represented as |ref|, is significantly smaller than that of a transaction,
for simplicity, we consider it to be negligible. We reiterate that protocol
Π defines external validity predicates, VT() and VB(), responsible for
determining the validity of a transaction or block.
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Network & adversary. We consider the synchronous-rounds model
(Section 2.2.1) and a Byzantine adversary (Section 2.1).

5.4.1 Abandoned blocks

Definition 23 (Execution). An execution is a history with an entry
for each round containing the actions, a list of received messages, and a
list of sent messages by each party in that round.

While an event may be theoretically possible within an execution, its
occurrence might have a probability of zero. For instance, consider an
algorithm that continuously flips an unbiased coin indefinitely. There
could be an execution where all outcomes are heads, but the probability
of this specific sequence of events happening is zero, as it is the limit of
an infinite execution.

To circumvent these issues, we introduce the concept of a partial execu-
tion.

Definition 24. Given a protocol Π, the set of λ-partial executions Φλ
is defined to be the set of λ-prefixes of all executions of protocol Π. A
partial execution is an execution that belongs to Φλ for some λ ∈ N.

Definition 25. Given an execution E of a block-based atomic broadcast
protocol Π, an abandoned block in E is is an honestly bab-mined block
b such that b is not bab-delivered in E .

It is important to note that the validity property defined in block-
based atomic broadcast (Definition 4) does not guarantee that every
bab-mined block will eventually be bab-delivered. Instead, this property
ensures that for each bab-broadcast transaction, there exists at least one
bab-delivered block that contains it. The concept of abandoned blocks
is a significant concern in the context of such protocols. Abandoned
blocks have been honestly bab-mined but are never bab-delivered. The
existence of abandoned blocks can severely impact the performance of a
chain protocol or DAG protocol.

Definition 26. A protocol Π permits abandoned blocks if there exist
a block b and a partial execution E such that: b is abandoned in any
extension of E .
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Remark 3. Note that given a protocol that permits abandoned blocks,
the probability, taken over the randomness of the protocol, of having at
least one abandoned block in an execution is greater than zero, since
partial executions happen with non-zero probability.

Determining whether a given protocol Π permits abandoned blocks or
not can be a challenging task and, in some cases, may not be computable
due to the need to simulate potentially infinitely long executions. How-
ever, for certain protocols like Bitcoin [88], the existence of abandoned
blocks is a direct consequence forks occurring among honest miners.
This phenomenon is formalized in the following definition.

Definition 27. Given an execution E of a given protocol Π, a round
r forked if protocol Π outputs two events bab-mined(b,Pi) and
bab-mined(b′,Pj ) in round r at two distinct honest parties Pi and Pj .
A protocol with a forked round in at least one partial execution is a
forkable protocol.

Lemma 23. A forkable chain protocol Π permits abandoned blocks.

Proof. Given a forkable protocol Π, there exist a round r in which
two different honest parties output events bab-mined(b,Pi) and
bab-mined(b′,Pj ). In particular b 6= b′ because their miners are
different. Π is also a chain protocol. thus both b and b′ have a unique
reference to previously bab-mined blocks, so they cannot reference
each other. Another implication of Π being a chain protocol is that
at any point in the execution in the protocol there exists a bab-mined
block b∗ such that every bab-delivered is in ancestors(b∗). Since every
block only contains a single reference and b and b′ do not refer each
other, we conclude that no honest parties can bab-deliver both b and
b′ simultaneously.

Transactions that were originally included in abandoned blocks must
be re-included in subsequent blocks to maintain the validity property
(Definition 4). This re-inclusion consumes space in new blocks and has
implications for both latency and throughput, as we formalize below.
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5.4.2 Throughput and latency

Definition 28. Given a block-based atomic broadcast protocol Π, an
adversary A, and an execution E , we define the throughput of Π in the
presence of A in execution E as the average number of bab-delivered
blocks per round and we denote by throughput(Π,A, E).

Definition 29. Given a block-based atomic broadcast proto-
col Π, the throughput of Π is defined to be throughput(Π) :=
inf
A

E[throughput(Π,A, E)], i.e., the infimum over all the possible adver-

saries A of the average over the randomness Π of throughput(Π,A, E)
over all the possible executions.

Definition 30. The goodput of protocol Π is defined to be throughput
of Π in the presence of an adversary that follows the instructions of the
protocol.

Definition 31. Given a block-based atomic broadcast protocol Π, an
adversary A, an execution E , and a transaction tx , we define latency
of tx in the presence of adversary A in execution E as the number of
rounds since tx is bab-broadcast until the first block containing tx is
bab-delivered, and we denote it by latency(Π,A, E , tx). We define the
latency of Π to be the average number of rounds, over the transactions tx
in execution E , since tx is bab-broadcast until the first block containing
tx is bab-delivered and denote it by latency(Π,A, E).

Definition 32. Given a block-based atomic broadcast protocol Π, The
latency of protocol Π is defined as latency(Π) = sup

A
E[latency(Π,A, E)],

i.e., the supremum over all the possible adversaries A of the average over
the randomness of the protocol of the latency(Π,A, E) over the possible
executions E .

5.5 The throughput closure

We introduce a novel construction designed to enhance a given DAG
protocol Π. This construction results in a DAG protocol, which we call
the throughput closure of Π and denote by Π′. Protocol Π′ possesses
the unique property of ensuring that every honestly bab-mined block is
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eventually bab-delivered. The mechanism by which protocol Π′ accom-
plishes this feat involves the incorporation of additional references to
blocks. For any given block b, protocol Π′ defines the set abandoned(b)
as the collection of valid blocks that will not be Π-delivered if b is to be
Π-delivered. The block mining and delivery routines of the throughput
closure Π′ are built on top of their counterparts in Π.

Overview. As shown in Algorithm 16, when an honest party Pi

Π-mines a block b, party Pi also Π′-mines the same block. However, in
Π′, the block b includes an additional set of references to the blocks in
the set abandoned(b).

The modified delivery routine operates as follows: when a block b would
be Π-delivered, all valid blocks in the set abandoned(b) are Π′-delivered
in a fixed topological order immediately before b. This topological sort
allows to order non Π-delivered blocks with respect to Π-delivered blocks
deterministically according to the references included in the Π-delivered
blocks. This is a crucial aspect as establishing a total order in a DAG can
be generally challenging due to different parties having different partial
views of the DAG. The topological sort τ ensure that all parties that
have received block b agree on the same order. A canonical example for
topological sort τ is to order the blocks in abandoned(b) according to
their depth in the DAG, distance to genesis, breaking the ties according
to the hash of the block. Note that if an adversary creates a block
with low depth, it will be only Π-delivered when deeper block references
it, thus the adversarial block is Π′-delivered concurrently with deeper
blocks.

Constructing the set abandoned(b), even when it can be computed, may
be challenging task, as we explained above. However, given a chain pro-
tocol Π the set abandoned(b) becomes trivial to compute as it is formed
by every block that is not an ancestor of b. Furthermore, the set of ref-
erences to abandoned(b) are the leaves of the DAG, with the exception
of b. As an illustrative example, Figure 5.2 shows the application of
this construction within the context of Bitcoin. If we consider Π to be
GHOST protocol [104], we recreate the Conflux protocol [80]. Including
references to the leaves in the DAG is the precise method for referring to
the set abandoned(b) with a chain protocol Π. The same approach can
be used with DAG protocols. This approach may be computationally
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cheaper than than computing the leaves in set abandoned(b), however,
some blocks may be referenced when there is no need, adding redun-
dancy of references. Further insights into this alternative approach are
provided below.

Detailed description. We describe the execution of the protocol
from the perspective of an honest party Pi . When honest party Pi

Π′-broadcasts a transaction tx, it invokes Π-broadcast(tx) (L 286–287).
Notably, the broadcast of transactions occurs exactly as it does in pro-
tocol Π. When Pi triggers event Π-mined(b,Pi) (L 288–294), it ini-
tially computes the set abandoned(b) locally. To Π′-mine a new block
b′, Pi augments b by adding extra references to the leaves of the set
abandoned(b) (L 290–292). Subsequently, Pi adds b′ to the set of mined
blocks D′ (L 293) and triggers the event Π′-mined(b′,Pi) (L 294).

When event Π′-mined(b′,Pj ) is triggered, Pi verifies the Π′-validity of b′

and incorporates it into its local view (L 295–297). So far, the execution
of Π′ closely parallels that of Π. However, the key distinction lies in
the delivery of blocks (L 298–302). When event Π-deliver(b) occurs, Pi

searches for the block b′ associated with b. Pi then assembles the set
ready, which comprises the blocks to be Π′-delivered (L 299). This set
is computed as the set-difference between the ancestors of block b′ and
the ancestors of the last delivered block b′l . Pi subsequently updates the
last delivered block to be b′ (L 300). Finally, Pi applies a topological
sorting algorithm τ to the set ready and Π′-delivers them accordingly
(L 301–302).

A block b′ is deemed valid (L 305–306) within protocol Π′ if it satis-
fies two conditions: firstly, its associated block b must be Π-valid, and
secondly, it must contain at least one Π′-valid transaction.

Algorithm 17 presents a greedy version of abandoned(b). In this ap-
proach, a party Pi adds references to b′ for every block that is not
already an ancestor of b within protocol Π.

The throughput closure mirrors protocol Π when the set abandoned(b)
is empty for every block, indicating that the protocol does not permit
the existence of abandoned blocks. However, if Π permits abandoned
blocks, then there exists some executions of Π with a block b such that
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Algorithm 16 Protocol Π′ for party Pi .

Implements: block-based atomic broadcast Π′

Uses: block-based atomic broadcast Π
topological sort τ

State:
284: D′ ← ∅
285: b′` ← [ ]

286:upon event Π′-broadcast(tx) do
287: invoke Π-broadcast(tx)

288:upon event Π-mined(b,Pj ) do
289: if Pi = Pj then
290: weak← leaves(abandoned(b,D′))
291: b′ ← b
292: bl ′.wrefs← weak
293: D′ ← D′ ∪ {b′}
294: invoke Π′-mined(b′,Pi)

295:upon event Π′-mined(b′,Pj ) do
296: if VB′(b′) then
297: D′ ← D′ ∪ {b′}

298:upon event Π-deliver(b) do
299: ready← ancestors’(b′) \ ancestors’(b′`)
300: b′` ← b′

301: for b∗ ∈ τ(ready) do
302: invoke Π′-deliver(b∗)

303:function abandoned(b,D′) :
304: return {b′ ∈ D′ : b′ 6 ∈ ancestors’(b) ∧ incompatible(b, b′)}

305:function VB′(b′) :
306: return VB(b) ∧ ∃ tx ∈ b′ : undelivered(tx)
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Algorithm 17 Greedy approach for party Pi .

307:upon event Π-mined(b,Pj ) do // Greedy approach
308: if Pi = Pj then
309: b′ ← b
310: weak← leaves({b′ ∈ D′ : b′ 6 ∈ ancestors(b′)})
311: bl ′.refs← bl ′.refs||weak
312: D′ ← D′ ∪ {b′}
313: invoke Π′-mined(b′,Pi)

abandoned(b) 6= ∅, and the throughput closure diverges from the orig-
inal protocol. The implementation of the throughput closure does en-
tail an increase in local computation for parties. Specifically, parties
need to scan the DAG and append a set of references to all leaves in
abandoned(b) to the currently mined block b. The computational com-
plexity of determining abandoned(b) can vary depending on the protocol,
as discussed earlier. However, in the case of chain protocols, this set is
relatively straightforward to compute. A party simply adds references
to every leaf of a chain that has not been referenced by an ancestor.

5.6 Analysis

5.6.1 Security analysis

Theorem 24. Given protocol DAG protocol Π implementing block-based
atomic broadcast, its throughput closure Π′ also implements block-based
atomic broadcast.

Proof. We demonstrate that the throughput closure Π′ implements
block-based atomic broadcast by leveraging the fact that Π does.
Throughout this proof, we assume the perspective of an honest
party Pi .

Validity: Assume that an honest party Pj Π′-broadcasts a given
transaction tx. By construction, party Pj does so by invoking
Π-broadcast transaction tx (L 286–287). The validity property
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Figure 5.2. An example of our construction applied to Nakamoto con-
sensus. The full lines denote the references of the Nakamoto consensus
and the blue dashed lines denote the extra references included by the
throughput closure. According to Nakamoto consensus, the main chain
is the chain b1 · · · b11 and blocks b4, b7, b8, and b9 are abandoned. Look-
ing at b11, the set abandoned(b11) is formed by block b9. Blocks b4, b7,
and b8 are not part of the abandoned(b11) because b10 already references
them. When delivering b11, block b9 would be delivered between b10 and
b11.
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of protocol Π guarantees that party Pi eventually Π-delivers a
block b containing transaction tx. Party Pi , by definition of the
protocol, Π′-delivers the block b′ consisting of block b with the
addition of the extra set of references (L 298–302). If every trans-
action contained in b′ is invalid, the block is not Π′-deliver. In the
case of block b′, the validity check can only fail if transaction tx
fails the validity predicate. Since tx is Π′-broadcast, the external
validity predicate is satisfied unless some block containing tx has
been Π′delivered.

We conclude that for any honestly Π′-broadcast transaction tx,
Pi eventually Π′-delivers a block b′ containing tx, thus validity
property of protocol Π′ is satisfied.

Integrity: Party Pi only Π′-delivers blocks that it Π′-delivers or ances-
tors of those contained in the set D (L 298–302). A block b′ enters
the set D only after an invokation of Π-mined(b,Pj ). We conclude
that every Π′-delivers has previously been Π′-mined.

Agreement: Consider a block b′ that is Π′-delivered by party Pi . We
consider two different cases: when b whether b is Π-delivered or
not. On the one hand, if b is Π-delivered by party Pi , every honest
party eventually Π-delivers b, thus Π′-delivers b′ as a consequence
(L 298–302). On the other hand, if block bl ′ is Π′-delivered as a
consequence of another block b∗ is Π′-delivered. The same rea-
soning as above applies to block b∗, which implies the eventual
Π′-delivery of block b′.

Total order: Consider two Π′mined blocks b′1 and b′2 and two honest
parties Pi and Pj that Π′ − deliver both blocks. We distinguish
four cases based on whether blocks b1 and b2 are Π-delivered or
not.

Assume that both b1 and b2 are Π-delivered. Note that in the
view of any honest party the order in which blocks b1 and b2 are
Π-delivered is the same as blocks b′1 and b′2 are Π′-delivered (L 298–
302). Due to the total order property of protocol Π, party Pi

Π-delivers block b1 and b2 in the same order as party Pj , thus
both parties Π′-deliver blocks b1 and b2.

If either b′1 or b′2 are Π′-delivered as a consequence of another block
b3 being Π-delivered. Since the set of blocks that are Π′-delivered
as consequence of block b′3 are Π′-delivered immediately before b′3,
any block b′ Π′-delivered before (after) b′ is also Π′-delivered before
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(after) the set of blocks Π′-delivered as a consequence of b′. The
same reasoning as above applies to this case. We conclude that Pi

also Π′delivers both b′1 or b′2 in the same order as Pj .

The only case left is when both b′1 and b′2 are Π′-delivered as a
consequence of two blocks b′3 and b′4 being Π′-delivered. If b′3 and
b′4 are different the case is the same as before. If b′3 and b′4, both
Pi and Pj use the topological order to determine in which order
to Π′-delivered. Since the topological sorting is deterministic and
depends only on block b′3, both Pi and Pj Π′-deliver b′1 and b′2 in
the same order.

External validity: The external validity property is imposed by lines
L 305–306.

5.6.2 Throughput and latency

Theorem 24 states that the throughput closure Π′ maintains the safety
and liveness properties the original protocol Π. In this section, we
delve into a comparative analysis of the performance aspects, through
throughput and latency, between Π′ and Π. It is important to note that
both throughput and latency definitions take into account adversarial
behavior, and the connection between the adversarial behavior of Π′

and Π is discussed in the following remark.

Remark 4. Note that given an adversary A′ for protocol Π′, an ad-
versary A for protocol Π can be constructed by merely removing the
extra references from any block that A′ Π′-mines. Additionally, given
an adversary A for protocol Π, it can also be regarded as an adversary
for protocol Π′, as every action taken by A in protocol Π is allowed in
protocol Π′.

Definition 33. Given an execution E ′ and an adversary A′ for protocol
Π′, we define the equivalent execution of protocol Π as the execution E ′
without the extra references in each block and adversary A as discussed
in Remark 4.

Lemma 25. Given a DAG protocol Π, its throughput closure Π′ achieves
the same or lower latency as Π.
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Proof. Consider an execution E ′, an adversary A′ for protocol Π′, and
a transaction tx that has not already been Π′-delivered. Denote by E
the equivalent execution (Definition 33) of protocol Π. Note that by
definition of Π′, tx has not been Π-delivered either (L 298). Protocol Π′

has two different mechanisms to Π′-deliver(tx).

On the one hand, if an event Π-deliver(b) for a block b containing trans-
action tx is triggered, then b is Π′-delivered (L 298). In this case,
latency(Π′,A′, E ′, tx) is the same as latency(Π,A, E , tx).

On the other hand, if an event Π-deliver(b′) for a block b′ that does
not contains tx but is descendent of a block b containing tx ., then
block b′ is Π′-delivered immediately before b (L 299). In this case,
latency(Π′,A′, E ′, tx) is strictly smaller than latency(Π,A, E , tx).

Both cases discussed above imply that for every adversary, ex-
ecution, and transaction, the latency of both protocols satisfy
latency(Π′,A′, E ′, tx) ≤ latency(Π,A, E , tx). Hence, latency(Π′) ≤
latency(Π)

The next result clarifies the motivation for the term throughput closure.

Lemma 26. Given a DAG protocol Π, then throughput(Π′) ≥
throughput(Π), and if Π permits abandoned blocks, then throughput(Π′) >
throughput(Π).

Proof. Consider an execution E ′, an adversary A′ for protocol Π′, and a
transaction tx that has not already been Π′-delivered. Denote by E the
equivalent execution (Definition 33) of protocol Π.

On the one hand, if there is no abandoned block in the execution E ′,
then, the set abandoned(b′) is empty for every block b′. Thus, no
extra reference is added at any point in the execution of Π′ the exe-
cutions E and E ′ identical. We conclude that throughput(Π,A′, E) =
throughput(Π′,A, E).

On the other hand, if there exists at least one abandoned block b′ in
execution E ′, then, the set abandoned(b∗) is not empty for some block
b∗ that is eventually Π′-delivered. When b∗ is Π′delivered so is b′ (L 299).
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We conclude that throughput(Π′,A′, E ′) ≥ throughput(Π′,A, E) for
every possible adversary A′ and execution E ′, thus throughput(Π′) ≥
throughput(Π′). Furthermore, if Π permits abandoned blocks, there
exists an λ-partial execution with a block b that is abandoned in all its
extensions. This means that the probability, over the randomness of
the protocol, of having an abandoned block is strictly greater than zero
(Remark 3). Thus, E[throughput(Π′,A′, E ′)] > E[throughput(Π,A, E)]
for at least some adversary A′. We conclude by noticing that if
an adversary A∗ prevents the exclusion of abandoned blocks, then
throughput(Π′,A∗, E ′) > throughput(Π′,A′, E ′). Hence, we conclude
that

throughput(Π′) = inf
A′

E[throughput(Π′,A′, E ′)]

> inf
A

E[throughput(Π,A, E)] = throughput(Π).

Corollary 27. Given a DAG protocol Π, then goodput(Π′) ≥
goodput(Π). Furthermore, if Π allows for the existence of abandoned
blocks, then goodput(Π′) > goodput(Π).

Proof. Consider the proof of Lemma 26 limited to adversaries that follow
the instructions of the protocol.

Note that every chain protocol trivially permits abandoned block. We
can finally conclude that DAG protocols are strictly better then chain
protocols.

Theorem 28. Given a chain protocol Π, there exists a DAG proto-
col Π′ such that: latency(Π′) ≤ latency(Π) and throughput(Π′) >
throughput(Π).

Proof. Lemma 23 states that a chain protocol Π permits abandoned
blocks. Theorem 24 demonstrates that its throughput closure Π′

implements block-based atomic broadcast. Lemma 26 establishes that
throughput(Π′) > throughput(Π). Finally, Lemma 25 shows that
latency(Π′) ≤ latency(Π).
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5.7 Conclusion

This work introduced a construction that takes a blockchain or DAG
protocol as input and produces a new DAG protocol with the same
security guarantees. The construction output has better throughput
and the same or lower latency when input with a blockchain protocol.
Furthermore, this construction determines the set of possibly optimal
protocols, showing that blockchain protocols are not optimal.



Chapter 6

An atomic broadcast
protocol

It’s important to draw wisdom
from many different places.

Uncle Iroh

6.1 Introduction

Scalability poses a significant challenge for consensus protocols. Para-
doxically, increasing the number of participants in a consensus system
often degrades its performance rather than enhancing it.

Traditional consensus protocols, such as those Paxos [77], PBFT [33], or
Hotstuff [111], primarily follow a leader-based approach. In this model,
a single party proposes a value, and the remaining participants validate
this proposal. Consequently, the protocol’s workload becomes unevenly
distributed among the participants, making the leader for a given in-
stance a potential bottleneck. Another drawback emerges when the
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chosen leader exhibits Byzantine behavior diverging from the prescribed
protocol execution. In such cases, leader-based protocols require a view-
change mechanism to select a new leader. View-change routines are
highly sensitive to timing assumptions, and their operation can become
prohibitively costly when the delay in message transmission is uncertain,
as noted in [27]. Keidar et al. [63] initiated a line a work [45, 105, 64]
that offers an elegant solution to the previously mentioned challenges by
employing leaderless protocols. They recognized the value of the com-
mon core abstraction in designing an algorithm where every participant
is granted the role of behaving as a leader in an instance.

The common core abstraction (Definition 7), as introduced by
Canetti [32], can be understood as a variant of consensus, albeit weaker.
In this variant, the outputs of different parties may differ, but there is a
guaranteed existence of a common core, a set of specific size, included in
the output of every honest party. Unlike traditional consensus, the key
distinction here is that the exact contents of the common core remain
unknown; its existence, however, is assured. The Gather protocol [32]
serves as an implementation of the common core abstraction, utilizing
reliable broadcast as its main building block.

Notably, the reliable broadcast primitive ensures that if two honest par-
ties incorporate the value proposed by a party in their respective out-
puts, they both include the same value. In other words, it prevents
honest parties from including different values corresponding to Byzan-
tine parties. Another vital component of the leaderless approach is the
common coin, employed to determine which values can be decided upon.
If the party designated by the coin has proposed a value that is included
in a sufficient number of outputs, that value can then be decided upon.

The first contribution of this work lies in the development of a weaker
variant of the common core, termed weak common core. Notably, this
novel concept does not require reliable broadcast, however, honest par-
ties may include different values from a Byzantine party. The rest of
the properties of the common core remain unaltered. The weak common
core serves as a viable substitute for the standard common core in con-
structing leaderless consensus protocols, thanks to the presence of the
common coin, which fortifies its robustness, compensating for the miss-
ing property. Importantly, since the weak common core does not require
the use of reliable broadcast, it exhibits significantly reduced message
complexity.
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Comparison
Protocol Network Best Average Model
PBFT 1/n 4 12 Part. Sync.
Hotstuff 1/n 4 12 Part. Sync.
DAG-Rider ∼ 1 12 24 Async.
Narwhal ∼ 1 10.5 20.5 Async.
Bullshark ∼ 1 6 19.5 Part. Sync.
All set ∼ 1 4 14 Async.

Table 6.1. Comparison of different leader-based and DAG protocols.
The first column indicates the name of the protocol. The second col-
umn denotes the percentage of the network capacity of the parties is
used during the execution, we assume a network of n parties. This
way a network of 1/n means that only one n’th of the network is uti-
lize. The third column denotes the best case latency, assuming that
every party behaves honestly and randomness favours the protocol. The
fourth column, considers the average latency in the presence of an ad-
versary, average over all the randomness of the protocol. Both latencies
are computed as rounds of communication. Finally the fifth columns
denotes the network model.

The main contribution of this work is the design of a leaderless consen-
sus protocol, modelled as atomic broadcast, built upon the foundation
laid by the weak common core. This novel protocol exhibits resilience
against up to a maximum of a third of the parties behaving maliciously
and concurrently empowers high throughput by enabling every network
participant to propose values, fully utilizing the capacity of the network.
Furthermore, our protocol is characterized by its low latency, averaging
just 14 rounds of communication, which decreases to 4 in the optimistic
case (Table 6.1). We provide mathematical proofs to guarantee both live-
ness and safety, with formal verification accomplished with TLA [76].

Structure. In Section 6.3, we state the assumptions considered and
we recall important concepts such as atomic broadcast and common coin.
After that, we move to Section 6.4 to introduce the weak common core,
an algorithm implementing the weak common core, and formally prove
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its properties. We introduce the main contribution of this chapter in
Section 6.5, starting with a high-level description, following with a de-
tailed description, and concluding with a mathematical proof that our
protocol implements atomic broadcast. After that, we conclude with a
formal verification of such properties in Section 6.7.

6.2 Related work

The pursuit of scalability in consensus protocols has been the subject
of extensive research in recent years. Buchman, Kwon, and Milose-
vic [26], endeavored to mitigate communication complexity by adopting
a strategy of gossipping messages to specific parties instead of employing
broadcasting, concluding an extensive set of improvements on traditional
consensus protocols [101, 84]. Tendermint [26] and Avalanche [99] stand
out as the most prominent protocols, to the best of our knowledge, that
embrace this approach.

An alternative line of research, closely related to this work, was pio-
neered by Keidar et al. [63]. Their primary objective is to tackle the
scalability challenge of consensus protocols through the implementation
of a leaderless protocol known as DAG-Rider. This approach heavily
relies on the common core [32] and reliable broadcast [25, 27] primitives.
Keidar et al. [63] made substantial progress by significantly enhancing
both scalability and throughput, albeit at the expense of increased la-
tency. Subsequent work by Danezis et al. [45] involved a modification
of DAG-Rider, where they separated transaction dissemination from the
consensus layer, thereby reducing the overall protocol latency. However,
their reliance on reliable broadcast prevented them from achieving a sub-
stantial reduction in latency. Spiegelman et al. [105] further trimmed
latency by considering a variant of DAG-Rider in a partially synchronous
network setting.

The most noteworthy reduction in latency was achieved by Keidar, Naor,
and Shapiro [64] with their Cordial Miners protocol, which builds upon
DAG-Rider but eliminates the need for reliable broadcast by introducing
an additional round of communication. Both DAG-Rider and Cordial
Miners leverage the properties of the common core as a black-box ap-
proach, mandating a minimum number of rounds in their protocols.
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In contrast, our approach diverges in how we employ the common core.
We consider a relaxation of the agreement property of the common core,
which is subsequently factored into the block delivery routine.

Another orthogonal improvement of leaderless protocols is considered by
Danezis et al. [45] and Spiegelman et al. [105]. This approach is centered
around enhancing both the throughput and adaptability of the protocol.
These protocols introduce the concept of workers, which accelerate the
dissemination of transactions by generating certificates of availability, al-
lowing the protocol to efficiently process hashes of transaction batches.
This approach significantly boosts the number of transactions processed
since the protocol exclusively deals with the hashes. Moreover, the abil-
ity to add or remove workers provides the protocol with the flexibility
to adapt to the current system load.

Our protocol achieves similar results but eliminates the necessity for
certificates of availability, leading to a reduced number of required sig-
natures.

6.3 Model

We consider the Byzantine adversary (Section 2.1) in the asynchronous
model (Section 2.2.2). We aim to build a protocol implementing atomic
broadcast, definition that we recall below:

Definition 2 (Atomic broadcast) : A protocol solves atomic broad-
cast with validity predicate V if it satisfies the following conditions, ex-
cept with negligible probability:

Validity: If an honest party ab-broadcasts a block b, then it eventually
ab-delivers b.

Agreement: If a honest party ab-delivers a block b, then all honest
parties eventually ab-deliver b.

Integrity: For any block b, every honest party ab-delivers b at most
once, and only if it was submitted by some user.

Total order: If honest parties Pi and Pj both ab-deliver blocks b and
b′, then p ab-delivers b before b′ if and only if Pj ab-delivers b
before b′.
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External validity: If an honest party ab-delivers a block b, then
V (b) = true.

Note that in this work we consider blocks denoted by b instead of trans-
actions, this is due to implementation details that do not belong in this
thesis. The properties remain unaltered.

Moreover, we also recall the concepts of common coin and common core
from Chapter 2 since we use them as essential building blocks.

Definition 6 (Common coin). A protocol solves common coin with
domain D and bias ε if it satisfies the following conditions, except with
negligible probability:

Termination: Every correct party eventually c-output() a coin value.

Unpredictability: The probability that an adversary predicts the
c-output() value before at least one honest party invokes c-release()
is at most 1

|D| + ε.

Matching: With probability at least δ, every correct party c-outputs
the same value. If δ = 1, the coin is called perfect

No bias: If all correct parties c-output() the value, the distribution of
the coin is uniform over D.

As explained in Chapter 2, we assume perfect coins with ε arbitrarily
small. Such coins can be constructed efficiently in a distributed setting
[106].

Definition 7 (Common core). A protocol solves common core if it
satisfies the following conditions with all but negligible probability:

Validity: Every honest party Pi eventually delivers a set Ui .

Common core: There exists a core set U ∗ of size at least 2f + 1 that
is included in the delivered set of every honest party.

Integrity: If honest party Pi includes (Pj , vj ) in its delivered set Ui ,
and j is honest, then vj its input.

Agreement: If two honest parties include the pairs (Pj , v) and (Pj , v
′)

in their delivered sets, then v = v ′.
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The agreement property of the common core requires protocols to use
reliable broadcast [31], with the consequent latency tradeoff. The rest of
the properties can be guaranteed without the use of reliable broadcast,
as detailed in the following section.

6.4 Weak common core

We introduce a novel and more relaxed variant of the common core ab-
straction (Definition 7), which we refer to as the weak common core.
The primary distinction between the weak common core and the stan-
dard common core abstractions lies in the agreement property. In the
standard common core abstraction, when two honest parties include the
value vj from a specific party Pj , they unanimously concur on the same
value. However, in the weak common core abstraction, if party Pj is
Byzantine, these values may differ among honest parties.

Our weak common core abstraction is accessed through a sin-
gle core-broadcast(Pi , vi) event per party and one or multiple
core-deliver(Pj ,Uj ) events. We consider a different interface where
every party outputs a set corresponding to other parties in order to
build a clearer description of our protocol. It is enhanced with a validity
predicate that determines, whether an output set U is valid. Different
instantiations of the validity predicate yield to different abstractions of
the weak common core.

Definition 34. A protocol solves weak common core with validity pred-
icate V if it satisfies the following conditions with all but negligible
probability:

Validity: Every honest party Pi eventually outputs core-deliver(Pi ,Ui).

Integrity: If an honest party Pi outputs the event core-deliver(Pj ,Uj ),
then Uj is valid and for any value (Pk , vk ) contained in Uj with
Pk honest, the value vk has been core-broadcast by Pk .

Weak agreement: If any honest party outputs core-deliver(Pj ,Uj )
with honest Pj , then every honest party eventually outputs
core-deliver(Pj ,Uj ). Furthermore, if two honest parties out-
put events core-deliver(Pj ,Uj ) and core-deliver(Pj ,U

′
j ) with
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Pj honest, then Uj = U ′j . Furthermore, any honest party
core-deliver(Pj ,Uj ) at most once per party Pj .

Common core: There exists a core set U ∗ formed by core-broadcast
values from at least 2f + 1 different parties Pj that is included in
every valid core-delivered set.

Self inclusion: If an honest party Pi outputs core-deliver(Pi ,Ui), then
Ui includes the value (Pi , vi) core-broadcast by Pi .

The Gather Protocol [32], is a well-established protocol designed to im-
plement the common core abstraction. Algorithm 18 introduced a mod-
ification of the Gather Protocol, obtained by substituting the reliable
broadcast primitive with the bare broadcast of messages to all parties.
Algorithm 18 implements the weak common core with a validity predi-
cate denoted as Vc , as defined below.

A valid core-delivered set Ui is a set containing valid sets Tj created by
at least 2f + 1 different parties. A valid Tj contains at least 2f + 1 sets
Sk from different parties. Finally, a valid Sk must contain values from
at least 2f +1 different parties. For simplicity, we assume that any value
or set in the protocol contains information to verify its authenticity.

We describe the actions of honest party Pi according todo Algo-
rithm 18. The protocol initiates as party Pi triggers the event
core-broadcast(Pi , vi) using its input value vi and sends the message
[first,Pi , vi ] (L 314–321) to every party. Subsequently, Pi awaits the
receiving of input values from various parties (L 322–324). If Pi receives
multiple values from the same party, only the first value is considered;
this rule applies throughout this description.

Once Pi has received input values from at least 2f + 1 parties, including
Pi itself, Pi aggregates all these values into the set Si and sends the
message [second, (Pi ,Si)] to all parties (L 325–327). Pi then awaits
the delivery of sets Sj from different parties (L 328–330) and compiles
these sets into a new set named Ti .

Upon receiving sets Sj from at least 2f + 1 parties, including itself,
Pi sends the message [third, (Pi ,Ti)] to all parties (L 331–333). Sub-
sequently, Pi waits for sets Tj from different parties (L 328–330) and
assembles these sets in an output set named Ui .
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Algorithm 18 Weak common core (party Pi)

Initialization
314:upon core-broadcast(Pi , vi)do
315: Si ← ∅ // auxiliary set
316: Ti ← ∅ // auxiliary set
317: Ui ← ∅ // output set
318: Oi ← ∅ // received output sets
320: r ← 1 // round counter
321: send [first, (Pi , vi)] to every party // Pi included

Algorithm
322:upon receive valid [first, (Pj , vj )] from party Pj do
323: if @(x , y) ∈ Si : x = Pj then // only first received value
324: Si ← Si ∪ {(Pj , vj )}

325:upon r = 1 ∧ |Si | ≥ 2f + 1 ∧ self(Si) do
326: r ← 2
327: send [second, (Pi ,Si)] to every party

328:upon receive valid [second,Pj ,Sj ] from party Pj do
329: if @(x , y) ∈ Ti : x = Pj then // only first received value
330: Ti ← Ti ∪ {Sj}

331:upon r = 2 ∧ |Ti | ≥ 2f + 1 ∧ self(Ti) do
332: r ← 3
333: send [third, (Pi ,Ti)] to every party

334:upon receive valid [third, (Pj ,Tj )] from party Pj do
335: if @(x , y) ∈ Ui : x = Pj then // only first received value
336: Ui ← Ui ∪ {Tj}

337:upon r = 3 ∧ |Ui | ≥ 2f + 1 ∧ self(Ui) do
338: r ← 0
339: send [output, (Pi ,Ui)] to every party
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Algorithm 19 Weak common core (party Pi)

340:upon receive valid [output, (Pj ,Uj )] do
341: if @(x , y) ∈ Oi : x = Pj then // only the first received value
342: Oi ← Oi ∪ {(Pj ,Uj )}
343: core-deliver(Pj , values(Uj )) // return the values

344:function self(S ):
345: return ∃x ∈ S : x [1] = i

Upon receiving sets Tj from at least 2f + 1 parties, including itself, Pi

sends the message [output, (Pi ,Ui)] to all parties (L 337–339). When
party Pi receives a message [output, (Pj ,Uj )] from another party Pj ,
Pi triggers an output event core-deliver(Pj , values(Uj )), with values(Uj )
encompassing the core-broadcast values within Uj (L 340–343). It is im-
portant to note that if Pi receives multiple [output, (Pj ,Uj )] messages
from the same Pj , only the first received message triggers the output
event core-deliver(Pj , values(Uj )).

Theorem 29. Algorithm 18 implements weak common core with validity
predicate Vc.

Proof. The proof is structured by property.

Validity: Every honest party send a message [first, (i , vi)] to every
party (L 314–321). Thus, every honest party receives at least 2f +1
valid [first, (j , vj )] (L 322), note that an adversary cannot force
a message to be sent by an honest party to be invalid. Consider
an honest party Pi , this condition guarantees that Pi eventually
creates a valid set Si and sends it to every party (L 325–327).
Iterating over the same argument, every honest party eventually
receives at least 2f + 1 valid messages [second, (j ,Sj )] (L 328–
330),produces valid sets T that are sent to everyone (L 331–333).
Analogously, every honest party eventually receives at least 2f + 1
valid messages [third, (j ,Tj )] (L 334–336) which allow the honest
parties to output a valid set Ui (L 337–339).

Integrity: Consider an honest value (Pj , vj ) contained in a valid output
set. By assumption (Pj , vj ) contains information to verify that the
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value (Pj , vj ) was indeed created by party Pj . Since Pj is honest,
vj is its sole core-broadcast(Pj , vj ) value.

Weak agreement: Consider honest parties Pi and Pj such that Pi has
core-delivered(Pj ,Uj ). Since Pi has core-delivered(Pj ,Uj ), Pi has
received a message [output, (Pj ,Uj )] (L 340–343). Which implies
that Pj has sent the message [output, (Pj ,Uj )] to every party and
has executed lines L 337–339.

Furthermore, the integrity property guarantees that Uj is
valid. Thus, every honest party eventually receives the mes-
sage [output, (Pj ,Uj )] and outputs core-delivered(Pj ,Uj )
(L 340–343).

Common core: We claim that there exists an honest Si such that Si

is not a subset of Tj for at most f honest parties. Let S and T
denote the set of honest Si and Ti respectively and Q = {(Si ,Tj ) :
i , j ∈ N \F ∧Si 6⊆ Tj} denote the set of pairs of parties such that
there is an honest Si produce by party i that is not contained in a
set Tj created by honest party j . By construction of the Tj sets,
the number of honest sets Si that are not a subset of Tj is at most
f , i.e., |{Si : i ∈ N \ F ∧ Si 6⊆ Tj}| ≤ f and |S| ≥ |T |. Thus, the
cardinality of Q is bounded by |Q| ≤ f |T | ≤ f |S|. Thus, there
must be at least one honest set Si that is not a subset of at most
f honest Ti .

We also claim that there for any a set of at least f + 1 honest
sets Tj denoted by T ′ and for every valid Uk set there exists a Tj

contained in Uk ,i.e., ∀valid Uk ,∃Tj ∈ T ′ : Tj ⊆ Uk . Note that
each Uk is a superset of at least f +1 honest Tj and the cardinally
of T is upper-bounded by 2f + 1, thus the claim is satisfied.

Assume that some party outputs a valid Uk set, by construction
there exists at least f + 1 honest Tj and Sj sets. Define T ′ to be
a set of honest Ti of size exactly f + 1. The first claim guarantees
that there exists an Si set that is not contained in at most f
honest Tj sets, i.e., Si is a subset of T ′. Whereas, the second
claim guarantees that for any set T ′ of at least f + 1 honest Tj ,
every Uk is a superset of at least one element of T ′. We conclude
that every valid Uk is a superset of Si , thus it contains at values
from at least 2f + 1 values from different parties (by construction
of Si).

Self inclusion: Note that given an honest party Pi , the following holds
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Si ⊆ Ti ⊆ Ui by construction since Pi must create an Si set before
creating a Ti set an the latter before Ui . Hence, the self inclusion
property is satisfied.

6.5 Atomic broadcast protocol

We provided a top-down description of our algorithm All set. First
we start with a high-level description, then we define key concepts for
Algorithm 20, and we conclude with a detailed definition accompanied
with a pseudocode.

6.5.1 Overview

Our protocol consists of several instances of the weak common core (Sec-
tion 6.4) that are linked with the help of the common coin (Definition 6)
protocol to implement atomic broadcast (Section 6.3).

Each honest party Pi selects a block to ab-broadcast together with
references to 2f + 1 outputs from different parties of the previous in-
stance of the weak common core protocol and core-broadcasts them.
When an Pi core-delivers(Pj ,Uj ), it stores the set and waits until it has
core-delivered(Pj ,Uj ) from 2f + 1 different parties. When enough sets
have been core-delivered, Pi releases the common coin to designate a
party as a anchor for this instance. For the ease of notation, we assume
that the common coin runs in the background and we do not specify
its events in the description. The core-broadcast block created by the
anchor and its ancestors are ab-delivered, given that the block satisfies a
set of conditions. A deterministic topological sort then applied to guar-
antee that every party ab-delivers the block in the same order. Each
party then creates a block to ab-broadcast together with references to
at least 2f + 1 output from the new instance of the weak common-core
and repeats the process. Parties can also include extra references older
core-delivered sets aiming to ab-deliver blocks that otherwise would be
left behind.
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6.5.2 Definitions

Algorithm 20 uses the concepts of blocks, parents, and ancestors, con-
cepts formalized below.

Definition 35. A block b is tuple [Pi , transactions, ref, ref′] where Pi

denotes the creator of block b, transactions denotes a set of transaction,
and ref, ref′ are two sets of references to sets of blocks.

The sets of references ref and ref′ are used to include sets from the past
and previous instances of the common core respectively.

Definition 36 (Block). Given a block b = [Pi , transactions, ref, ref′],
we define the parents of b, denoted as parents(b), to be the set of blocks
included in the sets referenced by ref. The set of blocks included in the
sets referenced by ref′ constitutes the set of relatives of b, denoted by
relatives(b).

In simple words, the parents of a given block of wave w are the blocks
from wave w − 1 that are included in the sets referenced by b. The
relatives of b are the blocks from earlier waves than w − 1 included in
sets referenced by b. The combination of both is a recursive manner
constitutes the set of ancestors of b, formalized below.

Definition 37 (Ancestors). Given b = [Pi , transactions, ref, ref′] a
block, the set of ancestors of b, denoted by ancestors(b), is the set of
blocks formed by b itself and the ancestors of the parents and relatives
of b, i.e.,

ancestors(b) = {b}
⋃

b′ ∈ parents(b)

ancestors(b′)
⋃

b′ ∈ relatives(b)

ancestors(b′).

Definition 38 (Strong and weak ancestors). Given a block b =
[Pi , transactions, ref, ref′], the set of strong ancestors of b, denoted by
strong(b), is the set of blocks formed by b itself and the strong ancestors
of the parents of b, i.e.,

strong(b) = {b}
⋃

b′ ∈ parents(b)

strong(b′).

The set of weak ancestors of b, denoted by weak(b), is defined to be
the set of ancestors of b that are not strong ancestors, i.e., weak(b) =
ancestors(b) \ strong(b).
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6.5.3 Detailed explanation

Our protocol is structured in waves built around instances of the weak
common core (Section 6.4). The weak common core is augmented with
an identifier w to indicate the instance of the corresponding message.
Honest parties are allowed to increment their wave number only after
outputting at least 2f + 1 core-deliver(w ,Pj ,Uj ) from different parties
Pj . We assume a common coin protocol (Definition 6) running in the
background, such that parties can obtain the value of a coin whenever
needed. We describe the protocol from the perspective of an honest
party Pi , all the honest parties play a symmetrical role. We assume
that every message sent contains all its ancestors, in an implemention,
a hash to the ancestors is sufficient with the aid of a poll mechanism for
missing blocks.

Initialization. Party Pi starts the protocol by initializing the
wave and last delivered block variables and core-broadcasting block
b = [Pi , transactions(), ∅, ∅] (L 352–356). Block b contains an identifier
of party Pi , a set of transactions but no references to core-delivered sets
from the previous wave, nor previous waves in contrast to later blocks.

Wave. Once the protocol has been initialized, the structure of any
wave is equivalent. When triggering an event core-deliver(wj ,Pj ,Uj ),
party Pi stores the set Uj in the variable U [wj , j ] (L 359–363), the value
wj denotes the wave, or instance of the weak common core, in which Uj

is core-delivered. Pi also updates the sets B and U with every block, and
respectively set, contained in Uj (L 361), this means that B (U) may
contain several blocks (sets) corresponding to the same party and wave.
Note that, wave wj does not need to equal the local value w of party
Pi , honest parties accept events core-deliver(wj ,Pj ,Uj ) of present, past,
and future waves.

Party Pi waits until it core-delivers(w ,Pj ,Uj ) from at least 2f +1 parties
including its own set (L 364) to conclude the wave. Once the wave
can be finalized (L 364–370), Pi selects the anchor of the wave using
the common coin (L 365) and delivers the corresponding set of blocks
(L 366). The delivery of blocks is non-trivial and it is explained in
the next paragraph. After the delivery routine, Pi increments the wave
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number (L 367) and creates a new block for wave w + 1 with references
to every core-delivered set U [w , ∗] from wave w and every core-delivered
set from earlier waves U [< w , ∗] that is not an ancestor of any U [w , ∗]
(L 368–369). In the case that for some j there is more than one core-
delivered set in U [r , ∗], party Pi selects only the first element of the
list, the element that Pi received first. Party Pi concludes the wave by
core-broadcasting the new block b (L 370).

Delivery. The delivery routine (L 373–390) takes as input a wave num-
ber w and produces as output a list of blocks to be ab-delivered. If Pj

is an anchor for wave w , the outcome of the coin for wave w , then Pi

first searches for any block b from party Pj in B[w ], i.e., created in wave
w . Furthermore, Pi verifies that b is voted for by at least 2f + 1 parties.
A party Pk votes for a block b of wave w (L 377) if Pk includes block
b in its core-deliver(w ,Pk ,Uk ) and it does not include any other block
from the same creator and wave. This voting mechanism guarantees
two important properties: if any party Pk includes an honest blocks
b in its core-deliver(w ,Pk ,Uk ), it votes for b since honest parties only
core-broadcast a block per wave. If there is a block b created by the
anchor that is voted by at least 2f + 1 parties, party Pi constructs the
set strong(b) consisting of the strong ancestors of b and and applies the
ordering function τ to it (L 375).

The ordering function τ is defined as follows (L 379–391). Given a
set S , party Pi searches for the anchor block in the set strong(b) of
the highest wave wave w (b excluded), i.e., blocks of the shape b2 =
[w2, C[w2], ∗, ∗, ∗], of wave greater than the last delivered wave w`. If
such block exists, invokes τ(b2) and repeats the procedure described
above. When a block bm+1 = [wm+1, C[wm+1], ∗, ∗, ∗] cannot be found,
Pi ab-delivers the ancestors (weak ancestors included) of bm that have
not been already ab-delivered in some deterministic order. A block is
ab-delivered only if no block from the same wave and creator has not
previously been ab-delivered (L 387). Pi , then, delivers the ancestors
of bn−1 that have not been already ab-delivered and repeats until b.
Finally party Pi updates the last delivered wave w` (L 376. For the
sake of notation, we consider τ0(b) to be the list of ab-delivered by the
invocation of τ with b as input with w` = 0.
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Algorithm 20 All set (party Pi)

State
346:w ∈ N // current wave
347:B[w ] // hashmap of the set of blocks
348:U [w , i ] //hashmap of output set of each common core instance
349:C[w ] //hashmap of values of coins
350:V //set of already included blocks
351:D //set of ab-delivered blocks

Initialization
352:upon initialization() do
353: w ← 1
354: b` ← ∅
355: b← [Pi , transactions(), ∅, ∅]
356: ab-broadcast(b)

Algorithm
357:upon ab-broadcast(b) do
358: core-broadcast(wi ,Pi , bi)

359:upon core-deliver(wj ,Pj ,Uj ) do
360: U [wj , j ]← Uj

361: update(Uj ) //update B and U according to Uj

362: for bj ∈ Uj do
363: B[w ]← B[w ] ∪ {bj}

364:upon |U [w , ∗]| ≥ 2f + 1 ∧ U [w , i ] 6=⊥ do
365: C[w ]← Coin(w)
366: deliver(w)
367: w ← w + 1
368: V ← ancestors(U [w − 1, ∗])
369: b← [i , transactions(),U [w − 1, ∗],U [< w − 1, ∗] \ V]
370: ab-broadcast(b)
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Algorithm 21 Functions (party Pi)

371:function transactions():
372: return set of transactions

373:function deliver(w):
374: if ∃B ∈ B[w ] such that creator(b) = C[w ]∧

|{U ∈ U [w , ∗] : vote(b,U )}| ≥ 2f + 1 then
375: D ← τ(b)
376: wl ← wave(b)

377:function vote(b,U ):
378: return b ∈ U ∧ @b′ ∈ U :

b′ 6= B ∧ wave(b′) = wave(b) ∧ creator(b′) = creator(b)

379:function τ(b) :
380: S ← strong(b)
381: w ← wave(b)
382: A ← {b′ = [C[w ′],w ′, ∗, ∗] ∈ S : w` < w ′ < w}
383: if A 6= ∅ then
384: b∗ ← max(A) //block from the highest wave
385: τ(b∗)
386: for b′ ∈ ancestors(b) \ D in some deterministic order do
387: if @b′ ∈ D :

wave(b′) = wave(b) ∧ creator(b′) = creator(b) then
388: ab-deliver(b′)
389: D ← D||b′
391: return D
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6.6 Analysis

We prove a series of lemmas that lead to the conclusion that our protocol
implements atomic broadcast.

Lemma 30. Given wave w and an honest party Pi , the probability
that the commitment rule (L 374) is satisfied in the view of Pi by
a core-broadcast(w ,Pj , b) block b is at least 1/3. Furthermore, if a
core-broadcast(w ,Pj , b) block b and a core-broadcast(w ,Pk , b

′) block b′

satisfy the commitment rule in wave w, then b = b′.

Proof. According to the common core property of the weak common
core (Definition 34), every block b contained in the common core U ∗, is
also contained in any valid core-delivered set Uj . Denote the set honest
blocks contained in the common core byH, it holds that |H| ≥ f +1 since
there exists blocks core-broadcast(w ,Pj , bj ) by at least 2f +1 parties Pj

in the common core of wave w . Since honest parties only core-broadcast
a single block per wave, every block contained in H satisfies L 374. No-
tice that the value of any honest party inside the common core satisfies
L 374, since honest parties do not create multiple values. In the case
of an honest block b, the voting function vote(b,U ) degenerate into the
inclusion function b ∈ U . The unpredictability property of the common
coin guarantees an uniform distribution over the set of parties (Defini-
tion 6). Hence, the probability that L 374 is satisfied is at least f +1

n > 1
3 .

Assume that two distinct blocks b, b′ satisfy the commitment rule
(L 374). According to the matching property of the common coin,
both blocks have been created by the same party. Besides, block b is
included in core-delivered(w ,Pj ,Uj ) sets that do not include the other
block (L 377) from at least 2f + 1 parties, at least f + 1 honest parties.
The same argument applies to b′. Since there exists only 2f + 1 honest
parties, both b and b′ cannot simultaneously satisfy L 374 unless there
is an honest party Pj that core-delivered two different sets Uj ,U

′
j sets.

We conclude that at b = b′.

The proof of Lemma 30 is based on the properties of the common core.
However, it is still possible that a block b satisfies L 374 without been
part of the common core and b does not satisfy L 374 in the view of a
different honest party.
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Lemma 31. Given a core-broadcast(w ,Pj , b) block b satisfying the
commitment rule (L 374) in the view of at least one honest party, then
b ∈ strong(b′) for every valid core-broadcast(w ′,Pk , b

′) in any wave
w ′ > w.

Proof. Consider a wave w and a core-broadcast(w ,Pi , b) block b
that satisfies the commitment rule (L 374) in the view of at least
one honest party. Consider also another wave w ′ > w and a valid
core-broadcast(w ′,Pj , b

′) block b′. Since b satisfies the commitment
rule (L 374), b is included in core-delivered(w ,Pj ,U ) from at least
2f + 1 parties Pj , from at least f + 1 honest parties Pj . We proceed
using induction over ∆ = w ′ − w .

Assume that ∆ = 1, a valid core-broadcast(w ′,Pj , b
′) block b′ contains

core-delivered(w ,Pk ,Uk ) sets Uk from at least 2f +1 different parties, at
least f + 1 honest. Whereas, block b is contained in at least f + 1 honest
core-delivered(w ,Pk ,Uk ) . By quorum intersection, there is at least one
honest core-delivered(w ,Pk ,Uk ) set Uk containing b that is included in
b′. Thus, b ∈ strong(b′).

Assume now that block b ∈ strong(b′) for ∆ = ∆0 and consider a
core-broadcast(w ′,Pj , b

′) block b′ from a later wave w ′ = w + ∆0 + 1.
From the induction hypothesis, every valid core-broadcast(w+∆0,Pj , b

′)
block b′ satisfies that b ∈ strong(b′). Thus, every block contained in ev-
ery valid core-deliver(w + ∆0,Pj ,Uj ) set Ui has b as an ancestor. We
conclude by realizing that any valid core-broadcast(w + ∆0 + 1,Pj , b

′)
block b′ satisfies that b ∈ strong(b′), since a valid core-broadcast(w +
∆0 + 1,Pj , b

′) block b′ contains valid core-deliver(w + ∆0,Pj ,Uj ) sets
and the ancestry property is transitive.

Lemma 32. Any two blocks b, b′ satisfying the commitment rule
(L 374) in the view of at least one honest party satisfy: b ∈ strong(b′)
if wave(b) < wave(b′), or b′ ∈ strong(b) if wave(b′) < wave(b).

Proof. If both b and b′ have been core-broadcast in the same wave w ,
Lemma 30 guarantees that b = b′, thus b ∈ strong(b′). If b and b′ have
been core-broadcast in waves w and w ′ > w , Lemma 31 guarantees that
b ∈ strong(b′). Similarly, if w > w ′, we conclude b′ ∈ strong(b).
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The next result guarantees that eventually every honest part
core-delivers a set corresponding to an arbitrarily large wave.

Lemma 33. For every w ∈ N, every honest party Pi that eventually
core-delivers(w ,Pi ,Ui).

Proof. We proceed by induction. Consider the first wave w = 1,
each honest party core-broadcasts(1,Pj , bj ) a block bj as part of
the initialization routine (L 352–356). The validity property of the
weak common core guarantees that every honest party Pi eventually
core-delivers(1,Pj ,Uj ) for every honest party Pj . Thus, honest party
Pi eventually core-delivers(1,Pi ,Ui).

Assume now that an honest party Pi eventually core-delivers(w −
1,Pj ,Uj ) from at least 2f + 1 different parties. Party Pi then is
allowed to increment their wave to w and core-broadcast(w ,Pi , bi) a
block bi (L 364–370). Eventually every honest party core-broadcasts
a block corresponding to wave r . We conclude by using the validity
property of the weak common core to guarantee that every honest
party Pj eventually core-deliver(w ,Pj ,Uj ) a set Uj . Thus Pi eventually
core-deliver(w ,Pi ,Ui).

Lemma 34. Given to anchor blocks b, b′ that satisfy L 374, then τ0(b) ≺
τ0(b′) or τ0(b′) ≺ τ0(b), i.e, one output is a prefix of the other.

Proof. Without loss of generality assume that w = wave(b) ≤
wave(b′) = w ′. In this case Lemma 32 guarantees that b ∈ strong(b′).
Furthermore, b ∈ strong(b∗) for any valid block of wave w∗ > w . We
proceed by induction over ∆ = w ′ − w .

If ∆ = 0 then b = b′ and the statement is trivial.

If ∆ > 0, we inductively assume that τ0(b) ≺ τ0(b′′) for all anchor
blocks b′′ in the strong ancestors of b′ such that wave(b′′) < w + ∆.
The first step in the computation of τ0(b′) is selecting the anchor block
b∗ with the highest wave in the strong ancestors of b′ (L 384). Because
b ∈ strong(b′) and w∗ = wave(b∗) is maximal among all strong ancestors
of b′, we have w∗ ≥ w . Moreover b∗ is an ancestor of b′, and thus w < w ′.
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Consequently, w ≤ w∗ < w + ∆ = w ′, the inductive hypothesis holds,
and we conclude τ0(b) ≺ τ0(b∗) ≺ τ0(b′).

Theorem 35. You are all set (Algorithm 20) implements atomic broad-
cast.

Proof. We structure the proof property by property.

Validity: Assume that honest party Pi ab-broadcasts (L 357) a given
block bi in wave w , then Pi core-broadcast(w ,Pi , bi) (L 358). The
validity property of the weak common core guarantees that party
Pi eventually core-delivers(w ,Pi ,Ui) a set Ui (L 359). Every hon-
est party eventually core-delivers(w ,Pi ,Ui) and adds it to its local
view (L 363)

Consider now another honest party Pj , note that Pj eventually
core-broadcast(w ′,Pj , b

′
j ) a block bj with Ui as either parent

or relative and w ′ ≥ w (L 364–370). Set Ui would be a par-
ent if Pj core-delivers(w ,Pi ,Ui) before completing wave r + 1
(L 364), otherwise, Ui is a relative. The core-broadcast(w ′,Pj , b

′
j )

is guaranteed by Lemma 33. Regardless of the case, any
core-broadcast(w∗,Pj , b

∗
j ) block with w∗ ≥ w ′ that satisfies the

commitment rule (L 374) implies the ab-delivery(bi), since bi is
an ancestor of bj , thus an ancestor of b′j (L 373–390. Hence, there
exists a wave w0 such that the satisfaction of the commitment rule
(L 374) by any honest block in wave w ≥ w0 implies ab-deliver(bi)
.

On the one hand, Lemma 30 guarantees that an honest satisfies
the commitment rule (L 374) with probability at least 1/3 after
each wave. Lemma 33 guarantees that every honest party Pi party
eventually core-delivers(w ,Pi ,Ui) a set Ui for any arbitrary wave
w . Thus, the commitment rule (L 374) is eventually satisfied by
an honest core-broadcast(w ′,Pj , bj ) block bj with w ′ ≥ w0 and
ab-delivered(bi).

Agreement: Assume that an honest party Pi ab-delivers(bi) in wave
w . This means that there exists a block b′ in the view of Pi ,
possibly b′ = B , that satisfies the commitment rule (L 374) and
b is an ancestor of b′ (L 373–390). Using Lemma 32, b′ is an
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ancestor of any future block that satisfies L 374 in the view of any
honest party. Furthermore, L 374 will eventually be satisfied by
some honest block (Lemma 30 and Lemma 33). Thus, every other
honest party eventually ab-delivers(bi).

Integrity: Follows from Lines L 373–390, since an honest party
ab-delivers each block at most once.

Total order: The total order property is guaranteed by Lemma 34.
Block are ab-delivered when some block satisfies the commitment
rule (L 374). Consider two parties Pi and Pj and a block b such
that, Pi core-delivers(b) because bi satisfies the commitment rule
and Pj because bj satisfies the commitment rule. If wave(bi) =
wave(bj ), then bi = bj and b is ab-delivered in the same position by
both parties. Without loss of generality, assume that wave(bi) <
wave(bj ), than Lemma 34 guarantees that τ0(bi) ≺ τ0(bj ), i.e.,
both Pi and Pj deliver b in the same position. We conclude that for
pair of parties Pi and Pj and pair of block b and b′, Pi ab-delivers
b before b′ if and only if Pj does.

One we have proved that All set (Algorithm 20) implements atomic
broadcast we analyze its latency.

Theorem 36. The average number of waves until an honest party com-
mits a leader block is at most 3 in the most adversarial case and 3/2 if
every party is honest.

Proof. On the one hand, Lemma 30 guarantees that the probability that
an honest party Pi commits a leader block is 1/3, thus the number of
waves until a block is committed no greater than 3, regardless of the ad-
versarial behavior. On the other hand, when every party is honest, the
function vote(b,U ) (L 377) simply verifies if block b is contained in set
U . Thus, every block contained in the common core satisfies the com-
mitment rule (L 374). Hence, the probability that the commitment rule
(L 374) is satisfied is at least 2/3, which implies that the commitment
rule (L 374) is satisfied on average at most every 3/2 waves.

From Theorem 36 follows that in the adversarial case, a block is
ab-delivered on average after the finalization of its wave and three
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completed waves, thus 14 rounds of communication. However, in the
best case, only a save is required, thus 4 rounds of communication.

6.7 Formal verification

We have formally verified properties of Algorithm 20 with the assistance
of TLA1. We have considered a network of four parties, three honest and
one Byzantine party as described in the code below. We have verified
the following properties for two waves.

Property 37 (Uniqueness). For any wave, at most one block from
each party is included voted by at least 2f + 1 different parties.

Property 38 (Follow). If a block b is included in the core-delivered
set by at least 2f + 1, b is a strong ancestor of every block from the next
wave.

Note that Property 37 corresponds to the statement of Lemma 30.
Whereas, Property 38 corresponds to the main step in the proof of
Lemma 31, the statement of Lemma 31 cannot be formally verified as
it requires an infinite execution. Furthermore, both properties can be
formally verified in only two waves, by definition. Below, we show the
TLA-code used for this formal verification.

module all set

extends Naturals, FiniteSets, Sequences, Randomization, TLC

constants N , f , rmax

variables B , U , round , Leaders, Core

assume NF
∆
= N ∈ Nat ∧ f ∈ Nat ∧ (N > 3 ∗ f )

Proc
∆
= 1 . . N

1https://lamport.azurewebsites.net/tla/tla.html

https://lamport.azurewebsites.net/tla/tla.html
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Values
∆
= 1 . . f + 1

vars
∆
= 〈B , U , round , Leaders, Core〉

Init
∆
=

∧ B = {〈1, i , 1, {}〉 : i ∈ Proc} ∪ {〈1, i , 2, {}〉 : i ∈ 1 . . f }

∧U = {}

∧ Leaders = {}

∧ Core = {〈1, {1, 2, 3}〉, 〈2, {1, 2, 4}〉, 〈3, {1, 3, 4}〉}

∧ round = 1

Create Block
∆
=

∧ ¬(E x ∈ B : x [1] = round)

∧ E subsetb1 ∈ subset (U ) :

∧ Cardinality({j ∈ Proc :

E x ∈ subsetb1 : x [2] = j}) = 2 ∗ f + 1

∧ ∀ x ∈ subsetb1 : x [1] = round − 1

∧ E x ∈ subsetb1 : x [2] = 1

∧ (∀ x , y ∈ subsetb1 : x [2] = y [2] =⇒ x = y)

∧ E subsetb2 ∈ subset (U ) :

∧ Cardinality({j ∈ Proc :

E x ∈ subsetb2 : x [2] = j}) = 2 ∗ f + 1

∧ ∀ x ∈ subsetb2 : x [1] = round − 1

∧ E x ∈ subsetb2 : x [2] = 1
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∧ (∀ x , y ∈ subsetb2 : x [2] = y [2] =⇒ x = y)

∧ E subset2 ∈ subset (U ) :

∧ Cardinality({j ∈ Proc :

E x ∈ subset2 : x [2] = j}) = 2 ∗ f + 1

∧ ∀ x ∈ subset2 : x [1] = round − 1

∧ E x ∈ subset2 : x [2] = 2

∧ (∀ x , y ∈ subset2 : x [2] = y [2] =⇒ x = y)

∧ E subset3 ∈ subset (U ) :

∧ Cardinality({j ∈ Proc :

E x ∈ subset3 : x [2] = j}) = 2 ∗ f + 1

∧ ∀ x ∈ subset3 : x [1] = round − 1

∧ E x ∈ subset3 : x [2] = 3

∧ (∀ x , y ∈ subset3 : x [2] = y [2] =⇒ x = y)

∧ E subset4 ∈ subset (U ) :

∧ Cardinality({j ∈ Proc :

E x ∈ subset4 : x [2] = j}) = 2 ∗ f + 1

∧ ∀ x ∈ subset4 : x [1] = round − 1

∧ E x ∈ subset4 : x [2] = 4

∧ (∀ x , y ∈ subset4 : x [2] = y [2] =⇒ x = y)

∧ B ′ = B ∪ {〈round , 1, {x [3] : x ∈ subsetb1}〉,

〈round , 1, {x [3] : x ∈ subsetb2}〉,

〈round , 2, {x [3] : x ∈ subset2}〉,

〈round , 3, {x [3] : x ∈ subset3}〉,
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〈round , 4, {x [3] : x ∈ subset4}〉}

∧ unchanged 〈U , Core, Leaders, round〉

Create Set
∆
=

∧ ¬(E x ∈ U : x [1] = round)

∧ E core set ∈ Core :

∧ core set [1] = round

∧ E subset ∈ subset (B) :

∧ ∀ j ∈ core set [2] : E x ∈ subset :

∧ x [2] = j

∧ x [1] = round

∧ ∀ k ∈ Proc : Cardinality({y ∈ subset : y [2] = k}) = 1

∧ E xb1, xb2, x2, x3, x4 ∈ B :

∧ xb1[1] = round

∧ xb2[1] = round

∧ x2[1] = round

∧ x3[1] = round

∧ x4[1] = round

∧U ′ = U ∪ {〈round , 1, subset ∪ {xb1}〉,

〈round , 1, subset ∪ {xb2}〉, 〈round , 2, subset ∪ {x2}〉,

〈round , 3, subset ∪ {x3}〉, 〈round , 4, subset ∪ {x4}〉}



6.7 Formal verification 151

∧ unchanged 〈B , Leaders, Core, round〉

Deliver
∆
=

∧ ∀ j ∈ Proc : E u ∈ U : u[1] = round ∧ u[2] = j

∧ E b ∈ B :

∧ Cardinality({j ∈ Proc : E u ∈ U :

u[1] = b[1] ∧ u[2] = j ∧ b ∈ u[3] ∧

(∀ x , y ∈ u[3] : (x [2] = y [2]) =⇒ x = y)}) ≥ 2 ∗ f + 1

∧ Leaders ′ = Leaders ∪ {b}

∧ unchanged 〈B , U , round , Core〉

Increase
∆
=

∧ round < rmax

∧ ∀ j ∈ Proc : E u ∈ U : u[1] = round ∧ u[2] = j

∧ round ′ = round + 1

∧ unchanged 〈B , U , Leaders, Core〉

Stop
∆
=

∧ unchanged vars

Next
∆
=

∨ Create Block

∨ Create Set
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∨Deliver

∨ Increase

∨ Stop

Unique
∆
=

∀ i ∈ Proc : ∀ r ∈ 1 . . rmax :

Cardinality({leader ∈ Leaders : leader [1] = r ∧ leader [2] = i}) ≤ 1

Follow
∆
=

∀ leader ∈ Leaders : Cardinality({b ∈ B : b[1] = leader [1] + 1 ∧

(∀ u ∈ b[3] : ¬(leader ∈ u))}) < 1

6.8 Conclusion

In this chapter, we have introduced a novel protocol that relies on in-
stances of a weaker variant of the common core, coupled with a common
coin. Our contribution extends beyond demonstrating that this proto-
col successfully implements atomic broadcast; we have also undertaken
formal verification of its properties using TLA. Moreover, the delivery
of every broadcast block has been ensured. In line with the findings
presented in Chapter 5, it is noteworthy that All set (Algorithm 20) has
the potential to be an optimal protocol.



Chapter 7

Sandwich-attack
prevention

If you are a true hero, you
shouldn’t steal.

The Luminary

7.1 Introduction

The field of blockchain protocols has proved to be extremely robust.
Since its creation with Bitcoin [88], it had gone through several en-
hancements such as Ethereum [2] and has seen the appearance of decen-
tralized finance (DeFi). With this, some design flaws started to show
up. Blockchains would ideally allow users to trade tokens with each
other in a secure manner. However, existing designs do not consider
users trading tokens of one platform for FIAT currency or tokens of a
different platform, arguably one of the major flaws of today’s blockchain
platforms, maximal extractable value (MEV) [44]. Current estimates
show that the total volume of MEV since 2020 is around 675M USD [3].
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From a social welfare perspective, while MEV is profitable to miners, it
presents a serious invisible tax on the users on the blockchain. Indeed
the financial losses built up over time could potentially shy away users
from the blockchain, and consequently impact the security of the chain.

Sandwich attacks are one of the most common types of MEV [37] ac-
counting for a loss of 174M USD over the span of 33 months [96] for users
of Ethereum. Sandwich attacks leverage the miner’s ability to select and
position transactions within a block. Consider the simple example of a
sequence of transactions that swap one asset X for another asset Y in
a decentralized exchange where exchange rates are computed automati-
cally based on some function of the number of underlying assets in the
pool (e.g., a constant product market maker [11]). Now suppose there
is a miner that also wants to swap some units of X for Y . The most
favorable position for the miner would be to place their transaction at
the start of the sequence, so as to benefit from a lower X -to- Y ex-
change rate. This approach achieves a simple arbitrage strategy for any
sequence of X -to-Y swaps: the miner can insert an X -to-Y exchange
at the start of the sequence and use the computed exchange rate to sell,
say, k units of X to get units of Y . The miner then front-runs the se-
quence of X -to-Y swaps, i.e., it inserts its own transaction at the start.
To finish off the attack, the miner back-runs the sequence with another
transaction of its own that swaps some units of Y to X , i.e., inserts this
transaction at the end, and will often obtain more than k units of X .
In this way, the miner profits from its insider knowledge and its power
to order transactions. Refer to Section 7.7 for a detailed description of
exchange rate computation and sandwich attacks.

Since any miner of a given block has full control over the transactions
added to the block in the majority of the protocols, as well as over the
way transactions are ordered, it is often straightforward for the miner to
launch the above attack. Consequently, this gives miners a lot of power
as they control precisely the selection and positioning of transactions
with every block they mine. This problem has received broad attention
in the practice of DeFi and in the scientific literature.

A classic technique to mitigate this attack is thus to remove the control
over the positioning of the transactions in the block from the adversary,
whether by using a trusted third party to bundle and order the transac-
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tions as in flashbots1, Eden2, or OpenMEV3. Another method works by
imposing a fair ordering of the transactions using a consensus algorithm
that respects the order in which miners and validators first received the
transactions [67]. The classic solutions either affect the centralization
of the protocol or its efficiency. Furthermore, they cannot easily be
implemented on top of existing blockchain protocols.

In this work, we introduce the Partitioned and Permuted Protocol, ab-
breviated Π3, an efficient decentralized algorithm that does not rely on
external resources to counter front-running. It renders sandwich at-
tacks unprofitable and can easily be implemented on top of an existing
blockchain protocol Π.

Protocol Π3 determines the final order of transactions in a block Bi ,
created by a miner Mi , through a uniformly randomly chosen permuta-
tion Σi . To explain the method, let us focus on three transactions in
Bi , a victim transaction tx∗ submitted by a client, and the front-running
and back-running transactions, tx1 and tx2, respectively, created by the
miner. Since any relative ordering of these three transactions is equally
probable, tx1 will be ordered before tx2 with the same probability as
tx2 before tx1, hence the miner will profit or make a loss with the same
probability. Protocol Π3 uses a fresh permutation for each block; it is
chosen by a set of leaders, which are recent miners in the blockchain.
We recognize and overcome the following challenges.

First, Σi must not be known before creating Bi , otherwise Mi would
have the option to use Σ−1

i , the inverse of Σi , to initially order the
transactions in Bi , so that the final order is the one that benefits Mi .
We overcome this by making Σi known only after Mi has been mined.
On the other hand, if Σi is chosen after creating Bi , a coalition of leaders
would be able to try multiple different permutations and choose the most
profitable one — the number of permutations a party can try is only
limited by their processing power. For these reasons, we have the leaders
commit to their contributions to Σi before Bi becomes known, producing
unbiased randomness. To incentivize leaders to open their commitments,
our protocol Π3 employs a delayed reward release mechanism that only
releases the payment to leaders when they have generated and opened
all commitments.

1https://www.flashbots.net
2https://www.edennetwork.io
3https://openmev.xyz/

https://www.flashbots.net
https://www.edennetwork.io
https://openmev.xyz/


156 Sandwich-attack prevention

In some cases, however, performing a sandwich attack might still be more
profitable than the block reward, and hence a leader might still choose
to not reveal their commitment to bias the resulting permutation. In
general, a coalition of k leaders can choose among 2k permutations out
of the nt ! possible ones, where nt denotes the number of transactions in
the block. It turns out that the probability that tx1, tx∗, and tx2 appear
in that order in one of the 2k permutations can be significant for realistic
values. Protocol Π3 mitigates this by dividing each transaction into m
chunks, which lowers the probability of a profitable permutation in two
ways. First, the number of possible permutations is much larger, (ntm)!
instead of nt !. Second, a permutation is now profitable if the majority
of chunks of tx1 appear before the chunks of tx∗, and vice versa for the
chunks of tx2. As we discuss, the probability of a profitable permutation
approaches zero rapidly as the number of chunks m increases. We discuss
how to implement the chunking mechanism while preserving transaction
integrity and atomicity.

Organization. In this chapter, we introduce a construction that takes
as input a blockchain protocol Π and produces a new blockchain protocol
Π3 in which sandwich attacks are no longer profitable. We begin by re-
visiting the concept of atomic broadcast [27] and setting the model for the
analysis. Secondly, we introduce our construction justifying how miners
are incentivized to follow the protocol before moving on to analyzing the
construction in detail. Thirdly, we guarantee that the construction does
not include any vulnerability to the protocol by showing that Π3 imple-
ments a variant of atomic broadcast if Π does. This part of the analysis
is performed in the traditional Byzantine model. Fourthly, we consider
the rational model to show that sandwich attacks are no longer prof-
itable in Π3. We consider the dual model of Byzantine for the security
analysis and rational for the analysis of the sandwich attacks because
we considered it to be a perfect fit to show that the security of Π3 is
not weakened even against an adversary that obtains nothing for break-
ing the protocol, as well as, we can assume that any party attempts to
extract value from any sandwich attack. In other words, we consider
both the security analysis and the analysis of the sandwich attack in the
worst scenario possible for the protocol. Lastly, we conclude the chapter
with an empirical analysis of the protocol under real-life data, as well as
an analysis of the additional overhead introduced by our protocol.
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7.2 Related work

The idea to randomize the transaction order within a block is folklore in
the blockchain space. It has been explored by Yanai [109] and also imple-
mented in the wild [4]. To the best of our knowledge, we are the first to
implement the randomization using on-chain randomness and to provide
a security analysis for this model. Additionally, Randomspam [4] also
acknowledges that some spamming attacks can occur with randomized
transactions, where the attacker aims to insert several low-cost trans-
actions to maximize the probability that some of these transactions are
positioned exactly at a profitable transaction. Our work reduces the suc-
cess probability of these attacks by first chunking each transaction into
smaller parts and then permuting all chunked transactions, rendering ex-
act positioning attacks less profitable without adding more transactions
and incurring larger gas costs.

A recent line of work [67, 75, 65, 29, 66] formalizes the notion of fair or-
dering of transactions. These protocols ensure, at consensus level, that
the final order is consistent with the local order in which transactions are
observed by parties. Similarly, the Hashgraph [17] consensus algorithm
aims to achieve fairness by having each party locally build a graph with
the received transactions. As observed by Kelkar et al. [67], a trans-
action order consistent with the order observed locally for any pair of
transactions is not always possible, as Condorcet cycles may be formed.
As a result, fair-ordering protocols output a transaction order that is
consistent with the view of only some fraction of the parties, while some
transactions may be output in a batch, i.e., with no order defined among
them. Moreover, although order-fairness removes the miner’s control
over the order of transactions, it does not eliminate front-running and
MEV-attacks: a rushing adversary that becomes aware of some tx early
enough can broadcast its own tx′ and make sure that sufficiently many
parties receive tx′ before tx.

Another common defense against front-running attacks is the commit
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and reveal technique. The idea is to have a user first commit to a
transaction, e.g., by announcing its hash or its encryption, and, once
the order is fixed, reveal the actual transaction. However, an adver-
sary can choose not to reveal the transaction, should the final order
be non-optimal. Doweck and Eyal [48] employ time-lock puzzle com-
mitments [98], so that a transaction can be brute-force revealed, and
protocols such as Unicorn [78] and Bicorn [38] employ verifiable delay
functions [23] to mitigate front-running. Whereas they indeed manage
to mitigate front running, the main disadvantages of these solutions are
threefold: firstly, transactions may be executed much later than submit-
ted, with no concrete upper bound on the revelation time. Secondly,
a delay for the time-lock puzzle has to be chosen which matches the
network delay and adversary’s computational power. Finally, it is un-
clear who should spend the computational power to solve the time-lock
puzzles, especially in proof of work blockchains where this shifts compu-
tational power away from mining.

A different line of work [49, 86, 28, 97, 112] hides the transactions until
they are ordered with the help of a committee. For instance, transac-
tions may be encrypted with the public key of the committee, so that
its members can collaboratively decrypt it. However, this method uses
threshold encryption [47] and requires a coordinated setup. Also multi-
party computation (MPC) has been used [19, 5, 82] to prevent front-
running. MPC protocols used in this setting must be tailor-made so
that misbehaving is identified and punished [18, 71]. A disadvantage of
the aforementioned techniques is that the validity of a transaction can
only be checked after it is revealed. These techniques also rely on strong
cryptographic assumptions and coordination within the committee. The
protocol presented in this work disincentivizes sandwich attacks with-
out requiring hidden transactions or employing computationally heavy
cryptography.

Another widely deployed solution against front-running involves a ded-
icated trusted third party. Flashbots4, Eden5, and OpenMEV6 allow
Ethereum users to submit transactions to their services, then order re-
ceived transactions, and forward them to Ethereum miners. Chainlink’s
Fair Sequencing Service [34], in a similar fashion, aims to collect en-

4www.flashbots.net
5www.edennetwork.io
6https://openmev.xyz/

www.flashbots.net
www.edennetwork.io
https://openmev.xyz/
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crypted transactions from users, totally orders them, and then decrypts
them. The third-party service may again be run in a distributed way.
The drawback with these solutions is that attacks are not eliminated,
but trust is delegated to a different set of parties.

An orthogonal but complementary line of research is taken by Heimbach
and Wattenhofer [61]. Instead of eliminating sandwich attacks, they
aim to improve the resilience of ordinary transactions against sandwich
attacks by strategically setting their slippage tolerance to reduce the risk
of both transaction failure as well as sandwich attacks.

Last but not least, Baum et al. [?] and Heimbach and Wattenhofer [61]
survey the area of front-running attacks.

7.3 Model

Notation. For a set X , we denote the set of probability distributions
on X by µ(X ). For a probability distribution ν ∈ µ(X ), we denote
sampling x from X according to ν by x ← ν.

7.3.1 Abstractions

Parties broadcast transactions and deliver blocks using the events
bab-broadcast(tx) and bab-deliver(b), respectively, where block b
contains a sequence of transactions [tx1, . . . , txm ]. The protocol outputs
an additional event bab-mined(b,P), which signals that block b has
been mined by party Pi , where Pi is defined as the miner of b. Notice
that bab-mined(b,P) signals only the creation of a block and not its
delivery. In addition to predicate VT(), we also equip our protocol
with a predicate VB() to determine the validity of a block. Moreover,
we define a function FB(), which describes how to fill a block: it gets
as input a sequence of transactions and any other data required by
the protocol and outputs a block. These predicates and function are
determined by the higher-level application or protocol.

In this chapter we model protocols block-based atomic broadcast (Defi-
nition 4) concept recalled below.
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Definition 4 (Block-based atomic broadcast). A protocol imple-
ments block-based atomic broadcast with validity predicates VT() and
VB() and block-creation function FB() if it satisfies the following prop-
erties, except with negligible probability:

Validity: If a correct party invokes a bab-broadcast(tx), then every
correct party eventually outputs bab-deliver(b), for some block b
that contains tx.

No duplication: No correct party outputs bab-deliver(b) for a block b
more than once.

Integrity: If a correct party outputs bab-deliver(b), then it has previ-
ously output the event bab-mined(b, ·) exactly once.

Agreement: If some correct party outputs bab-deliver(b), then even-
tually every correct party outputs bab-deliver(b).

Total order: Let b and b′ be blocks, and Pi and Pj correct parties that
output bab-deliver(b) and bab-deliver(b′). If Pi delivers b before
b′, then Pj also delivers b before b′.

External validity: If a correct party outputs bab-deliver(b), such that
b = [tx1, . . . , txm ], then VB(b) = true and VT(txi) = true,
for i ∈ 1, . . . ,m. Moreover, if FB(tx1, . . . , txm) returns b, then
VB(b) = true.

Furthermore, we enhance our block-based atomic broadcast primitive
with a fairness property recall below.

Definition 5 (Fairness). A block-based atomic broadcast protocol is
fair if it satisfies the following property, except with negligible probabil-
ity:

Fairness: There exists C ∈ N and µ ∈ R>0, such that for all N ≥ C
consecutive delivered blocks, the fraction of the blocks whose miner
is correct is at least µ.

Observe that the properties assure that bab-mined(b,P) is triggered
exactly once for each block b, hence each block has a unique miner. For
ease of notation, we define on a block b the fields b.txs, which contains
its transactions, and b.miner, which contains its miner. Since blocks are
delivered in total order, we can assign them a height, a sequence number
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in their order of delivery, accessible by b.height. Finally, for simplicity
we assume that a delivered block allows access to all blocks with smaller
height, through an array b.chain. That is, if b.height = i then b.chain[i ′]
returns b′, such that b′.height = i ′, for all i ′ ≤ i .

7.3.2 Blockchain and network

Blockchain protocols derive their security from different techniques such
as proof of work (PoW ) [88], proof of stake (PoS ) [46], proof of space-
time (PoST ) [40], or proof of elapsed time (PoET ) [24]. In the remainder
of the work, we consider a generic protocol Π that has a probabilistic
termination condition, capturing all the model above. Furthermore, we
model Π as block-based atomic broadcast.

Adversarial & network. We consider a dual adversarial model. For
the security analysis, we consider a Byzantine adversary, for the anal-
ysis of Sandwich attacks we consider the Rational model (Section 2.1).
Both adversaries are considered in the synchronous-rounds model (Sec-
tion 2.2.1.)

Transactions & Blocks. A transaction tx contains a set of inputs,
a set of outputs, and a number of digital signatures. Transactions are
batched into blocks. A block contains a number of transactions, nt , for
simplicity we assume nt to be constant. A block b may contain parame-
ters specific to protocol Π such as references to previous blocks, but we
abstract the logic of accessing them in a field b.chain, as explained in
the context of Definition 4. We allow conditional execution of transac-
tions across blocks, i.e., a transaction can be executed conditioned on
the existence of another transaction in a previous block.

7.4 Protocol

Our proposed protocol Π3 (“Partitioned and Permuted Protocol”) con-
tains two modifications to a given underlying blockchain protocol Π in
order to prevent sandwich MEV attacks.
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Our first modification involves randomly permuting the transactions in
any given block. Note that a naive way of doing so is to use an external
oracle (e.g., DRAND [1] or NIST beacon [68]) to generate the random-
ness which will be applied to a given block. However, using an external
source of randomness relies on strong trust assumptions on the owners
of the source, leaves our protocol vulnerable to a single point of failure
and it introduces incentive issues between miners of the chain and own-
ers of the external source. To avoid this, our protocol uses miners of
the immediately preceding blocks to generate the randomness. These
miners, which we refer to as leaders for the given block, are in charge of
generating random partial seeds. These partial seeds are then combined
to form a seed which will be the input into a PRG to produce a random
permutation that is applied to the transactions in the block. To ensure
that the permutation is random, we need first to achieve that leaders
participate in the generation of random partial seeds and secondly to en-
sure the partial seeds generated by the leaders are random. That is, the
leaders should not commit to the same partial seed each time or collude
with other leaders to generate biased partial seeds. To incentivize each
leader to participate in the generation of the seed, Π3 stipulates that
they commit to their partial seed and present a valid opening during
the commitment opening period, otherwise their reward will be burned.
In typical blockchain protocols, the miner of a block receives the block
reward immediately. In Π3, the miner does not receive the reward until
a certain number of additional blocks has been mined. We refer to this
as a waiting phase and stress that the precise length of the waiting phase
is a parameter in our protocol that can be tweaked.

Our second modification is to divide the transfers of each transaction into
smaller chunks before permuting the chunked transactions of a block.
This modification increases the cardinality of the permutation group in
order to reduce the effectiveness of any attack aiming to selectively open
partial seeds in order to bias the final permutation.

We stress that our proposed modifications incur minimal computational
overhead, since the only possible overhead corresponds to transaction
delivery and this aspect is computationally cheap. Thus, the only no-
ticeable impact of our protocol is latency. In Section 7.6 we provide an
in-depth analysis of the efficiency impact of our proposed modifications.



7.4 Protocol 163

B0B−1B−2 Bτ1
B1B−nl B−3 Bτ1+1 Bτ1+τ2. . .

M−1M−2M−3M−nl

h−nl,nl
h−3,3 h−2,2 h−1,1

σ−1,1
σ−2,2

σ−3,3
σ−nl,nl

Σ0

L0

. . . . . . . . .

τ1 τ2 d

Figure 7.1. We illustrate the routine for the creation of the random
permutation σ0 created by the leader set L0 and to be applied on block
B0 in Bitcoin. The leaders L0 for block B0 is formed by the miners
of the n` blocks before B , marked with the green box. When party
Mi mined block Bi , the party generated some random seed σ−i,i and
included its commitment h−i,i as part of the newly mined block. After
block B0 is mined, the leaders wait for τ1 blocks before opening the
commitments. The commitments must be included in the following τ2
blocks. Finally the parties wait until every block containing openings
are confirmed before delivering block B0

7.4.1 Permuting transactions

Protocol Π3 consists of the following four components (see Fig-
ure 7.1): block mining, generation of the random permutation, reward
(re)-distribution, and chunking the transactions.

Appending the partial seeds. Let n` be the size of the leader set
for each block. The miner Mi of block Bi is part of the leader set
of blocks Bi+j , for j ∈ [n`]. Mi must therefore contribute a partial
seed σi,j for each of these n` blocks following Bi . Hence, Mi needs
to create n` random seeds σi,1, . . . , σi,n` and commitments to them,
C (σi,1), . . . ,C (σi,n`). The commitments C (σi,j ), for j ∈ [n`], are ap-
pended to block Bi , while the seeds σi,j are stored locally by Mi . A
block that does not contain n` commitments is considered invalid.
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Looking ahead, we want that any party knowing the committed value
can demonstrate it to any other party. Thus, the more standard commit-
ments schemes such as Pedersen commitment [92] are ill-suited. Instead,
Π3 uses a deterministic commitment scheme for committing to permu-
tations, in particular, a collision-resistant cryptographic hash function.
When the entropy of the committed values is high enough, then a hash
function constitutes a secure commitment scheme. Since the parties
commit to a random partial seed, hash functions suffice and yield a
cheap commitment scheme.

Opening the commitments. Let τ1, τ2 ∈ N>0. Between τ1 and τ1 +
τ2 blocks after the creation of some block Bi , the commitments of the
partial permutation to be applied on block Bi must be opened. The
miners of these blocks also need to append the openings to their blocks,
unless a previous block in the chain already contains them (see below
for more details). The parameter τ1 controls the probability of rewriting
block Bi after the commitments have been opened. Whereas, parameter
τ2 guarantees that there is enough time for all the honest commitments
to be opened and added to some block. Any opening appended a block
Bj for j > i + τ1 + τ2 is ignored. We note that specific values of τ1 and
τ2 might cause our protocol to suffer an increase in latency. We leave
these parameters to be specified by the users of our protocol. For the
interested reader, we discuss latency-security trade-offs in Section 7.6.
The τ1 blocks created until opening the commitments takes place is
known as silent phase, whereas the following τ2 blocks is known as loud
phase.

A possible way to record the opening of commitments is for the miners
that own the commitments to deploy a smart contract that provides
a method open(i , j , σi,j ), where σi,j is a (claimed) opening of the j -th
commitment hi,j published in the i -th block Bi . We remark, that the
smart contract serves only as proof that an opening to a commitment
has been provided, and does not add any functionality to the protocol, so
other proof mechanisms can also be considered. The protocol monitors
the blockchain for calls to this method. The arguments to each call,
as well as the calling party and the block it appears on, are used to
determine the final permutations of the blocks and the distribution of
the rewards, which we will detail below. We stress that not opening
a commitment does not impact the progress of protocol, as unopened
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commitments are ignored.

Deriving the permutation from partial seeds. Let the seed σi
for block Bi be defined as σi−1,1 ⊕ σi−2,2 ⊕ . . . ⊕ σi−n`,n` . Given the
seed σi , let ri := G(σi), where G : {0, 1}λ → {0, 1}` is a pseudorandom
generator. If at least one of the partial seeds σi,j , for j ∈ [n`], is chosen
at random, then σi is random as well, and ri is indistinguishable from a
random number [22] without the knowledge of σi,j . There are standard
algorithms to produce a random permutation from a polynomial number
of bits [42].

Incentivizing the behavior. A crucial factor in the security of Π3

against sandwich MEV attacks is that the permutation used to order
transactions within a block should be truly random. Thus, the miners
should generate all partial seeds uniformly at random. To incentivize
them to do so, we exploit the fact that all leaders remain in the waiting
phase for a period of time, which means that they have not yet received
the block rewards and fees for mining their block on the blockchain.
Note that the waiting phase is n` + τ1 + τ2 + d blocks long. This implies
that their rewards can be claimed by other miners or burned if a party
diverges from the proper execution, according to the rules described
below. Consider a partial permutation σi,j committed by miner Mi of
block Bi . Recall that σi,j will be applied on block Bi+j and that miners
can be uniquely identified due to the bab-mined() event.

1. Before τ1 blocks have been appended after block Bi+j any other
leader of the leader set Li+j who can append a pre-image of hi,j

to the chain can receive the reward and fees corresponding to Mi .
This mechanism prevents party Mi from disclosing its commitment
before every other leader committed its randomness, thus prevent-
ing colluding. A miner whose commitment has been discovered by
another leader is excluded from all the leader sets.

2. If the opening of σi,j is not appended to any block, miner Mi loses
its reward and fees. This mechanism prevents miners from not
opening their commitments. Note that miners are incentivized to
include all the valid openings, as discussed below.

3. If any of the previous conditions do not apply, party Mi receives an
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Figure 7.2. We illustrate the process followed by party M to deliver a
block B . We denote by tx1, .., txn the n transaction that constitute B .
In the first step, party M breaks each transaction txi into m transactions
tx1

i , .., tx
m
i involving a smaller amount. These smaller transactions are

later permuted according to the random permutation Σ. Lastly, party
M delivers these small transactions in this new order.

α fraction of the block reward and fees for α ∈ (0, 1), which is paid
when Mi leaves the waiting phase. Each miner that appends the

opening of Mi ’s commitments gets (1−α)·w
n`

for each commitment.

In the remainder of this work we refer to the block reward and fees as
simply block reward.

7.4.2 Chunking transactions

In all commit-and-open schemes, there exists the vulnerability that ma-
licious parties decide to not open their commitments so as to bias the
outcome. In our protocol, any coalition of k leaders can choose between
2k ways to bias the final permutation. If one miner manages to cre-
ate multiple blocks out of Bi−1, . . . ,Bi−n` , this does not even require
collusion with others.

The adaptive attacks mounted through withholding can be countered
with a simultaneous broadcast abstraction [39], but realizing this is al-
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most impossible in practice [74], especially in the blockchain domain.
Alternatively, time-lock puzzles may negate the effect of the delay. But
this technique costs computational effort, which may have a negative
impact on the environment and possibly also on the protocol. In the
particular case of generating a permutation, there is an alternative.

Chunking transfers in transactions. Let us assume that a block
contains ntx transactions, this means there exist ntx! possible permuta-
tions of them. A coalition of k leaders can choose between 2k possible
permutations among the ntx! total permutations. Furthermore, in the
simplest case the coalition only aims to order the three transactions that
constitute the sandwich attack, thus the fraction of advantageous per-
mutations is 1

6 , the fraction of disadvantageous permutations is 1
6 and

the remaining ones are neutral. If k is big enough, the coalition could
still extract enough value to compensate for the lost block rewards of
those parties that do not open their commitment.

Therefore we want to increase the size of the permuted space. We as-
sume here that every transaction consists of arbitrary code and a few
specialized instructions that are transfers of coins or tokens. These may
be the native payment operation of the blockchain or operations that
involve a well-known standard format for tokens, which are emulated by
smart contracts (such as the ERC-20 standard in Ethereum). We now
divide every transfer generated by some transaction into m chunks.

For instance, suppose transaction txi consists of Alice paying Bob 1
ETH. In our protocol, each party would locally split txi into m chunks
tx1

i , . . . tx
m
i , consisting of Alice transferring 1/m ETH to Bob each. After

all transactions are chunked, the permutation will be applied to the
larger set of transactions. There exist (ntxm)! permutations and the
coalition would need to order the 3m chunks that constitute the involved
transactions. Furthermore, for a given permutation with some chunks
ordered beneficially, there will exist chunks ordered in a disadvantageous
way, with overwhelming probability. The coalition needs to optimize
the good ordering of some chunks while keeping the bad ordering under
control. Obtaining a favorable ordering becomes extremely unlikely as
number of chunks m grows (Section 7.5.2).
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Execution of transactions and chunks. Transactions contain ar-
bitrary code whose execution produces an ordered list of transfers, as
introduced before. The process of chunking proceeds in two stages.

In the first stage, the party executes the code of all transactions con-
tained in the block serially, in the order determined by the miner; this
produces a list of transfers and the corresponding amounts for each trans-
action. Some transactions may turn out to be invalid, they are removed
from the further processing of the block.

In the second stage, for each valid transaction tx a list of m transfer
chunks tx1, . . . txm is produced such that tx1 contains the code executed
by tx, and its transfers have their amount set to 1/m of the number
computed by the code. The transaction chunks tx2, . . . txm contain only
the transfers, with their numbers set to 1/m of original amounts, but
these transactions do not execute further code. If the code executed
by tx1 produces different transfers than in the first stage, the execution
of tx1 is aborted, also the execution of tx2, . . . txm . We consider two
transfers to be the same if they transfer the same amount of coins or
tokens from the same source address to the same destination address.
Note the blockchain state produced by a transaction in the first stage
can differ from the state produced by the same transaction in the actual
execution according to the second stage execute; this is the case, for
instance, when it interacts with a smart contract.

The block being permuted now contains up to m times as many chunks
as the original block contained transactions, each of them transferring
1/m the value.

Notice that the permutation is not uniformly random across all choices,
but needs to respect that tx1 appears first within the set of chunks re-
sulting from tx. However, this restriction in the permutation does not
constitute any loss of generality since every chunk performs an identical
transfer. An adversarial miner can utilize fine-grained conditions such
as slippage to additionally control the conditional execution of transac-
tions – and in our case transaction chunks – in a given block. The exe-
cution of transactions explained above guarantees atomicity: all chunks
are executed or no chunk is executed. In Section 7.8 we present an in-
depth analysis of how slippage could lead to higher expected revenue,
which may also be of independent interest.



7.4 Protocol 169

7.4.3 Details

In Algorithm 22 we show the pseudocode for protocol Π3, which
implements a block-based atomic broadcast (bab) primitive. The
pseudocode assumes an underlying protocol Π, which is also modeled
as a block-based atomic broadcast (bab) primitive, as defined in
Section 7.3. The user or high-level application interacts with Π3 by
invoking Π3-broadcast(tx) events. These are handled by invoking the
corresponding Π-broadcast(tx) event on the underlying protocol Π
(L 394-395).

Protocol Π outputs an event bab-mined(b,Q) whenever some party Pj

mines a new block b (L 396). For Π3, the mining of a new block at
height i starts the opening phase for the block at height iopen = i−τ1−1
(L 397). Hence, party Pi loops through the n` blocks before iopen and
checks whether it is the miner of each of them (L 398-400). If this is
the case, Pi must provide a valid opening to the commitment related
to block at height iopen. The opening is achieved by a specific type
of transaction, for example through a call to a smart contract. In the
pseudocode we abstract this into a function Open().

Protocol Π outputs an event Π-deliver(b) whenever a block b is deliv-
ered (L 401). According to the analysis of our protocol, this will allow
Π3 to deliver the block τ1 + τ2 positions higher than b, i.e., the block
bdel at height idel = b.height − τ1 − τ2. To this goal, Π3 first reads
the commitments related to bdel (L 403-404). By construction of Π3, a
commitment ci,j , written on block bi , is used to order the transactions
in block bi+j . Hence, the commitments related to bdel have been writ-
ten on the n` blocks before bdel. Protocol Π3 then reads the openings
to these commitments (L 405-408). Again by construction of Π3, the
openings of the commitments related to bdel have been written on the
blocks with height idel + τ1 + 1 to idel + τ1 + τ2. For each of these blocks,
Π3 loops through its transactions that contain an opening. L 407 then
checks whether the opening is for a commitment related to block bdel

and whether the opening is valid. Protocol Π3 then calculates the fi-
nal permutation Σ to be applied to block b (L 409-413). As presented
in Section 7.4.1, Σ = PermFromRandBits(G(seed)), where seed is the
XOR of all valid openings for block b, G is a pseudorandom generator,
and PermFromRandBits an algorithm that derives a permutation from
random bits. The remaining of this block chunks the transactions con-
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Algorithm 22 Protocol Π3. Code for party Pi .

Implements: Protocol Π3

Uses: block-based atomic broadcast Π

State:
392: σ[i , j ]← ⊥, for all i ≥ 1, j ∈ [n`]
393: c[i , j ]← ⊥, for all i ≥ 1, j ∈ [n`]

394:upon event 〈Π3-broadcast, tx〉 do
395: invoke 〈Π-broadcast, tx〉

396:upon event 〈Π−mined , b,Q〉 do
397: iopen ← b.height− τ1 − 1
398: for i ′ ∈ [iopen − n` − 1, iopen − 1] do
399: if b.chain[i ′].miner = P then
400: Open(b.chain[i ′].commitments[iopen − i ′])

401:upon event 〈Π-deliver, b〉 do
402: idel ← b.height− τ1 − τ2
403: for j ∈ [n`] do // Read commitments for b
404: c[idel, j ]← b.chain[idel − j ].commitments[j ]
405: for i ′ ∈ [idel + τ1 + 1, idel + τ1 + τ2] do // Read the openings for b
406: for tx ∈ b.chain[i ′].txs such that tx = open(k , l , σ) do
407: if k + l = idel and H (σ) = c[idel, l ] then
408: σ[idel, l ]← σ

409: seed← 0λ

410: for j ∈ [n`] do // Compute final permutation for b
411: if σ[idel, j ] 6= ⊥ then
412: seed← seed⊕ σ[idel, j ]
413: Σ← PermFromRandBits(G(seed))
414: chunked txs← [ ]
415: for tx ∈ b.txs do // Chunk and permute transactions in b
416: chunked txs← chunked txs‖Chunk(tx,m)
418: chunks← Permute(Σ, chunked txs)
419: chunks← SwapChunks(chunks) // swap the first chunk with tx1

420: b.txs← chunks
421: invoke 〈Π3-deliver, b〉
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Algorithm 23 Protocol Π3. Code for party Pi .

422:function FB(txs) :
423: data← [ ]
424: for tx ∈ txs do
425: data← data‖tx
426: for j ∈ [n`] do

427: σ
$← {0, 1}λ

428: c ← H (σ)
429: data← data‖c
430: return data

431:function VB(b) :
432: if

(
∃tx ∈ b.txs : ¬VT(tx)

)
∨
(
∃j ∈ [n`] : b.commitments[j ] = ⊥

)
then

433: return false
434: return true

tained in b (L 414-416), applies Σ on the chunked transactions (L 417),
and swaps the first permuted chunk of each of each transaction with the
chunk containing the code (L 419). The function Chunk() is explained
in Section 7.4.2. Finally, Π3 delivers block b containing the chunked and
permuted transactions through the Π3-deliver(b) event (L 421).

The function FB() is an upcall from block-based atomic broadcast. It
specifies how a block is filled with transactions and additional data. For
simplicity, the pseudocode omits any detail specific to bab. It first writes
all given transactions on the block, then picks uniformly at random n`
bit-strings of length λ. These are the partial random seeds to be used in
the permutation of the following n` blocks, if the block that is currently
being built gets mined and delivered by bab. The commitments to these
partial seeds are appended on the block.

Finally, the predicate VB() specifies that a block is valid if all its transac-
tions are valid, as specified by VT(), and if it contains n` commitments.
The predicate VT() is omitted, as its implementation does not affect Π3.
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7.5 Analysis

7.5.1 Security analysis

We model the adversary as an interactive Turing machine (ITM) that
corrupts up to t parties at the beginning of the execution. Corrupted
parties follow the instructions of the adversary and may diverge arbitrar-
ily from the execution of the protocol. The adversary also has control
over the diffusion functionality. That is, she can schedule the delivery
of messages (within the ∆ rounds), as well as read the RECEIVEi of
every party at any moment of the execution and directly write in the
RECEIVEi of any party.

We first show that the security of our construction is derived from the
security of the original protocol. Given an execution of protocol Π3, we
define the equivalent execution in protocol Π as the execution in which
every party follows the same steps but the commitment, opening, and
randomization of transactions are omitted. We also recall the parameters
τ1 and τ2 that denote the length (in blocks) of the silent and loud phase
respectively.

Lemma 39. The probability that an adversary can rewrite a block after
any honest partial permutations have been opened is negligible in τ1.

Proof. Assume an adversary controlling up to t parties and a block
B . We know that if τ1 > d , protocol Π would deliver block B , thus an
adversary cannot revert the chain to modify the order of the transactions
stored in B but with negligible probability.

Lemma 40. The probability that an adversary can rewrite a chain omit-
ting the opening of some honest partial permutation is negligible in τ2.

Proof. The fairness quality of protocol Π states that for any consecutive
N blocks, if N ≥ N0 the fraction of honest blocks is at least µ. Thus, if
τ2 ≥ max{N0,

1
µ}, there exists at least one honest block containing every

opening that is not previously included in the chain. Since
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Our construction aims to turn any protocol into a protocol robust against
sandwich attacks. However, there might be new vulnerabilities. Intu-
itively, our construction should not introduce any vulnerability because
the only modified aspect is the order in which transactions are delivered.
Theorem 41 formalizes this intuition.

Remark 5. Note that every Π-delivered block is also Π3-delivered some
block after (Line 401–421). Note also that every Π3-delivered is also
Πdelivered. Furthermore, the blocks are delivered in the same order.

Theorem 41. If protocol Π implements block-based atomic broadcast,
then the Partitioned and Permuted Protocol Π3 implements block-based
atomic broadcast.

Proof. According to Remark 5, the set of Π3-delivered blocks is the same
as the set of Π-delivered blocks.

Validity: Assume that an honest party Π3-broadcasts(tx) transaction
tx. The party first Π-broadcasts(tx) (L 394–395). The validity
property of protocol Π guarantees that eventually a block b con-
taining transaction tx is Π-delivered. According to Remark 5, the
honest party eventually Π3-delivers a block containing tx and Π3

satisfies the validity property of block-based atomic broadcast.

No-duplication: Note that Π3 delivers the same set of blocks as pro-
tocol Π, Remark 5. Thus, the no-duplication property of protocol
Π3 is inherited directly from the no-duplication of protocol Π.

Agreement: Consider two honest parties Pi and Pj such that party Pi

Π3-delivers block b. Remark 5 guarantees that Pi alsoΠ-delivers
block b. The agreement property of protocol Π ensure that Pj

eventually Π-delivers block b. Remark 5 guarantees that Pj even-
tually Π3-delivers block b. Note that the block b delivered by both
Pi and Pj may differ in how the transactions are chunked and per-
muted. However, Lemmas 39 and 40 guarantee all correct parties
agree on the same permutation with all but negligible probabil-
ity. Hence, we conclude that protocol Π3 satisfies the agreement
property.

Total order: Remark 5 guarantees that the order in which any honest
party Π3-delivers two block b1 and b2 is the same as it Π-delivers
them. Thus, the total order property of protocol Π guarantees the
total order property of protocol Π3.
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External validity: This follows from the external validity of Π.

Fairness: According to Remark 5 the same blocks and in the same
order are both Π3-delivered and Π-delivered. Hence, the fairness
property of Π3 is inherited from the fairness property of protocol Π.

After showing that Π3 is as secure as the original protocol Π. We turn
our attention to analyzing the behavior of Π3 under sandwich attacks,
in the upcoming section.

7.5.2 Game-theoretic analysis

Here, we aim to show that if we assume all miners are rational, i.e., they
prioritize maximizing their own payoff, behaving honestly as according
to our protocol Π3 is a stable strategy.

Strategic games. For N ∈ N, let Γ = (N , (Si), (ui)) be an N party
game where Si is a finite set of strategies for each party i ∈ [N ]. Let S :=
S1×· · ·×SN denote the set of outcomes of the game. The utility function
of each party i , ui : S → R, gives the payoff of party i given an outcome
of Γ. For any party i , a mixed strategy si is a distribution in µ(Si). A
strategy profile of Γ is s := s1 × · · · × sN where si is a mixed strategy of
party i . The expected utility of a party i given a mixed strategy profile
s is defined as ui(s) = Ea1←s1,··· ,aN←sN [ui(a1), · · · , ui(aN )]. Finally, we
note that if si is a Dirac distribution over a single strategy ai ∈ Si , we
say si is a pure strategy for party i .

Notation. Let w denote the total reward for mining a block and q the
negligible probability that a PPT adversary guesses a correct opening.
Recall in Section 7.4.1 that the total block reward w is split between the
miner of the block who gets α ·w and the miners that append the correct

openings who get (1−α)·w
n`

for each correct opening they append. For a
given block, we denote by m the number of chunks for each transaction
in the block, and by λ the utility of the sandwich attack on the block.
Specifically, λ refers to the utility of a sandwich attack performed on
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the original transactions in the order they are in before chunking and
permuting them. We also denote the optimal sandwich utility by Λ,
which is the maximum utility one can get by performing a sandwich
attack. Finally, we denote by λ̂i the average utility of the sandwich
attack taken over all blocks on the chain for a specific miner Mi . This
can be computed easily as the transaction mempool is public. We stress
that it is important to look at the average sandwich utility for each miner
separately and not the average over all miners as the utility a miner
can derive from a sandwich attack depends on their available liquidity
(i.e., how much assets they can spare to front-run and back-run the
transactions).

Quasi-strong ε-Nash Equilibrium. In terms of game theoretic se-
curity, we want our protocols to be resilient to deviations of any sub-
set of miners that form a coalition and deviate jointly. The security
notion we want to achieve is that of an quasi-strong ε-Nash Equilib-
rium [13, 21, 36]. Let C denote the coalition of players. For any strat-
egy profile s, we denote by uC (s) the expected utility of the coalition
under s. We denote by uC (s ′C , s−C ) the expected utility of the coalition
when playing according to some other strategy profile s ′C given the other
players that are not part of the coalition play according to s.

Definition 39. (quasi-strong ε-Nash Equilibrium) A quasi-strong ε-
Nash Equilibrium is a mixed strategy profile s such that for any other
strategy profile s ′C , uC (s) ≥ uC (s ′C , s−C )− ε for some ε > 0.

The notion of a quasi-strong Nash Equilibrium is particularly useful
in the context of blockchains as the coalition could potentially be con-
trolled by a single miner with sufficient resources [36]. The notion of
an ε-equilibrium is also important in cases where there could be a small
incentive (captured by the ε parameter) to deviate from the protocol,
and of course the smaller one can make ε, the more meaningful the
equilibrium.

Subgame perfection. We also consider games that span several
rounds and we model them as extensive-form games (see, e.g., [90] for
a formal definition). Extensive form games can be represented as a
game tree tx where the non-leaf vertices of the tree are partitioned to
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sets corresponding to the players. The vertices belonging to each player
are further partitioned into information sets I which capture the idea
that a player making a move at vertex x ∈ I is uncertain whether they
are making the move from x or some other vertex x ′ ∈ I . A subgame
of an extensive-form game corresponds to a subtree in tx rooted at any
non-leaf vertex x that belongs to its own information set, i.e., there are
no other vertices that are the set except for x . A strategy profile is a
quasi-strong subgame perfect ε-equilibrium if it is a quasi-strong ε-Nash
equilibrium for all subgames in the extensive-form game.

The induced game. Let us divide our protocol into epochs: each
epoch is designed around a given block say Bi and begins with the
generation of random seeds for Bi and ends with appending the openings
for the committed random seeds for Bi (i.e., block Bi+τ1+τ2). We define
the underlying game Γ induced by any given epoch of our protocol Π3.
Γ is a (τ2 + 1)-round extensive form game played by n` + τ2 parties (n`
leaders comprising the leader set Li for any block Bi and the τ2 miners
that mine the blocks Bi+τ1+1 . . .Bi+τ1+τ2). Note that although we have(
N
τ2

)
sets of τ2 miners to choose from (where N is the total number of

miners in the chain) to be the miners of the blocks Bi+τ1+1 . . .Bi+τ1+τ2 ,
we can simply fix any set of τ2 miners together with Li to be the parties
of Γ as we assume all miners are rational and so the analysis of the
utilities of any set of τ2 miners will be the same in expectation. We use
A to denote the set of all miners in τ2. In what follows, we assume an
arbitrary but fixed ordering of the miners in A. Round 1 of Γ consists of
only the parties in Li performing actions, namely picking a random seed
and committing to it. In rounds 2, . . . , τ2+1 of Γ, each member of Li can
act by choosing to open their commitment or not. However, the moment
a member of Li opens its commitment in a given round, they lose the
chance to open their commitment in any subsequent round. Only one
miner from A and according to the imposed ordering acts in each round
from round 2 to τ2 + 1 of Γ. The choice of actions of the miner in any of
these rounds are the subsets of the set of existing commitment openings
(from members of Li) to append to their block. Finally we note that
the Li ∩ A is not necessarily empty and thus miners in the intersection
can choose to open and append their commitment in the same round.

Let us define the honest strategy profile as the profile in which all mem-
bers of Li choose to generate a random seed in round 1 of Γ, all members
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of Li open their commitments at round τ2 (i.e., at block Bi+τ1+τ2−1),
and each member of A appends all existing opened commitments that
appear in the previous round. We denote the honest strategy profile by s.
The security notion we want to achieve for our protocol is a quasi-strong
subgame perfect ε-equilibrium (refer to Definition 39). Looking ahead,
we will also prove that ε can be made arbitrarily small by increasing the
number m of chunks.

Lemma 42. The expected utility of an honest leader is at least (1 −
q)n`αw.

Proof. The expected utility for a user following the honest strategy
comes from the sum of the block reward, the expected utility from the
ordering of any of their transactions within the block, and appending
valid openings of committed seeds (if any) to their blocks. The expected
utility from the ordering of transactions is 0 due to symmetry: each
possible order is equally likely, for each order that gives some positive
utility, there exists a different order producing the same negative utility.
The expected utility from the block reward is (1 − q)n`αw . Thus, the
total expected utility of an honest miner is at least (1− q)n`αw .

We outline and analyze two broad classes of deviations or attacks any
coalition can attempt in this setting. The first class happens at round
1 of Γ where the members of the coalition commit to previously agreed
seeds to produce a specific permutation of the transactions. The coali-
tion then behaves honestly from round 2 to τ2 + 1 of Γ. We call this
attack the chosen permutation attack and denote this attack strategy by
sCP . In the second class, the coalition behaves honestly at round 1 of
Γ, but deviates from round 2 onwards where some members selectively
withhold opening or appending commitments to bias the final permuta-
tion. We call this attack the biased permutation attack, and denote it
by sBP .

Chosen permutation attack. Before we describe and analyze the
chosen permutation attack (for say a block Bi), we first show that a
necessary condition for the attack to be successful, that is, the coali-
tion’s desired permutation happens almost surely, is that at least all n`
leaders in Li have to be involved in the coalition (members of A can also
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be involved in the coalition, however as we will show this will simply in-
crease the cost). To do so, we let S denote the set of permutations over
the list of transactions and their chunks, and we define what we mean by
a protocol Πperm (involving n parties) outputs random a permutation in
S by the following indistinguishability game called random permutation
indistinguishability played between a PPT adversary, a challenger, and
a protocol Πperm . First, the adversary corrupts up to n − 1 parties.
The adversary has access to the corrupted parties’ transcripts. Then,
the challenger samples σ0 uniformly at random from S , and sets σ1 to
be the output of Πperm . After that, the challenger flips a random bit
b and sends σb to the adversary. The game ends with the adversary
outputting a bit b′. If b′ = b, the adversary wins the game. We say
a protocol Πperm outputs a random permutation if the the adversary
wins the above game with probability 1

2 + ε for some negligible ε. Let
us define the output of a single round of Π3 as the random permutation
that is generated from the seeds generated from all leaders in the round
according to the algorithm described in Section 7.4.1. The following
lemma states that as long as a single leader is honest, the output of Π3

is pseudorandom.

Lemma 43. An adversary that corrupts at most n`−1 leaders in a single
round of Π3 can only win the random permutation indistinguishability
game with negligible probability.

Proof. The proof follows in the same way as introduced by M. Blum [22],
with the addition of the PRG.

Lemma 43 implies that launching the chosen permutation attack and
thus choosing to deviate at round 1 of Γ comes with an implicit cost:
either a single miner has to mine n` blocks in a row so the miner single-
handedly forms the coalition, or all leaders in Li have to be coordinated
into playing according to a predefined strategy.

Lemma 44. Given the underlying blockchain is secure, the expected util-
ity of the single miner when playing according to sCP is at most λ

2n`
more

than the expected utility of following the honest strategy.

Proof. Since the underlying blockchain is secure, a necessary condition
is that a single miner cannot own more than 1

2 of the total amount of
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resources owned by all miners of the protocol. Thus, the probability of
mining n` blocks in a row is strictly less than 1

2n`
. This means that the

expected utility under the attack strategy uC (sCP ) < λ
2n`

+n`αw , which

is at most λ
2n`

larger than the expected utility under the honest strategy
which is uC (s) = n`αw .

The attack strategy of a coalition composed by more than one miner is
more complex compared to the case where there is a single miner, as the
coalition needs to ensure its members coordinate strategies. First, the
coalition works with the miner of block Bi to select and fix a permu-
tation generated by a specific PRG seed σi . Then, the coalition secret
shares σi among its members7. After that, the coalition sets up some
punishment scheme to penalize members that do not reveal their partial
seeds8. Finally, the coalition commits and reveals these partial seeds
in accordance to the protocol Π3. Let C denote the expected cost of
coordinating the whole chosen permutation attack for the coalition. For
this attack to succeed, the expected coordination cost has to be smaller
than the expected profit λ.

Lemma 45. The chosen permutation attack fails to be profitable com-
pared to the honest strategy if C > λ.

Proof. From Lemma 42, the expected revenue of an honest miner is
(1− q)n`αw , thus the expected revenue of the coalition when following
the honest strategy is uC (s) = n` ·(1−q)n`αw . The expected revenue for
the chosen permutation attack strategy is uC (sCP ) = n` · (1− q)n`αw +
λ − C. Thus, assuming C > λ, and since the expected revenue from a
mixed strategy is a convex combination of the revenues of the honest
and attack strategies, the pure honest strategy gives a strictly larger
expected payoff compared to any mixed strategy.

Remark 6. Computing, or even estimating, the coordination cost is
non-trivial as it consists of several dimensions and also depends on a

7This not only prevents members from knowing the partial seeds of other members
and hence stealing their block reward, but also additionally safeguards the partial
seeds of the members against the miner of block Bi who cannot generate a partial
seed of their block and hence has nothing to lose.

8This ensures that every member will reveal reveal their partial seeds and the
permutation will be generated properly.
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myriad of factors and assumptions. A few notable costs are, firstly, tim-
ing costs. The coalition has to convince and coordinate all the leaders to
agree on a permutation and also commit and reveal them during a short
interval of d blocks. This involves the cost of securely communicating
with all the leaders and also the computational cost involved in setting
up the secret sharing scheme. A second factor is the choice of the ini-
tial order of transactions, which the coalition would have to also agree
on with the miner of the attacked block. Picking transactions greedily
would be the simplest choice as finding the optimal set of transactions
from the mempool is NP-hard [85]. Finally, the coalition has to set up
a punishment scheme to penalize members that do not reveal their per-
mutations. If we ignore the cost of setting up such a scheme, this can be
implemented using a deposit scheme with the size of the deposit at least
the value of the expected additional per user profit from the sandwich
attack [102]. This implies an opportunity cost at least linear in λ

n`
, as

well as the assumption that each member has at least λ
n`

to spare to
participate in the attack. Additionally, we note that the coalition could
extend to miners from A which are outside the leader set Li . However,
since these miners do not contribute to generating the random seeds,
they simply add to the communication cost of the coalition. Finally,
we note that the coordination cannot be planned in advance due to the
unpredictability of the block mining procedure.

Biased permutation attack. The intuition behind this attack is that
any coalition that controls k ≤ n` commitments can choose to select the
ones to open or append, which allows the coalition to chose among 2k

possible permutations in order to bias the final ordering. This can be
achieved in two situations: either k out of n` leaders of Li form a coali-
tion and decide which of their commitments to open, or some subset of
miners in the loud phase (of size say k̃) form a coalition and end up
controlling k openings, let κ := min{k , k̃}. Unlike in the case of the
chosen permutation attack, it suffices consider the case where we have
a single miner that happens to either occupy k leader positions among
the group of leaders Li or mine the k̃ blocks that belong to the coalition
in the loud phase. This is because the case where a coalition of distinct
miners that collude only adds additional coordination cost. The proba-
bility that any such coalition gains any additional utility by performing
the biased permutation attack compared to the honest strategy can be
upper-bounded. Let revenue denote the utility the coalition would gain
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from performing the biased permutation attack.

Lemma 46. The probability that a coalition of κ members perform-
ing the biased permutation attack achieves utility of at least κw > 0

is P[revenue ≥ κw ] ≤ 1− (1− e−
2mκw
λ )2k

.

Proof. Given a random permutation and a sandwich attack with original
utility λ (utility if the order of the transactions were not randomized),
denote by {Xi(σ)}mi=1 the utility produced by chunk i . The sum of
these random variables X (σ) =

∑n
i=1 Xi(σ) represents the total utility

of a sandwich attack (after chunking and permuting). X takes val-
ues in [−λ, λ], thus the variables {Xi(σ)} take values in [− λ

m ,
λ
m ], are

equally distributed and are independent. We define the random vari-
ables Yi(σ) = Xi(σ) + λ

m ∈ [0, 2λ
m ], and Y (σ) =

∑n
i=1 Yi(σ) ∈ [0, 2λ].

Using lemma 42, E[Yi(σ)] = λ
m and E[Y (σ)] = λ. Applying Chernoff’s

bound [87] to Y ,

P[Y (σ) ≥ (1 + δ)E[Y (σ)]] ≤ e
−2δ2E[Y (σ)]2

m( λ
m

)2 = e−2mδ2

(7.1)

for δ > 0. We can rewrite Equation 7.1 as follows:

P[revenue(σ) ≥ δλ] = P[revenue(σ) + λ ≥ (1 + δ)λ]

= P[Y (σ) ≥ (1 + δ)E[Y (σ)]] ≤ e−2mδ2

.

Using the law of total probability we obtain that P[revenue(σ) ≤ δλ] ≥
1−e−2mδ2

. Considering the maximum over the 2k possible permutations
σ and δ = κω

λ we conclude that

P[revenue ≥ κw ] = 1− P[revenue ≤ κw ] = 1− P[revenue(σ) ≤ κw ]

≤ 1− (1− e−
2mκw
λ )2k

.

Lemma 47. The probability that a coalition of κ members has positive

additional utility is: P[revenue ≥ 0] ≤ maxk ′≤κ

{
1− (1− e−

2mk′w
λ )2k

}
.
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Proof. Lemma 46 states a bound for the probability that a coalition of
κ parties has a utility of at least κw > 0, the penalty for not opening κ
commitments. Thus, the general case for a coalition aiming to maximize
profit is the maximum over k ′ ≤ κ.

Recall that Λ is the maximal utility and let pk ,λ denote maxk ′≤κ{1 −
(1 − e−

2m(1−q)n` k′w
λ )2k }. Then, the expected additional utility from the

biased permutation attack of a single miner controlling k leaders is no
greater than pk ,λΛ.

Lemmas 45,46 and 47 allow us to prove our main theorem.

Theorem 48. Suppose C > λ, then the honest strategy s =
((random seed)n`i=1, (open)n`i=1) is a quasi-strong subgame perfect ε-
equilibrium in Γ for ε = max{ λ

2n`
, pk ,λΛ}.

Proof. We first observe that the expected utility of a coalition that mixes
both the chosen and biased permutation attack strategies is no greater
than the expected utility of a coalition that performs the chosen permu-
tation attack with a different chosen permutation that accounts for the
biasing of the permutation in the second round of Γ. Hence, it suffices
to analyze the expected utility of the coalition when implementing ei-
ther of these strategies, i.e., deviating at round 1 of Γ or from rounds 2
onwards.

We first analyze the expected utility of a coalition when implementing
the chosen permutation attack, which occurs at round 1 or Γ. Since
we assume C > λ, from Lemma 44 and Lemma 45, we see that any
additional expected payoff of any coalition that deviates only at round
1 of Γ by implementing the chosen permutation attack compared to the
expected revenue of behaving honestly is at most λ

2n`
.

Now we analyze the expected utility of a coalition when implementing
the biased permutation attack. From Lemmas 46 and 47, we see that
the strategy that implements the biased permutation attack across all of
rounds 2 to τ2+1 of Γ only gives at most pk ,λΛ more payoff in expectation
compared to following the honest strategy s in these rounds.
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As such, if we set ε = max{ λ
2n`
, pk ,λΛ} to be the largest difference

in additional expected revenues between both strategies, we see that
s = ((random seed)n`i=1, (open)n`i=1) is a quasi-strong ε-subgame perfect
equilibrium of Γ.

Remark 7. Recall that ε bounds the additional expected utility an ad-
versary can gain by deviating from the honest strategy profile s. The
security of our protocol therefore improves as ε = max{ λ

2n`
, pk ,λΛ} de-

creases. We observe that the first component λ
2n`

goes to 0 exponentially
as the size of the leader set n` increases. As for the second component
pk ,λ, we conduct an empirical analysis of sandwich attacks on Ethereum,
Section 7.6, to estimate pk ,λ and we show that this value approaches zero
as the number of chunks m increases.

7.6 Case study: Ethereum MEV attacks

We validate the utility of our results with real-world data from
Ethereum. Specifically, we estimate, using Lemma 47, the probability
that a coalition of k parties obtains positive revenue, for various values
of k , sandwich revenue λ, and chunks m. We conclude by analyzing
the overhead incurred by protocol Π3 as a function of m and its
security-efficiency trade-offs.

Empirical security analysis. We obtain the data on the profit of
sandwich attacks on Ethereum using the Eigenphi tool9 for October
2022. We considered October 2022 because it is the month with the
highest amount of Sandwich attacks10, thus its data represents better
the state of the art of sandwich attacks. To convert between ETH and
USD we use the price of ETH as of October 31st, approx. 1, 570 USD.
The block reward at this time is 2 ETH11, or approx. 3, 140 USD. In
Figure 7.3 we show the number of attacks in bins of increasing profit,
as returned by Eigenphi. From this data we make use of two facts.

9https://eigenphi.io/mev/ethereum/sandwich
10https://eigenphi.io/mev/research
11https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1234.md

https://eigenphi.io/mev/ethereum/sandwich
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1234.md
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Figure 7.3. Detected sandwich attacks on Ethereum in October 2022,
grouped by their profit range. It can be observed that the majority of
the detected attacks had a profit of at most 1 USD, and that 99.97% of
them had a profit of at most 10K USD.

First, 99.97% of the attacks had profit lower than 10K USD, or approx.
6.37 ETH, and second, the most profitable sandwich attack had a profit
of 170, 902.35 USD, or approx. 109 ETH. Hence, we define λ99.97 =
6.37 and λmax = 109. In Figure 7.4 we plot an upper bound for the
probability of positive revenue for a coalition of k leaders, considering
a sandwich revenue of λmax (Figure 7.4a) and λ99.97 (Figure 7.4b). We
observe that, even for the largest observed sandwich revenue, λmax, the
probability of a profitable attack drops below 0.5 for m = 33. For λ99.97,
the probability is low even for small values of m. For example, already
for m = 2 we get pk ,6.37 ' 0.49, and for m = 10 we get pk ,6.37 ' 0.0038,
for all k ≥ 1. We also remark that Lemma 47 states upper bound for
the adversary to have some positive revenue.
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(a) λ = 109 ETH (b) λ = 6.37 ETH

Figure 7.4. The upper bound for the probability of positive revenue
pk ,λ (according to Lemma 47) for a coalition of k leaders, versus the
number of chunks m. Fig. 7.4a considers λ = 109 ETH, the maximum
value among all sandwich attacks detected on Ethereum in October 2022,
and Fig. 7.4b considers λ = 6.37 ETH, the 99.97-th percentile of the
values. Fig. 7.4a shows that for small number of chunks a larger coalition
has a noticeable advantage over a single party, while for bigger values
of m this advantage fades away, as the number of possible permutations
grows factorially in m, reducing the possible bias of a coalition. In
Fig. 7.4b, on the other hand, we observe a low probability of positive
revenue, even for small values of m (e.g., 0.0038 for m = 10). Notice
that this is the case for 99.97% of the attacks. In both figures, parts of
the plots coincide. This is because a large m (which implies a factorial
increase in the number of possible permutations), combined with the
value of the sandwich revenue make it unprofitable to sacrifice more
than one block reward.
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Overhead. In terms of space, each block contains exactly n` commit-
ments and on average n` openings of partial seeds. A commitment to a
partial seed takes 256 bits of space. Assuming openings are implemented
as a call open(i , j , σi,j ) to a smart contract, where i and j are 16-bit in-
tegers and an address is 160 bits long, then each opening consumes 468
bits on the block. In total, Π3 incurs on average an overhead of 724n`
bits per block. As an example, for n` = 10, this results in an average
overhead of less than 1 KB per block. We remark that chunking of trans-
actions happens locally, and hence adds no space overhead on the block.
Concerning execution, there are two main sources of overhead in Π3.
First, when a block is delivered parties compute the final permutation
of its ntm transactions using PermFromRandBits(), which has linear-
logarithmic bit complexity. The overhead is thus O(ntm · log(ntm)).
Moreover, parties execute ntm − nt more transactions, which incurs an
overhead of O(ntm). In total, considering nt to be a constant and m
a parameter to Π3, the execution overhead scales as O(m log m). We
remark here that the vast majority of computational resources is used
in the mining mechanism, and this is not changed from Π. Finally, Π3

incurs an increased latency when delivering transactions. While Π has a
latency of d blocks, Π3 has a latency of τ1 + τ2 + d blocks. As discussed
earlier, a smaller τ1 certainly decreases the latency of the protocol, but
it also increases the probability of rewriting a block after the commit-
ments that order its transactions have been opened. Similarly, a smaller
τ2 decreases the latency but gives the miners a shorter time frame to
open their commitments. We stress that not opening a commitment
does not impact the latency of our protocol at all. The only impact
it has is on the block reward of the miner who owns the commitment.
We also stress that the computational overhead involved in generating
the partial seeds in minimum compared with other traditional solutions
such as time-lock puzzles [98].

Security-efficiency tradeoffs. We first observe a tradeoff between
security of Π3 and computational overhead. On the one hand, increas-
ing the number of chunks improves the security of Π3. Recall that
ε = max{ λ

2n`
, pk ,λΛ}, and in Remark 7 we highlight that pk ,λΛ goes

to zero as the number of chunks m increases. In Figure 7.4 we see
how pk ,λ changes with m, based on historical data. Specifically, for the
vast majority of observed sandwich attacks (in Figure 7.4b we use the
99.97-th percentile) the probability of a coalition to succeed drops expo-
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nentially with m. On the other hand, the execution overhead increases
as O(m log m). Moreover, the size of leader set n` leads to the following
tradeoff. In Remark 7 we show that the security of Π3 against rational
adversaries improves exponentially with n`. However, the size of the
leader set also determines the number of leader sets each miner needs to
be a part of, and hence the length of time each miner has to wait until
it receives its block reward.

7.7 Sandwich MEV attacks

Decentralized exchanges. Decentralized exchanges (DEXes) allow
users to exchange various cryptocurrencies in a decentralized manner
(i.e., in a peer-to-peer fashion without a central authority). Some
examples of DEXes on the Ethereum blockchain are Uniswap12 and
Sushiswap13 DEXes typically function as constant product market mak-
ers (CPMMs) [11], i.e., the exchange rate between any two underlying
assets is automatically calculated such that the product of the amount
of assets in the inventory remains constant.

As an example, consider the scenario where a user at time t wants to
swap δX of asset X for asset Y in the X 
 Y liquidity pool, and suppose
the pool has Xt and Yt amount of assets X and Y in its inventory at
time t . The user would receive

δY = Yt −
XT ·YT

Xt + (1− f )δX
=

Yt(1− f )δX
Xt + (1− f )δX

amount of asset Y for δX amount of asset X , where f is a fee charged
by the pool [62]. We can thus compute the exchange rate of X to Y at
time t as

ρXY
t :=

δX
δY

=
Xt + (1− f )δX

Yt(1− f )
(7.2)

Sandwich attack. As transactions in a block are executed sequen-
tially, the exchange rate for a swap transaction could depend on where

12https://uniswap.org
13https://sushi.com

https://uniswap.org
https://sushi.com
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the transaction is located in the block. From Equation (7.2), we note
that the exchange rate from X to Y increases with the size of the trade
δX . Thus, if a transaction that swaps X for Y occurs after several
similar X to Y swap transactions, the exchange rate for this particu-
lar transaction would increase. Consequently, the user which submitted
this transaction would pay more per token of Y as compared to if the
transaction occurred before the other similar transactions. In a sand-
wich attack, the adversary (usually miner) manipulates the order of the
transactions within a block such that they can profit from the manip-
ulated exchange rates. Specifically, the adversary is given the list T of
all transactions that can be included in a block and can make two addi-
tional transactions tx1 and tx2: transaction tx1 exchanges some amount
(say δX ) of asset X for asset Y , and tx2 swaps the Y tokens from the
output of tx1 back to X . Let us denote the amount of tokens of X the
adversary gets back after tx2 by δ′X . The goal of the adversary is to out-
put a permutation over T ∪{tx1, tx2} such that δ′X −δX is maximized. A
common technique is to front-run all transactions exchanging X to Y in
the block, i.e., place transaction tx1 before all transactions exchanging
X to Y and tx2 after [61]. We note that users can protect themselves
by submitting a slippage bound sl > 0 together with each transaction.
However, this protection is only partial.

7.8 Sandwich attacks with random permu-
tation

Here we outline a way an adversary can still launch a sandwich attack
even when the transactions in a block are randomly permuted by care-
fully specifying slippage bounds.

Background for attack. The setting of the attack is as follows: sup-
pose there is a particularly large transaction t∗ (that hence impacts
the exchange rates) swapping X for Y in the list of transactions T in
a block, and suppose the adversary is aware of t∗ (maybe due to col-
luding with the miner of the block). We make two further simplifying
assumptions: first, that all other transactions are small and hence have
negligible impact on the X 
 Y exchange rates, and second, that the
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swap fee f is negligible. Like in the case of the classic block sandwich
attack, the adversary can create 2 transactions tx1 and tx2 (together
with slippage bounds), where tx1 exchanges some amount of X for Y ,
and tx2 exchanges the Y tokens back to X . Unlike in the case of the
classic sandwich attack, the adversary has no control over the final or-
der of the transactions in the block as the transactions will be randomly
permuted. An advantageous permutation for the adversary would be
any permutation such that tx1 comes before t∗ and t∗ comes before tx2

(hereafter we use the notation a ≺ b to denote a “comes before” b for
two transactions a and b). Permutations that would be disadvantageous
to the adversary would be any permutation such that tx2 ≺ t∗ ≺ tx1,
as this is the precise setting where the adversary would lose out due to
unfavorable exchange rates. Any other permutations outside of these
are acceptable to the adversary.

Utilities. Suppose both tx1 and tx2 are executed. We assume the
utility of the adversary is α ∈ R+ if the resulting permutation is ad-
vantageous, −α if the resulting permutation is disadvantageous, and 0
for all other permutations. We assume the utility of the adversary is
0 if both their trades did not execute, as fees are negligible. We fur-
ther assume the following utilities if only 1 trade executes: if only tx1

executes, the utility of the adversary is 0 if t∗ ≺ tx1 and 0 ≤ β < α if
tx1 ≺ t∗. The intuition behind this is that if tx1 executes before t∗ in
this block, there is a chance that when tx2 executes in the next block
the adversary can still benefit from the favorable exchange rates due to
advantageous permutation (albeit split over more than 1 block, thus the
discount in utility). In the same vein, if only tx2 executes, the utility of
the adversary is 0 if t∗ ≺ tx2 and −γ < −α if tx2 ≺ t∗. The reason why
γ > α is to not only take into account the potential loss to the adversary
from the disadvantageous permutation, but also the opportunity cost of
waiting more than 1 block for tx1 to execute.

Here, we denote by s the strategy where the adversary simply wants
both transactions to execute and thus does not care about the slippage
to be the strategy where the slippage bound for both transactions are set
to ∞. It is clear that the expected utility of the adversary under strat-
egy s is 0 due to the fact that both advantageous and disadvantageous
permutations occur with equal probability.
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Sandwich attack by controlling slippage. We first describe the
first attack where the adversary can gain positive expected utility just by
being more precise in specifying slippage bounds. The intuition behind
this attack is that by specifying the slippage bounds to be extremely
precise, the adversary can ensure that transaction tx1 always executes
before t∗, and tx2 only executes if tx1 and t∗ have executed.

The attack strategy (denoted by sslip) is as follows:

• The adversary computes the current exchange rate of X to Y ,
denoted by ρXY

tx0
, and sets the slippage bound on tx1 to be ρXY

tx0
+ε1

for some ε1 > 0.

• The adversary computes the hypothetical exchange rate of X to
Y after an execution of t∗. We denote this rate by ρXY

t∗ . The
adversary also computes the hypothetical exchange rate of Y to
X after an execution of tx1, t∗, and both tx1 and t∗. We denote
these rates by ρXY

tx1
, ρXY

t∗ , and ρXY
tx1+t∗ respectively.

• The adversary sets the slippage bound for tx2 to be ρYX
t∗ + ε2 for

some other ε2 > 0.

Theorem 49. If ε1 < ρXY
t∗ − ρXY

tx0
and ε2 < min(ρYX

tx1
, ρYX

t∗ ) − ρYX
tx1+t∗ ,

the expected utility of µslip is α
6 + β

3 > 0.

Proof. Let σ be a random permutation over T ∪ {tx1, tx2}. We denote
by [σr ,i ] the position/index of the ith transaction after the permutation.

We will proceed case by case for each of the 6 different orderings of
tx1, tx2, t

∗.

• tx1 ≺ t∗ ≺ tx2: both tx1 and tx2 would be executed. The utility of
the adversary is α in this case.

• tx1 ≺ tx2 ≺ t∗: tx1 will be executed. However, tx2 will not be
executed as ρYX

tx1+t∗ + ε2 < ρYX
tx1

. Since tx1 ≺ t∗, the utility of the
adversary is β in this case.

• t∗ ≺ tx1 ≺ tx2: tx1 will not be executed as ρXY
tx0

+ ε1 < ρXY
t∗ . tx2

will be executed. Since t∗ ≺ tx2, the utility of the adversary in
this case is 0.

• t∗ ≺ tx2 ≺ tx1: both tx1 and tx2 will not execute as ρXY
tx0

+ε1 < ρXY
t∗
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and ρYX
tx1+t∗ + ε2 < ρYX

t∗ . Since both trades will not execute, the
utility of the adversary in this case is 0.

• tx2 ≺ tx1 ≺ t∗: tx1 will execute but tx2 will not execute as ρYX
tx1+t∗+

ε2 < ρYX
tx0

. Since tx1 ≺ t∗, the utility of the adversary is β in this
case.

• tx2 ≺ t∗ ≺ tx1: both tx1 and tx2 will not execute as ρXY
tx0

+ε1 < ρXY
t∗

and ρYX
tx1+t∗ + ε2 < ρYX

tx0
. Since both trades will not execute, the

utility of the adversary in this case is 0.

Since each ordering is equally likely to occur, the expected utility of the
adversary is α

6 + β
3 > 0.

Long-range sandwich attacks. Long-range sandwich attacks are at-
tacks where an adversary aims to front and back run transactions over
multiple blocks. This can happen when the adversary mines more than
1 block in a row. However, as the probability of mining more than
1 consecutive block is very small (and grows exponentially smaller in
the number of consecutive blocks), the success probability of such an
approach is similarly low.

An approach that would lead to a larger probability of success would be
for the adversary to create two transactions tx1 and tx2 and split tx1 and
tx2 into separate blocks such that tx2 only conditionally executes upon
tx1 being on the chain. Formally, instead of adding both tx1 and tx2

to the transaction list T like in the above attack setting, the adversary
now only adds tx1 to T and waits until tx1 is on the chain to add tx2 to
the transaction mempool. We note that this can be done by wrapping
transactions into smart contracts, which can handle the conditional ex-
ecution of transactions based on some state of the blockchain. This can
also be done in Bitcoin-like blockchains by ensuring that the UTXO of
tx1 is given as input to tx2.

The attack strategy (denoted by slongslip) is as follows:

• The adversary computes the current exchange rate of X to Y ,
denoted by ρXY

tx0
, and sets the slippage bound on tx1 to be ρXY

tx0
+ε1

for some ε1 > 0.

• The adversary waits until tx1 has been executed (i.e. when the
block which contains tx1 is gossiped), then either wraps tx2 into
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a smart contract that checks if tx1 is on the blockchain and if so
executes tx2, or ensures that the UTXO of tx1 is given as input to
tx2.

Recall that if tx1 ≺ t∗ in a block and tx2 executes in some block after
the block containing tx1, the utility of the adversary is 0 ≤ β < α, and
that the utility of the adversary is 0 if both trades do not occur. We
now show that the expected utility under slongslip is also positive.

Theorem 50. If ε1 < ρXY
t∗ − ρXY

tx0
, the expected utility of slongslip is β

2 .

Proof. We note that the orderings tx1 ≺ t∗ and t∗ ≺ tx1 are equally
likely to occur. If tx1 ≺ t∗, tx1 would be executed together with t∗ and
thus tx2 would also be executed in some block after the block containing
tx1. The expected utility of the adversary is β in this case. If t∗ ≺ tx1,
tx1 would not be executed ρXY

tx0
+ ε1 < ρXY

t∗ . Since tx1 did not execute,
tx2 would not be executed and thus the utility of the adversary in this
case is 0.

Remark 8. We can make the computation of expected utilities more
precise by assuming that the utility of the adversary if tx2 is executed
one block after tx1 is β, and multiply β by δd for some discount factor
δ < 1 if tx2 is executed d blocks after tx1. However, this would require
detailed assumptions about the probability of transactions being selected
from the mempool which can depend on fees and other factors. This
is beyond the scope of our work, thus we leave this as an interesting
direction of future work.

7.9 Conclusion

In this chapter we introduced a new construction that can be imple-
mented on top of any blockchain protocol with three main properties.
First, the construction does not add any vulnerability to the old proto-
col, i.e., the security properties remain unchanged. Secondly, performing
sandwich attacks in the new protocol is no longer profitable. Thirdly,
the construction incurs in minimal overhead with the exception of a
minor increase in the latency of the protocol. Our empirical study of
sandwich attacks on the Ethereum blockchain also validates the design
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principles behind our protocol, demonstrating that our protocol can be
easily implemented to mitigate sandwich MEV attacks on the Ethereum
blockchain.





Chapter 8

Conclusion

This is how liberty dies ... with
thunderous applause.

Padmé Amidala

From the advent of Nakamoto’s groundbreaking Bitcoin protocol, the
pursuit of enhanced throughput and reduced latency while upholding
principles of security and decentralization has been at the forefront of
research and development. The thesis embarked on an exploration of
diverse consensus protocols, each striving to overcome limitations inher-
ent in earlier systems. Nakamoto consensus, while revolutionary, faces
challenges primarily concerning its throughput. The subsequent devel-
opment of protocols like GHOST aimed to expand upon Nakamoto con-
sensus by considering off-chain blocks. We have introduced a family of
protocols called Medium that allows the study of both Nakamoto con-
sensus and GHOST in a common framework. The Medium protocol can
achieve throughputs between the throughput of Nakamoto and GHOST
while being robust against the balance attack, a major vulnerability of
GHOST.

The analysis of Avalanche introduced a departure from traditional mech-
anisms based on chains to a metastable approach built on a directed
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acyclic graph. Avalanche showcased exceptional throughput and low la-
tency but imposed stricter security constraints. The analysis uncovered
vulnerabilities, leading the Glacier modification to fortify the protocol.
Moreover, the Avalanche showcased the potential of DAG-based consen-
sus protocols on permissionless settings, emphasizing the performance
improvements they offer. This thesis formalized this intuition with a
construction transforming a blockchain protocol into a DAG protocol
with better throughput, same or lower latency, and preserving the same
security guarantees. This construction also allows to determine the set
of potentially optimal DAG protocols. We also introduced a new DAG
protocol based on the common core that notoriously improves the state-
of-the-art latency of DAG protocol. Furthermore, this protocol belongs
to the set of possibly optimal protocols.

Addressing critical concerns in blockchain security, this thesis culmi-
nated in adapting methods originally designed for the scalability of con-
sensus to prevent sandwich attacks, offering decentralized solutions that
mitigate transaction order control within blocks.

In a nutshell, the results encapsulated within this thesis offer a meticu-
lous understanding of blockchain technology’s intricacies and hopefully
serve as a critical step forward in realizing more efficient, scalable, and
secure decentralized systems.
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