MASTER N
COMPUTER
SCIENCE

Enhancing Privacy in Decentralized
Identity Management

Anonymous Verifiable Credentials for Privacy-Preserving Digital
Identity

Master Thesis

Cirkovic Marko

Faculty of Science at the University of Bern

Mariarosaria Barbaraci
Dr. Jayamine Alupotha
Prof. Christian Cachin
Cryptology and Data Security Group Institute of Computer Science
University of Bern, Switzerland
June 27, 2025

b

u Lni

UNIVERSITAT UNIVERSITE DE UNIVERSITE DE FRIBOURG

BERN NEUCHATEL UNIVERSITAT FREIBURG

Abstract

Digital surveillance has become widespread in modern society, with governments, corpora-
tions, and malicious actors tracking individuals across online platforms. This surveillance
apparatus violates fundamental privacy rights while creating comprehensive behavioral pro-
files that go far beyond the original purpose of digital interactions. Traditional identity systems
exacerbate the problem by requiring persistent identifiers that allow correlation across services,
making every digital transaction a potential privacy violation.

The Swiss electronic provisional driving license (eLFA) system [3] exemplifies this privacy
challenge in action. Despite implementing robust standards-based verifiable credentials using
OpenlD protocols [17], the system relies on Decentralized Identifiers (DIDs) [20] to create
linkable interactions across different verifiers. When learner drivers present their credentials
to multiple instructors or authorities, the accesses to those become linkable, allowing for a
level of profiling that goes beyond simple verification requirements violating user privacy

This thesis introduces a privacy-preserving framework called Anonymous Verifiable Cre-
dentials (AVC) that eliminates surveillance capabilities while still providing strong verification
guarantees. AVC combines Verifiable Credentials [21] and User-issued Unlinkable Single
Sign-On (U2SSO) [2], assigning credentials to service-specific pseudonyms instead of global
identifiers. This approach ensures that even colluding service providers are unable to correlate
user interactions, effectively preventing commercial tracking and state surveillance while
maintaining cryptographic integrity and selective disclosure capabilities. Our contributions
demonstrate practical privacy enhancements for existing identity infrastructure: we define the
AVC protocol architecture, which achieves unlinkability without sacrificing Sybil resistance,
implement pseudonym-based credential binding, which prevents cross-service correlation,
and validate our approach by integrating with Switzerland’s operational eLFA in the form of a
prototype. The AVC framework demonstrates that strong privacy protection and regulatory
compliance are compatible, providing a viable path to surveillance-resistant digital identity
that empowers users while meeting institutional verification requirements.

Contents

Introduction 4
Related Work 7
2.1 Blockchain-based privacy-preserving identity systems 7
2.2 Threshold cryptography for anonymous credentials 8
2.3 Cryptographic Accumulators for Unlinkable Credentials 8
2.4 Algebraic MACs for Anonymous Credentials 8
2.5 Digital Signatures in Verifiable Credentials 9
Preliminaries 10
3.1 Single-Sign-On with Unlikable User-Issued Identities U2SSO 10
3.1.1 SystemModel 10

3.1.2 Functionalities 11

3.1.3 Workflows 11
3131 Setupo 11

3.1.3.2 Master Identity Registration 12

3.1.3.3 Pseudonym Generation and Registration 12

3.1.3.4 Authentication to Service 12

3.1.4 Security Properties 14

3.2 Verifiable Credentials e 14
32.1 SystemModel 15

322 Functionalities 15

323 Workflows 15
3.2.3.1 Credential Issuance 16

3.2.3.2 Credential Verification 16

3.2.4 Security Properties e e 16
Anonymous Verfiable Credentials AVC 19
4.1 System Components e e e 19
42 Workflow 20
4.2.1 Workflow Description L 20
422 DesignFlexibility 22

423 Security Properties 22
Implementation 24
5.1 Project Context: The Swiss Electronic Provisional Driving License Program (eLFA) . . . 24
5.1.1 Architectural Components 25

5.1.2 Current System Workflow o o 25
5.1.2.1 Credential Issuance 25

5.1.2.2 Credential Verification 26

CONTENTS

5.2 AVC-eLFA Integration: Technical Implementation.
Service Provider Registration with Identity Registry
Credential Format Definition for Verification

5.2.1
522
523
524
525
5.2.6
5.2.7
528

6 Experience

7 Conclusion

Master Identity Creation

Service-Specific Pseudonym Derivation

Credential Issuance Request . . .

Binding Verifiable Credentials to Service-Specific Pseudonyms
Privacy-Preserving Credential Presentation

Privacy-Preserving Authentication

Introduction

In today’s increasingly digital society, access to both public and private services requires proof of identity
or specific characteristics such as age, license status, or academic qualifications. As our daily interactions
shift online, traditional identity verification methods face significant challenges in terms of privacy, security,
and user control. Users want easy access to services without compromising their privacy, while service
providers require dependable verification of user attributes to meet regulatory requirements and manage
access. This creates a difficult balancing act: how to provide adequate proof of identity or attributes while
minimizing unnecessary data disclosure and preventing tracking across services.

Verifiable Credentials (VCs) [21] are an effective paradigm for addressing these challenges. They
allow individuals to obtain digitally signed claims from trusted issuers and selectively present them
to verifiers. Unlike traditional identity systems, VCs give users more control over their personal data,
encourage cross-platform interoperability, and enable privacy-preserving attribute disclosure. This aligns
with modern data protection principles, including those outlined in the European Union’s General Data
Protection Regulation GDPR [1]. To better understand VCs, consider a university that issues digital degree
credentials to its graduates. A student finishes their degree requirements and requests a credential from
the university (the issuer). After verifying the student’s academic record, the university issues a digitally
signed credential with information such as the degree name, major, graduation date, and grade. This
credential is cryptographically linked to the student’s digital identity, usually via a Decentralized Identifier
(DID) [20]. When applying for a job, the graduate can present only relevant attributes (for example, degree
name and graduation date) to potential employers (verifiers) without disclosing their entire transcript or
other personal information. Employers can cryptographically verify that the credential was legitimately
issued by the university without contacting the university directly. This ensures both privacy and trust in
the verification process.

Switzerland is among the countries testing digital identity solutions. One notable example is the
electronic provisional driving license “elektronischer LernFahrAusweis” (eLFA) [3] program, which
enables learner drivers to receive and present digital driving credentials via mobile applications. The
eLFA infrastructure consists of several key components that work together to create a secure and user-
friendly credential ecosystem. The Holder Wallet (mobile apps for Android [6] and iOS [8]) enables
users to manage their digital identities and store credentials. The Swiss Road Traffic Office operates the
Issuer Agent, which verifies user attributes and issues credentials according to the OpenID4VCI [17]

CHAPTER 1. INTRODUCTION 5

specification’s pre-authorized flow. Verifier Agents, such as police officers and driving instructors, compare
these digital credentials to the Base Registry, which keeps accurate records of issuer keys. A separate
Revocation Registry maintains credential status information, allowing for revocation or suspension as
needed. The Road Traffic Office is the system’s primary issuer, with law enforcement officers and driving
schools acting as verifiers.

While the Swiss eLFA infrastructure provides a robust and standards-based mechanism for issuing
verifiable credentials, it inherits the significant privacy limitation of a persistent identifier DID, that
uniquely links a credential to its holder across services. When the same DID is used for multiple service
interactions, verifiers or external observers can compare the results and track user behavior over time.
For example, when a user presents their driving license to multiple instructors using the same DID, the
interactions become linkable, potentially revealing patterns in their learning process beyond what is
required for verification.

Contributions

This thesis proposes a novel framework called Anonymous Verifiable Credentials (AVC), to address the
abovementioned critical privacy issue. Our approach combines Verifiable Credentials with the User-Issued
Unlinkable Single Sign-On (U2SSO) protocol [2], a decentralized authentication scheme that enables users
to authenticate anonymously across services and protect against Sybil attacks. By associating VCs with
service-specific pseudonyms rather than global identifiers like DIDs, AVC preserves the cryptographic
integrity and selective disclosure benefits of VCs while eliminating the risk of cross-service linking.

Our AVC framework includes a comprehensive workflow for privacy-preserving attribute verification.
First, users must register their master identity with an Identity Registry, which then stores it in an anonymity
set. When interacting with a service provider, users request verifiable credentials from reputable issuers and
use service-specific pseudonyms based on their master identity. The issuer validates the user’s attributes
and issues credentials using pseudonyms rather than persistent identifiers. Users then create service-specific
profiles for service providers, which include their pseudonyms and verifiable credentials. Service providers
can continue using their existing systems and processes for handling VCs, with no need for major changes.
Finally, service providers validate these profiles by confirming with the Identity Registry that users have
valid master identities, even though they do not know which specific identities belong to them. This
approach strikes a good balance between privacy protection and authentic verification requirements, filling
a significant gap in existing digital identification frameworks while adhering to data protection regulations.
AVC allows users to present the same credential to different service providers under different pseudonyms,
preventing them from linking the interactions even if they collude. The AVC framework was developed
by combining U2SSO’s pseudonym generation with standard VC workflows. To assess the feasibility of
our solution, we developed a proof-of-concept within the Swiss eLFA infrastructure, extending OID4VCI
protocols to support pseudonym-based credential issuance and presentation.

This thesis makes the following key contributions to the field of privacy-preserving digital identity:

* Novel Framework Design: We introduce the Anonymous Verifiable Credentials (AVC) framework,
which combines unlinkable authentication with verifiable attribute disclosure in a unified system.
This framework addresses a fundamental limitation in existing digital identity solutions by enabling
both unlinkability and verification simultaneously.

* Prototype Integration: We use the AVC framework to extend Switzerland’s electronic provisional
driving license (eLFA) system, demonstrating its compatibility with the existing government identity
infrastructure. This integration demonstrates how privacy enhancements can be added to operational
systems while maintaining core functionality.

CHAPTER 1. INTRODUCTION 6

The remainder of this thesis is organized as follows: Chapter 2 reviews existing research in privacy-
preserving digital identity. Chapter 3 introduces the two key components of our framework: U2SSO
and Verifiable Credentials. Chapter 4 presents the detailed design of our AVC framework. Chapter 5
describes our implementation within the Swiss eLFA infrastructure. Chapter 6 reflects on the practical
challenges encountered during implementation and the lessons learned from integrating AVC with real-
world infrastructure. Finally, Chapter 7 summarizes our findings and discusses implications for the future
of privacy-preserving digital identity.

Related Work

This chapter examines existing research in the field of privacy-preserving digital identity, with a particular
emphasis on systems that attempt to combine unlinkability, Sybil resistance, and credential verification
mechanisms similar to our Anonymous Verifiable Credentials (AVC) framework.

2.1 Blockchain-based privacy-preserving identity systems

Blockchain-backed identity systems have emerged as a prominent solution for balancing privacy, Sybil
resistance, and decentralized trust. One common approach is to use blockchains as passive Identity
Registries (IdRs), where users create and store unique pseudonyms linked to their identity. Before
accepting an authentication request, verifiers query the blockchain to check the existence or validity of a
user’s pseudonym. This strategy is used in systems like Sovrin [11], based on Hyperledger Indy [15] and
AnonCreds [14], which supports selective disclosure and zero-knowledge proofs for verifiable credential
presentations. Users can prove attributes without revealing their full identity, enhancing privacy across
services.

Another family of solutions leverages Ethereum-based [9] identity frameworks [12, 18], where users
register decentralized identifiers (DIDs) and associated public keys directly on-chain. While this offers
strong integrity guarantees and decentralized control, the use of public blockchains like Ethereum intro-
duces inherent traceability risks. Financial transactions and identity operations can be publicly observed
and correlated, undermining multi-verifier unlinkability even if advanced cryptographic credential formats
like AnonCreds are used.

Projects [13, 16] based on self-sovereign identity (SSI) principles have also adopted blockchain-backed
identity storage to mitigate dependence on centralized Identity Providers (IdPs). However, these solutions
often impose economic costs (e.g., gas fees on Ethereum) to create Sybil-resistant barriers, making identity
creation economically costly but not necessarily privacy-preserving.

Despite these advances, most blockchain-based systems still require continuous interaction with
on-chain registries and often expose linkable metadata through identity anchoring or payment traces.
In contrast, our AVC framework takes a more lightweight and privacy-centric approach by avoiding
persistent blockchain dependencies altogether. AVC achieves Sybil resistance and unlinkability through
service-specific pseudonyms and nullifiers, eliminating the need for users to publish their identifiers or

7

CHAPTER 2. RELATED WORK 8

credential proofs on-chain. This makes AVC more suitable for privacy-sensitive use cases where regulatory
or technical constraints limit blockchain deployment.

2.2 Threshold cryptography for anonymous credentials

In addition to hardware-based approaches, Rabaninejad et al. [19] proposed a novel credential system that
uses attribute-based threshold issuance tokens to achieve privacy-preserving and Sybil-resistant identity.
Their system introduces anonymous counting tokens, which enable services to enforce a one-user-per-
service policy while maintaining user unlinkability across services. By distributing the credential issuance
authority across multiple parties via threshold cryptography, they prevent any single entity from tracking
users while also preventing multiple registrations. The authors were also able to prevent Sybil attacks, since
they prevent double registration without allowing tracking. However, AVC provides a more comprehensive
framework by directly integrating with standardized protocols such as OpenID and providing a complete
implementation that is compatible with existing identity infrastructure such as Switzerland’s eLFA system.
While Rabaninejad et al.’s work establishes solid theoretical foundations, AVC bridges theory and practice
through its modular architecture and compatibility with existing identity systems, demonstrating the
practical viability of unlinkable credentials in real-world applications.

2.3 Cryptographic Accumulators for Unlinkable Credentials

Yang et al. [23] investigated unlinkable verifiable credentials with dynamic accumulators. Their sys-
tem enables users to present credentials multiple times without being tracked by constantly refreshing
accumulator-based proofs. When a user needs to prove possession of attributes, they generate a one-time
proof from the accumulator that does not reveal the original credential or create linkable identifiers. This
ensures strong theoretical unlinkability using sophisticated cryptographic techniques. While dynamic
accumulators provide an elegant mathematical solution to the unlinkability problem, credential revoca-
tion becomes significantly more complex, and proof regeneration is computationally intensive. AVC
achieves similar unlinkability benefits with a more straightforward approach that employs service-specific
pseudonyms derived from a master key. This lowers the cryptographic burden on clients while maintaining
privacy across service interactions, making it more suitable for resource-constrained devices and everyday
use cases.

2.4 Algebraic MACs for Anonymous Credentials

Chase et al. [5] pioneered the use of algebraic Message Authentication Codes (MACs) in efficient anony-
mous credential systems. Their cryptographic constructions enable unlinkable credential presentations
based on zero-knowledge proofs, allowing for attribute verification while protecting privacy. While these
systems laid the mathematical groundwork for anonymous credentials, they lacked practical integration
with widely used identity protocols, limiting their real-world application. AVC builds on these cryp-
tographic principles, but expands them into a comprehensive, standards-compliant framework that can
be used with existing identity infrastructures. By combining these privacy-enhancing techniques with
established protocols such as OpenlD, AVC makes anonymous credentials practical for use in today’s
digital ecosystems, closing the gap between theoretical privacy models and usable identity systems.

CHAPTER 2. RELATED WORK 9

2.5 Digital Signatures in Verifiable Credentials

Verifiable Credentials [4] fundamentally rely on digital signature schemes to establish cryptographic
integrity and authenticity. When a credential issuer creates a VC, they generate a digital signature over the
credential’s contents using their private signing key. This cryptographically binds the credential data to the
issuer’s identity, prevents tampering after issuance, and enables verifiers to authenticate the credential’s
origin without contacting the issuer directly. Verifiers validate credentials using the issuer’s corresponding
public key to check the digital signature against the credential content. This ensures credentials cannot be
forged without access to the issuer’s private key, maintaining trust relationships essential for credential
ecosystems. However, standard digital signature schemes create linkability challenges when the same
credential is presented to multiple verifiers, as the digital signature remains constant across presenta-
tions. Advanced schemes like BBS+ digital signatures [22] enable selective disclosure and unlinkable
presentations, but they are not yet available in production systems like the Swiss eLFA infrastructure.

Preliminaries

This chapter introduces two key components of our privacy-preserving identity framework: the User-issued
Unlinkable Single Sign-On (U2SSO) protocol and Verifiable Credentials (VC).

First, we introduce the U2SSO protocol [2], which provides an alternative to traditional federated
identity management solutions by eliminating the need for a centralized trusted identity provider (IdP).
Instead, it uses an immutable identity registry (IDR) and cryptographic techniques to ensure both Sybil
resistance for service providers and unlinkability for users across different services. Next, we introduce
Verifiable Credentials, a framework for privacy-preserving attribute verification. Verifiable Credentials
allow users to selectively disclose verified attributes without compromising their privacy, while U2SSO
focuses on authentication. These preliminary steps lay the technical groundwork for our future integration
of these complementary technologies into a comprehensive solution for private and secure digital identity
management.

3.1 Single-Sign-On with Unlikable User-Issued Identities U2SSO

Traditional Single Sign-On (SSO) systems rely on centralized identity providers, posing risks such as single
points of failure and privacy concerns. In contrast, U2SSO allows users to manage their own identities
while maintaining the convenience of SSO. This method meets two critical criteria for modern identity
systems: (1) it reduces Sybil attacks, in which malicious individuals create multiple identities to exploit
services, and (2) it protects user privacy by ensuring unlinkability across services. U2SSO represents a
significant advancement in decentralized identity management by allowing these seemingly contradictory
properties to exist concurrently.

3.1.1 System Model

The U2SSO system comprises three main entities:

 User (user): Creates a master identity and produces unlinkable service-specific pseudonyms and
keys. The user maintains complete control over their identity without relying on a centralized
authority or IdP

10

CHAPTER 3. PRELIMINARIES 11

* Service Provider (SP): Provides services and enforces Sybil-resistant authentication for users. Each
SP has a unique identifier sname. Service providers can confirm that users are members of a valid
identity set without knowing which specific identity belongs to them.

« Identity Registry (IdR): A public, append-only registry for storing master public keys in anonymity
sets and managing registered snames. The IdR is not trusted to issue credentials or store secrets; it
only supports public membership proofs and Sybil detection.

3.1.2 Functionalities

We formally define the U2SSO system as a tuple of five algorithms. These capture the creation of a master
identity, the derivation of unlinkable service-specific keys, the generation of Sybil-resistant proofs, and
authentication mechanisms.

Definition 3.1.1 (U2SSO Scheme). A U2SSO scheme is defined by the tuple of algorithms:

* pp + U2SS0.Setup(1*, params): Takes as input a security parameter \ and a set of global system
parameters params; outputs a set of public parameters pp.

* (mpk, (msk, kdfkey)) < U2SSO.CreateID(pp): On input pp, it outputs a master public key mpk,
a master secrete key msk and a key derivation key kdfkey.

(cpk, csk) < U2SSO0.DeriveKey(kdfkey, sname): Takes as input a key derivation key kdfkey and a
service name sname; outputs a pseudonym cpk and a corresponding child secret key csk.

(m, nul) <= U2SSO.Prove(pp, msk, cpk, A, j): Takes as input the public parameters pp, a master
secret key msk, a pseudonym cpk, an anonymity set A = {mpky,...,mpky}, and an index
j €{1,..., N} corresponding to the user’s own mpk;. Ouiputs a non-interactive zero-knowledge
proof ™ and a nullifier nul.

0/1 + U2SS0.Verify(pp, sname, cpk, 7, nul, A): Takes as input the public parameters pp, a service
name sname, a pseudonym cpk, a proof wr, a nullifier nul, and an anonymity set A; outputs 1 if the
the proof is valid, otherwise 0.

* 0 + U2SS0.AuthProve(csk, chal): Takes as input a service-specific secret key csk and a challenge
chal; outputs a response o.

0/1 < U2SS0O.AuthVerify(cpk, o, chal): Takes as input a pseudonym cpk, a challenge chal, and a
response o, outputs 1 if the the proof is valid, otherwise 0.

3.1.3 Workflows

While the formal specification establishes the algorithmic foundation for U2SSO, this section describes
how these algorithms interact in practice to form complete protocols. The U2SSO system is comprised of
four main protocols:

3.1.3.1 Setup

During configuration, the IdR allows service providers to register their service identifiers (sname) and
preferred credential generators. The system guarantees the uniqueness of all service names and incorporates
them into the public parameters pp generated by U2SSO.Setup.

CHAPTER 3. PRELIMINARIES 12

3.1.3.2 Master Identity Registration

To join the U2SSO system, a user first uses the U2SSO.CreateID algorithm to generate their master
credentials. This process generates three essential cryptographic components: a public master identity
(mpk) that will be stored on the IdR, a private master secret key (msk) that the user will keep, and a key
derivation key (kdfkey) for generating service-specific credentials.

The user registers the master identity mpk with the IdR (Step 1 in Figure 3.1), and it is stored in an
anonymity set. An anonymity set is a collection of N master identities that allows users to demonstrate
membership without revealing which identity belongs to them.

3.1.3.3 Pseudonym Generation and Registration

Figure 3.1 illustrates the three-step process for registering with a service provider. The user first creates a
service-specific key pair with U2SSO.DeriveKey:

(cpk;, csk;) := U2SSO.DeriveKey (kdfkey, sname;).
They then use U2SSO.Prove to generate a proof and nullifier:
(7, nul) := U2SSO.Prove(pp, msk, cpk;, A, j),

where j is the master identity index in the anonymity set. Finally, the user sends the entire registration
package (cpk;, 7, nul, A) to the service provider (Step 2).

Then, in Step 3, the service provider uses U2SSO.Verify and a full validation process to check the
information. The service provider gets the anonymity set A from the IdR to make sure it has the most
up-to-date information about its members. It then checks the proof 7 to make sure the user has a valid
master identity in the set and that the nullifier nul has not been used before. This allows U2SSO to prevent
duplicate registrations. If the verification is successful, the service provider registers the pseudonym and
keeps the nullifier to stop people from registering with the same master identity again.

3.1.3.4 Authentication to Service

After registration, the user can authenticate to the service using a simpler four-step process (shown in
Figure 3.1). The service provider starts the authentication process by sending the user a random challenge,
chal. The user makes an authentication proof with o := U2SSO.AuthProve(csk;, chal) and sends it
back to the service provider (Step 4) after getting the challenge. Finally, the service provider checks the
authentication response with U2SSO.AuthVerify(cpk,, o, chal).

This authentication method makes it easy to authenticate users multiple times without needing complicated
zero-knowledge proofs or interactions with the IdR. This makes the user experience smoother while
keeping the U2SSO system’s privacy and security features intact.

CHAPTER 3. PRELIMINARIES 13

Identity Service
Registry Provider

(mpk, (msk, kdfkey)) «
U2SSO0.CreatelD(pp)

User

(1) Register master identity

: mpk

! Store mpk in

} anonymity set A

| Confirmation :
U2SS0.DeriveKey (kdfkey, sname;)

[(cpk;, c;kl) — } i

(mynul) «
U2SSO.Prove(pp, msk, cpk;, A, 7)
! (2) Register pseudonym

(cpk;, 773, nul, A)
: (3) Verify anonymity set (A)

Verification response

U2SSO. Verify(
pp,snamey,
cpk;, T,
nul, A)
Check nullifier not reused

Registration confirmation

o
E U2SSO.AuthProve(csk;, chal) } v
(€)) Authentlcate

7

cpk,, o, chal)

L U2SSO.AuthVerify(}

Figure 3.1: Complete U2SSO workflow. The numbers in parentheses show the most important steps:
(1) registering your identity with the Identity Registry, (2) registering your pseudonym with the Service
Provider, (3) checking against the anonymity set, and (4) authenticating without the IdR’s help. The
diagram shows the whole process, from making a master identity to registering it and then authenticating
it.

CHAPTER 3. PRELIMINARIES 14

3.1.4 Security Properties

The U2SSO protocol achieves three fundamental security properties through its cryptographic design and
zero-knowledge proof construction.

Sybil Resistance. The system offers Sybil resistance because the nullifier nul is computed deterministically
from both the master secret key msk and the service name sname;. This ensures that for any given master
identity and service provider pair, the same nullifier is generated. Because service providers store and
verify nullifiers before accepting new registrations, a service provider can prevent users from registering
multiple pseudonyms using the same master identity, as subsequent registration attempts would result in
the same nullifier and be rejected.

Unforgeability. Unforgeability is guaranteed because generating a valid proof 7 requires knowledge of
the master secret key msk, which corresponds to one of the master public keys mpk; in the anonymity
set A. The zero-knowledge proof construction ensures that without the secret key, an adversary cannot
produce a proof that passes the verification algorithm U2SSO.Verify. Additionally, the binding be the
pseudonym cpk; and the master identity is cryptographically enforced through the key derivation process,
preventing pseudonym forgery.

Robustness. The system remains robust because zero-knowledge proof verification only requires the
prover to know the secret key associated with at least one valid master public key in the anonymity set.
Even if some entries in A are malformed or invalid, honest users can still generate valid proofs by using
their legitimate master identities. The verification algorithm can distinguish between valid and invalid
proofs even when malformed entries are present, ensuring that legitimate users can continue to use the
system.

Unlinkability. The U2SSO protocol ensures unlinkability across services because pseudonyms are
derived deterministically from the master secret key and service name using

U2SSO0.DeriveKey(kdfkey, sname;), but appear statistically independent to external observers. Even if
service providers collude and compare their records, they cannot determine whether different pseudonyms
cpky, cpk,, . . . belong to the same user. The key derivation function ensures that knowledge of one service-
specific pseudonym provides no information about pseudonyms used with other services, preventing
cross-service tracking and user profiling while maintaining the cryptographic binding to the user’s master
identity.

Anonymity. The U2SSO protocol provides anonymity because the zero-knowledge proof m demon-
strates membership in the anonymity set A without revealing which specific master public key mpk;
belongs to the prover. The cryptographic construction ensures that even with access to all public infor-
mation (anonymity set, service names, pseudonyms, and proofs), an adversary cannot determine which
master identity generated a particular pseudonym cpk;. This property holds as long as the anonymity
set contains multiple legitimate identities and the underlying zero-knowledge proof system maintains its
hiding properties.

3.2 Verifiable Credentials

Verifiable Credentials (VCs) [4] provide a framework for users to comply with specific requirements
without disclosing private information.

This section introduces the Verifiable Credentials framework, a key component of our comprehensive
Anonymous Verifiable Credentials (AVC) architecture. Standard VCs provide significant advantages over

CHAPTER 3. PRELIMINARIES 15
traditional identity systems through selective disclosure, but they frequently rely on personal IDs.

3.2.1 System Model

The Verifiable Credentials system comprises three main entities:

* User (user): Possesses verifiable credentials and provides them to service providers as needed. The
user retains control over the attributes disclosed in various scenarios.

 Verifiable Credential Issuer (VCI): A trusted entity (e.g., a governmental body, a financial
organization, or an academic institution) that verifies user characteristics with real-world evidence
and issues digitally signed credentials.

* Service Provider (SP): Provides services contingent on specific user characteristics for access or
compliance requirements. Each service provider verifies the authenticity of submitted credentials
without knowing the user’s true identity.

3.2.2 Functionalities

The Verifiable Credentials system is formalized as a set of algorithms. The components consist of system
configuration, credential issuance, and credential verification procedures.

Definition 3.2.1 (Verifiable Credentials Scheme). A Verifiable Credentials scheme is defined by the tuple
of algorithms:

* pp ¢« VC.Setup(1*, params): Takes as input a security parameter \ and a set of global system
parameters params; outputs a set of public parameters pp.

* (skycr, pkycy) < VC.KeyGen(pp): Takes as input the public parameters pp; outputs a signing key
pair (skycr, pkyey) for the credential issuer.

* VCpip < VC.Issue(attr,PID,skyc): Takes as input a set of attributes attr, a personal identifier
PID, and the issuer’s signing key skycy; outputs a verifiable credential VC bound to the identifier
PID.

* 0/1 « VC.Verify(attr,PID, VCpip, pkycy): Takes as input a set of attributes attr, a personal
identifier PID, a verifiable credential VC bound to PID, and the issuer’s public key pkyc;, outputs 1
if the credential is valid for the given attributes and identifier, otherwise 0.

Our definitions are intentionally protocol-agnostic, prioritizing functionality over specific cryptographic
frameworks. This approach allows implementers to select appropriate cryptographic primitives based on
their requirements, provided implementations satisfy the security principles detailed in Section 3.2.4.

3.2.3 Workflows

This section describes how the formal VC algorithms interact in practice to form complete protocols. The
VC system comprises two main workflows that enable users to obtain and present verifiable credentials for
attribute verification.

CHAPTER 3. PRELIMINARIES 16

3.2.3.1 Credential Issuance

The credential issuance process allows users to obtain verifiable credentials from trusted issuers via a
structured interaction (see Figure 3.2). The process starts with the service provider determining the required
attributes attr for access to their service (Step 1). The user requests information about the requirements
from the service provider (Step 2), who responds by specifying the necessary attributes attr (Step 3).

The user submits a credential request to the Verifiable Credential Issuer, providing their personal
identifier PID and a set of attributes attr for verification (Step 4). Upon receiving the request, the VCI
confirms the legitimacy of the personal identifier PID. This verification usually entails traditional identity
proofing methods like document inspection or in-person verification, which are deemed out of scope
for this thesis. After validating the user’s identity, the VCI uses VC.Issue(attr, PID, skycy) to create a
verifiable credential that cryptographically binds the specified attributes to the user’s personal identifier
(Step 5). Finally, the VCI sends the credential VCp|p to the user via a secure channel (Step 6).

This process ensures that credentials are only issued to verified users and cryptographically linked to
their identifiers, preventing unauthorized use or transfer.

3.2.3.2 Credential Verification

The credential verification process allows users to demonstrate possession of verified attributes to service
providers through the remaining steps of the protocol (shown in Figure 3.2). After obtaining the necessary
credential, the user presents their personal identifier PID and the corresponding credential VCp|p to the
service provider (Step 7). This presentation should only include the attributes requested by the service
provider, following the principle of minimal disclosure.

The service provider uses VC.Verify(attr, PID, VCp|p, pkyc;) to verify that the credential was issued
by a trusted authority, is bound to the presented identifier, and contains the required attributes (Step 8).
Based on the verification results, the service provider grants or denies access to the requested service,
communicating the decision to the user (Step 9).

This verification mechanism enables attribute-based access control while protecting user privacy
through selective disclosure, ensuring that service providers only learn the information required to meet
their specific needs.

3.2.4 Security Properties

The Verifiable Credentials system provides four essential security and privacy properties through its
cryptographic design and protocol structure.

Correctness. The Verifiable Credentials system achieves correctness in the sense that the credential
issuance algorithm VC.Issue(attr, PID,skycy) cryptographically binds the specified attributes to the
user’s identifier using the issuer’s signing key. When the same attributes and identifier are later presented
for verification, the algorithm VC.Verify(attr, PID, VCpip, pkycy) can cryptographically confirm this
binding using the corresponding public key. The deterministic nature of the cryptographic operations
ensures that legitimate credentials will always verify successfully when presented with the correct attributes
and identifier.

Unforgeability. Unforgeability means that credential generation requires knowledge of the issuer’s
private signing key skyc, which is computationally infeasible to derive from the public key pkyc;. The
cryptographic digital signature scheme used in VC.Issue ensures that any attempt to forge or modify a
credential without the private key will result in verification failure during VC.Verify. This property holds
under the assumption that the underlying digital signature scheme is existentially unforgeable under chosen
message attacks.

CHAPTER 3. PRELIMINARIES 17

Service

User va Provider

| (1) Determine

required

‘ attributes attr
(2) Request attributes ‘

(3) Response attributes to provide

(4) Request credential
(PID, attr)

(5) If PID s legit:
VCpip + VC.Issue(attr, PID, skycr)

(6) Issue credential

VCpip !
(7) Present credential
PID,VC
(PID, YCei0) (8) result +
VC.Verify(
attr, PID,

VCpip, pkycr)

(9) Grant/deny acce:ass based on result

Figure 3.2: Verifiable Credentials System Workflow. The diagram illustrates the complete lifecycle:
(1) The Service Provider determines required attributes; (2-3) The User and Service Provider exchange
information about required attributes; (4) The User requests a credential from the Verifiable Credential
Issuer; (5) The VCI verifies the user’s identity legitimacy (this step involves traditional identity verification
methods and is considered out of scope for this thesis) and issues a credential; (6) The VCI delivers
the credential to the User; (7) The User presents the credential to the Service Provider; (8) The Service
Provider verifies the credential’s validity; and (9) The Service Provider grants or denies access based on
the verification result.

CHAPTER 3. PRELIMINARIES 18

Identifier-binding. Identifier-binding ensures that each verifiable credential is cryptographically tied
to a specific user identifier, preventing credentials from being transferred or used by unauthorized
parties. This property guarantees that a credential issued to one user cannot be presented by an-
other user, even if the credential data is somehow obtained by an attacker. The verification algorithm
VC.Verify(attr, PID, VCpp, pkyc;) checks that the identifier presented matches the one embedded in the
credential’s cryptographic structure. Any attempt to use a credential with a different identifier will cause
verification to fail, as the cryptographic binding cannot be altered without invalidating the issuer’s digital
signature.

Minimal Disclosure. The system supports minimal disclosure in the sense that verification protocol
allows users to selectively present only the required attributes attr to the service provider, rather than
revealing the entire credential contents. The cryptographic structure of the credential enables verification of
individual attributes without exposing additional information. The service provider’s verification process
using VC.Verify confirms only the presented attributes, ensuring that users maintain control over their
personal data and comply with privacy principles such as data minimization mandated by frameworks like
GDPR [1].

Anonymous Verfiable Credentials AVC

Traditional Verifiable Credentials systems, while offering significant privacy advantages over centralized
approaches, have a fundamental limitation: they rely on persistent personal identifiers (PIDs). These
identifiers enable service providers to track and profile users across multiple services, posing a significant
privacy risk. When a user uses the same PID-bound credential with multiple service providers, these
providers can work together to link the user’s activities, effectively undermining the selective disclosure
benefits that VCs strive to provide.

In previous chapters, we talked about two different frameworks: User-issued Unlinkable Single Sign-
On (U2SSO) for privacy-preserving authentication and Verifiable Credentials (VC) for attribute verification.
Each addresses a different aspect of the digital identity challenge: U2SSO enables authentication across
services without tracking, whereas VCs provide dependable attribute verification. However, neither solution
fully addresses the issue of privacy-preserving, attribute-based authorization. This chapter introduces
our Anonymous Verifiable Credentials (AVC) framework, which combines these two approaches into
a single system with their respective capabilities. The AVC framework addresses the PID linkability
issue by associating verifiable credentials with service-specific pseudonyms rather than persistent personal
identifiers. This approach ensures that even if a user provides credentials to multiple service providers, the
interactions are not linked. Even when colluding, service providers cannot tell if they are interacting with
the same people.

Instead of creating entirely new cryptographic primitives, we demonstrate how existing algorithms
and protocols can be combined to form a comprehensive approach to privacy-preserving digital identity
management. By combining U2SSO’s unlinkability features with VCs’ attribute verification capabilities,
our AVC framework achieves Sybil resistance and cross-service unlinkability while allowing for reliable
attribute verification.

4.1 System Components
The integrated AVC system combines the components of both U2SSO and VC while maintaining their

original roles and security properties. This section describes the architectural components and setup of the
integrated system.

19

CHAPTER 4. ANONYMOUS VERFIABLE CREDENTIALS AVC 20

* User (user): Generates a master identity following the U2SSO protocol and derives service-specific
pseudonyms as needed. Additionally, a user obtains verifiable credentials from trusted issuers and
presents them to service providers.

* Identity Registry (IdR): Continues to function as in U2SSO, storing master public keys in
anonymity sets and facilitating the unlinkable authentication process. It remains unaware of the
credentials associated with any pseudonym.

* Verifiable Credential Issuer (VCI): Verifies user attributes through real-world proofs and issues
credentials bound to specific service-specific pseudonyms rather than to personal identifiers.

* Service Provider (SP): Verifies both the U2SSO authentication proof and the bound verifiable
credentials, ensuring both that the user is legitimately registered and possesses the required attributes.

The integration does not require introducing additional entities beyond those already defined in the
component frameworks, maintaining a lean architecture that minimizes potential privacy leakage points.

4.2 Workflow

The AVC framework integrates the authentication workflow of U2SSO with the credential verification
features of VC systems. Figure 4.0 illustrates the complete workflow, from master identity creation to
pseudonym-bound credential verification. Notably, this integrated approach replaces the persistent personal
identifier (PID) from traditional VC systems with service-specific pseudonyms (cpk;), thereby eliminating
cross-service tracking.

4.2.1 Workflow Description

The AVC workflow represents a fundamental departure from traditional identity systems by integrating
unlinkable authentication with verifiable credential presentation (as shown in Figure 4.0). The key
innovation lies in binding credentials to service-specific pseudonyms rather than persistent identifiers,
enabling privacy-preserving attribute verification across multiple services.

The workflow can be conceptually divided into three phases. The initialization phase (steps (1)—(4) in
Figure 4.0) establishes the user’s master identity within the anonymity set of the Identity Registry, providing
the cryptographic foundation for all subsequent interactions. The credential acquisition phase (steps (5)—
(10)) demonstrates how users can obtain verifiable credentials bound to service-specific pseudonyms
rather than global identifiers, with the VCI issuing credentials to the pseudonym after verifying the user’s
real-world identity through traditional methods.

The registration and verification phase (steps (11)—(16)) showcases the dual verification mechanism
that distinguishes AVC from existing approaches. The Service Provider must verify both the U2SSO proof
(confirming the user possesses a legitimate master identity) and the verifiable credential (confirming the
required attributes), creating a comprehensive authentication and authorization framework. This dual
verification ensures that users can prove both their legitimacy within the system and their possession of
specific attributes without revealing their global identity or enabling cross-service tracking.

Once registered, the system enables efficient recurring authentication (steps (17)—(19)) through a
lightweight challenge-response protocol that maintains the privacy guarantees while providing practical
usability for everyday interactions.

CHAPTER 4. ANONYMOUS VERFIABLE CREDENTIALS AVC 21

Identity Service
User Registry va Provider 1
((1) (mpk, (msk, kdfkey)) < U2SSO.CreateID(pp))

T

(2) Register master identit‘y
mpk :
{ (3) Store mpk in }

anonymity set A

(4) Confirmation |
: (5) Request attributes

(6) Response attributes to provide
attr

(7) (cpk;,csk;) «
U2SSO.DeriveKey(
kdfkey,
sname;)

(8) Request credential
(PID, cpk;, attr) l

(9) If PID is legitimate:
; ; V Cepk, < VC.Issue(attr, cpk;, skycr)
| (10) Issue,credential |
! VO ;
(1) (r,nul) « i |
U2SSO.Prove(pp, msk, | |
Cpklv Av]) : :

(12) Register pseudonyrq
(cpk;, 7, nul, A, VC'cpkl)l
(13) Verify anonymity set (A)

(14) Verification response

(15)
U2SSO.Verify(pp, sname;,
cpky, m, nul, A)

A\
VC.Verify(attr, cpk;,

|
|
|
|
1
1
1
1
|
|
|
q

(16) Registration confirmation V Cepiq» Phver)

CHAPTER 4. ANONYMOUS VERFIABLE CREDENTIALS AVC 22

Identity Service
Registry va Provider 1

User

(17) éf —
U2SSO.AuthProve(csk;, chal)

" (18) Authenticate
! g

(19
U2SSO.AuthVerify(
cpk,, o, chal)

Figure 4.0: Anonymous Verifiable Credentials (AVC) Workflow. The diagram illustrates the integration of
U2SSO authentication with verifiable credentials: ((1)—(4)) the User creates and registers a master identity
with the Identity Registry; ((5)—(6)) the User determines required attributes with the Service Provider;
(7) the User derives a service-specific pseudonym for Service Provider 1; ((8)—(10)) the User requests
and receives a credential bound to their pseudonym rather than their personal identifier; ((11)—(16)) the
User registers the pseudonym and associated credential with the Service Provider, which verifies both
the authentication proof and the credential; ((17)-(19)) for subsequent authentications, the User can
employ a simpler authentication protocol without re-verifying the credential. The key innovation is binding
credentials to pseudonyms (cpk;, shown in blue) rather than to personal identifiers (PID, shown in red),
preventing cross-service tracking. Color coding throughout the diagram highlights this key difference
where VCs are bound to pseudonyms instead of PID.

4.2.2 Design Flexibility

Although our workflow assumes a verifiable credential is provided during initial registration with the
Service Provider, the AVC framework allows for flexible implementation. The system can be easily
customized to meet operational needs while maintaining its core security features. Instead of presenting
credentials during registration, users can register their pseudonyms and only present credentials when
accessing services that require attribute verification. This increases privacy by allowing basic authentication
without revealing attributes until necessary. The AVC framework is adaptable to different usage scenarios
while maintaining its core privacy and security properties. It combines the privacy benefits of U2SSO
with the attribute verification capabilities of VC systems to create a comprehensive framework for privacy-
preserving digital identity management, addressing the limitations of each system.

4.2.3 Security Properties

The integrated AVC system inherits and enhances the security properties of both U2SSO and VC frame-
works, creating a comprehensive privacy-preserving digital identity solution with six fundamental security
guarantees, as follows.

Unlinkability. The AVC framework maintains unlinkability by cryptographically generating service-
specific pseudonyms using U2SSO.DeriveKey(kdfkey, sname;), resulting in statistically independent
outputs for various services. Credential binding to pseudonyms using VC.Issue(attr, cpk;, skycr) does
not generate additional linkability vectors because each credential is associated with a unique pseudonym.
The zero-knowledge proof 7 created in step (11) demonstrates membership in the anonymity set with-
out revealing which specific master identity generated the pseudonym. This prevents colluding service

CHAPTER 4. ANONYMOUS VERFIABLE CREDENTIALS AVC 23

providers from determining whether different pseudonym-credential pairs belong to the same user, unless
the attributes themselves contain linkable information that could enable correlation across services.

Sybil resistance. AVC’s nullifier mechanism, inherited from U2SSO, ensures Sybil resistance by comput-
ing nul deterministically from both the master secret key msk and the service name sname;. This prevents
users from registering multiple pseudonym-credential combinations with the same service provider while
utilizing the same master identity. Credential binding does not violate this property because credentials
are issued to pseudonyms that are already subject to Sybil resistance constraints, ensuring one-to-one
correspondence between master identities and service registrations.

Unforgeability. The AVC system guarantees dual unforgeability: users cannot forge U2SSO proofs
without a valid master secret key msk, and credentials cannot be forged without access to the issuer’s
private key skycr. The integration preserves both properties because the U2SSO proof verifies legitimate
system membership and the credential digital signature ensures attribute authenticity. Neither proof can be
generated nor modified without the corresponding private keys, preventing identity spoofing and attribute
falsification.

Credential integrity. AVC’s modified issuance process, VC.Issue(attr, cpk;, skycr), keeps credentials
cryptographically bound to their designated pseudonyms. The verification algorithm ensures that the
presented pseudonym matches the one embedded in the credential, preventing credential transfer between
pseudonyms, even if they belong to the same user. This binding is maintained throughout the integrated
verification process, ensuring that credentials cannot be used in multiple service contexts.

Minimal disclosure. The system preserves VCs’ selective disclosure capabilities while improving
privacy via pseudonym-based presentation. Users can only provide required attributes atir to service
providers, and the pseudonym-based binding ensures that this selective disclosure cannot be linked across
services. The verification process using

VC.Verify(attr, cpk;, VCep, , Pkycy) confirms only the presented attributes and does not reveal additional
information or enable cross-service correlation.

Robustness. AVC ensures system robustness by ensuring that invalid entries in the anonymity set
do not disrupt legitimate users’ ability to obtain and use pseudonym-bound credentials. Even when there
are invalid anonymity set entries, the integrated verification process can distinguish between valid U2SSO
proofs and authentic credentials, allowing honest users to continue using the system while preserving all
privacy and security guarantees.

Implementation

This chapter describes a practical implementation of our Anonymous Verifiable Credentials (AVC) frame-
work. Moving from theoretical models to operational systems necessitates careful consideration of current
infrastructure, technical standards, and real-world constraints. Our implementation not only shows the
feasibility of the suggested framework, but it also provides useful insights into its practical application.
We selected to evaluate our AVC architecture in the context of a major national digital identification effort,
the Swiss Electronic Provisional Driving License Program (eLFA). This implementation is a realistic
proof of concept, demonstrating how our theoretical contributions can improve privacy in existing identity
systems without requiring a total overhaul of the underlying infrastructure. The next sections go over
the system architecture, component relationships, and specific implementation choices taken to connect
the AVC framework with the eLFA infrastructure. We focus on the cryptographic operations that enable
pseudonym-based credential binding because they represent the primary innovation of our work. In
addition, we discuss how conventional protocols such as OpenID for Verifiable Credentials (OID4VC)
were expanded to support our privacy-enhancing methods. By using the AVC framework in the real-world
setting, we demonstrate that it is feasible technically and that it works with other digital identity projects.
This opens the door for identity providers and service providers who want to improve user privacy while
keeping strong verification capabilities to use it.

5.1 Project Context: The Swiss Electronic Provisional Driving Li-
cense Program (eLFA)

The implementation of our Anonymous Verifiable Credentials (AVC) framework was developed within
the context of the Swiss electronic Provisional Driving License Program, known as eLFA (elektronischer
LernFahrAusweis). This project serves as a proof of concept for Self-Sovereign Identity (SSI) using
OpenlD for Verifiable Credentials (OID4VC) with Selective Disclosure JSON Web Tokens (SD-JWT) as
the authentication mechanism between issuers and the base registry [7].

24

CHAPTER 5. IMPLEMENTATION 25

5.1.1 Architectural Components

The eLFA infrastructure consists of five primary components, as illustrated in Figure 5.1:

Holder Wallet: Apps for Android and iOS that let users manage their digital identities and save
their credentials. These wallets use the OpenID for Verifiable Credentials (OID4VC) protocols to
issue and show credentials [6, 8]. The wallet keeps the user’s credentials safe and lets them choose
which attributes to share when they talk to verifiers.

Issuer Agent: The Swiss Road Traffic Office is the trusted authority that checks user information
and gives out verifiable credentials [7]. The issuer specifically implements the pre-authorized flow
of the OpenID4VCI specification and supports both standard JWT and SD-JWT [10] credential
formats depending on configuration.

Verifier Agent: Services that check credentials, like the police and driving instructors who need
to check digital driving licenses. The Verifier checks credentials against the base registry and uses
caching to speed things up [7].

Base Registry: A central part that handles the public keys needed for ecosystem interactions and
serves as the basis for verifying identities within the system [7]. The base registry is very important
for building trust in the ecosystem because it keeps official records of issuer keys.

Revocation Registry: Split from the Base Registry to allow for different optimizations, keeps
track of credential status information so that issuers can revoke, suspend, or restore credentials as
needed [7]. This separation makes it easier to manage and check the status list. This thesis does not
cover credential revocation mechanisms.

5.1.2 Current System Workflow

Figure 5.1 illustrates the complete workflow of our AVC implementation, showing both the credential
issuance and verification processes. The workflow is based on the OpenlD for Verifiable Credentials
(OID4VC) specifications and has been implemented in the eLFA project [7].

5.1.2.1 Credential Issuance

The credential issuance process follows the pre-authorized flow of the OpenID4VCI specification and
consists of the following steps:

1.

Metadata Request: The Holder Wallet initiates the process by requesting metadata from the Issuer
Agent to understand its capabilities and requirements.

Metadata Response: The issuer provides configuration details, including supported credential types
and formats JWT or SD-JWT).

. Token Redemption: The Holder Wallet redeems a one-time token that was previously provided as

part of a credential offer, identifying the specific credential to be issued.

Bearer Token Issuance: The issuer validates the one-time token and provides a bearer token for
subsequent authentication.

. Credential Request: The Holder Wallet requests the verifiable credential, including proof of holder

binding to ensure the credential is cryptographically bound to the holder’s key.

Credential Issuance: The issuer generates and signs the verifiable credential (using either JWT or
SD-JWT format) and returns it to the Holder Wallet, which stores it securely for future use.

CHAPTER 5. IMPLEMENTATION 26

5.1.2.2 Credential Verification

When a holder needs to prove possession of certain attributes to a verifier, the verification process occurs
as follows:

7. Request Object Request: The Holder Wallet requests verification parameters from the Verifier
Agent.

8. Request Object Response: The Verifier provides a request object containing a presentation defini-
tion that specifies which credential types and attributes are required.

9. VP-Token Submission: The Holder Wallet creates a Verifiable Presentation (VP) containing the
requested credentials and attributes, and submits this VP-Token to the Verifier.

10. Issuer Key Verification: The Verifier contacts the Base Registry to retrieve the public key of the
credential’s issuer, essential for verifying the credential’s digital signature.

11. Verification Result: After validating the VP-Token’s digital signature, checking the credential’s
status, and verifying the presented attributes, the Verifier sends the verification result back to the
Holder Wallet.

This workflow ensures both the privacy of the holder and the security of the verification process. By using
the Base Registry to verify issuer keys, the system maintains a decentralized trust model while preventing
cross-service tracking of users [7].

CHAPTER 5. IMPLEMENTATION

Holder Wallet

Issuer Agent

(1) Request issuer metadata

(2) Provide issuer metadata.

1(3) Redeem one-time token,

(4) BEARER Token

(6) Signed VC

(7) Request gbject request

) :Request VC with holder binding

Verifier Agent

27

&) Requ:est object

(9) VP-Token

(11) Verification result

Base Registry

(10) Get issuer public key

Figure 5.1: AVC System Flow Diagram showing the sequence of interactions during credential issuance

and verification based on the eLFA implementation

5.2 AVC-eLFA Integration: Technical Implementation

This section explains how our Anonymous Verifiable Credentials (AVC) framework works with the eLFA
infrastructure on a technical level. Building upon the basic eLFA architecture described in the previous
section, we now detail the specific modifications and enhancements required to enable AVC’s privacy-
preserving authentication and attribute verification systems work. We use standard OpenlD protocols and
custom cryptographic operations to allow pseudonym-based credential binding without having to make
major changes to the existing infrastructure.

CHAPTER 5. IMPLEMENTATION 28

5.2.1 Service Provider Registration with Identity Registry

Before participating in the AVC ecosystem, each Service Provider (Verifier) must register itself with the
Identity Registry (IdR) following the U2SSO protocol. This registration is a prerequisite setup phase that
occurs before step (1) of Figure 4.0, establishing the Verifier’s identity within the system and enabling it to
later verify user pseudonyms.

1 function registerService (servicename) :

2 url < registry_identity_url +

3 headers < generateRegistryHeaders ()

4 params < { : servicename}

5 response < sendPostRequest (url, headers, params)
6 if response.status_code is not ok:

7 raise Error ()

8 return servicename

9 end function

Listing 1: Service Provider Registration to Identity Registry

As shown in Figure 5.2, the registration API endpoint accepts a service name and returns a unique identifier.
The service provider sends its name to the Identity Registry through a secure API endpoint, where the
registry records this identifier in its database or confirms the service is already registered. This registration
establishes the Service Provider as a trusted entity within the U2SSO framework that underlies our AVC
system.

CHAPTER 5. IMPLEMENTATION 29

POST /servicename Get Service Name

Get the service name (hex-encoded hash)

This endpoint also ensures the service is registered with the registry.

‘ Parameters

No parameters

Responses

Curl

curl -X "POST' \
"https://localhost:8001/servicename’ \

-H 'accept: application/json' \
d

Request URL

https://localhost:8001/servicename

Server response

Code Details

200 Response body

91cabe7803ab7f18ach41954b654f75dalc84139d87a20d542ec8cd2f862437",
1l

Figure 5.2: Service Provider Registration API endpoint demonstrating the process of registering a service
identity. The endpoint returns a unique cryptographic hash identifier that establishes the Verifier’s identity
in the AVC trust framework and enables subsequent pseudonym verification.

5.2.2 Credential Format Definition for Verification

Before a verification process can begin, the Verifier must define the format and requirements for the
Verifiable Credentials it will accept. This corresponds to steps (5)—(6) in Figure 4.0 (user requests
attributes from Service Provider, Service Provider responds with required attributes), representing a critical
preparatory step in the AVC workflow.

1 function createVerification (presentationDefinition) :

2 // Create verification management

3 verificationId = generateUniqueIdentifier ()

4

5 // Store presentation requirements

6 storePresentationDefinition (presentationDefinition)

7

8 // Generate verification link

9 verificationLink = generateVerificationLink (verificationId)

11 return verificationLink
12 end function

Listing 2: Creating Verification Request

CHAPTER 5. IMPLEMENTATION 30

The Verifier makes a Presentation Definition object that lists the type of credential needed, the cryptographic
algorithms that should be used for signatures, the specific attributes that must be present, and any other
validation rules that must be followed. Listing 2 shows how the system makes a unique verification ID,
saves the presentation requirements, and makes a verification link that users can share.

An example of a Presentation Definition for a university degree credential demonstrates the structure and
specificity required for effective credential verification:

1

{

2 "input_descriptors": [

s |

4 "id": "Masters Degree"

5 "format": {

6 "Jwt_ve": {

7 "alg" "ES512"

; }

) }
10 "constraints": {
11 "fields": [
12 {
13 "path" ["S.vc.typel[*]"]
14 "filter": {
15 "type": "string"
16 "pattern": "UniversityDegreeCredential"
17 }
18 }
19 {
20 "path" ["$.vc.credentialSubject.degree.average_grade"]
21 }
22]
23 }
24 }
25]
2 "client_metadata": {
27 "client_name": "Dummy University"
28 "logo_uri": "Dummy Logo Uri"
29

}

30 }

Listing 3: Example Presentation Definition for Degree Verification

The completed verification request is stored in the Verifier’s cache with a unique identifier, which is then
used to generate a verification URI following the format
https://verifier/request-object/{authorizationRequestId}/avc. Thisapproach
ensures that the Verifier clearly specifies its requirements upfront, enabling selective disclosure of required
attributes.

CHAPTER 5. IMPLEMENTATION 31

7o /oid4vp/verification create verification
Creates an verification based on the handed DIF presentation definition
Parameters
No parameters
Request body

"constraints": {

th": ["g.v:.iype["]"].

tring",
M eatterd "UniversityDegreeCredential”

“path": ["§.vc.credentialsubject.degree. average_grade"]
3

}

]

cllenl metadata": {
"client_name “Dunmy University”,
"logo_uri": "Dummy Logo Uri"

Responses

Curl

curl x "POST' \
Tocalhost:5001/0iddvp verification’ \
u az:ept application/json’' \
x-api-key: tergum_dev key' \
n *Content-Type: application/json’ \
-d '{

ve.type[*]"]
"string"
“UnivérsityDegresCredential”

{
“path": ["$.vc.credentialsubject.degree. average_grade"]
3

mny University”,
mmy Logo Uri"

Request URL

htty

Server response

Code Details

200 Response body

pires_at"
B6546e-c020-abd) -bel - 62296e870",
authorization_reques "https: //verifier /request-object/75e66001-4e71-482¢ -al97-bef56fd

authvrlzatl\m _reques 655001 4971 52e-2197-bef56fcc9ge”

authorization request_object uri”: "https://verifier/request-object/75e66001-4e71-462e-a197 -be
"status": "PENDING™

Figure 5.3: The Credential Verification Request API endpoint shows how to make a verification request
with a full Presentation Definition. This definition says that the credential must be of type “UniversityDe-
greeCredential”, use ES512 for signatures, and have certain attributes, such as “average_grade”. Users will
get the verification URI that comes out of this process so they can start the credential presentation process.

CHAPTER 5. IMPLEMENTATION 32

5.2.3 Master Identity Creation

Before interacting with Service Providers, users must first establish a master identity in the Identity
Registry (IdR) using the U2SSO protocol. This implementation corresponds to steps (1)—(4) in Figure 4.0
(master identity creation, registration with IdR, storage in anonymity set, and confirmation), creating the
cryptographic foundation for all subsequent privacy-preserving interactions.

1 function createIdentity(identity) :
2 if not passkeyExists(identity):

3 createPasskey (identity)

4 msk_bytes < loadPasskey (identity)

5 service_list < fetchServices ()

6 id_bytes < createld(msk_bytes, service_list)
7 owner_id < generateUniqueIdentifier ()

3 addIdentityToRegistry (id_bytes, owner_id)

9 return

10 : identity,

1 : hexEncode (msk_bytes)

12 }

13 end function

Listing 4: User Identity Creation in IdR

This step creates a master identity that will be used for all future AVC system interactions that keep your
information private. Listing 4 shows that the system first looks for a passkey for the identity in question
and makes one if it does not find one. The next step is to load or make the master secret key (msk) and then
get a list of services that are available from the Identity Registry. Using the msk and the list of services,
one can derive a cryptographic identity. After that, a random owner ID is created, and the whole identity is
put in the Identity Registry.

Service Providers never see this master identity directly, so it stays private. Instead, it is used to create
U2SSO0 service-specific pseudonyms that let people authenticate across different services without being
able to link them.

CHAPTER 5. IMPLEMENTATION 33
I8 /u2sso/u2sso/create_identity Create Identity

Create a new identity in the registry.

If the passkey does not exist, it will be created first.

Parameters

No parameters

Request body

identity *

. test_user
string

Responses

Curl

curl -X '"POST' \
‘https://localhost/u2sso/u2sso/create_identity' \

-H 'accept: application/json' \
-H 'Content-Type: application/x-www-form-urlencoded" \
-d 'identity=test_user'

Request URL

https://localhost/u2sso/u2sso/create_identity

Server response

Code Details

201

Undocumented B asnon=albody

"data": {
"identity": "test_user",
"passkey": "aaalba31f8bcle9034a5f18172ec7f7950c4448a42chb7a2db8309689fb410bf"

'
"error": null

Figure 5.4: Master Identity Creation API endpoint. The screenshot shows the process of creating a new
identity with a simple username (“test_user’’) which generates both a master identity and a cryptographic
passkey. This master identity forms the foundation for all pseudonym derivations while remaining private
and never directly exposed to Service Providers.

CHAPTER 5. IMPLEMENTATION 34

5.2.4 Service-Specific Pseudonym Derivation

After creating a master identity in the IdR, the user must derive a service-specific pseudonym (child
public key or cpk) before receiving verifiable credentials. This implementation corresponds to step (7) in
Figure 4.0 (derive service-specific pseudonym), enabling privacy-preserving interactions while preventing
cross-service tracking through U2SSO’s unlinkability guarantees.

functlon registerWithService (servicename, challenge, identity):

1
2 C rert 1 11 par eters to “"’HLI fo 1t
3 service_name bytes < hexDecode (servicename)

4 challenge_bytes < hexDecode (challenge)

5

registered ser

10 service_list < fetchServ1ces()

13 service_ lndex — fetchServ1ceIndex(servicename)

> user ID f ter se et key
16 1d bytes < createlId (msk_. bytes, service_list)
17 id_index <« fetchIdentityIndex (id_bytes)

/ y 1 ider Y
20 1f id_index == -1:
21 raise Error ()

23 // Ge* ID 1ist for

// C € I f and ps
30 proof, cpk, nullifier <+ generateProof(

31 id_index, current_m, service_name_bytes,
32 challenge_bytes, msk_bytes, id_list_bytes,
33 service_list, service_index

he proof (additional

37 1f not verlfyProof(proof cpk, nulllfler):

‘

38 raise Error ()
39

40 return

41 : proof,

42 : cpk,

43 : nullifier,

44 : ring_size

45 }
4 end function

Listing 5: Deriving Service-Specific Pseudonym

Figure 5.5 demonstrates the service-specific pseudonym derivation process through the API endpoint.
Listing 5 shows the complete U2SSO protocol implementation: input parameters are converted to the
required format, the user’s master secret key is loaded, and registered services are fetched from the IdR.
The system then locates the service index, creates a user ID from the master secret key, and verifies the
identity exists in the registry. The core U2SSO innovation occurs in the zero-knowledge proof generation,

CHAPTER 5. IMPLEMENTATION 35

where the system fetches the complete identity list, calculates ring parameters for anonymity, and generates
a proof that demonstrates membership in the anonymity set without revealing which specific identity
belongs to the user. The nullifier prevents double registration while maintaining unlinkability.

This process creates three important parts that make it possible to interact with services while keeping
your privacy: a zero-knowledge proof that shows valid identity membership, a service-specific pseudonym
that is only used for this service, and a nullifier that stops Sybil attacks. The issuer later uses the derived
cpk to link verifiable credentials to this pseudonym instead of a permanent identifier. This lets verification
happen without giving away personal information and stops tracking across services.

CHAPTER 5. IMPLEMENTATION 36

POST /u2sso/u2sso/register Register

Register with a service using zero-knowledge proofs.

This creates a proof that the user possesses a valid ID without revealing which ID belongs to them.

Parameters

Name Description

servicename *
string
(query)

991cabe7803ab7f18ach41954b654f75dalcs

challenge *
string
(query)

94db930fc6f2fdc36455355f23d74¢31738cd2:

identity *
string
(query)

test_user

Responses

Curl

curl -X 'POST' \
‘https://localhost/u2sso/u2sso/register?servicename=991cabhe7803ab7f18acb41954b654175dalc84139d87a20d542ec8cd2T862,

-H ‘'accept: application/json' \
d

Request URL

htt /localhost/u2sso/u2sso/register?
servicename=991cabe7803ab7f18ach41954b654775dalc84139d87a20d542ec8cd2f862437&challenge=94db930fc6T2fdc36455355F23d

Server response

Code Details

200 Response body

: "0949792eddd61636b40efcdcfI8cd774eb10T1505c4088cfF129884abcT72497430966bda7 fc035e35b267640
5b5e187e44171e358069e32f266d3737e2d0878327cc76fchdeebd2259a8c40fd07d17f1f4333bd507ald30dddab482943bf 109
be9c3d30858203871al30a027972e092fh254856119e0d49fc2b6f4e16203a7170c145a69177630678180479Tal0ced2d7c3ad
e5fh9bdababd5b86cddec7509bc8078aadla8d9ae33c4051bb563421c40962afc3acc7bd588d8081d7912b563ef5f358ch7 fécdq
b475e72b9b453Tbd6a07054daléde8h0ef8d58c56T6c753ac53dchaddb4es7h751848d415355a84bb83b626ed3aab fc0889d837

62525d717802ccl8c516035cdee2d4d2aeclo”,
"cpk": "08d19d32835f5cef9fac239bd337b94158cbddfIc6f6642abobsfdcedda5fce29d",

"dcadf5177682049572d12fe3a890aabaebedbalfacedad61286b1bb4e773674c"

Figure 5.5: Service-Specific Pseudonym Derivation API endpoint. The screenshot demonstrates the
registration process with a service using zero-knowledge proofs. Three critical parameters are provided:
the service name identifier, a challenge for fresh proof generation, and the user identity. The endpoint
returns a privacy-preserving pseudonym cpk, a zero-knowledge proof of legitimate identity membership,
and a nullifier that prevents double registration.

CHAPTER 5. IMPLEMENTATION 37

5.2.5 Credential Issuance Request

To obtain a verifiable credential bound to their service-specific pseudonym, the user must first request
a credential offer from the issuer. This implementation corresponds to step (8) in Figure 4.0 (request
credential from VCI), where the user initiates the credential acquisition process.

1 function requestCredentialOffer (credentialMetadata, subjectData):

=

4 : credentialMetadata,
5 : subjectData,
6 : validityPeriod

9 // Se cequest to the Issuer

10 response = sendPostRequest (issuerUrl +

11 , offerRequest)
12

13 // Extract the c tial offer deeplink

14 offerDeeplink = response.offer_deeplink

15

16 return offerDeeplink

17 end function

Listing 6: Requesting a Credential Offer

Figure 5.6 shows how to make a credential issuance offer using the API endpoint. Listing 6 shows how
the system makes a credential offer request with the right metadata and subject data, sends it to the issuer
according to the OpenID4VCI protocol, and gets a credential offer deeplink from the response. This
deeplink has encoded information about the endpoint of the credential issuer, the type of credential being
offered, a code that has already been approved for redeeming the credential, and optional authentication

parameters.
An example credential offer request demonstrates the structure required for university degree credentials:

A

2 "metadata_credential_supported_id": "tergum_dummy_jwt"
3 "credential_ subject_data": {
4 "degree": {
5 "type": "MasterDegree"
6 "name": "Master of Science"
7 "average_grade": 5
8 }
o}
10 "offer_validity_seconds": 2592000
11
}

Listing 7: Example Credential Offer Request

The issuer responds with a credential offer deeplink that follows the OpenID4VCI protocol:

1
2 "offer_deeplink": "openid-credential-offer://?credential_offer=..."

.
Listing 8: Credential Offer Response

The user will later use this deeplink in conjunction with their derived cpk to fetch the credential bound
to their service-specific pseudonym, ensuring that the credential can be used privately without enabling

cross-service tracking.

CHAPTER 5. IMPLEMENTATION

POST /avc/offer Create Generic Offer

Endpoint for creating an offer for a single credential

‘ Parameters

No parameters

‘ Request body

"metadata_credential_supported_id":

"credential_subject_data": {
"degree": {
"type": "MasterDegree",
"name": "Master of Science",
“average_grade": 5

1
"offer_validity seconds": 2592000

"tergum_dummy_jwt",

‘ Responses

Curl

"metadata_credential_ supported_id":
"credential_subject_data": {

"MasterDegree",
: "Master of Science",
"average_grade": 5

},
"offer_validity_seconds": 2592000

Request URL

B

“tergum_dummy_jwt",

https://localhost:80880/avc/offer

Server response

Code Details

200 Response body

'e56b0217-db6c-4273-beba-e2417238b602" ,

"openid-credential -offer

redential_offer=%7B%22credential i

urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Apre-authorized_code%22%

38

Figure 5.6: Credential Issuance Offer API endpoint. The screenshot shows the creation of a credential offer
for a university degree with specific attributes (Master of Science with grade 5). The endpoint generates a
credential offer deeplink following the OpenID for Verifiable Credential Issuance (OpenID4VCI) protocol,
which will later be used with the derived pseudonym to fetch a privacy-preserving credential.

CHAPTER 5. IMPLEMENTATION 39

5.2.6 Binding Verifiable Credentials to Service-Specific Pseudonyms

After obtaining a credential offer deeplink from the Issuer and deriving a service-specific pseudonym (cpk),
the user must retrieve the actual credential bound to this pseudonym. This implementation corresponds
to steps (9)—(10) in Figure 4.0 (VCl issues credential bound to pseudonym, credential delivery to user),
representing the critical innovation in our AVC framework.

function retrieveCredentialWithPseudonym (username, cpk, deeplink):

1
2 // Decode the cr ntial offer fr the deey k

3 offer < parseCredentialOfferDeeplink (deeplink)

4

5 " EXcC nge at rized code for access token

6 tokenResponse ¢ requestToken (offer.issuerUrl,

7 offer.preAuthorizedCode)
8 accessToken < tokenResponse.accessToken

9 nonce <— tokenResponse.nonce

1 // Create proof of

12 proofJwt < createProof (nonce, offer.issuerUrl)

ssion for the

13
14 // B d crede St wi t

15 credentialRequest <+ {

16 : cpk,

17 : ,

18 g

19 : ’

20 : proofJdwt

21 by

2 g

23 : offer.credentialTypes

bot

to

ladl

27 // R St cre] 1€
28 credential < sendCredentialRequest (

29 offer.issuerUrl + ,
30 accessToken,
31 credentialRequest

l1al IOr

34 // St the cr user
35 storeCredential (username, credential)

37 return credential
33 end function

Listing 9: Retrieving Credential Bound to Pseudonym

Figure 5.7 shows the credential retrieval process with pseudonym binding via the API endpoint. Listing 9
depicts the entire AVC credential binding process: the system decodes the credential offer from the
deeplink, exchanges the pre-authorized code for an access token, generates proof of possession for the
pseudonym, and creates a credential request that includes the service-specific pseudonym rather than

a persistent identifier. This is the key innovation, in which credentials are linked to U2SSO-derived
pseudonyms rather than DIDs.

Our AVC framework introduces an innovative approach to binding credentials to service-specific pseudonyms.
The key innovation lies in how the issuer creates the credential:

CHAPTER 5. IMPLEMENTATION 40

function issueCredentialWithPseudonymBinding (credentialRequest,
accessToken, nonce) :

1
2

3 // Verify the access token matches a valid offer

4 offer <« flndofferByAccessTokenAndNonce(accessToken, nonce)
5

6

7

8

9 // B € ble credential with

10 credentlal = bulldVerlflableCredent1al(

11 credentialType: offer.credentialType,

12 credentialSubject: offer.subjectData,

13 validFrom: offer.validFrom,

14 validUntil: offer.validUntil,

15 pseudonym: pseudonym // B | credential

16)

17

18 ssuer's key

19 credential, issuerPrivateKey)
20

21 // the offer as used

2 updateOfferStatus (offer,)

23

24 return signedCredential

25 end function

Listing 10: Issuer Binding Credential to Pseudonym

Listing 10 shows how the issuer checks that the access token matches a valid offer, gets the U2SSO-derived
pseudonym from the request, and makes a credential that can be verified with pseudonym binding instead of
DID binding. After that, the issuer signs the credential and marks the offer as used. This method is different
from how OpenlD is usually used because it ties credentials directly to service-specific pseudonyms. This
makes sure that the credential is cryptographically linked to the user’s pseudonym while keeping U2SSO’s
unlinkability features.

CHAPTER 5. IMPLEMENTATION 41

sl /ave/data/{user_name} Add Credential With Deeplink
Parameters
Name Description

user_name *

ST test_user

(path)

cpk *

string 08d19d32835f5¢cef9fac239bd337h94158chdc
(query)

Request body

deeplink *

. openid-credential-offer.i?credential_offer=%7B8%22credent
string

‘ Responses

Curl

curl -X 'POST' \
*https://localhost/avc/data/test_user?cpk=08d19d32835f5cef9fac239bd337b94158chddfoc6f6642ab9b8fdcedda5fce29d"
-H 'accept: application/json" \

-H 'Content-Type: application/x-www-form-urlencoded’ \
-d 'deeplink=openid-credential-offer%3A%2F%2F%3Fcredential_offer%3D%257B%2522credential_issuer%2522%253A%2522h1]

Request URL

https://localhost/avc/data/test_user?cpk=08d19d32835f5cef9fac239bd337b94158chdd foc6f6642abobsfdcedda5fce29d

Server response

Code Details

200 Response body

<!DOCTYPE htm
<html lang="en">

title=Dummy Wallet - Credentials</title>

"background-color: lightslategray;">

Figure 5.7: The Credential Retrieval API endpoint shows how to link a verifiable credential to a pseudonym
that is only used for that service. The user gives their username, the derived pseudonym cpk, and the
deeplink for the credential offer. This binding makes sure that credentials cannot be linked across services,
but they can still be verified cryptographically. This is the main privacy innovation of the AVC framework.

CHAPTER 5. IMPLEMENTATION 42

5.2.7 Privacy-Preserving Credential Presentation

Once a user has obtained a verifiable credential bound to their service-specific pseudonym (cpk), they
can use it to prove attributes to a Service Provider while preserving their privacy. This implementation
corresponds to steps (12)—(16) in Figure 4.0 (register pseudonym with Service Provider, verify anonymity
set, dual verification of U2SSO proof and credential, registration confirmation).

function presentCredential (username,

1
2 authRequestUri,

3 cpk,

4 nullifier,

5 proof,

6 ringSize) :

7 5 request ol

8

9

10

11 // Extract c t 1 s 1 by

12 credentialTypes < extractRequiredTypes (

13 requestObject.presentationDefinition
14)

15

16 // Retrieve cred al f n r's wallet
17 credential ¢ retrieveMatchingCredential (username, credentialTypes)
18

19 // Create a verifiable presentation containing the cred
20 Vp < createVerifiablePresentation (credential)

21

2 / / e the pre ittl

23 verifiableToken < {

2 : vp,

25 g @k,

26 : nullifier,

27 : proof,

28 : ringSize

29 }

30

31

32

33

34 / ation to r

35 response < sendPresentation (

36 username,

37 authRequestUri,

38 presentationSubmission,

39 verifiableToken

40)

41

42 return response

4 end function

Listing 11: Privacy-Preserving Credential Presentation

Figure 5.8 demonstrates the credential presentation and verification process through the API endpoint.
The listing 11 shows how the system fetches the verifier’s presentation requirements, extracts required
credential types, retrieves matching credentials from the user’s wallet, and creates a verifiable presentation.
The critical innovation is bundling the presentation with U2SSO proof components (cpk, nullifier, proof,
ring_size) that enable privacy-preserving verification.

The verification process combines standard verifiable credential verification with the AVC framework’s
zero-knowledge proof verification:

CHAPTER 5. IMPLEMENTATION 43

function verifyPresentation (requestObject, presentation):

1
2 // Extr t v iable token and us e

3 verifiableToken < presentation.verifiableToken

4 username <— presentation.username

5

6 // 1. Ex t and parse the c tial JWT

7 credential 4 extractCredential (verifiableToken)

8

9 // 2. é integrity
10 verifyJwtSignature (credential)

1"

12 // 3. Check credential expiration

13 checkExpiration (credential)

14

15 // 4. Ver 7 es presen on de tion requirements
16 validateAttributes (credential, requestObject.presentationDefinition)
17

18 // 5. Ve pseu ng

19 cpk < verifiableToken.cpk

20 credentialCpk < extractCpkFromCredential (credential)
21

2 if cpk not equal credentialCpk:

23 raise Error (

24)

25

26 // 6. Verify zero-knowledge proof c

27 verifyZeroKnowledgeProof (

28 username,

29 cpk,

30 verifiableToken.nullifier,

31 verifiableToken.proof,

32 verifiableToken.ringSize

33)

34

35 return {

36 B p

37 : validatedAttributes,

38 : cpk

39 }

4 end function

Listing 12: Verifier Credential Verification

Listing 12 shows how AVC’s dual verification works. The system first does standard VC checks like
checking the JWT signature, expiration, and attributes. Then it does AVC-specific pseudonym binding
checks and U2SSO zero-knowledge proof checks. This makes sure that the user has a valid identity in the
Identity Registry, that the pseudonym is correctly derived from this identity, that the credential is linked to
the same pseudonym, and that the user cannot be tracked across different services.

CHAPTER 5. IMPLEMENTATION 44

POST /ave/data/{user_name}/verification Verification Himl Response

Parameters

Name Description

user_name *
string
(path)

test_user

cpk *
string
(query)

08d19d32835f5cef9fac239bd337h94158chdc

nullifier *
string dcadf51f7682049572d12fe3a890aabaebedb:

(query)
proof *

string
(query)

0949792eddd61636b40efcdcfa8cd774eb10f]

ring_size *
integer
(query)

Request body

auth_request *

o https:ifverifierrequest-objecti75e66001-4e71-482e-a197-be!
string

‘ Responses

Curl

curl -X 'POST' \
'https: //localhost/avc/data/test_user/verification?cpk=08d19d32835f5cef9fac239hd337b94158cbddfacefe642ababsfd
-H 'accept: application/json’ \

-H 'Content-Type: application/x-www-form-urlencoded’ \
-d 'auth_request=https%3A%2F%2Fverifier%2Frequest-object%2F75e66001-4e71-482e-a197-bcf56fcc796e%2Fave’

Request URL

https://localhost/avc/data/test user/verification?
cpk=08d19d32835f5cef9fac239bd337b94156chddfIc6f6642ab9bsfdcesdasfce29dénullifier=dcadf51f7682049572d12fe3a890aq
0f1505c4088cff129884abcf72497430966bda7 fc035e35b2676401f006c567c333204Teddeldab20057d49faad54albs086Fd625¢1737.

45a691f76306f8180473fal0ce02d7c3a85¢cf71de6bbedbbbc2d47c7e0d9daebaddd5fa0c1f6123844516c72fa2e9¢c2c9edb3B544e67e5
1d7912b563ef5f358ch7 f6cdabo63d586705fad29097c3bar65375f052f59fdda3b6625727Fe150062F2766c5d4fdd98d7hba75e72b9h4s5.
3aabfcB889d6373bacdc4ab50a07674abbdbf5 fdbaeeSed35a583fab6e783a7abclblbe24279493c0bfeic1d362525d717802cc18c51603!

Server response

Code Details

2 Response body

stry ssuer/0ff7a65d-74b4-475d-b5fd-49710ed17a30",

gistry_
e56b0217-db6c-427 -e2417238b602",
08d19d32835f5cef9fac239bd337b94158chddf9c6f6642ab9bs fdce8dasfce29d™,

Figure 5.8: Credential Presentation API endpoint demonstrating the verification process. The endpoint
receives multiple privacy-preserving components: the username, the service-specific pseudonym cpk, the
nullifier preventing Sybil attacks, the zero-knowledge proof of legitimate identity, and the ring size for
anonymity. These components collectively enable attribute verification without revealing the user’s global
identity or enabling cross-service tracking.

CHAPTER 5. IMPLEMENTATION 45

5.2.8 Privacy-Preserving Authentication

After initial registration, users can authenticate to the service using their derived pseudonym (cpk) without
requiring computationally intensive zero-knowledge proof generation. This implementation corresponds
to steps (17)—(19) in Figure 4.0 (generate authentication signature, authenticate with Service Provider,
verify authentication), leveraging U2SSO’s efficient challenge-response protocol.

functlon authentlcaterthServ1ce(1dent1ty, servicename, challenge) :

ired format

service_name bytes — hexDecode(serv1cename)
challenge_bytes < hexDecode (challenge)

ster secret key

msk bytes — loadPasskey(ldentlty)

1

2
3
4
5
6
7
8
9

/ Fetch reg services f

10 service_list < fetchServices|()

cation digital

13 51gnature &= generateAuthProof(

14 service_name_bytes,
15 challenge_bytes,

16 msk_bytes,

17 service_list,

18 length (service_list)
19)

20

21 if not signature:

2 raise Error ()
23

24 return signature

25 end function

Listing 13: User Authentication Process

Figure 5.9 depicts the authentication digital signature generation process via the API endpoint. Listing 13
demonstrates U2SSO’s lightweight authentication process: input parameters are converted to the required
format, the user’s master secret key is loaded, registered services are retrieved from the IdR, and an
authentication digital signature is generated based on the service name, challenge, and master secret key.
This digital signature demonstrates knowledge of the master secret key without disclosing it and is tied to
the service-specific pseudonym.

The authentication digital signature is cryptographically bound to the service-specific pseudonym and the
challenge provided by the Verifier. When received by the Verifier, it is verified against the stored user
account through a comprehensive validation process:

functlon verlfyAuthentlcatlon(username, cpk, signature):

1t parameter

vert 1 Ny
cpk bytes — hexDecode(cpk)

me and cpk

account

1CCO

account < flndAccount(username, cpk_bytes)

if not account:

1
2
3
4
5
6
7
8
9 raise Error ()

1 // wstgﬁ sﬁrv'

15 service_name bytes < getServiceNameBytes ()

CHAPTER 5. IMPLEMENTATION 46

17)/ V y authentication digital

18 verified < verifyAuthSignature(

19 signature,

20 service_name_bytes,
21 challenge,

22 cpk_bytes,

23 service_list,

24 length (service_list)
25)

26

27 if not verified:

28 raise Error ()
29

30 return

31 end function

Listing 14: Verifier Authentication Process

Listing 14 shows how the verifier converts input parameters, finds the user account using the username
and pseudonym, fetches services for verification, and verifies the authentication digital signature using
U2SSO’s verification algorithm. The process confirms the user’s legitimate ownership of the pseudonym
without revealing their global identity.

CHAPTER 5. IMPLEMENTATION 47

POST /u2sso/u2sso/auth Authenticate

Authenticate with a service using the passkey.

Creates a proof of passkey ownership for the specified service.

Parameters

Name Description
identiy *

e test_user
(query)

servicename *
string
(query)

991cabe7803ab7f18ach41954b654f75dalc8

challenge *
string
(query)

94db930fc6f2fdc36455355(23d74¢31738cd2

‘ Responses

Curl

curl -X 'POST' \
"https://localhost/u2sso/u2sso/auth?identiy=test_user&servicename=991cabe7803ab7f18acb41954b654f75dalc84139d

-H 'accept: application/json' \
d

Request URL

https://localhost/u2sso/u2sso/auth?
identiy=test_user&servicename=991cabe7803ab7f18acbh41954b654f75dalc84139d87a20d542ec8cd2f862437&challenge=94db]

Server response

Code Details

L Response body

"data": {
"proof": "08660d7a45b6d99129d592cccld033979f7cdfdf2a85f5223f31cc3ab2e53201cff51712f6663335198d

'
"error": null

Response headers

Figure 5.9: Authentication DigitalSignature Generation API endpoint. The screenshot shows how a
user generates an authentication digital signature using their identity, the service name, and a challenge
from the Verifier. This lightweight authentication proof is cryptographically bound to the service-specific
pseudonym and unique challenge, ensuring both security and privacy without requiring repeated zero-
knowledge proof generation.

CHAPTER 5. IMPLEMENTATION 48

eEin s /login Login

Handle user login with signature verification

This endpoint verifies the authentication signature and logs in the user.

Parameters

Name Description

username *
string
(query)

test_user

cpk *
string
(query)

08d19d328355cef9fac239bd337h94158chdc

signature *
string
(query)

08660d7a45b6d99129d592¢ccc1d033979f7cc

‘ Responses

Curl

curl -X 'POST’
'https://localhost:8001/login?username=test_user&cpk=08d19d32835f5cef9fac239bd337b94158chddf9c6f6642ababsfdcesdas

-H 'accept: application/js
-d

Request URL

https://localhost:8001/login?
username=test_user&cpk=08d19d32835f5cef9fac239bd337b94158chddfIc6f6642abgbsfdces8dasfce29dasignature=08660d7a45b6d99
c2dd84ac9854c88bee717a2c9ea5d1915f3d18bf96d

Server response

Code Details

e Response body

"Login successful”,

": null

Figure 5.10: Authentication Verification API endpoint showing the process of verifying a user’s au-
thentication digital signature. The endpoint takes the username, service-specific pseudonym cpk, and
the authentication digital signature as input. The successful verification confirms the user’s legitimate
ownership of the pseudonym without revealing their global identity, combining strong security with privacy
preservation for recurring interactions.

CHAPTER 5. IMPLEMENTATION 49

This authentication mechanism maintains the privacy properties of the AVC system through several key
guarantees provided by U2SSO. By separating the computationally intensive registration process (using
zero-knowledge proofs) from the simpler authentication process, the AVC framework delivers both strong
security and practical efficiency while maintaining unlinkability across different services.

Experience

The implementation of the Anonymous Verifiable Credentials (AVC) framework in the Swiss eLFA
infrastructure posed numerous technical challenges that provided valuable learning opportunities. This
chapter discusses the major difficulties encountered, solutions developed, and insights gained during the
development process.

The initial challenge was to gain a thorough understanding of the existing eLFA system. Despite being
a proof of concept, the codebase was large and complex, containing several components such as the Issuer
Agent, Verifier Agent, Base Registry, and various wallet implementations. The most significant challenge
was a lack of comprehensive documentation for the proof-of-concept implementation, which required
extensive reverse engineering to understand the system’s workflows and component interactions. This
reverse engineering process entailed not only identifying which endpoints and functions needed to be
executed, but also determining the proper order of operations.

The system’s heavy reliance on OpenID protocols proved both beneficial and challenging. On the
plus side, the extensive OpenlD documentation provided guidance on expected workflow sequences,
allowing me to navigate the codebase more methodically. When I encountered a specific step in the
implementation, I could refer to the OpenlD specifications to determine what steps should be taken next,
which helped me locate the corresponding code sections. However, the tight integration with OpenlD
caused complications. Because my goal was to integrate the AVC framework as seamlessly as possible
into the existing proof of concept, I had to examine numerous small parameters and intricate details in the
OpenlD specifications. This thorough examination of OpenlID’s technical nuances was time-consuming,
but necessary for maintaining protocol compliance while introducing our privacy-enhancing changes.

One of the most significant technical challenges was allowing the Issuer Agent to associate issued
Verifiable Credentials with the pseudonyms generated by the U2SSO protocol. The main issue was
that the pseudonyms generated by U2SSO were incompatible with the standard OpenlD for Verifiable
Credentials (OID4VC) data structures and workflows. The existing eLFA implementation relied on
traditional Decentralized Identifiers (DIDs) for credential binding, rather than the cryptographically derived
pseudonyms from our privacy-preserving framework. The solution required developing a custom extension
for the OpenlD credential issuance process. Instead of attempting to force U2SSO pseudonyms into
existing OpenlD fields, which would have compromised protocol compliance, I added a new parameter
designed specifically for pseudonym-based credential binding. This approach enabled the Issuer to

50

CHAPTER 6. EXPERIENCE 51

process AVC requests while remaining backward compatible with standard OID4VC implementations.
While this solution may appear simple in retrospect, the development process was complicated and
iterative, necessitating careful analysis of the protocol’s extension mechanisms as well as extensive
testing to ensure protocol compliance. Integrating the U2SSO library, which is written in C, into the
Python-based eLFA infrastructure presented new challenges. I needed to develop a Python interface
that could seamlessly convert data formats between Python and C representations while ensuring proper
memory management and type conversions. When executing C methods from the Python framework, one
particularly difficult issue arose: the C library generated new threads that did not inherit the parameters
specified at initialization. Finding and resolving this threading problem necessitated extensive debugging
and a thorough understanding of both Python’s Global Interpreter Lock and C’s threading model. The
solution entailed implementing proper thread-local storage and ensuring that all relevant context was
explicitly passed to C library functions. Furthermore, I gained extensive experience with containerization
and networking configurations. Since each entity in the eLFA system operates within its own Docker
container, introducing new AVC components necessitated the creation of additional containers while
maintaining proper network connectivity between all services. This provided an opportunity to learn more
about container orchestration, network routing, and service discovery mechanisms. Understanding how
containers communicate, managing port configurations, and ensuring proper DNS resolution between
services became critical for successful integration.

The implementation process was challenging, but ultimately rewarding. The challenges required me to
gain a thorough understanding of complex distributed systems, protocol design principles, and the intricate
details of modern identity frameworks. Working with real-world government infrastructure gave me
invaluable insights into the practical constraints and requirements that theoretical research must consider.
The experience demonstrated that, while privacy-enhancing technologies such as AVC can be successfully
integrated into existing systems, compatibility, standard compliance, and operational requirements must
all be carefully considered.

Conclusion

This thesis introduced Anonymous Verifiable Credentials (AVC), a privacy-preserving framework that
combines User-issued Unlinkable Single Sign-On (U2SSO) with Verifiable Credentials (VC) to achieve
unlinkability, Sybil resistance, and attribute verification all at once. The main new idea is to link credentials
to service-specific pseudonyms instead of permanent identifiers. This stops tracking across services while
still allowing verification. We have made the following contributions: (1) a unified framework that keeps
the security features of both U2SSO and VC systems while fixing their problems; (2) a new way of binding
credentials that stops linkability across services; (3) a working version of this in Switzerland’s electronic
Provisional Driving License Program (eLFA); and (4) an expansion of existing standards like OpenID
for Verifiable Credentials. The AVC framework has a big effect on how we manage our digital identities.
It gives people back control of their personal data while still allowing service providers to follow the
rules. Our work fills in the gaps between centralized and decentralized identity models by showing that
privacy and verification can work together. The fact that the Implementation of AVC in Swiss eLFA
program worked shows that privacy-enhancing methods can be used in real-world identity systems. As
society aims to create rules to stress minimizing data, frameworks like AVC provide a way to comply with
verification requirements while still protecting user privacy. The future of digital identity is not about
choosing between privacy and usefulness; it’s about making designs that do both, so that people can be
part of the digital world without giving up their privacy or freedom.

52

Bibliography

[1] Regulation (eu) 2016/679 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive 95/46/ec (general data
protection regulation), April 2016.

[2] Jayamine Alupotha, Mariarosaria Barbaraci, Ioannis Kaklamanis, Abhimanyu Rawat, Christian
Cachin, and Fan Zhang. Anonymous self-credentials and their application to single-sign-on. JACR
Cryptol. ePrint Arch., page 618, 2025.

[3] Bundesamt fiir Justiz (BJ), Bundesamt fiir Strassen (ASTRA), Vereinigung der Schweizerischen
Strassenverkehrsdmter (asa), and Strassenverkehrsamt Appenzell Ausserrhoden. Elektronischer
lernfahrausweis (elfa). https://www.eid.admin.ch/de/pilotprojekte, 2025. Zugriff
am 18. April 2025.

[4] Jan Camenisch, Bruno Crispo, Simone Fischer-Hiibner, Ronald Leenes, and Giovanni Russello,
editors. Privacy and Identity Management for Life - 7th IFIP WG 9.2, 9.6/11.7, 11.4, 11.6/PrimeLife
International Summer School, Trento, Italy, September 5-9, 2011, Revised Selected Papers, volume
375 of IFIP Advances in Information and Communication Technology. Springer, 2012.

[5] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic macs and keyed-verification
anonymous credentials. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pages 1205-1216. ACM, 2014.

[6] e-id-admin. eidch-pilot-android-wallet. https://github.com/e-id-admin/
eidch-pilot—android-wallet, 2024. Open Source Repository of Android wallet
application for eLFA pilot. Deprecated.

[7] e-id-admin. eidch-pilot-elfa-base-infrastructure. https://github.com/e-id-admin/
eidch-pilot—elfa-base-infrastructure, 2024. OpenID4VC Proof of Concept. Please
be aware that this repository serves as example and not as reference code.

[8] e-id-admin. eidch-pilot-ios-wallet. https://github.com/e-id-admin/
eidch-pilot—ios-wallet, 2024. Open Source Repository of iOS wallet application
for eLFA pilot. Deprecated.

[9] Ethereum Foundation. Welcome to ethereum. https://ethereum.org/en/foundation/,
2024.

[10] Daniel Fett, Kristina Yasuda, and Brian Campbell. Selective Disclosure for JWTs (SD-JWT). Internet-
Draft draft-ietf-oauth-selective-disclosure-jwt-22, Internet Engineering Task Force, May 2025. Work
in Progress.

[11] Sovrin Foundation. Sovrin: A protocol and token for self-sovereign identity and
decentralized trust, 2018. Available at: https://sovrin.org/library/
sovrin-protocol—-and-token-white—-paper/.

53

https://www.eid.admin.ch/de/pilotprojekte
https://github.com/e-id-admin/eidch-pilot-android-wallet
https://github.com/e-id-admin/eidch-pilot-android-wallet
https://github.com/e-id-admin/eidch-pilot-elfa-base-infrastructure
https://github.com/e-id-admin/eidch-pilot-elfa-base-infrastructure
https://github.com/e-id-admin/eidch-pilot-ios-wallet
https://github.com/e-id-admin/eidch-pilot-ios-wallet
https://ethereum.org/en/foundation/
https://sovrin.org/library/sovrin-protocol-and-token-white-paper/
https://sovrin.org/library/sovrin-protocol-and-token-white-paper/

BIBLIOGRAPHY 54

[12] Le Gao, Jiaxin Yu, Junzhe Zhang, Yin Tang, and Quansi Wen. AASSI: A self-sovereign identity
protocol with anonymity and accountability. IEEE Access, 12:58378-58394, 2024.

[13] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for zero-knowledge proof systems. In Michael D. Bailey and Rachel
Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
pages 519-535. USENIX Association, 2021.

[14] Hyperledger Foundation. Announcing hyperledger anoncreds: Open source, open specification
privacy preserving verifiable credentials, November 2022. Accessed 2025-06-26.

[15] Hyperledger Indy Contributors. Hyperledger Indy Documentation. https://
hyperledgerindy.readthedocs.io/en/latest, 2025.

[16] Dimitrios Kasimatis, Sam Grierson, William J. Buchanan, Chris Eckl, Pavlos Papadopoulos, Nikolaos
Pitropakis, Christos Chrysoulas, Craig Thomson, and Baraq Ghaleb. DID:RING: ring signatures
using decentralised identifiers for privacy-aware identity proof. In IEEE International Conference on
Cyber Security and Resilience, CSR 2024, London, UK, September 2-4, 2024, pages 866—871. IEEE,

2024.
[17] Torsten Lodderstedt, Kristina Yasuda, and Tobias Looker. Openid for
verifiable credential issuance 1.0. https://openid.net/specs/

openid-4-verifiable-credential-issuance-1_0.html, December 2024. OpenlD
Foundation, Digital Credentials Protocols Working Group.

[18] Nitin Naik and Paul Jenkins. uport open-source identity management system: An assessment of
self-sovereign identity and user-centric data platform built on blockchain. In IEEE International
Symposium on Systems Engineering, ISSE 2020, Vienna, Austria, October 12 - November 12, 2020,
pages 1-7. IEEE, 2020.

[19] Reyhaneh Rabaninejad, Behzad Abdolmaleki, Sebastian Ramacher, Daniel Slamanig, and Antonis
Michalas. Attribute-based threshold issuance anonymous counting tokens and its application to
sybil-resistant self-sovereign identity. JACR Cryptol. ePrint Arch., page 1024, 2024.

[20] Manu Sporny, Dave Longley, Markus Sabadello, Drummond Reed, Orie Steele, and Christopher
Allen. Decentralized identifiers (dids) v1.0. Recommendation DID-1.0, W3C, 2022.

[21] Manu Sporny, Dave Longley, Kristina Yasuda, and Orie Steele. Verifiable credentials data model
v2.0. https://www.w3.0org/TR/vc—data-model-2.0/, April 2024. W3C Candidate
Recommendation.

[22] Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part V, volume 14008 of Lecture Notes in Computer Science, pages 691-721. Springer, 2023.

[23] Liang Yang, Jie Zhang, Rui Chen, and Shujie Gao. Unlinkable verifiable credentials using dynamic
accumulators. In 2021 IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2021.

https://hyperledgerindy.readthedocs.io/en/latest
https://hyperledgerindy.readthedocs.io/en/latest
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html
https://www.w3.org/TR/vc-data-model-2.0/

	1 Introduction
	2 Related Work
	2.1 Blockchain-based privacy-preserving identity systems
	2.2 Threshold cryptography for anonymous credentials
	2.3 Cryptographic Accumulators for Unlinkable Credentials
	2.4 Algebraic MACs for Anonymous Credentials
	2.5 Digital Signatures in Verifiable Credentials

	3 Preliminaries
	3.1 Single-Sign-On with Unlikable User-Issued Identities U2SSO
	3.1.1 System Model
	3.1.2 Functionalities
	3.1.3 Workflows
	3.1.3.1 Setup
	3.1.3.2 Master Identity Registration
	3.1.3.3 Pseudonym Generation and Registration
	3.1.3.4 Authentication to Service

	3.1.4 Security Properties

	3.2 Verifiable Credentials
	3.2.1 System Model
	3.2.2 Functionalities
	3.2.3 Workflows
	3.2.3.1 Credential Issuance
	3.2.3.2 Credential Verification

	3.2.4 Security Properties

	4 Anonymous Verfiable Credentials AVC
	4.1 System Components
	4.2 Workflow
	4.2.1 Workflow Description
	4.2.2 Design Flexibility
	4.2.3 Security Properties

	5 Implementation
	5.1 Project Context: The Swiss Electronic Provisional Driving License Program (eLFA)
	5.1.1 Architectural Components
	5.1.2 Current System Workflow
	5.1.2.1 Credential Issuance
	5.1.2.2 Credential Verification

	5.2 AVC-eLFA Integration: Technical Implementation
	5.2.1 Service Provider Registration with Identity Registry
	5.2.2 Credential Format Definition for Verification
	5.2.3 Master Identity Creation
	5.2.4 Service-Specific Pseudonym Derivation
	5.2.5 Credential Issuance Request
	5.2.6 Binding Verifiable Credentials to Service-Specific Pseudonyms
	5.2.7 Privacy-Preserving Credential Presentation
	5.2.8 Privacy-Preserving Authentication

	6 Experience
	7 Conclusion

