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Abstract

Distributed systems today power almost all online applications. Conse-
quently, a wide range of distributed protocols, such as consensus, and
distributed cryptographic primitives are being researched and deployed
in practice. This thesis addresses multiple aspects of distributed pro-
tocols and cryptographic schemes, enhancing their resilience, efficiency,
and scalability.

Fundamental to every secure distributed protocols are its trust as-
sumptions. These assumptions not only measure a protocol’s resilience
but also determine its scope of application, as well as, in some sense, the
expressiveness and freedom of the participating parties. Dominant in
practice is so far the threshold setting, where at most some f out of the
n parties may fail in any execution. However, in this setting, all parties
are viewed as identical, making correlations indescribable. These con-
straints can be surpassed with general trust assumptions, which allow
arbitrary sets of parties to fail in an execution. Despite significant theo-
retical efforts, relevant practical aspects of this setting are yet to be ad-
dressed. Our work fills this gap. We show how general trust assumptions
can be efficiently specified, encoded, and used in distributed protocols
and cryptographic schemes. Additionally, we investigate a consensus
protocol and distributed cryptographic schemes with general trust as-
sumptions. Moreover, we show how the general trust assumptions of
different systems, with intersecting or disjoint sets of participants, can
be composed into a unified system.

When it comes to decentralized systems, such as blockchains, effi-
ciency and scalability are often compromised due to the total ordering
of all user transactions. Guerraoui et al. (Distributed Computing, 2022)
have contradicted the common design of major blockchains, proving that
consensus is not required to prevent double-spending in a cryptocur-
rency. Modern blockchains support a variety of distributed applications
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beyond cryptocurrencies, which let users execute arbitrary code in a
distributed and decentralized fashion. In this work we explore the syn-
chronization requirements of a family of Ethereum smart contracts and
formally establish the subsets of participants that need to synchronize
their transactions.

Moreover, a common requirement of all asynchronous consensus pro-
tocols is randomness. A simple and efficient approach is to employ
threshold cryptography for this. However, this necessitates in practice
a distributed setup protocol, often leading to performance bottlenecks.
Blum et al. (TCC 2020) propose a solution bypassing this requirement,
which is, however, practically inefficient, due to the employment of fully
homomorphic encryption. Recognizing that randomness for consensus
does not need to be perfect (that is, always unpredictable and agreed-
upon) we propose a practical and concretely-efficient protocol for ran-
domness generation.

Lastly, this thesis addresses the issue of deniability in distributed
systems. The problem arises from the fact that a digital signature au-
thenticates a message for an indefinite period. We introduce a scheme
that allows the recipients to verify signatures, while allowing plausible
deniability for signers. This scheme transforms a polynomial commit-
ment scheme into a digital signature scheme.
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Chapter 1

Introduction

1.1 General trust assumptions

Trust assumptions are a fundamental part of secure distributed comput-
ing protocols. On one hand, they capture the limits of a protocol’s safety
properties, thus characterizing the domains in which it may be deployed
safely. On the other hand, they also impose limits on the potential
of the protocol and, in some sense, the expressiveness and freedom of
the parties, thus restricting the domains in which the protocol will be
deployed.

Existing Byzantine consensus protocols address only threshold fail-
ures, where the participating nodes fail independently of each other, each
one fails equally likely, and the protocol’s guarantees follow from a sim-
ple bound on the number of faulty nodes. Threshold trust assumptions
have been researched and are well understood in practice, but consensus
using general trust assumptions has been unexplored.

The same observation can be made for distributed cryptography,
where independent parties jointly perform some cryptographic task.
In the last decade, partly due to blockchains becoming prominent, nu-
merous practical and efficient distributed cryptographic primitives have
been deployed. Trust assumptions, however, are only stated through
numbers of parties, thus reducing this to threshold cryptography, where
all parties are treated as identical and correlations cannot be described.
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Threshold is not enough. Faults and attacks on the nodes in a
system often occur in a coordinated way and exhibit substantial depen-
dencies in practice. Using Werner Vogels’ words [159]: “Many academics
will confess to have made the assumption that failures of component are
not correlated. This absolutely unrealistic assumption will come back
to haunt you in real life, where failures frequently are correlated.”

Distributed systems and blockchains can benefit from general trust as-
sumptions in the following ways.

Increasing resilience and security. First, general trust assump-
tions have the capacity to increase the resilience of a system, as failures
are, in practice, often correlated. Cyberattacks, exploits, zero-day at-
tacks, and so on very seldom affect all parties in an identical way —
they often target a specific operating systems or flavor of it, a specific
hardware vendor, or a specific software version. Similarly, attackers may
compromise specific parties more easily, due to different administrator
policies or different levels of cyber and physical security. In another
example, blockchain nodes are typically hosted by cloud providers or
mining farms, hence failures are correlated there as well. Such failure
correlations are known and have been observed; they can be expressed in
a system that supports general trust, significantly increasing resilience
and security.

Let us now see a concrete example of how such correlations can be
captured. Cachin [31] describes a setting where parties are differentiated
in two dimensions, based on their location and operating system (OS). In
an instantiation with 16, possibly Byzantine, parties, organized in four
locations and four OS, the system tolerates the simultaneous failure of
all parties in one location and all parties with a specific OS. Hence, it en-
codes specific knowledge and correlation patterns, and can even tolerate
executions with up to seven failed parties, something not possible in the
threshold setting, where only five out of the 16 may fail. Once general
distributed cryptography is deployed, this example can be generalized
to any number of parties and dimensions.

Facilitating personal assumptions and Sybil resistance. Some
works in the area of distributed systems generalize trust assumptions in
yet another dimension: they allow each party to specify its own. The
consensus protocol of Stellar [109], implemented in the Stellar blockchain
(https://www.stellar.org/), allows each party to specify the access struc-

https://www.stellar.org/
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ture of its choice, which can consist of arbitrary sets and nested thresh-
olds. Similarly, the consensus protocol implemented by Ripple [146] in
the XRP ledger (https://ripple.com/) also allows each party to choose
who it trusts and communicates with. In both networks, the resulting
representation of trust in the system, obtained when the trust assump-
tions of all parties are considered together, can only be expressed as a
generalized structure. Hence, current threshold-cryptographic schemes
cannot be integrated or used on top of these networks. For example,
a common coin scheme — necessary for achieving consensus in asyn-
chronous networks — would need to support general trust. In addition
to that, practical and easy to deploy general distributed cryptographic
schemes can function as a catalyst for more applications built on top of
these blockchains.

Another feature of both Stellar and Ripple is that they achieve open
membership without employing a proof-of-work or proof-of-stake mech-
anism. That is, they achieve Sybil resistance by allowing a party to
selectively trust or ignore other parties. This approach can lead to more
efficient, less energy consuming, and arguably more open and inclusive
blockchains. As described earlier, however, this results in trust assump-
tions where parties are not treated as identical. Departing from a thresh-
old mindset towards general access structures is, thus, a prerequisite for
wider adoption.

Open questions. The generalization of threshold trust assumptions
and threshold cryptography to any linear access structure is known
and typically employs monotone span programs (MSP) [97], a linear-
algebraic model of computation. General trust assumptions have been
thoroughly explored in theory [113, 114], and cryptographic schemes
using an MSP have been described [51, 128, 118, 79]. However, no im-
plementations or deployments exist yet. In our point of view, the reasons
are the following.

• Essential implementation details are missing, and usability-related
questions have never been answered in a real system. How can the
trust assumptions, initially only in the mind of an administrator, be
encoded in a scheme or protocol? How does the system administrator
efficiently do this? Previous general distributed schemes assume the
MSP is given to all algorithms, but how is this built from the trust
assumptions? Usability is a necessary ingredient for the adoption of
a new technological setting, and usability in turn leads to increased

https://ripple.com/
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security.

Research question A : What is an intuitive, user-friendly, and ef-
ficient way to specify and encode general trust assumptions in a pro-
tocol?

• Most importantly, implementations and benchmarks do not exist,
hence the efficiency of distributed protocols with general trust and
of general cryptographic schemes, is not known. What is the concrete
efficiency of the MSP? How does a generalized scheme compare to its
threshold counterpart? How much efficiency needs to be “sacrificed”
in order to support general trust?

Research question B : What is the efficiency of consensus with
general trust and of general cryptographic schemes?

• Current definitions of trust are rigid, non-flexible, and non-dynamic.
Consider two or more systems, run by different and possibly disjoint
sets of participants, with general but different assumptions about
faults. How can they work together? A trivial solution would be
to restart the protocol under new trust assumptions, but this would
require manually agreeing on, specifying, and encoding the trust as-
sumption anew.

Research question C : Can we compose trust assumptions in a
deterministic way, that does not require interaction or agreement on
the new assumptions, but also results in a system that tolerates as
many faults as possible?

1.2 Synchronization requirements for effi-
ciency in blockchains

Since the inception of blockchains, it has been widely accepted that
blockchain nodes must execute all transactions in the same order to
ensure consistency. Hence, transactions are synchronized using protocols
that implement total-order broadcast or consensus. This common theme
seems to suggest that total order is necessary for the consistency of
blockchains.

It was only recently recognized that consensus is not necessary to pre-
vent double-spending in a cryptocurrency, contrary to common belief.
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As Guerraoui et al. [86] show, all functions of Bitcoin can be emulated
on top of strictly weaker communication protocols. Moreover, if shared
accounts are allowed, then consensus is required only among the own-
ers of each account. This result suggests that current implementations
may be sacrificing efficiency and scalability because they synchronize
transactions much more tightly than actually needed.

Modern blockchains support a variety of distributed applications be-
yond cryptocurrencies, including smart contracts, which let users execute
arbitrary code in a distributed and decentralized fashion. Regardless of
their intended application, blockchain platforms implicitly assume con-
sensus for the correct execution of a smart contract, thus requiring that
all transactions are totally ordered. Here we ask ourselves the question:
Is consensus required for the correct execution of smart contracts, or can
the results of Guerraoui et al. be extended to arbitrary code execution?
Hence, we initiate a study in the synchronization requirements of smart
contracts. Specifically, we research the synchronization requirements
of Ethereum’s ERC20 token contract, one of the most widely adopted
smart contacts.

Research question D : Is consensus required for token smart con-
tracts?

1.3 Distributed randomness generation

It is well known that asynchronous total-order broadcast (ATOB) cannot
be deterministic [76]. The necessary randomness is usually modelled as a
common coin scheme [137], informally defined as a source random values
observable by all participants but unpredictable for the adversary [35].

Cachin, Kursawe, and Shoup [35] present an efficient common-coin
protocol from threshold cryptography. Assuming a trusted setup, the
value of a coin with identifier cid can be obtained by having each party
create a partial signature share on cid, asynchronously wait for n−t valid
signature shares, where n is the number of parties and t < n/3 is the
corruption bound, and then combine the signature shares and hash the
result to obtain a value in {0, 1}. This results in a perfect coin, meaning
that it is uniformly distributed and agreed-upon with probability 1, while
the asymptotic communication complexity in the number of parties is
only O(n2). This approach has inspired a number of theoretical works
and practical implementations. For example, drand [65] implements a
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randomness beacon from threshold BLS signatures [24, 27]. This is, in
turn, used in the consensus protocol of Filecoin [135].

However, threshold cryptography requires a distributed setup proto-
col in practice. In a proof-of-stake (PoS) setting with dynamic stake,
or in any deployment where it is desired to proactively refresh [34] the
threshold setup, the setup protocol would have to be executed repeat-
edly. Asynchronous distributed key generation ADKG protocols [57, 1, 2]
have been proposed in the literature, but their communication cost is
Ω(n3). A novel idea by Blum et al. [23] circumvents the requirement for
ADKG. They show how an existing setup can be used to run an instance
of Byzantine agreement and to regenerate the setup itself. Their proto-
col, however, resorts to fully homomorphic encryption and is, therefore,
practically inefficient.

Considering the aforementioned approaches to randomness genera-
tion, the following research question arises.

Research question E : Can we have a practical, large-scale, concretely
efficient, and modular asynchronous common-coin protocol, that requires
no trusted setup and directly supports the PoS setting and dynamic par-
ticipation?

1.4 Deniability in digital signatures

In general, digital signatures can be used to prove authenticity for as long
as the signature scheme is not broken and the private key is kept secret.
While this “long-lived” authenticity might be useful in some scenarios,
it is inherently undesirable for certain types of sensitive communication,
for instance, whistleblowing. A particular concern is that the commu-
nication could be leaked in the future, which might lead to potential
retaliation and extortion. This calls for a scheme that lets signers prove
authenticity for a limited period of time, while allowing them to deny
having signed any messages afterwards. We argue that such a scheme
could offer a desirable degree of protection to signers through deniabil-
ity against future leaks, while reducing the incentives for criminals to
obtain leaked communications for the sole purpose of blackmailing.

Previous work has recognized this necessity [13, 153, 28] and has
proposed various solutions. One solution [28] requires an interactive
key agreement protocol between the sender and the recipient to agree
on session keys before exchanging messages. Another way to achieve
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deniability is to simply require the sender to periodically rotate keys
and publish their old private keys [153]. The following research question
naturally arises from the limitations of existing attempts:

Research question F : Is it possible to design a signature scheme that
allows the recipients to verify the validity of the signature, while enabling
the sender to gain plausible deniability, without requiring the constant
publication of old private keys and the rotation of new public keys?

1.5 Contributions and organization

This thesis is organized in two parts. Chapters 3 – 5 concern protocols for
distributed systems and Chapters 6 – 8 concern cryptographic schemes.

• We start the first part of this thesis by focusing on the generalization
of trust assumptions. Targeting Question A, we explore how the gen-
eral trust assumptions can be specified and encoded within a protocol.
We show that the combination of a monotone boolean formula (MBF)
and a monotone span program (MSP) leads to efficient implementa-
tions. We formulate, implement, and benchmark the HotStuff [163]
consensus protocol in the general-trust setting. These are presented
in Chapter 3.

• To answer Question C, we define quorum composition and its desired
properties for systems with general trust assumptions, and show ap-
propriate composition rules. The rules are static, require no interac-
tion or agreement among the participants, and result in a system that
tolerates as many faults as possible, subject to necessary liveness and
safety properties. These are presented in Chapter 4.

• We then study the synchronization requirements of Ethereum’s token
smart contracts, focusing on the ERC20 contract and then extend-
ing our results to other tokens. We answer Question D by showing
that the richer set of methods supported by ERC20 tokens, compared
to standard cryptocurrencies, results in strictly stronger synchroniza-
tion requirements. More surprisingly, the synchronization power of
ERC20 tokens depends on the object’s state and can thus be modified
by method invocations. To prove this result, we develop a dedicated
framework to express how the object’s state affects the needed syn-
chronization level. This result implies that tailored synchronization
protocols, that exploit these dynamic requirements, will lead to more
scalable blockchain platforms. We give the details in Chapter 5.
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• At this point we switch to the second part of the thesis and present re-
sults related to cryptographic schemes. We first answer Question B by
presenting distributed schemes with general trust assumptions. Mak-
ing use of the MBF and MSP encodings, we present a verifiable secret
sharing, a common coin, and a distributed signature scheme. We im-
plement all schemes, both in their threshold and general versions, and
run benchmarks on multiple general trust assumptions, and conclude
that general trust can be used with no significant efficiency loss. We
show the results in Chapter 6.

• Targeting Question E, we introduce a simple, modular, and practical
common-coin protocol, which can in turn be used in asynchronous
total-order broadcast protocols. It is secure in a proof-of-stake setting
with dynamically changing stake. We adopt the approach of Cachin,
Kursawe, and Shoup [35] but remove the requirement for a trusted
dealer and apply it to the proof-of-stake setting with dynamic stake.
The protocol is shown in Chapter 7.

• Finally, targeting Question F, we introduce the concept of digital sig-
natures with key extraction (DSKE). In a DSKE scheme, the secret key
can be extracted if more than a threshold of signatures on arbitrary
messages are ever created. Hence, it provides signers with plausible
deniability, by demonstrating a group of recipients that can collec-
tively extract the private key, while, within the threshold, each sig-
nature still proves authenticity. We give a formal definition of DSKE
and a construction from polynomial commitments. We show that,
in applications where a signer is expected to create a number of sig-
natures, DSKE offers deniability for free. Moreover, DSKE can be
employed to disincentivize malicious behavior, such as equivocation
and double-signing. We give the details in Chapter 8.

Publications. The work presented in this thesis is based on the fol-
lowing papers:

• Orestis Alpos, Christian Cachin:
Consensus Beyond Thresholds: Generalized Byzantine Quorums
Made Live.
International Symposium on Reliable Distributed Systems (SRDS)
2020

• Orestis Alpos, Christian Cachin, Luca Zanolini:
How to Trust Strangers: Composition of Byzantine Quorum Systems.
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International Symposium on Reliable Distributed Systems (SRDS)
2021

• Orestis Alpos, Christian Cachin, Giorgia Azzurra Marson, Luca Zano-
lini:
On the Synchronization Power of Token Smart Contracts.
International Conference on Distributed Computing Systems (ICDCS)
2021

• Orestis Alpos, Zhipeng Wang, Alireza Kavousi, Sze Yiu Chau, Duc
Le, Christian Cachin:
DSKE: Digital Signature with Key Extraction.
Under submission, 2022.

• Orestis Alpos, Christian Cachin:
Do Not Trust in Numbers: Practical Distributed Cryptography With
General Trust.
To be published at: International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS) 2023

• Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, Jesper
Buus Nielsen:
Practical Large-Scale Proof-of-Stake Asynchronous Total-Order
Broadcast.
To be published at: Conference on Advances in Financial Technologies
(AFT) 2023





Chapter 2

Preliminaries

System model. We refer to the participants in a distributed protocol
as parties or processes, and denote them as P = {p1, . . . , pn}. Parties
that follow the protocol during an execution are called honest, while
parties that deviate from its specifications are called corrupted. We
consider Byzantine faults, meaning that corrupted parties are allowed
to crash or take arbitrary steps, cooperate, and learn the internal state
held by any of them.

Notation. We denote by 1λ the security parameter and by negl(λ) a
negligible function of λ. We denote by [n] the set {1, . . . , n}. A bold
symbol a denotes a vector of some dimension in N+. However, we avoid
distinguishing between a and aᵀ, that is, a denotes both a row and
a column vector. Moreover, K denotes a finite field, and for vectors
a ∈ K|a| and b ∈ K|b|, a‖b ∈ K|a|+|b| denotes their concatenation, and

ai is short for a[i]. The notation x
$← S means that x is chosen uniformly

at random from set S.

2.1 Byzantine quorum systems

Secure distributed systems rely on trust assumptions. They define the
failures that can be tolerated, and name conditions under which the
system may operate. In fault-tolerant replicated systems trust has tra-
ditionally been expressed through a threshold: the number of tolerated
faulty processes. More generally, trust assumptions are defined through
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a fail-prone system, which is a collection of subsets of processes, such
that each of them contains all the processes that may at most fail to-
gether during a protocol execution.

Definition 1 (Fail-prone system [91]). A fail-prone system (FPS) is
a collection of sets of processes F ⊂ 2P , none of which contains another,
where each F ∈ F is called a fail-prone set, such that some F ∈ F
contains all processes that may at most fail together in some execution.

A complementary structure to the fail-prone system is the Byzantine
quorum system [113], defined as follows.

Definition 2 (Byzantine quorum system [113]). Let F ⊆ 2P be a
fail-prone system. A Byzantine quorum system (BQS) for the FPS F is
a collection of sets of processes Q ⊆ 2P , none of which is contained in
another, where each Q ∈ Q is called a quorum, such that:

Consistency:

∀Q1, Q2 ∈ Q,∀F ∈ F : Q1 ∩Q2 6⊆ F.

Availability:
∀F ∈ F : ∃ Q ∈ Q : F ∩Q = ∅.

A link between the two definitions is given by the following results.

Definition 3 (Q3-condition [91, 113]). Let F be a fail-prone system.
We say that F satisfies the Q3-condition, abbreviated as Q3(F), if it
holds

∀F1, F2, F3 ∈ F : P 6⊆ F1 ∪ F2 ∪ F3.

Lemma 1 (Quorum system existence [113]). Let F be a fail-prone
system. A Byzantine quorum system for F exists if and only if Q3(F).
In particular, if Q3(F) holds, then F , the bijective complement of F , is
a Byzantine quorum system called canonical quorum system of F .

Threshold and general systems. When an FPS or a BQS is defined
only by cardinality, i.e., it includes all the subsets of P of a given size,
it is called a threshold FPS or threshold BQS, respectively. In this case,
the Q3-condition is equivalent to the requirement n > 3f , and, if we set
n = 3f + 1, then F = {F ⊂ P : |F | = f} and Q = {Q ⊂ P : |Q| =
2f + 1}. When an FPS or a BQS is allowed to contain arbitrary subsets
of P, subject to the Q3-condition, it is called a general BQS or a general
FPS, respectively.
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Remark 1 (Notation for FPS and BQS). Note that both fail-prone
systems and quorum systems contain no elements that are subsets of
another element. A fail-prone system is maximal, i.e., if F ∈ F , there is
no F ′ ∈ F such that F ′ ⊂ F , and, a quorum system is minimal, i.e., if
Q ∈ Q, there is no Q′ ∈ Q such that Q′ ⊃ Q. In this thesis we use the
additional notation F+ and Q+ for their monotone extensions, respec-
tively. That is, F+ contains all the fail-prone sets and their subsets, and
Q+ contains all the quorums and their supersets.

2.2 General distributed cryptography

We next give some definitions that are useful for distributed crypto-
graphic schemes.

Definition 4 (Adversary structures [91] and access struc-
tures [21]). An adversary structure is a collection of sets of processes
F+ ⊆ 2P , where each F ∈ F+ is called an unauthorized set, and an
access structure (AS) is a collection of sets of processes A+ ⊆ 2P ,
where each A ∈ A+ is called an authorized set. Both are monotone:
any subset of an unauthorized set is unauthorized, i.e., if F ∈ F+

and B ⊂ F , then B ∈ F+, and any superset of an authorized set is
authorized, i.e., if A ∈ A+ and C ⊃ A, then C ∈ A+. As in the most
general case [91, 51] we assume canonical access structures, that is, A+

contains the complement of each set in F+. We say that F+ is a Q2

adversary structure if no two sets in F+ cover the whole P.

Remark 2 (Notation for adversary structures and access struc-
tures). Note that in the above definition, and generally in the litera-
ture [18, 91, 51], adversary structures and access structures are by def-
inition monotone. In this thesis we use the additional notation F and
A for their non-monotone versions. That is, F denotes the maximal ad-
versary structure, which contains only the maximal unauthorized sets,
and A denotes the minimal access structure, which contains only the
minimal authorized sets. However, when it is clear from the context, we
may not distinguish between F+ and F , or A+ and A. In the literature
F has also been called the basis of F+, and A the basis of A+.

We now define the notion of insertion on AS, which allows to recur-
sively create AS by combining existing, smaller ones.
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Definition 5 (Insertion on access structures [117, 91]). Let A+
1

and A+
2 be two monotone access structures defined on two sets of parties

P1 and P2, respectively, and let pz ∈ P1 such that pz 6∈ P2. The insertion
of A+

2 at pz, written as A+
1 (pz → A+

2 ), is the monotone access structure
A+

3 defined on the set P3 = (P1\{pz})∪P2 that satisfies the following: a
set A ⊆ P3 is authorized in A+

3 if and only if the set A∩P1 is authorized
in A+

1 or the set A ∩ P1 together with pz is authorized in A+
1 and pz is

replaced by a set authorized in A+
2 . Formally,

A ∈ A+
3 ⇔ A ∩ P1 ∈ A+

1 ∨
(
(A ∩ P1) ∪ {pz} ∈ A+

1 ∧A ∩ P2 ∈ A+
2

)
.

Monotone span programs [97]. Monotone span programs (MSP)
have been introduced as a linear-algebraic model of computation. An
MSP is a quadruple M = (M,ρ, e1,P), where M is an m × d matrix
over a finite field K, ρ is a surjective function {1, . . . ,m} → {p1, . . . , pn}
that labels each row of M with a party in P, and e1 is the vector
(1, 0, . . . , 0) ∈ Kd, called the target vector. If ri is a row of M and
ρ(i) = pj , pj ∈ P, we say that party pj owns row ri. There is also a
function φ : P → 2{1,...,m}, such that φ(pj) is the set of rows owned by
party pj . The size of the MSP is the number of its rows m.

For any set A ⊆ P we define MA to be the mA × d matrix obtained
from M by keeping only the rows ri with ρ(i) ∈ A, that is, only the
rows owned by parties in A. Let Mᵀ

A denote the transpose of MA and
Im(Mᵀ

A) the span of the rows of MA. We say that the MSP accepts the
set A if the rows of MA span e1, that is, e1 ∈ Im(Mᵀ

A). Equivalently,
there is a recombination vector λA such that λAMA = e1. We say that
the MSP rejects A otherwise. For any access structure A+, we say that
an MSP accepts A+ if it accepts exactly the sets in A+.

It has been proven that each MSP accepts exactly one monotone
access structure and each monotone access structure can be expressed
in terms of an MSP [18, 97]. Hence, an MSP uniquely defines an access
structure, which in turn implies an adversary structure, the canonical
one.

Definition 6 (Linear secret sharing). A linear secret-sharing scheme
(LSSS), defined on adversary structure F+ and access structure A+,
shares a secret x ∈ K, for finite field K, using a coefficient vector r, in
such a way that every share is a linear combination of x and the entries
of r. It satisfies two properties. The first is correctness, which demands
that any authorized set A ∈ A+ can reconstruct the secret. It is satisfied
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by construction of the MSP, which accepts the access structure A+.
The second is privacy, stating any unauthorized set F ∈ F+ obtains no
information about the secret. This is formalized by the following lemma.

Lemma 2 (Privacy of linear secret-sharing schemes [97]). Let
M = (M,ρ, e1,P) be an MSP over finite field K, which accepts the
access structure A+, and F an unauthorized set, i.e. F 6∈ A+, with
shares xF = MFr. Then, for every secret x̃ ∈ K there exists a coefficient
vector r̃ which shares the secret x̃, i.e., r̃1 = x̃, and satisfies xF = MF r̃.

Algorithm 1 (Linear secret-sharing scheme). We formalize an
LSSS as two algorithms, Share() and Reconstruct().

1. Share(x). Choose uniformly at random d − 1 elements r2, . . . , rd
from K and define the coefficient vector r = (x, r2, . . . , rd). Cal-
culate the secret shares x = (x1, . . . , xm) = Mr. Each xj , with
j ∈ [1,m], belongs to party pi = ρ(j). Hence, pi receives in total
mj shares, where mj is the number of MSP rows owned by pi.

2. Reconstruct(A,xA). To reconstruct the secret given an authorized
set A and the shares xA of parties in A, find the recombination
vector λA and compute the secret as λAxA.

Proof of Lemma 2. Let the dimensions of M be m×d, and let the secret
shared by r be x, i.e., r1 = x. By definition of an unauthorized set, the
rows of MF do not span e1. That means, rank(MF ) < rank(MF

e1
) and,

from linear algebra, we know that |kernel(MF )| > |kernel(MF
e1

)|. This

implies the existence of a vector w ∈ Kd, w 6= 0, such that MFw = 0
(i.e., w ∈ kernel(MF )), and w1 = 1 (i.e., w 6∈ kernel(MF

e1
)). Define

r̃ = r+(x̃−x)w. Notice that r̃1 = x̃, so r̃ shares the secret x̃. Moreover,
MF r̃ = MFr + (x̃− x)MFw = MF r̃.

It has been shown that linear secret-sharing schemes are equivalent
to monotone span programs [18, 97].

Remark 3 (Lower bounds for general secret sharing). Superpoly-
nomial lower bounds are known for MSP [142, 15] and general secret
sharing [103]. As the focus of this work is on practical aspects, we
assume that the access structure can, in the first place, be efficiently
described by a user or system administrator, either as a collection of
sets or as a Boolean formula. Arguably, access structures of practical
interest fall in this category. Moreover, it is known that MSPs are more
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powerful than Boolean formulas and circuits. Babai, Gál, and Wigder-
son [15] prove the existence of monotone Boolean functions that can be
computed by a linear-size MSP but only by exponential-size monotone
Boolean formulas. In those cases the MSP can be directly plugged into
our schemes with general trust.



Chapter 3

General Byzantine
quorum systems and
consensus

3.1 Introduction

Byzantine quorum systems (BQS) [113] are the key abstraction for cap-
turing the trust assumptions in distributed protocols where parties may
behave maliciously. By definition, BQS support general quorums, that
is, a BQS can contain arbitrary subsets of P. General BQS have been in-
tensely explored in the literature [113]. For example, Malkhi et al. [114]
study their load and availability, Hirt and Maurer [91] use a very re-
lated notion for secure multiparty computation, Junqueira et al. [95]
explore an equivalent formalization in terms of survivor sets, and Warns
et al. [161] introduce a generalized model that unifies multiple such fail-
ure models.

Nevertheless, these works approach general BQS mainly from a the-
oretical perspective. When considering practical, state-of-the-art dis-
tributed protocols with Byzantine faults, especially state-machine repli-
cation (SMR) protocols in the blockchain space, one notices that thresh-
old BQS are the only occurring trust structure. To name some examples,
Aublin et al. [14] present an abstraction of an SMR protocol and build
BFT algorithms using threshold Byzantine quorums. Liu et al. [36] in-
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troduce cross fault-tolerance (XFT), a model that provides guarantees of
crash fault-tolerance but tolerates a number of Byzantine faults. Buch-
man et al. [30] present Tendermint, a consensus protocol based on the
classical PBFT [43] algorithm, making use of a novel gossip primitive.
Finally, Yin et al. introduce HotStuff [163], a BFT SMR protocol with
linear communication complexity. Threshold BQS have been researched
and well understood in practice, but consensus using general BQS has
been unexplored.

Related work. Karchmer and Wigderson [97] formally define Mono-
tone Span Programs (MSP) as a model for computation. Many con-
structions have been suggested for creating the MSP of a given access
structure. Lewko and Waters [105] suggest a general algorithm for con-
verting any monotone Boolean formula to an MSP, that is however in-
efficient for access structures expressed with threshold operators. The
notion of insertion has been introduced by Martin [117]. Nikov and
Nikova [127] explore constructions for recursively building the MSP for
an access structure from existing MSPs for smaller access structures,
and presented the definition of insertion, that we also use in our work.

Contributions. In this chapter we focus on general BQS and demon-
strate the first BFT consensus protocol with general trust. We describe
all components necessary for general BQS-based protocols and investi-
gate different ways to realize them. In particular, we address all the
following topics:

Encoding a general BQS: We first consider a monotone Boolean for-
mula (MBF) consisting of and, or, and threshold operators for specify-
ing a BQS. Since monotone span programs are stronger than monotone
Boolean formulas, as mentioned, we also investigate MSP for represent-
ing general BQS. We exhibit an algorithm for turning a BQS specifica-
tion into an MSP. When the BQS is specified as a monotone formula,
the size of the created MSP is linear in its inputs.

Integrating general BQS with consensus: For both represen-
tations (MBF and MSP), we show algorithms for checking quorum
properties and for integrating them with distributed protocols. Com-
paring the implementations we observe that the MBF-based method
generally performs better than the MSP-based implementation because
of the matrix manipulations required by the MSP. This provides the
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first unified treatment of the efficiencies of these methods and paves the
way for their practical deployment.

General Byzantine quorum systems: We apply our methods to
general BQS as described in the literature. For the M-Grid BQS [114],
which arranges n nodes in a square and tolerates O(

√
n) Byzantine

nodes, we construct the corresponding MSP and investigate its proper-
ties. We implement an attribute-defined BQS generalizing the OS and
location-based example mentioned before and represent this as an MBF
and as an MSP.

HotStuff consensus with general BQS: Last but not least, we ad-
dress consensus, the central problem in distributed computing. Apply-
ing our approach, we realize consensus with general BQS by building on
HotStuff [163], an efficient BFT consensus algorithm. This is the first
BFT consensus implementation using a generalized trust assumption.
In benchmarks with up to 40 replicas, we observe that the performance
with the MBF representation is comparable to that of the threshold
BQS. Using the same threshold trust structure, the MSP representation
shows lower performance.

Organization. The rest of this chapter is organized as follows. Sec-
tion 3.2 presents our techniques for encoding a BQS. In Section 3.3 we
describe HotStuff consensus algorithm with general BQS and prove its
consistency and liveness properties. Section 3.5 subsequently evaluates
an implementation of our general BQS methods using the HotStuff con-
sensus protocol.

System model. As presented in Section 2.1, the corruption capabili-
ties of the adversary are specified by a fail-prone system F . For a specific
execution we denote as B the set of the actually faulty parties.

3.2 Techniques

When Byzantine quorum systems are allowed to contain arbitrary sets,
two questions arise: How will these sets be specified by the user? And
how are they encoded within a protocol? A first solution could involve an
enumeration of all quorums, this would however lead to long user-inputs
and large internal representation. A more efficient solution is hence
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required, one that provides users with an effective, intuitive and user-
friendly way to specify a BQS. It is also crucial to internally encode the
BQS using a data structure that is efficient, able to encode any possible
BQS, and also offering an inexpensive method for checking whether a
set is a quorum.

Remark 4. The following sections describe algorithms to construct a
monotone Boolean formula (MBF) and a monotone span program (MSP)
for a Byzantine quorum system Q or for an access structure A, as well as
an algorithm to check whether a given set is a quorum or an authorized
set. The input to the algorithms can be some description (such as a
JSON-based encoding as in Figure 3.2) of either Q or Q+, in the case
of a quorum system, and of either A or A+, in the case of an access
structure. We remind the reader that Q+ contains all quorums in Q and
all their supersets, and similarly of A and A+. The resulting MBF and
MSP encode Q+ or A+, that is, they return 1 on input any quorum or
superset of a quorum, in the case of a quorum system, and any authorized
set or superset of an authorized set, in the case of an access structure.

3.2.1 General Byzantine quorum systems as formu-
las

In this section we show how the generalized trust assumptions of the
system can be specified by the user in a structured way and encoded
within the protocol as a Boolean formula. This technique will be taken
up again and extended in Chapter 6.

We observe that it is enough to use only the threshold operator
Θm
k (q1, . . . , qm), which specifies that any subset of {q1, . . . , qm} with

cardinality k is a quorum. Each qi can be a literal, i.e., a party iden-
tifier, or a nested threshold operator. The threshold operator is the
generalization of logical conjunction, that would require all qi to make
a quorum, and logical disjunction, that would allow each of them alone
to be a quorum – the first can be obtained for k = m and the second for
k = 1. The threshold operator is thus complete, in the sense that it can
describe any possible BQS. Therefore, the users are allowed to specify
the generalized trust assumptions in a standard format like JSON, using
nested threshold operators. This is aligned with the way users specify
their quorum slices in Stellar Blockchain [120] with threshold operators.

We use the notion of a monotone Boolean formula (MBF), a formula
that consists of and, or, and threshold operators and literals that corre-
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spond to parties. An MBF F describes a monotone function 2P → {0, 1}
in the following way; when F consists only of a literal, then the value
of F on input S ⊆ P is 1 if and only if F ∈ S; when F is the threshold
operator Θm

k (q1, . . . , qm), then F (S) is 1 if at least k of the q1, . . . , qm
are recursively evaluated to 1 on input S; and accordingly for the other
operators. We say that an MBF F implements a BQS Q+ if it returns
1 on input a set Q ∈ Q+, and 0 otherwise.

We use a tree data structure to store a BQS described through an
MBF, where the internal nodes represent an operator, their children are
the operands, and the leaves always represent a party. Clearly, the size
of the tree (defined as the number of nodes) is linear in the quorum
specification given by the user. We employ Algorithm 1 to evaluate
whether a set is considered a quorum in the BQS implemented by a
formula F . The runtime is linear in the size of F , given that the set
membership operation returns in constant time.

Algorithm 1 Checking whether set A is a quorum in the BQS imple-
mented by formula F .

1: eval(F,A)
2: if F is a literal then
3: return (F ∈ A)
4: else
5: write F = op(F1, . . . , Fm), where op ∈ {∧,∨,Θ}
6: for each Fi do
7: xi ← eval(Fi, A)
8: return op(x1, . . . , xm)

A layered BQS. An example that highlights a more complex BQS
that cannot be specified in the threshold model is a 2-layered-1-common
BQS (2L1C). This example shows a hierarchical trust structure with a
notion of proximity that models a realistic system structured into two
levels. To our knowledge, it has not been used in practice so far. Let
us consider two disjoint sets of parties, organized in two layers, with
k parties A0 . . . Ak−1 on the first and 3k parties B0 . . . B3k−1 on the
second. We may assume that the parties in the first layer are more
trusted than those in the second layer. A quorum consists of a strict 2/3
majority of the parties in the first layer plus, for each party A` of these,
a 2-out-of-4 threshold from the set {B3`, . . . , B3(`+1)}, where indices are
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modulo 3k. For k ∈ N, the general formula of the BQS is

Θk
d 2k+1

3 e

(
{A` ∧Θ4

2 ({Bm})}
)
,

for ` ∈ {0, . . . , k − 1} and m ∈ {3`, . . . , 3(`+ 1) mod 3k}.
(3.1)

A 2-layered-1-common BQS for k = 4 can be seen in Figure 3.1.
In Figure 3.2 we show a configuration file that specifies this BQS – it
is actually the file used during the evaluation. It is worth to notice
that this BQS, even for k = 4, results in a system with 792 quorums,
which highlights why a naive, quorum-enumeration solution would be
impractical. Notice that by using the fail-prone system that corresponds
to a 2L1C BQS in the canonical way, we observe that this BQS satisfies
the Q3-condition because every fail-prone set contains fewer than k/3
parties from the first layer. Thus, it is indeed a BQS.

Figure 3.1. The 2L1C Byzantine quorum system for k =
4. The corresponding MBF is Θ4

3(A0 ∧ Θ4
2(B0, B1, B2, B3), A1 ∧

Θ4
2(B3, B4, B5, B6), A2 ∧Θ4

2(B6, B7, B8, B9), A3 ∧Θ4
2(B9, B10, B11, B0)).

Figure 3.2. A specification of the 2L1C Byzantine quorum system for
k = 4 in JSON format using nested threshold operators.
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3.2.2 General Byzantine quorum systems as mono-
tone span programs

Until now, we considered BQS that can be efficiently encoded using
formulas. However, as already discussed in Remark 3, results in com-
plexity theory suggest that MSPs can be superpolynomially stronger
than monotone formulas. Moreover, the MSP is a compact and concise
data structure, that can be encoded by a matrix and a vector over a
field. For these reasons, we also investigate the capabilities of the MSP
as the data structure that encodes a BQS. In this section we show how
to instantiate an MSP from an MBF and how the MSP can be used to
check for quorums. Later, we evaluate the MSP-based implementation
and compare it with the one based on MBF. We remark, however, that
constructing the MSP from an MBF is not the only option; in case a
BQS is more efficiently described by an MSP than by a formula, we could
plug the MSP directly in the protocol and use the same quorum-checking
algorithms.

In line with our previous terminology, we say that an MSPM imple-
ments an access structure A if it accepts exactly the sets in A and their
supersets. Returning to the idea of insertion, we first show how this
notion is reflected on the MSP that implements an access structure. In

the following, let M(k) = (M (k), ρ(k), e
(k)
1 ,P(k)) be MSPs, where M (k)

has dimensions mk × dk, for k ∈ {1, 2, 3}. We denote the rows of each

M (k) as r
(k)
i , for 1 ≤ i ≤ mk. We also denote the jth column in a row

r as r[j], a range of columns j1 to j2 as r[j1 : j2], a row with ` zero
elements as 0`, and the concatenation of two rows r and r′, that is a
new vector of size |r|+ |r′|, whose first elements are r and the last are
r′, as r || r′.

Definition 7 (Insertion on MSPs [127]). Let rz be a row of M (1)

owned by pz ∈ P(1) – assuming without loss of generality it is unique.
The insertion of M (2) in row rz of M (1), written as M(1)(rz →M(2)),
is an MSP M(3), where M (3) has rows identical to M (1), except for
rz, which is repeated m2 times in M (3), each time multiplied by the
first column of M (2) and with the rest of the columns 2 to d2 of M (2)

appended in the end. The function ρ(3) labels the rows of M (3) with the
same owners as ρ(1), except for rz. The newly inserted rows are labeled
according to ρ(2).

More formally, M (3) is an (m1 +m2− 1)× (d1 + d2− 1) matrix with
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rows

r
(3)
i =


r

(1)
i || 0d2−1 1 ≤ i ≤ z − 1

rz ∗ r(2)
i−z+1[1] || r(2)

i−z+1[2 : d2] z ≤ i ≤ z +m2 − 1

r
(1)
i−m2+1 || 0d2−1 z +m2 ≤ i ≤ m1 +m2 − 1

(3.2)
and ρ(3) is a surjective function {1, . . . ,m1+m2−1} → (P(1)\{pz})∪P(2)

defined as

ρ(3)(i) =


ρ(1)(i) 1 ≤ i ≤ z − 1

ρ(2)(i− z + 1) z ≤ i ≤ z +m2 − 1

ρ(1)(i−m2 + 1) z +m2 ≤ i ≤ m1 +m2 − 1

Lemma 3. [127] If an MSPM(1) implements the access structure A(1),
with row rz owned by party pz, and an MSPM(2) implements the access
structure A(2), then the MSP M(1)(rz →M(2)) implements the access
structure A(1)(pz → A(2)) (see Definition 5).

Lemma 4. Let Vandermonde-MSP(n, t,P) be defined as the MSP
(V (n, t), ρ, e1,P), with P = {p1, . . . , pn}, V (n, t) the n × t Vander-
monde matrix over a finite field K,

V (n, t) =


1 x1 x2

1 · · · xt−1
1

1 x2 x2
2 · · · xt−1

2
...

...
...

. . .
...

1 xn x2
n · · · xt−1

n

 ,

with xi 6= xj 6= 0, for 1 ≤ i ≤ j ≤ n, ρ a function that maps row
ri to party pi, for i ∈ {1, . . . , n}, and e1 = (1, 0, . . . , 0) ∈ Kt. Then,
Vandermonde-MSP(n, t,P) implements the t out-of n threshold access
structure Θn

t (P).

Proof. Let A ⊂ P and MA the matrix consisting of the rows of M owned
by the members of A. From the results of linear algebra, and because
xi’s are pairwise different, we know that the rank of MA is maximal
(that is, equal to t, and thus Im(Mᵀ

A) = Kt) if and only if |A| ≥ t.
Therefore, M accepts exactly those sets A with |A| ≥ t.

Building the MSP that implements a general BQS. Based on
the previous lemmata, we now present Algorithm 2 that gets as input an
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MBF (that encodes a Byzantine quorum system or an access structure)
and outputs an MSP that implements the Byzantine quorum system or
the access strucure. The idea is to start with a Vandermonde matrix
implementing the first in the hierarchy threshold operator and repeat-
edly perform insertions of the MSP implementing the nested threshold
operators.

Algorithm 2 works as follows. Let F = Θm
d (F1, . . . , Fm) be an MBF,

where each Fi can be a party or a nested threshold operator. The
algorithm first creates the MSP for F (lines 9–21) in the following way:
it extracts the values m, d and F1, . . . , Fm from F (line 10) and examines
whether each Fi is a party literal or a nested operator. In the second
case, a fresh virtual party vi is created and associated with Fi (the
map Vmap is used to keep track of this association). A virtual party
is treated exactly as an actual party, except it is used only during this
construction. The MSP for F is now created according to Lemma 4
and using both actual and virtual parties as the set P. In the second
part of the algorithm (lines 22–25) the MSPs for the nested operators
(virtual parties vi) are recursively created (line 23) and inserted in M,
according to Definition 7. The function φ related to the MSP M, that
maps a party to the rows they own, is used to get the row ri of M that
was labeled with vi. Notice that in line 18, a fresh variable is created
for each nested operator, so vi owns a single row.

For the termination of the recursion, notice that, if F does not con-
tain any nested threshold operators, V is the empty set when we reach
line 22, and the algorithm returns. The next result therefore follows im-
mediately from the definition of insertion and the fact that the algorithm
starts with a 1× 1 matrix.

Lemma 5. Let F be an MBF that includes in total c operators in the
form Θmi

di
. The matrix M of the MSP constructed with Algorithm 2 has

m =
∑c

1mi − c+ 1 rows and d =
∑c

1 di − c+ 1 columns.

Lemma 5 implies that the resulting matrix M has size linear in the
length of F . In the special case that each party appears only once in the
access structure, M has n rows and at most n columns, where n = |P|.

3.2.3 Checking for quorums

We now show how to determine whether a set constitutes a quorum
using the MSP representation of the system and no other information
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Algorithm 2 Construction of an MSP from a monotone Boolean for-
mula F .
9: buildMSP(F )
10: let Θm

d (F1, . . . , Fm) be the formula F
11: R← ∅
12: V ← ∅
13: Vmap ← ∅
14: for each Fi do
15: if Fi is a literal p then
16: R← R ∪ {p}
17: else
18: declare vi a new virtual party
19: V ← V ∪ {vi}
20: Vmap ← Vmap ∪ {(vi, Fi)}
21: M← Vandermonde-MSP(m, d,R ∪ V )
22: for each vi ∈ V do
23: M2 ← buildMSP(Vmap(vi))
24: ri ← φ(vi)
25: M←M(ri →M2)
26: returnM

about the BQS (e.g., whether it is a threshold or a general BQS, or
whether it was specified using threshold or other operators).

An MSP accepts a set A if and only if the rows of MA span the
vector e, or, equivalently, the linear system MT

Ax = e has solutions
for x. According to linear algebra, a necessary and sufficient condition
for this is that the rank of MT

A is equal to the rank of the augmented
matrix MT

A |e. To check this condition, we perform Gaussian elimination
on the augmented matrix MT

A |e and bring it in row echelon form. If it
contains a row with only zeros in the coefficient part but a nonzero value
in corresponding constant part, then the rank of MT

A |e is bigger that the
rank of MT

A , and A is not an authorized set. Otherwise, A is authorized
(or superset of an authorized set).

Gaussian elimination has a cubic time complexity, so it is expensive
to perform it every time we wish to check for a quorum. As an optimiza-
tion we use the PLU-decomposition of matrix MT , i.e., we calculate the
d×d matrices P and L, and the d×m matrix U , such that PMT = LU .
Then, for any set A we get PMT

A = LUA, where P and L do not depend
on A. In the initialization of the protocol we solve Ly = Pe for y,
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where y is a d-vector. Then, instead of the equation MT
Ax = e we can

work with the equation UAx = y. In order to check whether a set A is
authorized, we now have to bring UA|y in row echelon form. Since UA
is an upper triangular matrix, some computational steps are avoided.

Notice here that it might be the case that A is a superset of an
authorized group. These redundant parties can easily be identified from
the echelon form, as they will correspond to the free variables of the
system – variables whose corresponding column does not contain a pivot.
Another situation worth to mention is that a party can own more than
one rows of M . However, the algorithm described above also works in
this case, since MA will contain all rows owned by parties in A.

3.2.4 Concrete constructions of general Byzantine
quorum systems

We now consider two specific families of general BQS that have been
studied in the literature and show how they can be encoded as MSPs.

Attribute-based BQS. A BQS of this family is defined over a set
of attributes, which are associated with the parties, and a quorum is
described in terms of required attributes. Let X = {χ1, . . . , χr} denote
the set of attributes and Ψ ⊆ P×X the relation between parties and at-
tributes. We say that party pj holds an attribute χ whenever (pj , χ) ∈ Ψ.
An attribute-based MBF is a monotone Boolean formula F (χ1, . . . , χr)
over the attributes X and implements a BQS where a set A ⊆ P is a
quorum whenever the attribute set {χ ∈ X | ∃p ∈ A : (p, χ) ∈ Ψ},
collectively held by the parties in A, satisfies F . By adding one more
syntactic rule, we can also specify the requirement that an attribute is
held by at least a number of parties. Let each χi ∈ X be related with
Li parties, i.e., |{p ∈ P | (p, χi) ∈ Ψ}| = Li, and let `i ≤ Li. Then, a

formula F (χ
(`1)
1 , . . . , χ

(`r)
r ) specifies that A is a quorum if, in addition

to the aforementioned condition, each χi is held by at least li distinct
parties, i.e., |{p ∈ A | (p, χi) ∈ Ψ}| ≥ `i, for 1 ≤ i ≤ r.

An MSP M = (M,ρ, e1,P) that implements F (χ
(`1)
1 , . . . , χ

(`r)
r ) can

be constructed as follows. First, an MSPM′ = (M ′, ρ′, e′1,F) is created
for F (χ1, . . . , χr), using the methods presented in the previous sections.
Then an insertionM′(χi →Mi) is performed for every χi, as described
in Definition 7, where Mi is an MSP such that Mi is the Li × `i Van-
dermonde matrix and ρi is a function labelling the rows of Mi with the
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parties related to χi. Notice that the resulting MSP M is defined on
the set of parties P and not the set of attributes X .

In Chapter 1 we mentioned an attribute-based BQS, where parties
are organized in two dimensions, based on their location and operat-
ing system (OS). We now instantiate this BQS using this methodology.
There are two families of attributes, location and OS. We use the at-
tributes {χ11, χ12, χ13, χ14} for the four different locations and the at-
tributes {χ21, χ22, χ23, χ24} for the four different OS. The 16 parties are
arranged in a four by four grid, so that each party is related with exactly
one attribute from each family. The system tolerates the simultaneous
failure of all parties in one location and all parties with a specific OS.
Thus, a set is a quorum if it contains at least three parties with different
OS for at least three different locations. This BQS is implemented by
the attribute-based MBF

Θ4
3

(
χ

(3)
11 , χ

(3)
12 , χ

(3)
13 , χ

(3)
14

)
∧Θ4

3

(
χ

(3)
21 , χ

(3)
22 , χ

(3)
23 , χ

(3)
24

)
.

Following the method described above, a 4×3 Vandermonde matrix will

be inserted in every χ
(3)
ij when creating the MSP, which, according to

Lemma 5, will have dimensions 32× 22.

The M-Grid BQS. Malkhi et al. [114] proposed the M-Grid system,
a family of BQS where n = k2 parties are arranged in a k × k grid
and up to b parties are allowed to be Byzantine, with b ≤ (

√
n+ 1)/2.

A quorum consists of any
√
b+ 1 rows and

√
b+ 1 columns. Actually,

the M-Grid was proposed as a Byzantine masking quorum system [113],
a category of BQS that requires a stronger intersection property than
the Byzantine dissemination quorum systems, but one can adapt the
construction accordingly.

For a dissemination BQS, the requirement for b is b ≤ k − 1 and a
quorum consists of any t rows and t columns, where t = d

√
b/2 + 1e. To

see this, notice that if two quorums Q1 and Q2 have a row or a column
in common, then |Q1 ∩ Q2| ≥ k ≥ b + 1. Otherwise, the intersection
of Q1’s columns with Q2’s rows is disjoint from the intersection of Q2’s
columns with Q1’s rows, so |Q1 ∩Q2| ≥ 2

√
b/2 + 1

√
b/2 + 1 > b+ 1. In

both cases, the consistency property of a BQS is satisfied.

To encode the M-Grid BQS we define the attribute set X =
{R1, . . . , Rk, C1, . . . , Ck} and assign the party sij at row i and column
j the attributes Ri and Cj . The attribute-based MBF related to this



3.3 Consensus using general Byzantine quorums systems 29

BQS family is

Θk
t

(
R

(k)
1 , . . . , R

(k)
k

)
∧Θk

t

(
C

(k)
1 , . . . , C

(k)
k

)
.

The formula has 3 + 2k threshold operators, considering the and op-
erator as a 2-out-of-2 threshold and recalling that our method inserts

a k × k MSP in the attributes R
(k)
i and C

(k)
j . The resulting MSP that

implements the M-Grid BQS has 2n rows and 2(n+t−k) < 2n columns,
by Lemma 5.

3.3 Consensus using general Byzantine
quorums systems

HotStuff [163] is an efficient leader-driven Byzantine fault-tolerant state-
machine replication (SMR) algorithm. The nodes that take part in the
protocol are separated into replicas, which actually run the protocol,
and clients, which submit requests to the replicas and receive totally-
ordered responses. The trust assumptions are specified by the number
of replicas n and the number of tolerated faults f . The replicas maintain
a tree structure, whose nodes contain batches of clients’ commands and
get committed in a monotonically increasing way. Two nodes conflict if
none of them extends from the other.

HotStuff is presented in three versions, the so-called basic, chained,
and implemented. In the basic version, each view consists of four phases,
called prepare, pre-commit, commit, and decide. In each phase, the leader
waits for n − f different vote messages from the replicas, constructs a
quorum certificate (QC) upon receiving them, and starts the next phase
by broadcasting this certificate to the replicas. The view changes in the
end of the decide phase, or whenever the replicas time out waiting for a
leader’s message. Each view has a deterministically determined leader.
The chained version pipelines the four phases into one generic phase.
This serves as the prepare phase for the new node in the tree, as the pre-
commit phase for the previous node and so on, so that the four phases
map to four successively ordered requests. Finally, the implemented
version presents further optimizations. The prototype implementation
of threshold HotStuff, which we also use for generalized HotStuff, is
based on the implemented version.

The generalized HotStuff protocol is instantiated with a Byzantine
quorum system, which specifies its trust assumptions. The leader now



30 General Byzantine quorum systems and consensus

collects votes from a quorum of parties and constructs a QC by con-
catenating them. Upon receiving the QC, the replicas validate the sig-
natures, as well as the fact that the voters indeed form a quorum. A
quorum is also required to trigger a view change against a faulty leader.

The pseudocode of basic HotStuff with general BQS is presented in
Algorithm 3 and 4. We give a brief description of the data structures
used and refer to [163] for more details. A message consists of four fields,
type, viewNumber , node, and justify . The type can be one of new-view,
prepare, pre-commit, commit, decide. The viewNumber is always
populated with the current view number. The field node is used in
the prepare phase by the leader to propose the new leaf node, as well
as by replicas in vote messages. Finally, justify is always used by the
leader to send a valid QC and by the replicas to send their prepareQC
in a new-view message. A vote message, sent by replicas, additionally
contains a signature over the fields type, viewNumber , node. The QC
data structure consists of four fields, type, viewNumber , node, and sig .
The type can be one of prepare, pre-commit, commit and is used
to indicate the phase in which the votes used to construct the QC were
cast. The fields viewNumber and node indicate the view in which the
QC was created and the node it justifies, respectively. Finally, the field
sig contains the signatures on the vote messages of the quorum that was
used to construct the QC.

In the pseudocode we omit the details related to the signing and
verification of the messages, the verification of a QC and the signing of
the vote messages. We denote as p` the leader of a view. As in the
original protocol, this could be any deterministic function from the view
number to the replicas, as long as it eventually proposes a correct leader.
If an interrupt happens when replicas are waiting for a message, line 69
is executed. The variables new-views, prepare-votes, precommit-votes,
and commit-votes, used by the leader to store the votes until a quorum
is received, are emptied in each view (not shown for brevity).

HotStuff works in the partial-synchrony model [66], where there is
an unknown Global Stabilization Time (GST), after which the commu-
nication between two correct replicas becomes synchronous. The safety
of the HotStuff protocol as presented in [163] is based on the properties
of threshold Byzantine quorum systems, namely the n > 3f condition.
In the generalized protocol the safety is reduced to the properties of
the general BQS. The generalized version of HotStuff satisfies the same
safety and liveness theorems as threshold HotStuff, which we now present
and prove for the generalized case.
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Algorithm 3 Basic HotStuff, code for party pi, where p` is the epoch
leader.

State:
27: prepareQC←⊥; lockedQC←⊥; curView← 1

// PREPARE phase
28: upon receiving message [new-view, viewNumber,node, justify] from pj

such that viewNumber = curView− 1 do // only p`
29: new-views[j]← justify
30: if exists {pk ∈ P | new-views[k] 6=⊥} ∈ Q then
31: V = {new-views[k] | new-views[k] 6=⊥}
32: highQC← argmaxv∈V (v.viewNumber)
33: curProposal← new node
34: curProposal.parent← highQC.node
35: curProposal.cmd← client’s command
36: send message [prepare, curView, curProposal, highQC] to all pj ∈ P

37: upon receiving message [prepare, viewNumber,node, justify] from p`
such that viewNumber = curView do

38: if node extends from justify .node
39: and (node extends from lockedQC.node
40: or justify.viewNumber > lockedQC.viewNumber) then
41: send vote message [prepare, curView,node,⊥] to p`

// PRE-COMMIT phase
42: upon receiving vote v = [prepare, viewNumber,node, justify] from pj

such that viewNumber = curView do // only p`
43: prepare-votes[j]← v
44: if exists {pk ∈ P | prepare-votes[k] 6=⊥} ∈ Q then
45: V = {prepare-votes[k] | prepare-votes[k] 6=⊥}
46: prepareQC← QC (V )
47: send message [pre-commit, curView,⊥, prepareQC] to all pj ∈ P

48: upon receiving message [pre-commit, viewNumber,node, justify] from p`
such that viewNumber = curView
and justify.type = prepare do

49: prepareQC← justify
50: send vote message [pre-commit, curView, justify.node,⊥] to p`
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Algorithm 4 Basic HotStuff, continued.

// COMMIT phase
51: upon receiving vote v = [pre-commit, viewNumber,node, justify] from pj

such that viewNumber = curView do // only p`
52: precommit-votes[j]← v
53: if exists {pk ∈ P | precommit-votes[k] 6=⊥} ∈ Q then
54: V = {precommit-votes[k] | precommit-votes[k] 6=⊥}
55: precommitQC← QC (V )
56: send message [commit, curView,⊥, precommitQC] to all pj ∈ P

57: upon receiving message [commit, viewNumber,node, justify] from p`
such that viewNumber = curView
and justify.type = pre-commit do

58: lockedQC← justify
59: send vote message [commit, curView, justify.node,⊥] to p`

// DECIDE phase
60: upon receiving vote v = [commit, viewNumber,node, justify] from pj

such that viewNumber = curView do // only p`
61: commit-votes[j]← v
62: if exists {pk ∈ P | commit-votes[k] 6=⊥} ∈ Q then
63: V = {commit-votes[k] | commit-votes[k] 6=⊥}
64: commitQC← QC (V )
65: send message [decide, curView,⊥, commitQC] to all pj ∈ P

66: upon receiving message [decide, viewNumber,node, justify] from p`
such that viewNumber = curView

67: and justify.type = commit do
68: output decide (justify.node)
69: send message [new-view, curView,⊥, prepareQC] to p`+1
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Theorem 6. If w and b are conflicting nodes, they cannot be both de-
cided, each by a correct replica.

Proof. Let qc1 and qc2 be the valid certificates, with qc1 created with the
votes of a quorum Q1 and qc2 with the votes of a quorum Q2, that con-
vinced the two replicas to decide, that is qc1.type = commit, qc1.node =
w, qc2.type = commit, qc2.node = b. Also, let qc1.viewNumber = v1 and
qc2.viewNumber = v2. First note that v1 and v2 cannot be the same.
That would mean that the votes in Q1 and Q2 were cast in the same
view, which would require the replicas in Q1 ∩Q2 to vote twice in that
view. But this is impossible, since Algorithms 3–4 allow replicas to vote
only once in the commit phase Q1 ∩ Q2 contains at least on correct
replica. W.l.o.g. let v1 < v2 and let v2 be the first view after v1 for
which a conflicting block is decided.

For qc2 to be created there must first have been a valid prepareQC
for node b. This could have been formed in view v2 or in an earlier. Let
vs be the first view after v1 in which a valid prepareQC qcs was formed.
So, qcs.type = prepare, qcs.node = b and qcs.viewNumber = vs and Qs
is a quorum of replicas, whose votes where used to create qcs.

Consider now a replica r that voted for qc1 and qcs, i.e. r ∈ Q1∩Qs.
During view v1, r must had received a valid precommitQC and set it to
its lockedQC , with lockedQC.node = w, before casting its vote for the
commitQC qc1. Let us examine now the prepare phase of view vs, in
which the leader proposed the new block b, and specifically the condi-
tions in lines 39 and 40. By the minimality of vs, r was still locked on
lockedQC in that phase. By assumption b and w were conflicting nodes,
so the condition in line 39 was false. Moreover, justify.viewNumber was
not larger than lockedQC.viewNumber = u1, again by the minimality of
vs, because that would mean that a valid prepareQC was created in a
view smaller than vs. So the condition in line 40 was also false. As
a result, every replica in r ∈ Q1 ∩ Qs must be faulty. But this contra-
dicts the quorum intersection property, thus such qc1 and qc2 cannot
exist.

Theorem 7. After GST, there exists a bounded time period Tf such that
if all correct replicas remain in view v during Tf and the leader for view
v is correct, then a decision is reached.

Proof. Assume a correct leader that collects new-view messages from
a quorums Q1 of replicas. Let qcl be the highest lockedQC among all
replicas. There must be at least a quorum Q2 of replicas that have
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received (and voted for) a prepareQC qcp that matches qcl. By the
quorum intersection property, Q1∩Q2 contains a non-empty set of non-
faulty replicas, through which the leader will learn qcp and use it as its
highQC in the prepare message. Since all the correct replicas remain in
view v, they will vote in all the phases and a decision will be reached.

3.4 Implemented HotStuff

In Algorithms 5 and 6 we show the generalized implemented HotStuff,
so as to document our changes with regard to [163].

The call isQuorum(votes[b]) checks whether the replicas in votes[b]
constitute a quorum, using our algorithm described in 3.2.2. The func-
tion getLeader is not defined in HotStuff but is specified by the applica-
tion. Procedure onBeat is also called by the leader in order to propose
new clients’ commands at points specified by the application.

3.5 Evaluation

We have implemented general BQS in HotStuff [163]1. The new func-
tionality has been added in the form of a C++ library into the exist-
ing code base. We use nholmann-json [108] to parse the user-defined
quorum-specification file and Shoup’s NTL [151] for linear algebra over
Zp. As in the original version of HotStuff, our implementation uses
secp256k1 for all signatures. The prototype code does not make use of
threshold signatures, instead stores all the received votes for a block and
verifies them independently. We keep the same logic for our generalized
quorum votes.

Setup. In our evaluations, we report on benchmarks with four differ-
ent versions of HotStuff that differ in the way how replicas and clients
encode quorums. Their features are summarized in Table 3.1. In the
original HotStuff algorithm (Counting-All), replicas and clients know
the parameters n and f , the number of total replicas and failures, re-
spectively, and determine whether they have received messages from a
quorum by counting. In MBF-All the replicas and the clients are given
the Byzantine quorum system, which can be a threshold or a general

1We used the prototype implementation available at https://github.com/hot-
stuff/libhotstuff.
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Algorithm 5 Implemented HotStuff, code for party pi

State
70: prepareQC←⊥; lockedQC←⊥; curView← 1

71: procedure createLeaf (parent, cmd, qc, height)
72: b← new node
73: b.parent← parent; b.cmd← cmd
74: b.justify← qc; b.height← height
75: return b

76: procedure update (b∗)
77: b′′ ← b∗.justify.node
78: b′ ← b′′.justify.node
79: b← b′.justify.node
80: updateQCHigh (b∗.justify) //PRE-COMMIT phase on b′′

81: if b′.height > block.height then //COMMIT phase on b′

82: block ← b′

83: if b′′.parent = b′ and b′.parent = b then //DECIDE phase on b
84: onCommit(b)
85: bexec ← b

86: procedure onCommit (b)
87: if bexec.height < b.height then
88: onCommit(b.parent)
89: execute(b.cmd)

90: procedure onReceiveProposal (m = [generic, bnew,⊥])
91: if bnew.height > vheight and (bnew extends block or

bnew.justify.node.height > block.height) then
92: vheight← bnew.height
93: send message [generic-vote, bnew,⊥] to getLeader()
94: update(bnew)

95: procedure onReceiveVote (m = [generic-vote, b,⊥]) from pj
96: votes[b]← votes[b] ∪ {〈j,m.sig〉}
97: if isQuorum(votes[b]) then

98: qc← QC
(
{vj}kj=1

)
99: updateQCHigh(qc)
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Algorithm 6 Implemented HotStuff, continued.

100:function onPropose
(
bnew, cmd, qchigh

)
101: bnew ← createLeaf

(
bleaf, cmd, qchigh, bleaf.height + 1

)
102: send message [generic, bnew,⊥] to all pj ∈ P
103: return bnew

104:procedure updateQCHigh
(
qc′high

)
105: if qc′high.node.height > qchigh.node.height then
106: qchigh ← qc′high
107: bleaf ← qchigh.node

108:procedure onBeat (cmd)
109: if i = getLeader() then
110: bleaf ← onPropose

(
bleaf, cmd, qchigh

)
111:procedure onNextSyncView (cmd)
112: send message [new-view,⊥, qchigh] to getLeader()

113:procedure onReceiveNewView
(
[new-view,⊥, qc′high]

)
114: updateQCHigh

(
qc′high

)

BQS, encoded as a monotone Boolean formula. Here we use Algorithm 1
to check for quorums. For MSP-All, replicas and clients are given an
MSP-encoded BQS, again threshold or generalized, and use the algo-
rithm of Section 3.2.2 to decide whether a set of parties is a quorum.
According to the standard practice, replicas use batching to amortize
various expensive operations (signatures and potentially Gaussian elim-
ination) over multiple requests. However, the clients collect responses
individually for every single request. This incurs a large cost that is not
part of the replication protocol per se but is due to the way how clients
produce requests and check for quorums. For this reason, we experiment
also with a fourth protocol, called MSP-Replicas, where only the replicas
use an MSP. In this setting, the clients are mapped to replicas. Since
the replicas receive and verify batches of requests at once, there is no
further need to perform the quorum check on individual requests.

The evaluation in the original HotStuff paper [163] uses a batch size
of 400 because the latency of batching becomes higher than the cost
of cryptographic operations with larger batches. Hence, we run all our
experiments with batch size 400. Finally, we work only with the three-
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Table 3.1. The evaluated protocols.

BQS implementation in Supported
System replicas clients types of BQS

Counting-All counting counting threshold
MBF-All MBF MBF threshold & generalized
MSP-All MSP MSP threshold & generalized

MSP-Replicas MSP counting threshold & generalized

phase HotStuff.
We use VMs on a leading cloud provider, with each replica or client

running on a single VM with 16 vCPUs (Intel Xeon Broadwell, 2.6 GHz,
or Intel Xeon Skylake, 2.7 GHz), 32 GB RAM, and SSD local storage.
We use a varying number of VMs – up to 40 replicas and 32 clients.
All experiments are done over the LAN inside one data center, with
a RTT of less than 1 ms. As this setup eliminates most network de-
lays, it exposes the overhead added by the general BQS code. For the
same reason, we use only zero-sized request and response payloads. In
realistic deployments (on a wide-area network and with significant pay-
load data), the extra cost of general quorums would be less visible. All
measurements are made on the client. Finally, the maximum available
bandwidth among the VMs was measured by iperf as 1–2 Gbits per
second.

Throughput vs. latency. We first measure throughput and latency
in a small system with four replicas, with the goal of comparing the
behavior of the four different quorum-system implementations. We use
a threshold BQS because all four protocols can be instantiated with it,
that is, in Counting-All, this is specified by two numbers, n = 4 and
f = 1, in MBF-All by the Θ4

3(P) MBF, and in the last two protocols by
an MSP implementing the Θ4

3(P) access structure. The reported values
were produced by first fixing the request rate per client and increasing
the number of clients from one to eight and then, with the number of
clients fixed at eight, increasing the request rate even further for each of
them, until the system saturates. The result is depicted in Figure 3.3.

All four protocols exhibit similar behavior. Counting-All saturates at
188.4K tx/sec, followed by MBF-All at 179.3K tx/sec, which is less than
5% lower. The peak throughput of MSP-based protocols are slightly
lower. Specifically, MSP-Replicas delivers 175.5K tx/sec before sat-
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Figure 3.3. Throughput vs. latency for 1–8 clients and different imple-
mentations of the threshold BQS with four replicas.

uration, which translates to an overhead of almost 7% compared to
Counting-All, while MSP-All reaches roughly 167.8K tx/sec, for an over-
head of 11%. The latency at the saturation point is about 11.5ms for all
protocols. We conclude that in a small system like this, with four parties,
generalizing a protocol does not significantly impact its efficiency.

Scalability. In this evaluation we measure the throughput and latency
in a system with a varying number of replicas. We use n = 3f + 1
replicas, for f ∈ {1, . . . , 10}, and a varying number of clients. The trust
assumption is again a threshold quorum system with n replicas, of which
up to f may fail, specified in the appropriate way for each system. For
each n we increase the request rate per client and report the throughput
and latency just before saturation. The question we want to answer is
how the generalized protocols (MBF-All, MSP-All, MSP-Replicas) scale
in comparison to Counting-All. The results are shown in Figure 3.4a
(throughput) and Figure 3.4b (latency).

We notice that Counting-All and MBF-All scale up almost identi-
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(a) Throughput (b) Latency

Figure 3.4. Scalability of the four protocols when instantiated with a
threshold BQS.

cally. In a system with 31 replicas they achieve a throughput of 80.5K
and 78.7K tx/sec, respectively, with latencies of 29.6ms and 26ms. MSP-
Replicas achieves throughput and latency very similar to Counting-
All for low values of n and comparable to Counting-All for higher n.
At n = 13 the throughput of MSP-Replicas is 9% lower than that
of Counting-All, while the latency is only 4% higher. With n = 31,
throughput and latency of MSP-Replicas lie both approximately 35%
behind the numbers for Counting-All. We conclude that the overhead
added by the MSP-based quorum-checking code is relatively small for the
replicas, considering all the other tasks they have to carry out, such as
signature evaluation and message processing, especially when batching is
used. However, the protocol where both the replicas and the clients use
MSPs does not scale so well. This is because clients do not use batching
but operate on the MSP matrix for every received response. Moreover,
in the original HotStuff prototype implementation, the clients do not
verify the signatures on the response messages at all (!) and therefore,
this operation is very fast and lets the overhead of the MSP appear
large. With signature verification enabled, as in a production system,
additional cost incurred by the MSP representation would be much less
visible.

Scalability with general Byzantine quorum systems. We now
evaluate the protocols beyond threshold BQS. The question we want to
answer with this benchmark is how they scale when instantiated with
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a general BQS, in comparison to when instantiated with a threshold
BQS. We focus on MBF-All and MSP-Replicas, which perform best
in the previous experiments, and run them on two different families
of BQS. The first is the 2-layered-1-common general BQS presented in
Section 3.2, and the second is a threshold BQS. For 2L1C we vary the
parameter k from 4 to 10, resulting in a system with 4k parties, while the
threshold BQS is specified by the MBF Θn

d 2n+1
3 e (p1, . . . , pn), for n = 4k.

We do not consider Counting-All in this benchmark because it cannot
be instantiated with the general BQS.

Figure 3.5. Memory and time required to store the BQS and check for
quorums for the MSP-based and MBF-based implementations, when in-
stantiated with two different trust assumptions, the generalized 2L1C for
k = 4, . . . , 10, resulting in 4k parties, and the 2/3 Byzantine threshold
on a set of 4k parties.

We first report a direct comparison between the MBF method and
the MSP method for encoding a general BQS. In Figure 3.5 we show the
memory required by each replica to store the BQS specification and the
average time needed to check whether a set (chosen uniformly at random
and repeated 10000 times) is a quorum, based on our implementation.
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Both MBF-All and MSP-Replicas are considered, instantiated with both
the 2L1C and the threshold BQS. The MBF-based encoding is far more
efficient than the MSP implementation, both in terms of memory con-
sumption and evaluation time.

In Figures 3.6a and 3.6b we report the throughput and latency, re-
spectively. In this experiment we run two replica instances in every
VM, so the values reported here are overall lower than in the previous
benchmarks. The performance of MSP-Replicas when running with the
generalized and the threshold quorum specifications is similar. This is
because in both cases the replicas have to perform Gaussian elimination
on matrices of comparable dimensions. MBF-All also scales in a similar
way for both families of trust assumptions, but this benchmark shows
that its efficiency is slightly affected by the specified BQS. This is, first,
because general BQS are implemented by longer monotone Boolean for-
mulas, but also because general BQS have a (sometimes much) smaller
number of quorums than threshold BQS, which might affect the leader
when waiting for a quorum of votes. It is worth to mention that the
MBF-based protocols perform better than the MSP-based ones also in
this benchmark.

(a) Throughput (b) Latency

Figure 3.6. Scalability of MBF-All and MSP-Replicas when running
under two different trust assumptions, the generalized 2L1C for k =
4, . . . , 10, resulting in 4k parties, and the 2/3 Byzantine threshold on a
set of 4k parties.
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3.6 Discussion

In this chapter we have seen how general Byzantine quorum systems
(BQS) can be efficiently encoded as a monotone Boolean formula (MBF)
and as a monotone span program (MSP), and how they can be used in
a consensus algorithm.

Our benchmarks illustrate the added value of general BQS and
demonstrate that they have small overhead. One can therefore specify
complex, non-threshold trust assumptions in consensus protocols
without significantly sacrificing efficiency. The MBF-based protocol
performs consistently better than the MSP-based, which can be
expected due to the higher implementation complexity. The perfor-
mance of the MBF-based protocol was identical or comparable to the
original threshold HotStuff, although it can be slightly affected by the
complexity of the BQS, since more complex trust assumptions result in
longer formulas. The protocol where both the replicas and the clients
use the MSP does not scale well and can only be used in small systems.
Nonetheless, in applications where all the nodes participate in the
protocol, i.e., clients are not disjoint from servers, encoding the BQS as
an MSP also results in high efficiency, as was shown by MSP-Replicas in
the benchmarks.

We anticipate that our work will pave the way for more protocols
generalizing threshold trust assumptions. This can be combined with
the novel ideas presented in the BFT literature, e.g., the combination of
crash and Byzantine faults [36] or with peer-to-peer gossip [30].



Chapter 4

Composition of general
Byzantine quorum
systems

This chapter defines the notion of quorum composition and presents
composition rules for general Byzantine quorums in what is known as
the symmetric trust setting, where one global fail-prone system (FPS)
and one Byzantine quorum system (BQS) exist and are accepted by
all parties. The corresponding full paper [9] extends these rules to the
asymmetric trust setting, where each party specifies its own FPS and
BQS. For that setting, the authors first define the notion of a tolerated
system, which abstracts the failures that are tolerated in a system with
asymmetric trust, and then apply the symmetric rules, as presented in
this chapter, on tolerated systems.

4.1 Introduction

In this chapter we study the problem of composing trust assumptions,
expressed in terms of Byzantine quorum systems. Starting from two or
more running distributed systems, each one with its own assumption,
how can they be combined, so that their participant groups are joined
and operate together? A simple, but not so intriguing solution could be
to stop all running protocols and to redefine the trust structure from
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scratch. One drawback is that the composite system would have to be
restarted. Moreover, one needs to ensure that the combined system satis-
fies the liveness and safety conditions, as expressed by the Q3-condition.
This work presents methods for assembling trust assumptions from dif-
ferent, intersecting or disjoint, sets of processes. Our methods describe
the resulting fail-prone system and the corresponding quorum system.

Contributions. Specifically, the contributions of this work are as fol-
lows:

1. We formulate the task of composing Byzantine quorum systems
and propose properties that any such a composition rule should
satisfy.

2. We show how to compose two or more systems, in a way that
administrators or processes in one system do not need to make
new assumptions about those in the other.

3. Our composition rules guarantee that consistency and availability
will be satisfied in the composite quorum system.

Organization. This chapter is structured as follows. In Section 4.2 we
review related work. In Section 4.3 define quorum composition and its
desired properties, and in Section 4.4 we show different composition rules
for both fail-prone systems and quorum systems. These rules achieve
different properties, which we explore formally. In Section 4.5 we discuss
and conclude this chapter.

System model. We consider a system P with an arbitrary number
of processes pi that communicate with each other. A protocol for P
consists of a collection of programs with instructions for all processes.

An execution starts with all processes in a special initial state; subse-
quently the processes repeatedly change their state through computation
steps. Every execution is fair in the sense that, informally, processes do
not halt prematurely when there are still steps to be taken.

An honest process follows its protocol during an execution, and a
corrupted process may crash or deviate arbitrarily from its specification,
e.g., when corrupted by the adversary. We assume for simplicity that
the corrupted processes fail right at the start of an execution.
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4.2 Related work

Byzantine quorum systems (BQS) have originally been formalized by
Malkhi and Reiter [113] to generalize classical quorum systems toward
processes prone to Byzantine failures. They model symmetric trust,
where every process in the system adheres to a global, common as-
sumption. Many distributed protocols employ BQS as their foundation;
in the area of state-machine replication, for example, they range from
PBFT [43] to Tendermint [30], HotStuff [163], and other blockchain-
specific protocols. Recently, also general BQS have been demonstrated
for implementing consensus [5].

Measures of quality for classical (non-Byzantine) quorum system
have been studied by Naor and Wool [126] in terms of the load, capacity,
and availability properties. The load (the probability of access of the
busiest process) and availability (probability of some quorum surviving
failures) properties have then been considered by Malkhi et al. [114] in
the context of the Byzantine quorum systems. They construct different
types of Byzantine quorum systems with optimal load or availability.

Subsequent literature extends the BQS model, seeking to overcome
some limitations and to take them into practice. To this end, proba-
bilistic quorum systems have been introduced by Malkhi et al. [115] as
a tool for ensuring consistency of replicated data with high probability
despite both benign and Byzantine failure of processes. They define the
ε-intersecting quorum systems by relaxing the intersection property of a
quorum system in a way that every two quorums fail to intersect with
some small probability ε. By the quality measures, these new quorums
show an improvement over the classic and Byzantine ones.

Alvisi et al. [11] introduce dynamic Byzantine quorum systems in the
context of quorum-based Byzantine fault-tolerant data services. They
present protocols for dynamically changing the threshold of the system.
In this this way, they solve an intrinsic limitation of standard Byzan-
tine quorums, which is their dependence on a-priori defined resilience
thresholds.

Malkhi et al. [112] define flexible Byzantine quorums that allow pro-
cesses in the system to have different faults models. Their work presents
a new approach for designing Byzantine fault-tolerant consensus proto-
cols which guarantees higher resilience by introducing a new alive-but-
corrupt fault type, which denotes processes that attack safety but not
liveness.
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With the rise of blockchains, protocols using flexible trust structures
have been deployed in practice as well. Ripple (www.ripple.com) and
Stellar (www.stellar.org) do not base their resilience guarantees on a
global threshold, but allow processes to express their own beliefs.

A related form of recursive composition of Byzantine quorum sys-
tems has been explored and utilized in the literature. The idea is that,
given two systems, each occurrence of a process in the first is replaced
by a copy of the second system. Malkhi et al. [114] construct and study
composite BQS, such as recursive threshold BQS, using this idea. Hirt
and Maurer [91] use this technique to reason about multiparty computa-
tion over access structures. Our approach is orthogonal to these works,
in the sense that it places the two original systems on the same level. In
other words, we explore the failures that two systems can tolerate when
they are joined together, as opposed when one is inserted into the other.

4.3 Defining composition for general
Byzantine quorum systems

Given two Byzantine quorum systems Q1 defined on processes P1 with
fail-prone system F1, and Q2 defined on processes P2 with fail-prone
system F2, we want to provide a composition rule between the two that
allows the resulting BQS Q3 defined on processes P3 = P1∪P2 with fail-
prone system F3 to run a distributed protocol together. The resulting
system should satisfy the consistency and availability properties of a
BQS, that is, it should remain consistent and live in any execution where
a fail-prone set in F3 fails.

In this work we explore the composition of two BQS as a means to
allow them jointly run a protocol, without requiring the processes in one
BQS to make new trust assumptions about the processes in the other.
This is useful in practice because remodeling trust from scratch would be
a manual and uncertain process. We do not consider the composition as a
way to increase their resilience. For example, joining four singleton BQS
will result in a system with four processes, none of which is expected
to fail. This makes sense if one starts from the trust assumptions of
singleton BQS; by definition, the single process it contains never fails.
There could be other ways to compose the BQS, but they would require
changing the assumptions of each individual BQS and it is subject of
future work.

www.ripple.com
www.stellar.org
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According to the previous discussion, we now state properties that we
expect any form of composition for BQS should satisfy. Characterizing
the failures the composite BQS can tolerate now becomes the challenge
because multiple definitions of F3 are plausible. We want to ensure the
following properties:

1. Any B ∈ F3 satisfies B|P1 ∈ F∗1 , i.e., the failure of B is tolerated
in the first system.

2. Any B ∈ F3 satisfies B|P2
∈ F∗2 , i.e., the failure of B is tolerated

in the second system.

3. F3 satisfies the Q3-condition.

4. For any B ∈ F3, there exists a Q ∈ Q3, a quorum in the compos-
ite system, such that B ∩ Q = ∅, i.e., there is always a quorum
consisting only of honest processes.

In the text above, the notation X|P denotes the restriction of a set X
to P.

We need properties 1 and 2 because, as we shall see next, they im-
ply Property 3, and, hence, ensure consistency for the composite BQS
against any fail-prone set in F3. Moreover, they enable a composition by
using the existing assumptions, without requiring a redesign of the two
systems. One might also desire that the inverse of properties 1 and 2
be satisfied, i.e., that any fail-prone set in F1 and F2 be tolerated in
F3. However, we will later see that this does not always result in a
BQS (i.e., in a fail-prone system that satisfies the Q3-condition). Thus,
the objective of a composition rule is to satisfy these properties, thus
ensuring safety, while producing a maximal fail-prone system F3 (in the
sense that it contains the largest fail-prone sets that could be created
without having to redefine the trust assumptions within the original
systems). Finally, the composition rule should also satisfy Property 4,
which ensures liveness in the composite system.

Lemma 8. Properties 1 and 2 above imply Property 3.

Proof. Let us assume that Q3(F1) andQ3(F2). Towards a contradiction,
let FA, FB , FC ∈ F3 such that FA ∪ FB ∪ FC = P3. Now consider the
restriction of FA, FB and FC to P1 (and similarly to P2). We have that
FA|P1

∪FB |P1
∪FC |P1

= P1. However, from Property 1, the sets FA|P1
,

FB |P1
, and FC |P1

are each (subsets of) fail-prone sets in F1. We thus
have found three fail-prone sets that cover P1, a contradiction to F1

satisfying the Q3-condition.
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4.4 Composition rules for general Byzan-
tine quorum systems

We now proceed to specific constructions. In the following, we present
three composition methods of increasing suitability and give examples
to show their weaknesses and strengths.

Construction 9 (Union composition). Let Q1 be a BQS defined
on processes P1 with fail-prone system F1, and Q2 a BQS defined on
processes P2 with fail-prone system F2, where P1 ∩ P2 = ∅. The union
composition of Q1 and Q2 is a system defined on processes P3 = P1∪P2

with fail-prone system

F3 = F1 ∪ F2.

We can easily verify that the previous definition, given that P1∩P2 =
∅, fulfills Properties 1 and 2. Thus, F3 satisfies the Q3-condition and
there exists a BQS Q3 with fail-prone system F3.

Lemma 10. Given F3 as in Construction 9, a BQS Q3 is

Q3 = {Qi ∪Qj | Qi ∈ Q1, Qj ∈ Q2},

with Q1 and Q2 BQS.

Proof. We first show that consistency property holds. So, for every
Q1, Q2 ∈ Q3 such that Q1 = Qi∪Qj and Q2 = Q

′

i∪Q
′

j , with Qi, Q
′

i ∈ Q1

and Qj , Q
′

j ∈ Q2, and for every F ∈ F3, with F ∈ F1 or F ∈ F2, we have

Q1∩Q2 = (Qi∪Qj)∩(Q
′

i∪Q
′

j), which equals (Qi∩Q
′

i)∪(Qj∩Q
′

j), because
P1∩P2 = ∅. By assumption, both Q1 and Q2 are BQS. This means that,
if F ∈ F1, then Qi ∩ Q

′

i 6⊆ F , and if F ∈ F2, then Qj ∩ Q
′

j 6⊆ F . The
property then follows. Finally, the availability property follows from the
fact that P1 and P2 are disjoint and Q1 and Q2 are BQS.

However, the fail-prone system obtained by Construction 9 results
in a fail-prone system that tolerates only a few failures, namely those
tolerated in each of the two original systems, and not any combination
of them. Moreover, it would not work if P1 and P2 had any processes
in common. The next notion moves towards a composition that toler-
ates any combination of failures that would be tolerated in the original
systems.
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Construction 11 (Cartesian composition on disjoint sets). Let
Q1 be a BQS defined on processes P1 with fail-prone system F1, and
Q2 a BQS defined on processes P2 with fail-prone system F2, where
P1 ∩ P2 = ∅. Then the Cartesian composition of Q1 and Q2 is defined
on processes P3 = P1 ∪ P2 and tolerates the failure of any combination
of fail-prone sets of the original BQS. Formally,

F3 = {Fi ∪ Fj | Fi ∈ F1, Fj ∈ F2}.

Lemma 12. If Q3(F1) and Q3(F2), then for the fail-prone system F3

according to Construction 11, Q3(F3).

Proof. Any B ∈ F3 satisfies B|P1
∈ F1 and B|P2

∈ F2, since P1∩P2 = ∅.
Hence, the composition in Definition 11 satisfies the Properties 1 and 2,
and, by Lemma 8, also Q3(F3).

The previous lemma implies the existence of a BQS Q3 with fail-
prone system F3. Such a Q3 can be obtained, as earlier, by

Q3 = {Qi ∪Qj | Qi ∈ Q1, Qj ∈ Q2}.

It is easy to show, in a similar way as in Lemma 10, that this Q3

satisfies consistency and availability properties. Moreover, if Q1 and Q2

are canonical, Q3 will be the canonical BQS for F3.

Example 1. Let us consider the threshold case. Suppose Q1 and Q2

be two BQS, defined on P1 and P2, where P1 ∩ P2 = ∅, containing 7
and 10 processes, and tolerating the failure of any 2 and 3 processes,
respectively. This means that the first fail-prone system contains

(
7
2

)
=

21 sets of processes and the second fail-prone system contains
(

10
3

)
=

120 sets. Because in this work we join systems with already existing
failure assumptions, we refrain from changing these assumptions for the
composite system. Nevertheless, according to Lemma 12, the Cartesian
product of the fail-prone systems leads to a fail-prone system where the
Q3-condition holds, assuming that the starting systems both satisfy the
Q3-condition and are disjoint.

We apply Construction 11 here, observing that the Q3-condition is
the generalization of the condition n > 3f for the threshold case. As
a result we obtain an assumption on 17 processes, which tolerates the
failure of 5 processes, where 2 processes are from P1 and 3 from P2. More
formally, the failure of a set F is tolerated in the composite system if
and only if |F ∩ P1| ≤ 2 ∧ |F ∩ P2| ≤ 3.
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This gives a total of 2520 possible tolerated subsets. Observe that
Q3 is not a threshold BQS any more, and this was intended. A threshold
BQS made of 17 processes would tolerate the failure of any 5 processes,
which would lead to a total of

(
17
5

)
= 6188 fail-prone sets.

Example 2. We now show how Construction 11 fails to create a BQS
Q3 if P1 and P2 intersect, because the Q3-condition may not hold in
the composite system. Let Q1 defined on P1 = {a, b, c, d, e} with fail-
prone system F1 = {{a}, {b, c}, {d}, {c, e}} and Q2 defined on P2 =
{d, e, f, g, h} with fail-prone system F2 = {{d}, {e}, {f, g}, {h}}.

It is easy to verify that theQ3-condition is satisfied inQ1 andQ2. We
also see that, according to Construction 11, Q3 with processes P3 = P1∪
P2 contains, among others, the fail-prone sets {a, f, g}, {b, c, h}, {c, e, d},
which cover P3. Consequently, Q3 is not a BQS.

Example 2 shows that the Cartesian composition among fail-prone
systems does not lead to a fail-prone system where the Q3-condition
holds, if the two systems have common processes. To overcome this
issue, we introduce a third construction.

Definition 8. Let A = {A1, . . . , Am} and B = {B1, . . . , Bn} be two
sets of subsets of P1 and P2, respectively. We define A ⊗ B as the set
that contains the union of all sets Ai ∈ A∗ and Bj ∈ B∗, under the
restriction that either both Ai and Bj contain exactly the same subset
of the processes common to P1 and P2 or they do not have anything in
common. Formally,

A⊗B =
{
Ai∪Bj | Ai ∈ A∗∧Bj ∈ B∗∧(∀C ⊆ P1∩P2 : C ⊆ Ai ⇔ C ⊆ Bj)

}
.

Construction 13 (Cartesian composition). Let Q1 be a BQS de-
fined on processes P1 with fail-prone system F1 and Q2 a BQS defined
on processes P2 with fail-prone system F2, where P1 and P2 might con-
tain common processes. Then the composition of Q1 and Q2 is defined
on P3 = P1 ∪ P2 and tolerates the failure of any combination of any
fail-prone set (or subset of it) of the first system and any fail-prone set
(or subset) of the second system, such that both contain exactly the
same subset of the common processes. Formally,

F3 = F1 ⊗F2

=
{
Fi ∪ Fj | Fi ∈ F∗1 ∧ Fj ∈ F∗2 ∧ (∀C ⊆ P1 ∩ P2 : C ⊆ Fi ⇔ C ⊆ Fj)

}
.
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The rule of Construction 13 states that any fail-prone set in F3 is of
the form Fi ∪ Fj , where Fi and Fj are fail-prone sets (or subsets of fail-
prone sets) that either do not have any processes in common or, if they
do, both contain exactly the same subset of P1∪P2. We demand Fi ∈ F∗1
and Fj ∈ F∗2 , instead of Fi ∈ F1 and Fj ∈ F2, in order to construct a
maximal F3, in the sense that it contains the maximal fail-prone sets
that satisfy Properties 1 and 2.

Lemma 14. If Q3(F1) and Q3(F2), then Q3(F3), with F3 as in Con-
struction 13.

Proof. Any B ∈ F3 either does not contain a set of common processes C
among P1 and P2 or it does. In the former case, it is immediate to see
that B|P1 ∈ F∗1 and B|P2 ∈ F∗2 . In the latter case, B has been created
as the union between Fi ∈ F∗1 and Fj ∈ F∗2 , both containing the same
subset of P1 ∩ P2, according to Construction 13. It is thus not possible
that a new element of P1 appears in B|P1

that was not already in Fi,
and similarly that a new element of P2 appears in B|P2 that was not
already in Fj . This implies that B|P1 ∈ F∗1 and B|P2 ∈ F∗2 , and from
Lemma 8 we get Q3(F3).

Lemma 15. Given F3 as in Construction 13, a BQS Q3 is

Q3 = {Qi ∪Qj | Qi ∈ Q1, Qj ∈ Q2},

with Q1 and Q2 BQS.

Proof. Consistency and availability properties of Q3 can be proved in
a similar way as Lemma 10, assuming Q1 and Q2 to be BQS. In fact,
as in Lemma 10, we have that for every Q1, Q2 ∈ Q3, such that Q1 =
Qi ∪ Qj and Q2 = Q

′

i ∪ Q
′

j , with Qi, Q
′

i ∈ Q1 and Qj , Q
′

j ∈ Q2, we

have Q1 ∩ Q2 = (Qi ∪ Qj) ∩ (Q
′

i ∪ Q
′

j), which results in (Qi ∩ Q
′

i) ∪
(Qi ∩ Q

′

j) ∪ (Qj ∩ Q
′

i) ∪ (Qj ∩ Q
′

j). If P1 ∩ P2 = ∅, it is trivial to
prove the result. Otherwise, given F ∈ F3 with F = Fi ∪ Fj , where
Fi ∈ F∗1 ∧ Fj ∈ F∗2 ∧ ∀C ⊆ P1 ∩ P2 : C ⊆ Fi ⇔ C ⊆ Fj , we have two
cases. If there are no common processes between Fi and Fj , then observe
that Fi is contained in F∗i and it is then a subset of a fail-prone set F i
in Fi. The same happens for Fj . By assumptions, Q1 (respectively,

Q2) are BQS. It follow that, (Qi ∩ Q
′

i) (respectively, (Qj ∩ Q
′

j)) is not

a proper subset of F i and consequently of Fi (respectively of Fj). The
result follows. The same reasoning can be applied if Fi and Fj contain
a common subset C ⊆ P1 ∩ P2.
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Example 3. Let us consider again the threshold case, where
Q1 is defined on processes P1 = {a, b, c, d, e, f, g} and Q2 on
P2 = {g, h, i, j, k, l,m, n, o, p}. According to Construction 13, any
two processes in P1 together with any three processes in P2 are toler-
ated to fail, because these failures would be tolerated in the original
systems. However, if g together with any other process in P1 fails, then
only two more failures in P2 are tolerated, because g ∈ P2 has already
failed in the first system.

Example 4. Let Q1 be defined on processes P1 = {a, b, c, d, e}
and with fail-prone system F1 = {{a}, {b, c}, {d}, {c, e}} and Q2

be defined on processes P2 = {d, e, f, g, h} with fail-prone system
F2 = {{d}, {e}, {f, g}, {h}}. Then, according to Construction 13
processes in P3 = {a, b, c, d, e, f, g, h} have fail-prone system

F3 = {{a, f, g}, {a, h}, {b, c, f, g}, {b, c, h}, {d}, {c, e}}.

It is easy to verify that Q3(F3).

4.5 Discussion

Conclusion. Our work shows how trust assumptions of (possibly dis-
joint) systems can be composed deterministically, allowing groups of
strangers to join each other and collaborate under common trust assump-
tion. We have presented three composition rules of increasing suitability.
These rules are static and do not require interaction or agreement on the
new trust assumption among the processes. The last one, the Cartesian
composition rule, ensures that, if the original systems allow for running
a particular protocol (guaranteeing consistency and availability), then so
will the composed system. At the same time, the composed system tol-
erates as many faults as possible, subject to the underlying consistency
and availability properties.

Extension to asymmetric Byzantine quorum systems. Re-
cently, and particularly in the context of blockchains, even more general
and flexible trust models have also been considered [107, 92, 112, 55, 37].
It is evident that a common trust model cannot be imposed in an open
and decentralized or permissionless environment. Instead, every process
should be free to choose who to trust. Cachin and Tackmann [37] intro-
duce asymmetric Byzantine quorum systems. They let every process
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specify their own fail-prone system and quorum system. Asymmetric
Byzantine consensus protocols have been described as well [38]. Alpos,
Cachin, and Zanolini [9] present composition rules for the asymmetric
model. As there are no common trust assumptions in systems with
asymmetric trust, the authors define the notion of a tolerated system
as a representation of the failures the system can tolerate. Then they
use the Cartesian composition, presented in this chapter, to compose
asymmetric Byzantine quorum systems.





Chapter 5

Synchronization power of
token smart contracts

Guerraoui et al. [86] prove that the asset transfer object, which allows
assets to be moved across different processes, can be implemented with-
out consensus. They also define the k-asset transfer object, where up
k processes may share ownership of assets, and show that consensus is
needed only among those k processes. The parameter k is fixed at cre-
ation time of the object. In this chapter we investigate the synchroniza-
tion power (formally specified by the notion of the consensus number)
of token smart contracts, focusing mainly on the ERC20 contract [160].
We prove that the consensus number changes dynamically according to
the state of the object. To prove this result, we develop a dedicated
methodology that accounts for the fact that certain method invocation
may change the consensus number of an object.

Similar results are proved by subsequent work for more objects. Frey,
Gestin, and Raynal [77] study the synchronization power of AllowList
and DenyList objects, showing that no consensus is required to imple-
ment the former, while consensus among a specific set of processes is
required for the latter. The authors show how these objects can be used
to build an anonymous asset transfer protocol.
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5.1 Introduction

The rise of cryptocurrencies has motivated the development of
distributed applications running over blockchain platforms. These
applications go far beyond the concept of a decentralized cryptocur-
rency, as initially envisioned by Bitcoin [124]. Taking this diversity to
the extreme, smart contracts enable a blockchain to execute arbitrary
programs, in a fully decentralized fashion akin to a “world computer.”
Introduced by Ethereum [71], smart contracts come in many different
flavors and are the key element in most blockchain projects today.

Regardless of the type of supported smart contract, blockchain plat-
forms rely on a distributed protocol that orders transactions and em-
ulates a ledger data structure. A transaction may be a simple “coin
transfer” in a cryptocurrency or a complex method call to a decen-
tralized application. For either use-case, it is widely accepted that the
blockchain nodes must execute all transactions in the same order to
ensure consistency [154, 145]. That is, to ensure that the emulated
ledger is consistent, transactions are sent using protocols that imple-
ment total-order broadcast or consensus. Garay et al. [78] showed such
an equivalence formally for the Bitcoin protocol. This common theme
seems to suggest that total order is also necessary for the consistency of
blockchains.

However, this folklore intuition is wrong: consensus is not neces-
sary to avoid double-spending in cryptocurrency applications. Guer-
raoui et al. [86] show this formally: after distilling the essence of a
cryptocurrency protocol to the problem of realizing a consistent asset
transfer (AT), the authors cast the latter as a sequential object in the
shared-memory model and prove the AT object has consensus num-
ber 1 in the wait-free hierarchy [88]. In other words, consensus is not
needed at all for emulating the functions of Bitcoin! The consensus
number is a well-established tool to express the synchronization require-
ments of asynchronous concurrent objects. Informally, it provides an
upper bound for the number of processes that can be synchronized us-
ing (arbitrarily many) instances of a given object. For cryptocurrencies
modeled after Bitcoin that support shared accounts with up to k own-
ers, Guerraoui et al. introduce a k-shared asset transfer (k-AT) object
that has consensus number k, which is as powerful as consensus among
its k owners. Going beyond their theoretical elegance, these results are
of great practical interest because they pave the way to consensus-free
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implementations of cryptocurrencies [50, 85], with higher efficiency and
robustness to network partitions. In this particular case, for example,
only the k owners need to reach consensus for spending from the ac-
count, provided they have additional means to publicize this widely in
the network.

In this work, we investigate the synchronization power of smart con-
tracts. We observe that although k-AT would allow to generically im-
plement any smart contract among k processes, it remains open whether
this level of synchronization is necessary for widely-used blockchain ap-
plications. We focus our attention on smart contracts for Ethereum,
which is by far the most important platform for hosting decentralized
applications. Moreover, many other networks have adopted its pro-
gramming model. We present an abstraction of a token object that
captures and generalizes the functionality of an ERC20 contract [160],
which forms the basis for countless applications on Ethereum that hold
billions today. Notice that the k-AT abstraction [86] applies to Bitcoin
and its UTXO model of a currency. Ethereum, on the other hand, uses
accounts, and ERC20 contracts are considerably more powerful than
Bitcoin transactions. The additional features of ERC20 make it possi-
ble, for example, to let account owners conditionally issue transfers to
other users of their choosing.

Empowering account owners to approve other spenders makes the
ERC20 token object strictly more powerful than k-AT. In addition, ap-
proval of new spenders can be performed flexibly, at any time and for
arbitrary amounts of tokens, achieving a dynamic that has no counter-
part in the case of k-AT. Because of these differences, the results estab-
lished for k-AT [86] cannot be lifted to ERC20 tokens. What crucially
distinguishes an ERC20 token object from k-shared asset transfer is the
increased level of dynamicity, which is reflected in its synchronization
requirements. Namely, the consensus number of ERC20 tokens depends
on the number of approved spenders for the same account, which may
change as the account owner enables more spenders. Based on the ob-
servations, we develop a formalism to express that the consensus number
of a token object can change over time, depending on the object’s state.
More concretely, we prove that there exist specific states from which it is
possible to solve consensus among k processes, for every k ≤ n where n is
the number of accounts defined by the token contract. Moreover, these
states can be reached by letting any of the account owners approve new
spenders.

Establishing the synchronization power of smart contracts is impor-
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tant for understanding the level of synchronization that is required to
run decentralized applications in a blockchain network. Not every two
users must be synchronized on every aspect of their respective states,
this only matters when their actions affect each other. Identifying the
level of consensus needed for different applications also paves the way
for realizing more efficient blockchain networks, which may exploit more
parallelism.

Organization. After discussing related work in Section 5.2, in Sec-
tion 5.3 we present relevant notations and background concepts. We
then describe ERC20 tokens in Section 5.4, and we analyze their syn-
chronization requirements in Section 5.5. In Section 5.6, we discuss
other notable token standards and elaborate on extending our results to
these tokens. Section 5.7 concludes our work suggesting future research
directions.

5.2 Related work

Synchronization requirements and blockchain scalability.
Blockchain technologies have pushed remarkable efforts towards design-
ing more scalable platforms, fostering renovated interest in distributed
consensus. Perhaps surprisingly, the idea of realizing a consensus-less
decentralized cryptocurrency appeared only recently [87]. To formally
prove that consensus is not necessary to realize a decentralized cryp-
tocurrency, Guerraoui et al. [86] propose a shared-memory abstraction
for the asset transfer problem as implemented in Bitcoin [124], and
show that such abstraction requires only a minimal level of synchroniza-
tion. Specifically, asset transfer has consensus number 1 in Herlihy’s
wait-free hierarchy [88]. The approach of analyzing the synchronization
requirements of shared objects in terms of consensus number has been
used by others. For instance, Cachin et al. [33] study the consensus
number of various cloud-storage abstractions, and find that a key-value
store has the weakest synchronization power (i.e., its consensus number
is 1) while a replica object requires the strongest synchronization level
(i.e., its consensus number is ∞).

Obviating the need to reach agreement on the exact ordering of trans-
actions opens the door to more scalable solutions than the currently de-
ployed, consensus-based blockchains. In this context, Collins et al. [50]
present a decentralized payment system based on Byzantine reliable
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broadcast. Guerraoui et al. [85] generalize the Byzantine reliable broad-
cast abstraction to the probabilistic setting and propose a protocol which
efficiently realizes it, with the goal of replacing the usual quorum-based
safety notions with stochastic guarantees for consistency in a distributed
network. While the above-mentioned protocols fulfill the synchroniza-
tion requirements for implementing asset transfer, and can therefore
support plain cryptocurrency applications, they are not sufficient for
the implementation of generic smart contracts.

Many other approaches have been explored in order to increase
blockchain scalability [52], most prominently “on-chain” proposals
such as optimized BFT-based consensus protocols [82, 30, 163],
DAG-based protocols [93, 152], and sharding [164, 102, 162, 73], as
well as “off-chain” solutions such as payment channels [134, 67] and
sidechains [16]. Even though these alternative approaches have received
a lot of attention recently [165], they have not yet been widely adopted
in practice.

Smart contracts and Ethereum tokens. Ethereum [71] is the first
open-source cryptocurrency platform supporting smart contracts, and it
provides a decentralized virtual machine for executing arbitrary Turing-
complete programs. The ERC20 standard, introduced by Buterin and
Vogelsteller [160], provides functions for handling tokens over Ethereum,
allowing users to transfer various types of transferable goods such as dig-
ital and physical assets. It formulates a common interface for fungible
tokens and has become the most widely-deployed API for implement-
ing a token functionality, with more than half of the overall Ethereum
transactions being ERC20 token transfers [158].

5.3 Background

5.3.1 Shared memory objects

We begin with presenting well-established concepts from the concur-
rent computing literature. We mostly follow the standard notations and
nomenclature [32, 140, 86].

Concurrent objects. We assume a (finite) set Π of processes that
communicate in an asynchronous manner by invoking operations on,
and receiving responses from, shared objects. Processes are sequential,
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meaning that no process invokes a new operation before completing (i.e.,
receiving the response from) all previously invoked operations. We as-
sume a crash-failure model: a process may halt prematurely, in which
case we say the process has crashed. We say that a process is faulty if
it crashes during its execution, otherwise we say that it is correct.

An object type (or simply object) defines the functionality of shared-
memory programming abstractions providing a finite set of operations.
We consider concurrent objects, namely objects which can be accessed
by multiple processes simultaneously and concurrently. The specifi-
cation of these objects can be sequential or not, where “sequential”
means that all correct behaviors of the object can be described with
sequences of invocations and responses (traces). In this work, we are
only concerned with sequential objects. We define an object type as
a tuple T = (Q, q0, O,R,∆), where Q is a set of states, q0 ∈ Q is
an initial state, O is a set of operations, R is a set of responses, and
∆ ⊆ Q × Π × O × Q × R defines the valid state transitions. We write
(q, p, o, q′, r) ∈ ∆ to denote that process p invokes operation o on the
object in current state q, and the operation completes by returning re-
sponse r and causing the object to enter state q′.

An implementation for an object type T is a distributed algorithm
describing, for each process, sufficient steps to realize each of the object’s
operations in such a way that desired safety and liveness properties are
met. The strongest liveness condition for object implementations is wait-
freedom [88], requiring that every invocation of any object operation
terminates, despite process failures.

Registers. The simplest object type is a register, which defines a
shared-memory functionality providing read and write operations. Given
a register R, a process can write a value v into R by invoking R.write(v);
upon completion of this operation, the process is given true in re-
sponse. Similarly, a process can initiate a read operation on R by in-
voking R.read(); the process obtains a value R stores. In this work, we
consider atomic registers. Formally, an atomic register provides termi-
nation, i.e., if a correct process invokes an operation, then the operation
eventually completes, and validity, i.e., a read that is not concurrent
with a write returns the last value written, while a read that is concur-
rent with a write returns the last value written or the value concurrently
being written. Moreover, an atomic register provides ordering, i.e., if a
read returns a value v and a subsequent read returns a value w, then
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the write of w does not precede the write of v. This property implies
that every operation of an atomic register can be thought to occur at
a single indivisible point in time, which lies between the invocation and
the completion of the operation [32].

Asset transfer (AT). In the context of analyzing blockchain appli-
cations from a concurrency-theory viewpoint, Guerraoui et al. [86] pro-
pose the asset transfer object as an abstraction for cryptocurrencies.
We reproduce this abstraction below. Let A be a finite set of accounts,
|A| = n, and let µ : A → 2Π denote the owner map that associates each
account a ∈ A to the set of processes sharing the account. If |µ(a)| = k,
we say that a is a k-shared account.

Definition 9 (Asset transfer). The asset transfer object associated
to A and µ, denoted by AT = (Q, q0, O,R,∆), is defined as follows:

• Set Q contains all balance maps, i.e., Q = {β : A → N}.
• The initialization map q0 = β0 assigns an initial balance to each

account.

• O contains two operations, O = {transfer(as, ad, v) : as, ad ∈
A, v ∈ N} ∪ {balanceOf(a) : a ∈ A}, where transfer(as, ad, v)
lets the caller process, say p, transfer v tokens from a source ac-
count as to a destination account ad, provided that p ∈ µ(as), and
balanceOf(a) reads the balance of account a.

• R contains the possible responses to operations in O,
R = {true, false} ∪ N.

• ∆ defines the valid state transitions. Given a state q = β ∈ Q,
a process p ∈ Π with account ap, an operation o ∈ O, a response
r ∈ R, and a new state q′ = β′ ∈ Q, we have (q, p, o, r, q′) ∈ ∆ if
and only if either of the following conditions holds:

– o = transfer(as, ad, v) ∧ p ∈ µ(as) ∧ β(as) ≥ v ∧ β′(as) =
β(as)− v ∧ β′(ad) = β(ad) + v ∧ ∀c ∈ A\ {as, ad} : β′(c) =
β(c) ∧ r = true;

– o = transfer(as, ad, v) ∧ (β(as) < v ∨ p /∈ µ(as)) ∧ q′ =
q ∧ r = false;

– o = balanceOf(a) ∧ q′ = q ∧ r = β(a).

If the maximum number of processes sharing an account is k, we name
the object a k-shared asset transfer, denoted by k-AT.
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5.3.2 Synchronization power

Consensus. Another important object type is consensus, which allows
a set of processes to agree on a value. A consensus object C provides a
single operation propose. A process can invoke C.propose(v) on input
a proposal v as a candidate value to be agreed upon. Every process
can call propose with their own proposed value, and only one invocation
is permitted (i.e., it is a “single-shot” object). Upon completion, the
operation returns a value d, called the decided value. Besides wait-
freedom (a.k.a. termination), we require validity, i.e., the decided value
is the proposal v of some process, and consistency, i.e., every process
returns the same decided value d.

Synchronization power of shared objects. The prominent result
by Fischer, Lynch, and Paterson [76] establishes the impossibility of
wait-free implementing consensus from atomic registers. This means
that consensus requires a higher level of synchronization than atomic
registers. In fact, the consensus object is universal, in the sense that any
shared object described by a sequential specification can be wait-free im-
plemented from consensus objects and atomic registers [88]. Therefore,
consensus can be used to reason about the synchronization power of all
shared objects (which admit a sequential specification) among a number
of processes. This leads to the central concept of consensus number to
express the synchronization power of shared objects.

Definition 10 (Consensus number [88]). The consensus number as-
sociated with an object O is the largest number n such that it is possible
to wait-free implement a consensus object from atomic registers and ob-
jects of type O. If there is no largest n, the consensus number is said
to be infinite. Given an object O, we denote its consensus number
by CN (O).

The consensus number allows comparing objects based on their syn-
chronization power, thereby establishing a hierarchy among objects—the
consensus hierarchy. In this work, we leverage the concept of consen-
sus number to study the level of synchronization required for popular
smart-contracts tokens.

Theorem 16 ([88]). Let O and O′ be two objects such that CN (O) = n
and CN (O′) > CN (O). Then there is no wait-free implementation of
an object of type O′ from objects of type O and read/write registers in a
system of n processes.
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5.4 Defining ERC20 tokens as shared ob-
jects

In this section, we present a smart contract for transferring tokens ac-
cording to the Ethereum Request for Comment (ERC) 20 specification
and propose a corresponding shared-memory abstraction.

Tokens are blockchain-based assets which can be exchanged across
users of a blockchain platform. Ethereum Request for Comment (ERC)
20 defines a standard for the creation of a specific type, dubbed ERC20
token, one of the most widely adopted tokens on Ethereum. ERC20
tokens are transferred through dedicated transactions among Ethereum
addresses, and are managed by smart contracts. For completeness, we
reproduce in Algorithm 7 the algorithmic specification defined in the
ERC20 proposal [160], with minimal notational changes to ease the com-
parison with the objects defined in this work.

The definition of a token object we propose is a generalization of
an ERC20 token. The reason for slightly deviating from the original
specification (as per Algorithm 7) is that it represents a more expressive
abstraction: it allows us to reason about synchronization requirements of
ERC20 tokens as well as comparing them with the asset transfer object.

Let A be a finite set of accounts. We assume one account per process,
|Π| = |A| = n, and define a bijection ω : A → Π between accounts and
processes, i.e., ω(ai) = pi for all i ∈ {1, . . . , n}. We name ω : A → Π
the owner map that associates to each account a the corresponding
process ω(a) which owns the account.1 To simplify the notation, we use
the shorthand ap for the account owned by process p, i.e., such that
ω(ap) = p.

Notice that in the case of asset transfer (cf. Definition 9), account
ownership captures a slightly different setting than compared to token
objects: the former allows for shared ownership while the latter does
not. We make this explicit by using different owner maps µ and ω,
respectively. However, as we explain in detail in the next section, ERC20
tokens offer a richer set of operations that, among others, enables a
conditioned form of shared ownership.

1Although we use a similar formalism as Guerraoui et al. [86] to define account
ownership, we make the restriction to single-owner accounts to meet the Ethereum-
token specification. As we will see in later sections, in Ethereum tokens there are
no shared accounts, however, a similar concept is enabled by means of dedicated
methods.



64 Synchronization power of token smart contracts

Algorithm 7 Sequential specification of ERC20 functionalities. Code
for process pi.

State:
115: const d, the process that deployed the contract
116: const string name
117: const string symbol
118: const int decimals
119: const int totalSupply
120: balances [] ⊆ A× N, init. balances[d] = totalSupply, balances[i] = 0,∀i 6= d
121: allowances [][] ⊆ A×P × N, initially ∅

122:operation totalSupply()
123: return totalSupply

124:operation balanceOf(owner)
125: return balances[owner]

126:operation transfer(to, value)
127: if balances[pi] < value then
128: return false
129: else
130: balances[pi]← balances[pi]− value
131: balances[to]← balances[to] + value
132: return true

133:operation transferFrom(from, to, value)
134: if allowances[from][pi] < value then
135: return false
136: else if balances[from] < value then
137: return false
138: else
139: allowances[from][pi]← allowances[from][pi]− value
140: balances[from]← balances[from]− value
141: balances[to]← balances[to] + value
142: return true

143:operation approve(spender, value)
144: allowances[pi][spender]← value
145: return true

146:operation allowance(owner, spender)
147: return allowances[owner][spender]
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Using this notation, below we provide a specification for the ERC20
token smart contract using the formalism of shared objects (cf. Sec-
tion 5.3.1).

Definition 11 (ERC20 token object). Let A be a set of accounts
and let Π be the set of corresponding owner processes. A token object T
associated to A consists of a tuple T = (Q, q0, O,R,∆), where:

States: Q contains all balances and allowances maps, i.e.,

Q = {β : A → N} × {α : A×Π→ N}. (5.1)

Intuitively, for a ∈ A and p ∈ Π, β(a) indicates the balance of account a,
and α(a, p) denotes the amount of tokens that process p is allowed to
spend from account a.

Initial state: q0 = (β0, α0) denotes the pair of initial account balances
and allowances.

Operations: O contains the following operations:

O = {transfer(ad, v) : ad ∈ A, v ∈ N} (5.2)

∪ {transferFrom(as, ad, v) : as, ad ∈ A, v ∈ N} (5.3)

∪ {approve(p, v) : p ∈ Π, v ∈ N} (5.4)

∪ {balanceOf(a) : a ∈ A} (5.5)

∪ {allowances(a, p) : a ∈ A, p ∈ Π}. (5.6)

Operation transfer(ad, v) lets the caller process, say p, transfer v
tokens from its account ap to destination account ad; similarly,
transferFrom(as, ad, v) lets the caller process transfer v tokens from
source account as to destination account ad. Operation approve(p′, v)
lets the caller process p authorize another process p′ to transfer up
to v tokens from p’s account. Finally, balanceOf(a) reads the balance
of account a, and allowances(a, p) reads the amount of tokens that
process p is authorized to transfer from a.

Responses: R contains the possible responses for all operations in O,
namely R = {true, false} ∪ N.

Sequential specification: ∆ defines the valid state transitions. Given
a state q = (β, α) ∈ Q, a process p ∈ Π with account ap, an operation
o ∈ O, a response r ∈ R, and a new state q′ = (β′, α′) ∈ Q, we have
(q, p, o, r, q′) ∈ ∆ if and only if either of the following conditions holds:
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• o = transfer(ad, v) ∧ β(ap) ≥ v ∧ β′(ap) = β(ap)− v ∧ β′(ad) =
β(ad)+v ∧ ∀c ∈ A\{ap, ad} : β′(c) = β(c) ∧ α′ ≡ α ∧ r = true;

• o = transfer(ad, v) ∧ β(ap) < v ∧ q′ = q ∧ r = false.

• o = approve(p̄, v) ∧ α′(ap, p̄) = v ∧ α′(a, p) = α(a, p) ∀(a, p) 6=
(ap, p̄) ∧ β′ ≡ β ∧ r = true;

• o = transferFrom(as, ad, v) ∧ β(as) ≥ v ∧ α(as, p) ≥ v ∧ β′(as) =
β(as)−v ∧ α′(as, p) = α(as, p)−v ∧ β′(ad) = β(ad)+v ∧ α′(a, p) =
α(a, p) ∀(a, p) 6= (as, p) ∧ ∀c ∈ A \ {as, ad} : β′(c) = β(c) ∧ r =
true;

• o = transferFrom(as, ad, v) ∧ (β(as) < v ∨ α(as, p) < v) ∧ q′ =
q ∧ r = false;

• o = balanceOf(a) ∧ q = q′ ∧ r = β(a);

• o = totalSupply ∧ q = q′ ∧ r =
∑
a∈A β(a);

• o = allowances(a, p̄) ∧ q′ = q ∧ r = α(a, p̄).

In this chapter we use of the following shortcut notation. For every
state q ∈ Q, we write Tq to denote the token object initialized with
state q, i.e., T = (Q, q,O,R,∆). Similarly, for Q′ ⊆ Q we write TQ′

to indicate that token object is initialized with any state q ∈ Q′. Fi-
nally, we note that in the ERC20 standard [160] (cf. Algorithm 7) the
state of the smart contract is fully specified by the arrays balances[ ]
and allowances[ ]. Namely, for all a ∈ A and all p ∈ Π, we have
T.balances[a] = T.β(a) and T.α(a, p) = T.allowances[a][p].

The example below illustrates the various ERC20 token operations
and their interplay.

Example 5 (ERC20 token: sample execution). Consider a
set of three processes, Π = {A,B,C} (Alice, Bob, and Charlie),
and corresponding accounts, A = {aA, aB , aC}. Let Alice be the
deployer of an ERC20 token contract, and suppose Alice provides an
initial supply of 10 tokens, i.e., totalSupply = 10. According to the
ERC20 specification, the token object T associated to the contract
is initialized in a state q0, where balances[aA, aB , aC ] = [10, 0, 0]
and ∀a ∈ A : allowances[a][A,B,C] = [0, 0, 0]. Starting from this
initial configuration, let Alice invoke transfer(aB , 3), sending 3 tokens
to Bob’s account. This operation triggers the transfer of 3 tokens
from account aA to account aB and, upon completion, it causes an
update to state q1, where balances[aA, aB , aC ] = [7, 3, 0]. Let now
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Bob invoke approve(C, 5), authorizing Charlie to transfer up to 5
tokens from account aB . Upon completion, this operation causes
an update to state q2, with allowances[aB ] = [0, 0, 5]. Upon being
approved, let Charlie invoke transferFrom(aB , aC , 5) to transfer 5
tokens from Bob’s account to his own account. Despite the fact that
Charlie’s allowance allowances[aB ][C] = 5 would in principle permit
such transfer, Bob’s balance balances[aB ] = 3 is currently insufficient.
Therefore, the operation returns false, leaving the state unmodified,
i.e., q3 = q2. Finally, let Charlie invoke transferFrom(aB , aA, 1) to
transfer 1 token from account aB to Alice’s account. This time, the
amount of tokens to be transferred is below the account balance and,
upon completion, the operation triggers an update to state q4, where
balances[aA, aB , aC ] = [8, 2, 0] and allowances[aB ] = [0, 0, 4].

5.5 Consensus number of ERC20 tokens

In this section, we study the synchronization power of the ERC20 token
object by analyzing its consensus number.

5.5.1 Overview of the results

The consensus number of an ERC20 token object can be expressed in
terms of the maximum number of processes that can transfer tokens from
the same account. This number, denoted below by k, depends on the
account balances and allowances defined by the object’s state q = (β, α),
and hence it can change as the state is updated. In the rest of this
section, we therefore analyze the consensus number of a token object T
for various state configurations.

Approach and challenges. Given the similarities between the
ERC20 token object and the k-shared asset transfer object, one may
think they have the same consensus number. Intuitively, the approve
method in ERC20 tokens allows emulating shared accounts by letting
every account owner authorize other processes to transfer tokens from
its own account. In fact, there are at least two peculiarities of ERC20
tokens which depart from k-shared accounts. Firstly, a k-shared asset
transfer supports at most k owners per account, where k ≤ n is fixed
upfront (because the owner map µ in k-AT is static). This is in contrast
with ERC20 tokens, where each account owner can dynamically add and
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remove spenders at any time of the execution, and the number of valid
spenders per account is subject to change as the protocol is ongoing. In
other words, an ERC20 token object could be loosely seen as a k-shared
asset transfer with k changing dynamically. Secondly, in k-AT the
owners of a shared account remain owners for the whole lifetime of the
object, i.e., they all can transfer tokens from that account as long as
the balance is positive. In ERC20 tokens instead, an approved spender
remains a valid spender until it consumes the granted allowance or the
account owner decides to revoke the spender’s allowance (this can be
done by resetting the allowance to the default value 0).

These crucial differences show a separation between the k-AT object
and the ERC20 token object, and suggest that the two objects meet
different synchronization requirements. In particular, it is not possible
to apply known results and techniques for k-AT to the case of ERC20
tokens. Moreover, the approval mechanism to add and remove spenders
in ERC20 tokens has subtle implications on the object’s synchronization
power.

In the rest of this section, we confirm these observations formally
and make precise statements about the consensus number of the ERC20
token object. We now provide a rather informal summary of our results,
which we state in full detail and prove in Section 5.5.2. The statements
below hold for every k ≤ n.

Lower bound. There exists a set Sk of states, which we name syn-
chronization states, such that for every q ∈ Sk it is possible to wait-free
implement a consensus object among k processes using objects of type Tq
(Theorem 17). Formally:

CN (TSk) ≥ k. (5.7)

To prove this lower bound, we show that a consensus object support-
ing k processes reduces to Tq, with q ∈ Sk, by presenting a wait-free
implementation of consensus for k processes from objects of type Tq and
atomic registers.

Upper bound. The set of states can be partitioned into [Q1, . . . , Qn],
with Q = ∪nk=1Qk, so that for every q ∈ Qk, at most k processes can
reach consensus using token objects of type Tq (Theorem 18). Formally:

CN (TQk) ≤ k. (5.8)
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Proving the upper bound turns out to be more involved. We proceed
with an indirect argument, showing that the hypothesis CN (TQk) = k′ >
k leads to a contradiction. Intuitively, the contradiction is reached be-
cause no implementation of consensus for k′ processes from Tq, with q ∈
Qk, can be wait-free.

5.5.2 Technical results and proofs

Essentially, we show that an ERC20 token represents a dynamic k-shared
AT object, where k depends on the current object’s state. Specifically,
k is the maximum number of valid spenders for the same account. For
each k ≤ n, where n is the total number of accounts, there exists a
class Sk of states, the class of k-synchronization states, such that ∀q ∈
Sk, it holds CN (Tq) ≥ k. However, we cannot conclude that CN (T ) =
∞. We can only say that if a state q ∈ Sn is reached, then we can solve
consensus among all processes. That is, there exists a state q ∈ Sn ⊂
Q such that CN (Tq) = n. This is weaker than saying that for every
state, we can solve consensus among n processes. In particular, it is not
possible to reach such a state q ∈ Sn in a wait-free manner, as we prove
later.

Let us first define the sets Sk of synchronization states formally, then
we will provide relevant bounds for the consensus number of an ERC20
token object in a synchronization state.

Enabled spenders. For every state q = (β, α) ∈ Q, let σq : A → 2Π

denote the mapping associating each account a to its enabled spenders
according to q, i.e., the set of processes that are enabled to transfer
tokens from account a w.r.t. balances β and allowances α specified by
state q. Formally,

σq(a) = {p ∈ Π : p = ω(a) ∨ α(a, p) > 0}. (5.9)

Note that we explicitly include the account owner ω(a) in the set of
enabled spenders for account a. We conventionally assume that an ac-
count with zero balance has only its owner as enabled spender, i.e.,
β(a) = 0 =⇒ σq(a) = {ω(a)}. Indeed, even if there may be some pro-
cess p, other than the owner, with positive allowance for account a, i.e.,
β(a) = 0 and α(a, p) > 0, this process would not be able to transfer
tokens from a unless the balance is increased.
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State partition. Let Qk, with k ≤ n, be the set of states with ex-
actly k valid spenders from the same account, i.e.,

Qk = {q ∈ Q : max
a∈A
|σq(a)| = k}. (5.10)

Observe that the subsets Q1, . . . , Qn define a partition. Intuitively, we
would like to say that each subset is associated to a given level of syn-
chronization, defining a hierarchy Q1 ≺ · · · ≺ Qn reflecting the synchro-
nization level, where Qk corresponds to consensus number k. Impor-
tantly, the level of synchronization may change as the object’s state is
updated. In fact, for every k and for all states q ∈ Qk, there exists a
valid transition (q, p, o, r, q′) ∈ ∆, such that

q ∈ Qk, p = ω(a), o = approve, r = true, q′ ∈ Qk+1, (5.11)

in the sense that it is possible to reach some state in Qk+1 from q ∈ Qk.
However, the only way to do so is by letting the owner of a k-spender
account a approve a new spender.

Synchronization states. Later in this section, we show how to im-
plement consensus from an ERC20 token object. Intuitively, we leverage
an account for which multiple spenders have been approved: we let the
spenders engage in a “race” where they compete for spending the ac-
count’s tokens, and the “winner” of this competition gets to choose the
decided value (in the consensus protocol). This idea crucially relies on
the fact that there is a unique winner. To guarantee this, we need to
impose an additional requirement on the balance and allowances of the
account used in the implementation. We formally specify such require-
ment by defining predicate U : A×Q→ {true, false} (ensuring unique
transfers) as follows. Namely, given a state q = (β, α) and an account a,
we define:

U(a, q) if and only if β(a) > 0 ∧
(|σq(a)| ≤ 2 ∨ ∀pi, pj ∈ σq(a) \ {ω(a)} : α(a, pi) + α(a, pj) > β(a)) .

(5.12)

We introduce further notation to identify relevant states which will ap-
pear in our main results. For every k as above, we define Sk ⊂ Qk to be
the set of states q with exactly k valid spenders from the same account a
and such that predicate U holds for (a, q):

Sk = {q ∈ Q : ∃a ∈ A : |σq(a)| = k ∧ U(a, q)} (5.13)
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We refer to the states in Sk as k-synchronization states. Intuitively,
q ∈ Sk are the states from which we can solve consensus for k processes,
i.e., using an object type Tq, but not for more than k processes.

Theorem 17. For every k ≤ n it holds CN (TSk) ≥ k.

Proof. We show an implementation of a consensus object C for k pro-
cesses, using an instance of a Tq object, with q ∈ Sk, and k atomic
registers R[1], . . . , R[k]. By the hypothesis q ∈ Sk, at least one account
has k enabled spenders (cf. (5.13)) and satisfies the requirements de-
fined by predicate U (defined in (5.12)) with respect to state q = (β, α).
Without loss of generality, let a1 ∈ A denote one such account, and
let σq(a1) = {p1, . . . , pk} with p1 = ω(a1). Let B = β(a1) and Aj =
α(a1, pj), j ∈ {2, . . . , k}, denote the balance of a1, resp., the allowances
of processes p2, . . . , pk for account a1, w.r.t. state q = (β, α). Let ad
be any account in {a2, . . . , ak}. We assume the processes know the des-
ignated account ad prior to executing the protocol. The code for the
implementation is shown in Algorithm 8, and described below.

Algorithm 8 Wait-free implementation of a consensus object C among
k processes in {p1, . . . , pk} using an ERC20 object Tq, with q ∈ Sk,
associated to an account set A = {a1, . . . , an}, where ad ∈ A \ {a1}.
Code for process pi.

State
148: R[j]← ⊥, j ∈ {1, . . . , k}
149: An ERC20 object T initialized such that:
150: T.balances[a1] = B
151: T.allowances[a1][pj ] = Aj , j ∈ {2, . . . , k}

152:operation propose(v)
153: R[i].write(v)
154: if pi = p1 then
155: T.transfer(ad, B) // Transfer full balance
156: else T.transferFrom(a1, ad, Ai)
157: for j ∈ {2, . . . , k} do
158: if T.allowances(a1, pj) = 0 then
159: return R[j].read()
160: return R[1].read()

Briefly, each process pi writes its proposed value v in a register R[i].
Then process p1 attempts to transfer its whole balance B to account
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ad, and process pi 6= p1 invokes operation T.transferFrom as an attempt
to transfer its whole allowance Ai from a1 to ad. Since only one of the
transfer and transferFrom invocations succeeds (as we prove shortly),
we can safely decide the value proposed by the process which triggered
the successful transfer. The intuition is that only the invocation of
transfer by p1 or the first completing invocation of transferFrom by
some process pi∗ , for i∗ ∈ {2, . . . , k}, succeeds. Upon completion of that
operation, no other process will be able to issue its own transfer because
the balance of a1 will be too low (this is guaranteed by the predicate U

defined in (5.12)). Moreover, while the allowance of process pi∗ will be
0, the rest of the processes will still have positive allowances. Since the
allowances can be read by all processes, every process can determine
who won the competition and decide the value proposed by the winner.
Therefore, once an operation propose completes by returning decision
value v∗, every other process that invokes propose also decides v∗. More
precisely, we select the “winner” process pi∗ as the one which succeeds
in spending its allowance by transferring Ai∗ tokens from a1 to ad. If
none of the processes is found to have zero allowance, then p1 must have
been the first that called propose, and thus consumed the whole balance
and caused any other calls to propose to fail.

We now show that the proposed implementation satisfies the termi-
nation, validity, and agreement properties of a consensus object (cf. Sec-
tion 5.3). Regarding the termination property, observe that all instruc-
tions of operation C.propose do terminate: writing the proposed value
to R[i] terminates because of the use of an atomic register; the call to
transferFrom terminates because it only involves reading from and writ-
ing to registers; the for loop is bounded by the number of processes k,
and each iteration involves reading the allowance of a process pj and
potentially reading from the corresponding register R[j] (termination
follows by the properties of register R). The validity property holds
because the decided value is read from one of the registers R[i] written
by process pi, for i ∈ {1, . . . , k}, and the proposal of each process pi is
written before the read operation on that register is invoked (this is en-
forced by the if condition, cf. line 158). Hence, the decided value must
be the proposal of some process pj , for j ∈ {1, . . . , k}. As for the con-
sistency property, as we already mentioned, only the first invocation of
operation transfer or transferFrom may succeed. In the former case, no
invocation to transferFrom can ever succeed, hence no allowance can be
set to 0, hence all processes will return the value proposed by p1. In the
latter case, the allowance of one of the processes pi∗ , for i∗ ∈ {2, . . . , k}
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will be decreased from Ai∗ to 0, and the if condition (cf. line 158) en-
sures that only the register written by a process with an allowance of 0
may be read.

The previous theorem provides a lower bound for the consensus num-
ber of a token object Tq with initial state q ∈ Sk. Therefore, so far we
can deduce the following inequalities (where the right-most inequality
trivially holds):

k
(Thm. 17)

≤ CN (TSk) ≤ ∞ (5.14)

The upper bound in (5.14) is a loose one. We proceed with estab-
lishing a tight upper bound for the consensus number of T . Similarly to
the case of the lower bound, we will need to condition our statement on
the object’s state.

Observe that starting from the initial state q0 as defined in the origi-
nal ERC20 specification—i.e., no process is authorized to issue transfers
from accounts they do not own, and all but the contract deployer have
zero balances (cf. Algorithm 7)—it is possible to reach a state q ∈ Sk
as long as tokens are transferred across accounts, and the owner of an
account a with positive balance approves other k− 1 spenders with suf-
ficient allowances. Therefore, reaching a state in Sk is conditioned on all
these k−1 approve operations succeeding, and ultimately on the account
owner pa not failing until then. Due to the above condition, a wait-free
implementation of consensus from Tq0 is unachievable. More generally,
starting from any state q ∈ Qk, it is not possible to wait-free implement
consensus among k′ > k processes, as we prove in the following theorem.

Theorem 18. For every k ≤ n it holds CN (TQk) ≤ k.

Proof. We proceed by contradiction and assume a wait-free implemen-
tation of consensus for k′ processes using objects of type TQk and atomic
registers, where k′ > k, hence we show that for any such implementation
there exists an infinite sequential execution that leaves it in a bivalent
state.

Let us first recall some relevant terminology. A protocol state is bi-
valent if, starting from that state, there exists some execution in which
the processes decide 0 and some execution in which they decide 1. A
protocol state is called critical if it is bivalent and any subsequent state,
reached by having a process invoke any of the object’s methods, is uni-
valent. Every wait-free consensus protocol has a critical state [88]. In
the following, we denote one such state by qc. Further, the invocation
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which brings the protocol from a critical state to a univalent state is
called a decision step.

Without loss of generality, let p1, p2 ∈ Π be processes such that
the decision step for p1, denoted by o1, brings the protocol into a 0-
valent state, and the decision step for p2, denoted by o2, brings it into
a 1-valent state. The rest of the proof is case analysis of the methods
which p1 and p2 execute in these decision steps.

Let us first assume that the decision step for p1 is to invoke any
operation on an atomic register, while the decision step for p2 is to invoke
any operation on a TQk object. Starting from qc, the sequential execution
of o1 followed by o2 brings the protocol into a 0-valent state q1, since p1

took a step first. Instead, the sequential execution of o2 followed by o1

brings the protocol into a 1-valent state q2, since p2 took a step first.
However, the states q1 and q2 are identical, because the two operations o1

and o2 commute, a contradiction.
Let us now assume that at least one of the invocations, say o1, is

on a read-only method. Consider the sequential execution starting from
qc, where p1 executes o1, then p2 executes o2, resulting in state q1, and
then p2 runs alone and terminates. In this execution, p2 must decide 0,
because p1 took a step first. Consider now the execution starting from qc,
where p2 executes o2, resulting in state q2, and then p2 runs alone and
terminates. In this execution, p2 decides 1. However, the states q1 and q2

differ only in the internal values of p1, since the latter invoked a read-
only method, hence they are indistinguishable for p2. Yet, p1 decides a
different value starting from q1, respectively, q2, a contradiction.

According to the commutativity and read-only arguments just de-
scribed, the decision steps of p1 and p2 must operate on the same object
and invoke a method that modifies the state of that object [88]. In the
following, we examine all possible combinations for the decision steps,
and whenever they commute, or are read-only, we refer to the arguments
above to imply a contradiction.

Observe that the methods totalSupply, balanceOf, and allowance of
the ERC20 token object are read-only, hence we do not examine them
further. Moreover, if both o1 and o2 are approve invocations, or if one
of them is an approve invocation and the other is a transfer invocation,
then o1 and o2 commute and a contradiction is reached as shown above.
We proceed by analyzing the remaining, non-trivial cases.
Case 1: both o1 and o2 are invocations to the transfer method. Since
transfer withdraws tokens from the account of the calling process, o1

and o2 commute except for the case when o1 = transfer(a2, x), that is,
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a transfer of x tokens to the account of p2, and the balance of p2 is not
sufficient to execute the transfer o2 before o1, that is, o2 returns false
if executed before o1. Observe that in this case, o2 is equivalent to a
read-only operation, therefore a contradiction is reached as described
earlier. (For instance, consider the following two executions: in the first
one, p2 executes o1 and then runs alone, deciding 0; in the second one,
operation o2 is executed first, followed by o1, hence p1 runs alone and
decides 1.)
Case 2: both o1 and o2 are invocations to the transferFrom method.
These invocations commute, except for the case when they both use the
same source account as and the balance of as is only sufficient for one
of the two transfers, and both processes are enabled to spend from as
(without the latter condition the invocation would be equivalent to a
read-only operation). Let us focus on this case. Since our implementa-
tion solves consensus among k′ processes, and at most k processes are
enabled spenders for the same account, where k′ > k, there must be
(at least) a process pw that is not an enabled spender for account as—
and by definition, pw cannot be process ps = ω(as). Assume wlog that
the decision step o3 taken by pw brings the protocol in a 1-valent state
(otherwise swap p1 for p2 in the following argument). Under this config-
uration, we will reach a contradiction for any possible method involved
in o3.

Let us begin with the case where o3 is a transferFrom invocation
with as as source account, as shown in Figure 5.1a.

As process pw is not enabled for account as, operation o3 re-
turns false without modifying the state, thus it is equivalent to a
read-only operation. Let us now consider the following two execu-
tions: process p1 executes o1, reaching state q1, and then runs alone,
thus deciding 0; process pw executes o3, then process p1 executes o1

reaching state q3, then process p1 runs alone, thus deciding 1. We
have a contradiction, because states q1 and q3 are indistinguishable to
process p1.

Moreover, if operation o3 is a transferFrom invocation with source
account at, with t 6= s, then operations o1 and o3 commute, and a
contradiction is reached with a similar argument as above. A similar
argument can be applied to all other possible methods, by observing
that o3 is either read-only (totalSupply, balanceOf, allowance), or it
commutes with o1 (approve, transfer), because pw 6= ps.
Case 3: operations o1 and o2 are a transfer, respectively, a transferFrom
invocation, or vice versa. This case is analogous to the previous one. In-
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(a) Case 2: both operations o1 and
o2 are invocations to the transferFrom
method.

(b) Case 4: operation o1 is an approve
invocation and o2 is a transferFrom in-
vocation.

Figure 5.1. Possible state transitions from the critical state qc.

deed, if the transferFrom invocation has a source account other than a1,
then the two invocations commute, while if it has a1 as source account,
the same reasoning as in the previous case, making use of process pw,
applies.

Case 4: operation o1 is an approve invocation and o2 is a transferFrom
invocation. Let us examine the case where o1 approves process p2 and o2

uses a1 as source account—in all other cases, the two invocations com-
mute. We distinguish two cases.

In the first case, assume that p2 is not already an enabled spender
for account a1. Then operation o2, if executed before o1, returns false
and hence it does not affect the state of TQk . Therefore, o2 is equivalent
to a read-only operation and a contradiction is reached with the exact
same executions as in Case 1 (see above).

In the second case, assume that p2 is already an enabled spender
for account a1. Then, as depicted in Figure 5.1b, the states q1 and q2,
reached by the sequential execution of o1 and then o2, respectively, by
the sequential execution of o2 and then o1, are not identical (hence we
cannot deduce an immediate contradiction). However, in such case there
must be a process pw that is not an enabled spender for a1 and, thus,
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every possible method invocation o3 is either read-only or commutes
with o1 and o2. Suppose the decision step taken by pw brings the pro-
tocol in a 1-valent state (the reasoning for a 0-valent case is analogous).
Then the sequential execution of operations o1, o2, and then o3 results
in a state q3 from which p1 decides 0. In contrast, the sequential execu-
tion of o3 followed by o1 and then o2 results in a state q4 from which p1

decides 1. By observing that q3 = q4, we reach a contradiction.

Putting it all together, we have:

k
(Thm. 17)

≤ CN (TSk) and CN (TQk)
(Thm. 18)

≤ k. (5.15)

Observing that Sk ⊆ Qk =⇒ CN (TSk) ≤ CN (TQk), we can deduce exact
synchronization requirements for Tq when q is a synchronization state,
i.e., q ∈ Sk:

k ≤ CN (TSk) ≤ CN (TQk) ≤ k =⇒ CN (TSk) = k. (5.16)

Notice that successful completion of specific approve operations is
necessary to reach a synchronization state from which we can wait-free
implement consensus for arbitrarily many processes. Concretely, if we
start from any state q ∈ Qk, reaching a state q′ ∈ Qk′ with k′ > k
requires the owner of some account with k enabled spenders to approve
other k′−k−1 spenders. This observation suggests that if such approve
operations—which change the number of enabled spenders for the same
account—were not enabled, then the resulting token object would be no
stronger than the k-shared asset transfer object.

ERC20 token vs k-shared asset transfer. Despite the apparent
similarity between ERC20 tokens and k-AT objects, our results show
that ERC20 tokens are strictly more powerful, in terms of synchroniza-
tion level, than k-shared asset transfer objects. For ERC20 tokens, any
synchronization level can be reached, in principle, by enabling suffi-
ciently many spenders for the same account. Indeed, while the owners
of a shared account must be fixed upfront when the contract is deployed,
the enabled spenders for an ERC20 account can change dynamically, as
the account owner wishes. Similarly, the amount of tokens that each
enabled spender is allowed to transfer from that account is flexibly cho-
sen and can be modified at any time by the account owner. In other
words, an ERC20 account is more complex than a k-shared account in at
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least two dimensions: by supporting an evolving set of spenders and by
letting the account owner update the allowances of these spenders. One
interpretation of our results is that the dynamic nature of the ERC20
smart contract is reflected in its dynamic consensus number.

5.6 Extension to other token standards

In this section, we discuss how to extend our results to other token
standards on Ethereum beyond ERC20. As of the time of writing, several
token implementations have been proposed within the Ethereum project,
ERC20 being the major reference among all. Some of these proposals
are in a testing phase while others have already reached a final phase
and have been adopted [72]. In this section we discuss the ERC777
token, the ERC721 non-fungible token, the ERC1155 multi token, and
ERC1363 payable token standards.

The ERC777 token standard aims to solve some problems related
to ERC20, while maintaining backward compatibility [54]. It defines
new features, some of which are similar to those of ERC20, to interact
with the tokens. In particular, it defines operators to transfer tokens
on behalf of another address, similarly to the mechanism enabled by
the allowances in ERC20, and hooks, to simplify the sending process
and to offer a single way for sending tokens to any recipient. One of
the main differences compared to ERC20 is the mechanism of allowing
processes to manage tokens on behalf of others. In ERC20, the approve
method lets an account owner p define an amount of tokens that the
approved process p′ can spend on behalf of p. In contrast, an operator p′

in ERC777 is allowed to spend all the tokens owned by the approving
process p. Nevertheless, it is immediate to extend our results to ERC777.
Specifically, Algorithms 8 can be adapted by replacing the approved
spenders with the corresponding operators.

The ERC721 standard is inspired by ERC20, however, it provides an
interface for non-fungible tokens [69]. In contrast to standard tokens,
all non-fungible tokens are unique. In ERC721, every token is uniquely
determined by an identifier tokenId and can be individually transferred
using a transferFrom method. Similarly to ERC20, an account owner p
can approve other processes to spend tokens on its behalf by invoking
the approve method, specifying the process p′ to be approved and a to-
ken identifier tokenId. We do not discuss the other methods specified by
ERC721, as they fall outside the scope of this work. Although ERC721
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defines tokens of different nature compared to ERC20 tokens, we notice
that our techniques and results can also be applied, with some adjust-
ment, to this standard. Concretely, Algorithm 8 can be adapted so that
it uses a specific token, determined by its identifier tokenId, which all the
participating processes are approved to spend; the winner of this race can
then be determined by invoking ownerOf with token identifier tokenId.

ERC1155 defines a smart-contract interface for managing multiple
token types. In particular, it specifies methods that enable the execu-
tion of a number of transactions, possibly on different token types, or
involving various source and target accounts, within a single method-call.
While it is plausible that ERC1155 tokens inherit the synchronization
requirements of ERC20 tokens, establishing formal requirements would
need an in-depth analysis, based on combinations of accounts, which
goes beyond the scope of this work.

Finally, the Payable Token standard ERC1363 follows the approve
and transferFrom paradigm of ERC20 tokens, but adds a layer of indi-
rection. Specifically, it allows processes to specify arbitrary code, which
is executed upon receiving a token through transfer, transferFrom, or
upon completion of an approve operation. The possibility of execut-
ing an arbitrary contracts precludes establishing exact synchronization
a priori.

5.7 Discussion

Conclusion. Prior work shows that the asset transfer object, pro-
viding the basic functionality of a cryptocurrency, has consensus num-
ber 1 [86]. This means that implementing a “plain” cryptocurrency
such as Bitcoin [124] does not require synchronization among processes,
and hence the consensus layer of Bitcoin could be replaced by a fully
asynchronous dissemination protocol, which does not order transac-
tions. This important result however does not apply to blockchains
with richer smart-contract support such as Ethereum. In fact, enabling
the execution of arbitrary smart contracts requires agreement among all
blockchain nodes. Nevertheless, it remains open whether specific smart
contracts need consensus or not, and more generally, which level of syn-
chronization they require.

In this work, we analyze the synchronization requirements of one such
smart contract—the ERC20 token standard of Ethereum—through the
lens of wait-free implementations, establishing the consensus number of
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an associated shared-memory token object. Our results show that an
ERC20 token contract may require different levels of synchronization,
depending on its state configurations. In other words, the ERC20 token
object has a dynamic consensus number: when initialized according to
the standard [160], its consensus number is 1; however, as soon as an
account owner approves other spenders for its account, the consensus
number of the object may increase. In fact, there exist executions that
modify the state so that the consensus number becomes k, for every k
with 1 ≤ k ≤ n.

Future directions. Our results imply that while executing arbitrary
smart contracts requires consensus among all processes, synchronizing a
dedicated subset of processes is sufficient for realistic applications such
as token contracts. In the case of ERC20 tokens, consensus indeed only
needs to be reached among the largest set σq(a) of enabled spenders for
the same account a; importantly, the exact synchronization requirements
can be readily deduced from the current object’s state q by reading the
current balances and allowances. This insight opens up the possibility to
deploy realistic smart contracts, such as ERC20 tokens, on more scalable
and performant protocols than consensus-based blockchains. Namely,
the consistency mechanism could be flexibly adapted, during execution,
to require higher or lower coordination among nodes depending on the
current state of the smart contract, so that only the minimal synchro-
nization requirements are matched.

We suggest as an interesting open problem to develop distributed
protocols meeting the dynamic synchronization requirements of ERC20
tokens. Such protocols could replace the consensus layer of traditional
blockchain platforms with a more efficient broadcast method, as shown
earlier for asset transfer [50]. This would generally work under asyn-
chrony and yet provide an atomic broadcast functionality among every
account owner and its enabled spenders.



Chapter 6

Practical distributed
cryptography with
general trust

6.1 Introduction

Throughout the last decade, largely due to the advent of blockchains,
there has been an ever-increasing interest in distributed systems and
practical cryptographic primitives. Naturally, the type of cryptography
most suitable for distributed systems is distributed cryptography: inde-
pendent parties jointly hold a secret key and perform some cryptographic
task.

Distributed cryptography finds many applications and deployments
today. Threshold signature schemes [64, 24] distribute the signing power
among a set of parties. They have been used in state-machine repli-
cation (SMR) protocols, a paradigm that increases resilience by repli-
cating applications on multiple hosts, where they serve as unique and
constant-size vote certificates [163, 123]. Furthermore, random-beacon
and common-coin schemes [56, 35] provide a source of reliable and dis-
tributed randomness. In SMR protocols they facilitate, among other
tasks, leader election [39, 59, 135] and sharding [164, 102]. As a third
example, multiparty computation (MPC) is a cryptographic tool that
enables a set of parties to compute a function in a distributed manner,
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while keeping their inputs private. It has found applications in pro-
tecting digital assets1, private keys2, or cryptocurrency wallets3, often
worth millions of dollars. Applications also include highly sensitive and
private data4, related, for example, to DNA5 or efforts against human
trafficking [58]. Security is, hence, of paramount importance. MPC has
been combined with blockchains to enable private computations [22] and
fairness [110, 12].

One can thus say that we are in the era of distributed cryptography.
However, all currently deployed distributed-cryptographic schemes ex-
press their trust assumptions through a number, with a threshold, hence
reducing to the setting of threshold cryptography, where all parties may
misbehave with the same probability. In other words, parties are con-
sidered identical, leading to a monoculture-type view of the system. On
the other hand, distributed cryptography does not have to be threshold-
based. In general distributed cryptography the authorized sets, the sets of
parties sufficient to perform the task, can be arbitrary, and are specified
through a general, non-threshold access structure (AS). Our position
is that general distributed cryptography is essential for distributed sys-
tems.

In this chapter we focus on three important distributed-cryptographic
primitives for distributed protocols.

Verifiable secret sharing: Secret sharing [147] allows a dealer to
share a secret in a way that only authorized sets can later reconstruct
it. Verifiable Secret Sharing (VSS) [81, 132] additionally allows the
parties to verify their shares against a malicious dealer.

Common coin: A common coin [137, 35] scheme allows a set of par-
ties to calculate a pseudorandom function U , mapping coin names C to
uniformly random bits U(C) ∈ {0, 1} in a distributed way.

Distributed signatures: A distributed signature [64, 24] scheme al-
lows a set of parties to collectively sign a message. The parties hold
key shares of an unknown private key and create signature shares on
individual messages. Once sufficient signature shares are available, they
are combined into a unique distributed signature, which can be verified
with the standard algorithm of the underlying signature scheme.

1Fireblocks: https://www.fireblocks.com, Sepior : https://sepior.com
2Keyless: https://keyless.io.
3Zengo: https://zengo.com, Unbound : https://github.com/unboundsecurity
4Sharemind : https://sharemind.cyber.ee, Partisia: https://partisia.com
5https://partisia.com/better-data-solutions/surveys

https://www.fireblocks.com
https://sepior.com
https://keyless.io
https://zengo.com
https://github.com/unboundsecurity
https://sharemind.cyber.ee
https://partisia.com
https://partisia.com/better-data-solutions/surveys


6.1 Introduction 83

Contributions. The goal of this work is to bridge the gap between
theory and practice, so as to pave the way for the adoption of general
distributed cryptography. Specifically:

• We show how an administrator can specify a general access struc-
ture, starting from a collection of sets or a Boolean formula, de-
scribed in a JSON file. This is then converted into two different
encodings, a tree data structure and an MSP, the former used for
checking whether a set of parties is authorized and the latter for
all algebraic operations. The practicality of both encodings is val-
idated through examples, among which an access structure used
in the live Stellar blockchain.

• We recall a general VSS scheme, and then extend the common-coin
construction of Cachin, Kursawe, and Shoup [35] into the general-
trust model. Moreover, we present a general distributed-signature
scheme based on BLS signatures [27], which extends the threshold
scheme of Boldyreva [24]. All schemes are in the MSP model, and
we provide security definitions and proofs that are appropriate for
the general-trust setting.

• We implement and benchmark the aforementioned schemes, both
threshold and general versions. We assess the efficiency of the
general schemes and provide detailed explanation of the observed
behavior, insights, and possible optimizations. The benchmarks
include multiple trust assumptions, thereby exploring how they
affect the efficiency of the schemes.

Organization. This chapter is organized as follows. Section 6.2
presents the related work and Section 6.3 presents the necessary
background. In Section 6.4 we show how general access structures can
be efficiently encoded, while in Section 6.5 we discuss and formalize the
procedure of share interpolation on general access structures. Then,
Sections 6.6, 6.7, and 6.8 show the general distributed VSS, common
coin, and signature schemes, respectively, together with their security
properties and proofs. In Section 6.9 we benchmark the MSP and all
three schemes. Finally, in Section 6.10 we mention possible extensions
and conclude this chapter.
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6.2 Related work

General distributed cryptography. Secret sharing over arbitrary
access structures has been extensively studied in theory. The first scheme
is presented by Ito, Saito, and Nishizeki [94], where the secret is shared
independently for every authorized set. Benaloh and Leichter [21] use
monotone Boolean formulas to express the access structure and in-
troduce a recursive secret-sharing construction. Gennaro presents a
general VSS scheme [79], where trust is specified as Boolean formu-
las in disjunctive normal form. As a result, a party receives as many
shares as the number of conjunctions it appears in. Choudhury presents
general asynchronous VSS and common-coin schemes secure against a
computationally-unbounded adversary [48].

Later, the Monotone Span Program (MSP) is introduced [97] as
a linear-algebraic model of computation. Since then, VSS schemes
with general access structures have been formulated in terms of an
MSP. In the information-theoretic setting, Cramer, Damg̊ard, and
Maurer [51] construct a VSS scheme for any monotone access struc-
ture. Nikov et al. [128] extend this work to add proactive resharing.
A general VSS scheme is also presented by Mashhadi, Dehkordi,
and Kiamari [118], which requires multiparty computation for share
verification.

A different line of work encodes the access structure using a vector-
space secret-sharing scheme [29], a special case of an MSP.6 Specifi-
cally, Herranz and Sáez [90] construct a VSS scheme based on Pedersen’s
VSS [132]. Herranz, Padró, and Sáez [89] construct general distributed
RSA signatures based on the threshold RSA scheme of Shoup [149].
Distributed key generation schemes have also been described based on
vector-space secret sharing [61, 62].

Attribute-based signatures. ABS schemes [111] are related to dis-
tributed signatures. In ABS a signer possesses a number of attributes
and can only produce a valid signature if they satisfy a certain predicate
on the set of all attributes. ABS schemes are similar to distributed signa-
tures in that they usually encode the attribute predicate as an MSP, but
differ from distributed signatures in terms of security requirements (they

6A vector-space secret-sharing scheme can be seen as an MSP where each party
owns exactly one row. The MSP is, hence, a stronger model as it can encode any
access structure [97, 18].
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have to consider attribute privacy and adaptive attribute selection), and
hence result in more complicated schemes [129, 106].

Common coin schemes. Common coin schemes (also called shared
coins, coin tossing schemes, or random beacons [65, 56]) model ran-
domness produced in a distributed way. Multiple threshold schemes
have been proposed in the literature [56, 35, 137] and are used in prac-
tice [65]. Raikwar and Gligoroski [139] present an overview and classifi-
cation. Our work extends the common-coin scheme of Cachin, Kursawe,
and Shoup [35]. The same threshold construction appears in DiSE [3,
Figure 6], where it is modeled as a DPRF [125]. The scheme outputs an
unbiased value.

6.3 Background

Computational assumptions. Let G = 〈g〉 be a group of prime

order q and x0
$← {0, . . . , q− 1}. The Discrete Logarithm (DL) assump-

tion is that no efficient probabilistic algorithm, given g0 = gx0 ∈ G,
can compute x0, except with negligible probability. The Computational
Diffie-Hellman (CDH) assumption is that no efficient probabilistic al-

gorithm, given g, ĝ, g0 ∈ G, where ĝ
$← G and g0 = gx0 , can compute

ĝ0 = ĝx0 , except with negligible probability.

Definition 12 (Gap Diffie-Hellman group [27]). Let G1 = 〈g1〉
and G2 = 〈g2〉 be two groups of prime order q, and h

$← G1. Let

α, β
$← {0, . . . , q − 1}.
• The computational co-Diffie-Hellman (co-CDH) problem on

(G1, G2) asks, on input g2, g
α
2 ∈ G2 and h ∈ G1, to compute

hα ∈ G1.

• The decisional co-Diffie-Hellman (co-DDH) problem on (G1, G2)
asks, on input g2, g

α
2 ∈ G2 and h, hβ ∈ G1, to output true if α = β

and false otherwise. In the first case we say that (g2, g
α
2 , h, h

α) is
a co-Diffie-Hellman tuple.

• We say that (G1, G2) is a Gap co-Diffie-Hellman (co-GDH) group
pair if co-DDH is easy but co-CDH is hard to solve on (G1, G2).
For a more formal definition we refer the reader to [27].
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6.4 Specifying and encoding general access
structures

An important aspect concerning the implementation and deployment
of general distributed cryptography is specifying the Access Structure
(AS). We require a solution that is intuitive, so that users or admin-
istrators can easily specify it, that facilitates the necessary algebraic
operations, such as computing and recombining secret shares, and in
the same time offers an efficient way to check whether a given set is
authorized.

In this chapter we encode the AS in cryptographic schemes using a
tree data structure and a Monotone Span Program (MSP), as we did in
Chapter 3. The tree is used for checking whether a given set is autho-
rized, and the MSP for algebraic operations. The AS is first represented
as a Monotone Boolean Formula (MBF), which consists of and, or, and
threshold operators. A threshold operator ΘK

k (q1, . . . , qK) specifies that
any subset of {q1, . . . , qK} with cardinality at least k is authorized, where
each qi can be a party identifier or a nested operator. The and and or
operators are special cases of this. The tree representation is built from
the MBF, as explained in Section 3.2.1. The MBF is also used to build
the MSP representation, as explained in Section 3.2.2. If the Boolean
formula includes in total c operators in the form Θmi

di
, then the final

matrix M of the MSP that encodes it has m =
∑c

1mi − c+ 1 rows and
d =

∑c
1 di − c+ 1 columns, hence size linear in the size of the formula.

We now present some examples of general AS, which we later use in
to benchmark the distributed cryptographic schemes.

Example 6. Recent work [70] presents the example of an unbalanced-
AS 7, where n parties in P are distributed into two organizations P1 and
P2, and the adversary is expected to be within one of the organizations,
making it easier to corrupt parties from that organization. They specify
this with two thresholds, t and k, and allow the adversary to corrupt
at most t parties from P and in the same time at most k parties from
P1 or P2. For example, we can set t = bn/2c and k = bt/2c − 1. Let
n = 9, P1 = {p1, . . . , p5}, P2 = {p6, . . . , p9}, t = 4, and k = 1. The
access structure (taken as the complement of the adversary structure)
is A+ = {A ⊂ P : |A| > 4 ∨ (|A ∩ P1| > 1 ∧ |A ∩ P2| > 1)}. In terms
of a monotone Boolean formula, this can be written as FA = Θ9

5(P) ∨
7This is a special case of bipartite AS [130].
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(
Θ5

2(P1) ∧Θ4
2(P2)

)
. The MSP constructed with the given algorithm has

m = 2n rows and d = t+ 2k + 2 = n− 1 columns.

Example 7. Another classical general AS from the field of distributed
systems is the M-Grid [114]. Here n = k2 parties are arranged in a
k × k grid and up to b = k − 1 Byzantine parties are tolerated. As
we saw in Section 3.2.4, an authorized set consists of any t rows and t
columns, where t = d

√
b/2 + 1e. Let us set n = 16 and, hence, k = 4,

b = 3, and t = 2. This means that and any two rows and two columns
(twelve parties in total) make an authorized set. The Boolean formula
that describes this AS is FA = Θ4

2

(
Θ4

4(R1),Θ4
4(R2),Θ4

4(R3),Θ4
4(R4)

)
∧

Θ4
2

(
Θ4

4(C1),Θ4
4(C2),Θ4

4(C3),Θ4
4(C4)

)
, where R` and C` denote the sets

of parties at row and column `, respectively. We call this access structure
the grid-AS .

Example 8. The Stellar blockchain supports general trust assumptions
for consensus [109]. Each party can specify its own access structure,
which is composed of nested threshold operators. We extract8 the AS
of one Stellar validator and show in Figure 6.1 a JSON file that can be
used in our general schemes. It can be directly translated into an MSP,
enabling general distributed cryptography in or on top of the blockchain
of Stellar. The MSP constructed with the presented algorithm has m =
25 rows and d = 15 columns.

Figure 6.1. A JSON file that specifies the access structure of the SDF1
validator in the live Stellar blockchain (we use the literals returned by
Stellar as party identifiers).

8https://www.stellarbeat.io/, https://api.stellarbeat.io/docs/

https://www.stellarbeat.io/
https://api.stellarbeat.io/docs/
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6.5 Interpolation on general access struc-
tures

When working with a threshold access structure, i.e., a t-out-of-n AS,
where t is the maximum number of expected corruptions, it is always
the case that an authorized set, i.e., a set of t + 1 parties, uniquely
determines the secret and the shares of all other parties. Similarly, a
maximally unauthorized set, i.e., a set of t parties, and a given secret
uniquely determine the shares of all other parties. These facts are used in
security proofs: a simulator, for example, given the shares of a maximally
unauthorized set and a secret (or, more precisely, exponents of these
values) may have to create valid shares (or exponents of shares) for
other parties.

With general AS, however, it can be the case that the shares of an
authorized set A ∈ A, or the shares of a maximally unauthorized set
F ∈ F together with a given secret, do not fully determine all other
shares. For example, this can be because a party pi 6∈ F can now own
more than one secret shares, in a way that adding all the shares of pi
to F makes it authorized, while adding some shares of pi to F keeps
in unauthorized. In this section we present an algorithm to compute
valid secret shares for parties not in F — where valid means that the
reconstruction of the secret from any authorized set will result in the
same value — given the shares of F and the secret. The same technique
can be applied to exponents of these values.

LetM = (M,ρ, e1,P) be an MSP over K, with M an m× d matrix.
We have seen in the definition of LSSS that an authorized set A can
reconstruct the secret through the equation λAxA = x. Let F ∈ F be
a maximally unauthorized set, i.e., there exists no F ′ ∈ F such that
F ′ ⊃ F , and let x be the secret. If the rank of MF is d − 1 then all
secret shares are uniquely defined. If the rank of MF is d − 1 − k, for
k ∈ N, then there exist k secret shares (each corresponding to an MSP
row), that do not belong to parties in F and are linearly independent
from the shares of parties in F . The values of these secret shares can
be chosen arbitrarily from K in the interpolation we wish to perform.
These extra rows are given to the interpolation algorithm in the form of
a set R ⊂ {1, . . . ,m}. Formally, the algorithm has the following inputs
and outputs.

Inputs:

1. A maximally unauthorized set of parties F ⊂ P and their secret
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shares xF ∈ KmF , (where mF is the number of MSP rows owned
by parties in F , and might be greater than |F |).

2. A set of extra MSP-row indexes R ⊂ {1, . . . ,m}, with ρ(j) 6∈ F , for
all j ∈ R, and the corresponding secret shares xR ∈ KmR (where
mR = |R|). The sets F and R are such that the rank of the matrix(
MF

MR

)
, that consists of the MSP rows either owned by parties in

F or corresponding to indexes in R, is d− 1. Notice that the rows
indexed by R can all be chosen to be linearly independent from
each other and from the rows owned by parties in F , hence the
shares xR can be chosen uniformly from the underlying field.

3. The secret x that corresponds to the secret shares xF and xR.

4. An index j ∈ [1, . . .m].

Output: Coefficients Λ
(1)
j ∈ K and Λ

(2)
j ∈ KmF+mR , such that the

secret share xj can be calculated as a linear combination of these coef-

ficients and the input values, that is, xj = Λ
(1)
j x+ Λ

(2)
j (xF ‖xR).

The algorithm works as follows. The given secret shares xF ‖xR have
been computed as (

xF
xR

)
=

(
MF

MR

)
r

where r = (x, r2, . . . , rd) is unknown, except for the secret x. Since we
know x, we can rewrite the previous equation as x

xF
xR

 =

 e1

MF

MR

 r.
We define

M =

 e1

MF

MR

 .

Observe that the MSP rows determined by F and R together are still
unauthorized, and thus e1 is linearly independent from the rows in(
MF

MR

)
. Moreover, by construction of F and R, the rank of

(
MF

MR

)
is

d− 1. From these facts we get that M has full rank d. Moreover, let m
be the number of rows in M .

We now make use of d recombination vectors λ`, for ` ∈ [1, . . . d].
Each recombination vector λ` is defined as an m-vector such that λ`M =
e`, where e` is the `-th unit vector (i.e., consists of 0s, except for a 1
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in position `) of dimension d. In other words, λ` expresses a linear
combination of rows of M that gives the vector e`. Since the rank of M
is d, all these recombination vectors exist. Additionally, define Λ as the
(d,m) matrix with the d recombination vectors as rows, i.e.,

Λ =


λ1

λ2

. . .
λd

 .

Notice that

Λ ·M = Id,

where Id is the (d, d) identity matrix, and, by multiplying both members
with r,

Λ ·

 x
xF
xR

 = r.

By defining as Λ(1) the first column of Λ and as Λ(2) the last m − 1
columns, the last equation can be rewritten as

Λ(1)x+ Λ(2)(xF ‖xR) = r.

From the last equation we get

xj = M jr = M jΛ
(1)x+M jΛ

(2)(xF ‖xR),

or, by setting Λ
(1)
j = M jΛ

(1) and Λ
(2)
j = M jΛ

(2):

xj = Λ
(1)
j x+ Λ

(2)
j (xF ‖xR). (6.1)

6.6 Verifiable secret sharing

In this section we recall a general Verifiable Secret Sharing (VSS)
scheme [90]. It generalizes Pedersen’s VSS [81, 132] to the general
setting.

Security. The security of a general VSS scheme is formalized by the
following properties (in analogy with the threshold setting [81, 132]).
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1. Completeness. If the dealer is not disqualified, then all honest
parties complete the sharing phase and can then reconstruct the
secret.

2. Correctness. For any authorized sets A1 and A2 that have accepted
their shares and reconstruct secrets z1 and z2, respectively, with
overwhelming probability it holds that z1 = z2. Moreover, if the
dealer is honest, then z1 = z2 = s.

3. Privacy. Any unauthorized set F has no information about the
secret.

The scheme. The scheme is synchronous and uses the same commu-
nication pattern as the standard VSS protocols [81, 132]. Hence com-
plaints are delivered by all honest parties within a known time bound,
and we assume a broadcast channel, to which all parties have access.

Let G = 〈g〉 be a group of large prime order q and h
$← G.

1. Share(x). The dealer uses Algorithm 1 to compute the secret-
shares x = (x1, . . . , xm) = LSSS.Share(x). The dealer also
chooses a random value x′ ∈ Zq and computes the random-shares
x′ = (x′1, . . . , x

′
m) = LSSS.Share(x′). Let r = (x, r2, . . . , rd) and

r′ = (x′, r′2, . . . , r
′
d) be the corresponding coefficient vectors. The

dealer computes commitments to the coefficients C1 = gxhx
′ ∈ G

and C` = gr`hr
′
` ∈ G, for ` = 2, . . . d, and broadcasts them. The

indexed share (j, xj , x
′
j) is given to party pi = ρ(j). Index j is

included because each pi may receive more than one such tuples,
if it owns more than one row in the MSP. We call a sharing the
set of all indexed shares Xi = {(j, xj , x′j) | ρ(j) = pi} received by
party pi.

2. Verify(j, xj , x
′
j). For each indexed share (j, xj , x

′
j) ∈ Xi, party pi

verifies that

gxjhx
′
j =

d∏
`=1

C
Mj`

` , (6.2)

where Mj is the j-th row-vector of M and Mj`, for ` ∈ {1, . . . d},
are its entries.

3. Complain(). Complaints are handled exactly as in the standard
version [81]. Party pi broadcasts a complaint against the dealer
for every invalid share. The dealer is disqualified if a complaint is
delivered, for which the dealer fails to reveal valid shares.
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4. Reconstruct(A,XA). Given the sharings XA = {(j, xj , x′j) | ρ(j) ∈
A} of an authorized set A, a combiner party first verifies the cor-
rectness of each share. If a share is found to be invalid, recon-
struction is aborted. The combiner constructs the vector xA =
[xj1 , . . . , xjmA ], consisting of the mA secret-shares of parties in A,
and, using Algorithm 1, returns LSSS.Reconstruct(A,xA).

Theorem 19. Under the discrete logarithm assumption for group G, the
above general VSS scheme is secure (satisfies completeness, correctness,
and privacy).

Completeness. By inspection of the scheme, honest parties accept their
shares. Equation (6.2) will hold because

d∏
`=1

C
Mj`

` = g
∑d
`=1 r`Mj`h

∑d
`=1 r

′
`Mj` = gMjrhMjr

′
= gxjhx

′
j

Furthermore, by definition of a Q2 adversary structure, an authorized
set A made of honest parties always exists, and, by definition of the
MSP, the recombination vector λA of A always exists. Thus, a party
can always reconstruct the secret from the shares of A.

Correctness. For the first part assume, towards a contradiction, that
z1 6= z2. Also, let z′1 and z′2 be the reconstruction from the random-
shares of the two sets. Since the shares are correct, it must hold that
gz1hz

′
1 = C1 = gz2hz

′
2 . Here we show that gz1hz

′
1 = C1. For k = 1, 2 the

secret shares and random shares of parties in the two sets are

xAk = {x(k)
j | ρ(j) ∈ Ak} , x′Ak = {x′(k)

j | ρ(j) ∈ Ak}.

Moreover, z1, z
′
1, z2, z

′
2 are calculated by honest parties as

zk = λAkxAk , z′k = λAkx
′
Ak (6.3)

Written as vectors, where mk is the number of shares in Ak, for
k = 1, 2, we have

xAk = (xj1 , . . . , xjmk )

x′
Ak = (x′j1 , . . . , x

′
jmk

)

λAk = (λj1 , . . . , λjmk ).

(6.4)
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We have that

gz1hz
′
1

(6.3)
= gλA1

xA1hλA1
x′A1

(6.4)
= g

∑
j:ρ(j)∈A1

λjx
(1)
j h

∑
j:ρ(j)∈A1

λjx
′(1)
j

=
∏

j:ρ(j)∈A1

(
gx

(1)
j hx

′(1)
j
)λj

(6.2)
=

∏
j:ρ(j)∈A1

( d∏
`=1

C
Mj`

`

)λj
=

d∏
`=1

∏
j:ρ(j)∈A1

C
Mj`λj
`

=

d∏
`=1

C
∑
j:ρ(j)∈A1

Mj`λj

`

=

d∏
`=1

CλAMA`

` , where MA` is the `-th row of MA

λAMA=e1=

d∏
`=1

Ce1`` , where e1` is the `-th entry of e1

e1=[1,0,...,0]
= C1

In the same way we get that gz2hz
′
2 = C1.

Now, since z1 6= z2, it is also the case that z′1 6= z′2. But from this one
can extract the logarithm of h with base g as logg h = (z1−z2)/(z′2−z′1),
which is, by assumption, not known.

The second part follows immediately from the fact that the dealer
is honest and by simple observation that the output of Reconstruct() is
λAxA = λAMAr = e1r = x, for any authorized set A.

Privacy. Fix wlog a maximally unauthorized set F consisting of parties
controlled by the adversary and let mF the number of shares owned
by parties in F . Assume the dealer has shared a secret x using coeffi-
cient vectors r = (x, r2, . . . , rd) and r′ = (x′, r′2, . . . , r

′
d). The view of

the adversary consists of the shares xF = (xj1 , . . . , xjmF ) and x′F =
(xj1 , . . . , xjmF ), where ρ(jk) ∈ F , for k ∈ {1, . . . ,mF }, and the commit-

ments C1 = gxhx
′

and C` = gr`hr
′
` , for ` ∈ {2, . . . , d}, created by the
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dealer. We then choose arbitrary x̃ 6= x ∈ K. We want to show that the
view of the adversary is consistent with an execution of the VSS where
x̃ is the secret shared by the dealer.

Observe that x̃ uniquely defines an x̃′ such that C1 = gx̃hx̃
′
. From

Lemma 2, we know there exist coefficient vectors r̃ = r+ (x̃− x)w and
r̃′ = r′ + (x̃′ − x′)w, with w ∈ Kd, that share the secrets x̃ and x̃′,
respectively, while the resulting shares x̃F and x̃′F satisfy x̃F = xF and
x̃′F = x′F . Notice that the w in the proof of Lemma 2 depends on MF

and not on the coefficient vector, thus it is the same in the equations for
r̃ and r̃′.

It remains to show that the commitments C̃` = gr̃`hr̃
′
` , for ` ∈

{2, . . . , d}, also satisfy C̃` = C`. Let b be the discrete logarithm of
h with basis g, i.e., h = gb. Recall that C1 = gxhx

′
= gx+bx′ and

C1 = gx̃hx̃
′

= gx̃+bx̃′ . These two equations give

x+ bx′ = x̃+ bx̃′. (6.5)

We now define the vectors c = r + br′ and c̃ = r̃ + br̃′ and observe
that C` = gc` and C̃` = gc̃` , where c` and c̃` are the entries of c and c̃,
respectively. It is thus enough to show that c = c̃. We have that

c = c̃⇔ r + br′ = r + (x̃− x)w + br′ + b(x̃′ − x′)w
⇔ (x̃− x)w + b(x̃′ − x′)w = 0

w 6=0⇔ x̃− x+ b(x̃′ − x′) = 0,

which holds from (6.5).

6.7 Common coin

The scheme extends the threshold coin scheme of Cachin, Kursawe, and
Shoup [35] to accept any general access structure. It works on a group
G = 〈g〉 of prime order q and uses the following cryptographic hash
functions: H : {0, 1}∗ → G, H ′ : G6 → Zq, and H ′′ : G → {0, 1}. The
first two, H and H ′, are modeled as random oracles. The idea is that a
secret value x ∈ Zq uniquely defines the value U(C) of a publicly-known
coin name C as follows: hash C to get an element g̃ = H(C) ∈ G, let
g̃0 = g̃x ∈ G, and define U(C) = H ′′(g̃0). The value x is secret-shared
among P and unknown to any party. Parties can create coin shares
using their secret shares. Any party that receives enough coin shares
can then obtain g̃0 by interpolating x in the exponent.
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Security. The security of a general common-coin scheme is captured
by the following properties (analogous to threshold common coins [35]).

1. Robustness. Except with negligible probability, the adversary can-
not produce a coin C and valid coin shares for an authorized set,
such that and their combination outputs a value different than
U(C).

2. Unpredictability. Unpredictability is defined through the following
game. The adversary corrupts, w.l.o.g, a maximally unauthorized
set F . It interacts with honest parties according to the scheme and
in the end outputs a coin name C, which was not submitted for
coin-share generation to any honest party, as well as a coin-value
prediction b ∈ {0, 1}. Then, the probability that U(C) = b should
not be significantly different from 1/2.

The scheme. It consists of the following algorithms.

1. KeyGen(). A dealer chooses uniformly an x ∈ Zq and shares it
among P using the MSP-based LSSS from Algorithm 1, i.e., x =
(x1, . . . , xm) = LSSS.Share(x). The secret key x is destroyed
after it is shared. We call a sharing the set of all key shares
Xi = {(j, xj) | ρ(j) = pi} received by party pi. The verification
keys g0 = gx and gj = gxj , for 1 ≤ j ≤ m, are made public.

2. CoinShareGenerate(C). For coin C, party pi calculates g̃ = H(C)
and generates a coin share g̃j = g̃xj for each key share (j, xj) ∈ Xi.
Party pi also generates a proof of correctness for each coin share,
i.e., a proof that logg̃ g̃j = logg gj . This is the Chaum-Perdersen
proof of equality of discrete logarithms [44] collapsed into a non-
interactive proof using the Fiat-Shamir heuristic [75]. For every
coin share g̃j a valid proof is a pair (cj , zj) ∈ Zq × Zq, such that

cj = H ′(g, gj , hj , g̃, g̃j , h̃j), for hj = gzj/g
cj
j , h̃j = g̃zj/g̃

cj
j . (6.6)

Party pi computes such a proof for coin share g̃j by choosing sj
at random, computing hj = gsj , h̃j = g̃sj , obtaining cj as in (6.6),
and setting zj = sj + xjcj .

3. CoinShareVerify(C, g̃j , (cj , zj)). Verify the proof above.

4. CoinShareCombine(). Each party sends its coin sharing
{(j, g̃j , cj , zj) | ρ(j) = pi} to a designated combiner. Once valid
coin shares from an authorized set A have been received, find the
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recombination vector λA for set A and calculate g̃0 = g̃x as

g̃0 =
∏

j|ρ(j)∈A

g̃
λA[j]
j , (6.7)

where the set {j | ρ(j) ∈ A} denotes the MSP indexes owned by
parties in A. The combiner outputs H ′′(g̃0).

Theorem 20. In the random oracle model, the above general common
coin scheme is secure (robust and unpredictable) under the assumption
that CDH is hard in G.

Proof. The proof for the general coin construction follows the lines of
the threshold coin scheme [35]. In a high level, we assume an adversary
that can predict the value of a coin with non-negligible probability and
show how to use this adversary to solve the CDH problem in G. The
simulator, which is given g, the public key g0 = gx, and some ĝ as a
CDH instance, programs the random oracle H to output ĝ for some
hash query Ĉ of the adversary. If the adversary succeeds in predicting
the value of Ĉ, then the simulator can extract ĝ0 = ĝx, the solution to
its CDH input, from the hash query H ′′(ĝ0) made by the adversary.

We additionally have to handle specific issues that arise from the
interpolation with general access structures. Specifically, the simulator,
given the shares of F , has to create valid shares (hidden in the exponent)
for other parties. As opposed to the threshold case, it can be the case
that the shares of F , together with the secret x, do not fully determine
all other shares. The details have been described in Section 6.5.

Robustness follows from the soundness of the interactive proof of
equality of the discrete logarithms. Moreover, the underlying access
structure is Q2, hence there will be enough honest parties to combine
the shares and interpolate the coin value.

The rest of this proof concerns unpredictability. We assume an adver-
sary that can predict the value of a coin with non-negligible probability
and show how to use this adversary to solve CDH. To successfully at-
tack CDH, it is enough to construct an algorithm that, on input elements

g, ĝ, g0 ∈ G, where ĝ
$← G and g0 = gx0 , outputs a list that contains

ĝ0 = ĝx0 with non-negligible probability [148]. The adversary makes a
series of queries for coins C1, . . . , Ct for a polynomially large t, and tries
to predict the value of the target coin Ĉ. We assume that Ĉ = Cs, for
a random s ∈ {1, . . . , t}, which decreases our advantage by a factor of t.
For the target coin, let ĝ = H(Ĉ) and ĝj = ĝxj
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Only for this part of the proof, we let the adversary corrupt a set
T ⊇ F , as long as T 6∈ A, i.e., T is a maximal superset of F that remains
unauthorized. This is w.l.o.g: if the adversary cannot predict the coin
from T , it cannot predict it from F either. The algorithm simulates
the view for the adversary as follows. For party pi in T we choose its
key shares xj , where ρ(j) = pi, uniformly from Zq. The verification
keys can then be computed as gj = gxj . For the rest of the verification
keys the idea is to use the verification keys we just calculated and g0,
and perform an interpolation in the exponent. However, as explained in
Section 6.5, for these to be uniquely determined, the shares of T (called
F in Section 6.5) and of some extra indexes R are required. The set
of row indexes R is chosen arbitrarily, under the conditions described
in Section 6.5. The shares xj , where j ∈ R, are also chosen uniformly
at random, and the corresponding verification keys are again vj = gxj ,
where j ∈ R.

We can now use (6.1) with shares xT and xR and the secret x raised
to g2:

vj = vΛ
(1)
j ·

∏
` such that
ρ(`)∈T∨`∈R

v
Λ

(2)
j`

` . (6.8)

After the verification keys are chosen, we simulate the interaction
with the adversary as follows. In the random oracle model, the adversary
queries H to obtain g̃ or ĝ and the simulator can respond to these queries
as it wishes. For coins C 6= Ĉ, the simulator chooses r ∈ Zq at random
and sets g̃ = gr as the value of H at point C. The coin shares for all
honest parties can be calculated as g̃j = grj , where ρ(j) 6∈ T .

The proof of correctness for each coin share can be simulated by
invoking the random oracle model for H ′. When an honest party is
supposed to create a coin share g̃j , the simulator chooses cj , zj ∈ Zq at

random, and sets the output of H ′ at point (g, gj , g
zjg
−cj
j , g̃, g̃j , g̃

zj g̃
−cj
j )

to be c. Except with negligible probability, the simulator has not already
defined the output of H ′ at this point, so this part of the simulation
succeeds.

For the target coin Ĉ we set H(Ĉ) = ĝ. By construction of T ,
the adversary is not allowed to ask honest parties for coin shares, thus
the simulator never has to produce any valid shares. Observe that the
adversary, in order to make the prediction b ∈ {0, 1} for Ĉ, must query
H ′′ at point ĝ0. Hence, when it terminates we output the list of all these
queries — by assumption it will contain the solution to CDH with a non-
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negligible probability. The simulation is perfect, since all the shares and
verification keys have the same distribution as in an actual execution of
the protocol, except for a negligible probability that our zero-knowledge
simulations fail.

6.8 Distributed signatures

In a distributed signature scheme parties hold key shares of an unknown
private key, created with a KeyGen() algorithm, run either by a trusted
party or in a distributed manner. Using these, they create signature
shares on individual messages, using algorithm Sign(). Once sufficient
signature shares are available, they can be combined into a unique dis-
tributed signature, using algorithm SigShareCombine(). Both signature
shares and the distributed signature can be verified as a standard sig-
nature of the underlying signature scheme, using SigShareVerify() and
Verify(), respectively.

We now show a general distributed-signature scheme based on the
BLS signature scheme [27], which extends the threshold scheme of
Boldyreva [24] in the general-trust setting. It works with a co-GDH
group pair G1, G2 = 〈g2〉 with |G1| = |G2| = q, for q prime.

Security. In accordance with threshold distributed signatures [149],
we demand two basic requirements from general distributed signatures,
robustness and unforgeability.

1. Robustness. We say that the scheme is robust if the adversary can-
not prevent the successful termination (creation of a valid general
distributed signature).

2. Unforgeability. It is defined through the following game. The ad-
versary corrupts an adversary set F ∈ F of its choice. In the deal-
ing phase the adversary receives all the private-key shares owned
by parties in F , as well as the public key and all verification keys.
After the dealing phase the adversary submits signing requests for
messages of its choice to the honest parties. We say that the ad-
versary forges a signature if at the end of the game it outputs a
valid signature on a message that was not submitted as a sign-
ing request to any honest party (together with F this would have
given the adversary enough signature shares to reconstruct the dis-
tributed signature). The scheme is unforgeable if it is infeasible for
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the adversary to forge a signature.

The scheme. It consists of the following algorithms.

1. KeyGen(). A trusted dealer chooses random x ∈ Zq as the global
and unknown to all parties private key and shares it among P using
the MSP-based LSSS from Algorithm 1, i.e., x = (x1, . . . , xm) =
LSSS.Share(x). The public key is v = gx2 ∈ G2 and the verification
keys are vj = g

xj
2 ∈ G2, for 1 ≤ j ≤ m, and they are published.

The sharing Xi = {(j, xj) | ρ(j) = pi} is given to pi.

2. Sign(µ,Xj). For each indexed share (j, xj) ∈ Xi, the owner party
pi calculates an indexed share of the signature (j, σj), where σj =
H(µ)xj ∈ G1.

3. SigShareVerify(µ, σj , v, vj). Verify that (g2, vj , H(µ), σj) is a co-
Diffie-Hellman tuple.

4. SigShareCombine((j1, σj1), . . . , (jmA , σjmA )). Once the in-
dexed signature shares σj1 , . . . , σjmA from an authorized group
A have been received, recover the distributed signature as

σ =
∏
j∈A σ

λA[j]
j , where λA[j] are the entries of the recombination

vector that corresponds to A.

5. Verify(µ, σ, v). Verify that (g2, v,H(µ), σ) is a co-Diffie-Hellman
tuple.

Theorem 21. Assuming that standard BLS signatures are secure, the
general distributed signature scheme above is secure (robust and unforge-
able).

Robustness. Because A is Q2, there exists an authorized set A that
consists entirely of honest parties. Moreover, only valid signatures, made
with a party’s private key share, can pass the verification of algorithm
SigShareVerify(). Thus, a combiner can verify and use the signature
shares of A in algorithm SigShareCombine() to create a valid distributed
BLS signature.

Unforgeability. We show that the general distributed signature scheme
is simulatable. Simulatability, together with the unforgeability of the
standard BLS scheme, imply unforgeability for the general distributed
signature scheme [80, Definition 3]. Simulatability means that a simu-
lator, on input the public key v, a message µ with signature σ, and the
key shares xj of parties in F , i.e., ρ(j) ∈ F , can simulate the view for
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the adversary that is polynomially indistinguishable from an execution
of the real protocol that outputs σ as the signature of µ, and where the
adversary has key shares xj , where ρ(j) ∈ F . Intuitively, this shows
that an adversary who sees all the private information of parties in F
and the signature on a message µ could generate by itself all the public
information of the protocol.

The simulator works as follows. First, it has to provide valid veri-
fication keys for all parties and all their shares. For parties in F , the
simulator can use the given shares xj , where ρ(j) ∈ F , to compute the
verification keys. The rest of the shares are interpolated from the shares
xj . However, as explained in Section 6.5, for these to be uniquely de-
termined, some extra indexes R are required. The set of row indexes R
is chosen arbitrarily, under the conditions described in Section 6.5, and
the shares that correspond to the indexes in R are chosen uniformly at
random. For sets F and R, the simulator computes the verification keys
as vj = g

xj
2 , where ρ(j) ∈ F or j ∈ R. For any other pj the simula-

tor uses the interpolation algorithm described in Section 6.5, with input
sets F and R, and with shares xF and xR and the secret x raised to g2,
calculating vj exactly as we did in (6.8).

Second, the simulator also has to respond to the adversary’s signa-
ture queries. Following exactly the same techniques, the simulator can
generate all the signature shares given the standard BLS signature σ of
message m.

Finally, for any row j ∈ {1, . . . ,m} of the MSP, the verification key

vj = g
xj
2 and the signature share σj = H(µ)x

′
j will satisfy xj = x′j . For

j such that ρ(j) ∈ F or j ∈ R this holds because the simulator used
a known xj to calculate these values, while for any other j this holds
from the MSP interpolation. Hence, (g2, vi, H(m), σi) is a valid co-Diffie-
Hellman tuple and the signature shares will be verified. Moreover, the
interpolated key shares have the same distribution as if produced by the
real dealer. The view of the adversary is thus statistically indistinguish-
able from an execution of the real protocol.

6.9 Evaluation

In this section we compare the polynomial-based and MSP-based en-
codings for trust assumptions, and benchmark the presented schemes
on multiple general trust assumptions. To this goal, we benchmark each
scheme on four configurations, resulting from different combinations of
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encoding and access structure (AS), as seen in Table 6.1. Notice that the
first two describe the same threshold AS, encoded once by a polynomial
and once an MSP. With the first two configurations we investigate the
practical difference between polynomial-based and MSP-based encoding
of the same access structure. The last three configurations measure the
efficiency we sacrifice for more powerful and expressive AS.

Table 6.1. Evaluated configurations and corresponding MSP dimen-
sions. Configurations with general AS encode it as an MSP (necessary
for algebraic operations, such as sharing and reconstruction) and as a
tree (for checking whether a set of parties is authorized). The general
AS have been presented in Examples 6 and 7.

MSP dimensions
Configuration Encoding AS m d

polynomial (n+ 1)/2 polynomial dn+1
2
e-of-n - -

MSP (n+ 1)/2 MSP+tree dn+1
2
e-of-n n dn+1

2
e

MSP Unbalanced MSP+tree unbalanced 2n n− 1
MSP Grid MSP+tree grid 2n 2(n+ t− k) ≈ 2n

We implement all presented schemes in C++. The benchmarks only
consider CPU complexity, by measuring the time it takes a party to
execute each algorithm. Network latency, parallel share verification,
and communication-level optimizations are not considered, as they are
independent to the encoding of the AS. All benchmarks are made on
a virtual machine running Ubuntu 22.04, with 16 GB memory and 8
dedicated CPUs of an AMD EPYC-Rome Processor at 2.3GHz and 4500
bogomips. The number of parties n is always a square, for grid-AS to
be well-defined, and we report mean values and standard deviation over
100 runs with different inputs.

6.9.1 Benchmarking basic properties of the MSP

We first measure the space (size in KB) needed to store the MSP that
describes each general AS. The MSP needs to be stored by every party,
as it used to compute the recombination vector. We remark that, by
construction of Algorithm 2, an AS described with a large number of
nested operators results in a spare MSP matrix. The result for different
values of n is shown in Figure 6.2a.

We next measure the size (as number of parties) of authorized sets
for each AS. Authorized sets are obtained in the following way. Starting
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(a) Size (in KB) of the MSP (b) Size (number of parties) of autho-
rized set

(c) Bit length of recombination vector (d) Time to check for authorized set

Figure 6.2. Benchmarking basic properties of the MSP, for a varying
number of parties. In 6.2d, the tree representation of the AS is used and
the set is chosen uniformly among all subsets of P.

from an empty set, add a party chosen uniformly from the set of all
parties, until the set becomes authorized. This simulates an execution
where shares arrive in an arbitrary order, and may result in authorized
sets that are not minimal, in the sense that they are supersets of smaller
authorized sets, but contain redundant parties. We repeat this exper-
iment 1000 times and report the average size in Figure 6.2b. For the
dn+1

2 e-of-n AS, of course, authorized sets are always of size dn+1
2 e. For

the unbalanced-AS they slightly smaller, and for the grid-AS they are
significantly larger, as they contain full rows and columns of the grid.

We next measure the bit length of the recombination vector. This
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is relevant because the schemes involve interpolation in the exponent,
exponentiation is an expensive operation, and a shorter recombination
vector results in fewer exponentiations. We observe in Figure 6.2c that
the complexity of the AS (in terms of the size of the Boolean formula or
the JSON file that describes it) does not necessarily affect the bit length
of the recombination vector. There are two important observations to
explain Figure 6.2c. First, each entry of the recombination vector that
corresponds to a redundant party is 0, as that share does not contribute
to reconstruction. Second, we observe through our benchmarks that,
when the MSP is sparse and has entries with short bit length, then the
recombination vector also has a short bit length.

Finally, in Figure 6.2d we report the time it takes to check whether
a given set is authorized. This set is chosen uniformly at random among
all subsets of P and an average is taken over 1000 sets. As explained in
Section 6.4, the algorithm that checks for authorized sets uses the tree
representation of the AS, as it is more efficient than using the MSP.

6.9.2 Running time of verifiable secret sharing

We implement and compare the MSP-based scheme of Section 6.6 with
Pedersen’s VSS9 [132], which we refer to as general VSS and threshold
VSS, respectively. For the Share() algorithm we report the time it takes
a dealer to share a random secret s ∈ Zq, for Verify() the average time
it takes a party to verify one of its shares (notice that in the general
scheme a party may receive more than one shares), and for Reconstruct()
the time it takes a party to reconstruct the secret from an authorized
group. For the latter, the group is assumed authorized, i.e., we do not
include the time to check whether it is authorized, as this is efficiently
done using the tree encoding. The results are shown in Figure 6.3.

The first conclusion (comparing the first two configurations in Fig-
ures 6.3a and 6.3b) is that the MSP-based and polynomial-based op-
erations are equally efficient, when instantiated with the same AS. The
only exception is the Reconstruct() algorithm, shown in Figure 6.3c,
where general VSS is up to two times slower. This is because computing
the recombination vector employs Gaussian elimination, which has cu-
bic time complexity. Nevertheless, the reconstruction of the secret only
involves operations in field K, which is relatively fast — Reconstruct()
is an order of magnitude faster than Verify().

9Polynomial evaluation is done without the DFT optimization.
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(a) Time taken for Share() (b) Time taken for Verify()

(c) Time taken for Reconstruct() (d) Time taken by Share() calculating
shares and commitments

Figure 6.3. Time taken by each algorithm in the threshold and general
VSS for a varying number of parties. Figure 6.3a measures the time
for a dealer to share a secret, 6.3b the time for a party to verify one
of its shares, and 6.3c the time for a party to reconstruct the secret.
Figure 6.3d compares the time (in logarithmic scale) needed by Share()
to compute the shares against the time to compute commitments to the
shares.
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The second conclusion (comparing the last three configurations, i.e.,
the ones that use general trust) is that general VSS is moderately af-
fected by the complexity of the AS. For Share(), shown in Figure 6.3a,
more complex AS incur a slowdown because a larger number of shares
and commitments have to be created. Reconstruct(), in Figure 6.3c, is
also slower with more complex AS, because it performs Gaussian elimi-
nation on a larger matrix. We conclude this is the only part of general
VSS that cannot be made as efficient as in threshold VSS. On the other
hand, Verify(), in Figure 6.3b, exhibits an interesting behavior: the
more complex the AS, the faster it is on average to verify one share.
This might seem counter-intuitive, but can be explained from the obser-
vations of Section 6.9.1; more complex AS result in an MSP with many
0-entries, hence the exponentiations of (6.2) are faster.

An observation that might be useful for future optimizations is that
almost the entire time of Share() is spent computing commitments; the
dealer computes d commitments, which require 2d exponentiations. As
shown in Figure 6.3d, the computation of shares is orders of magnitude
faster. Another possible optimization is to parallelize algorithm Share(),
since the computation of shares and commitments is independent of each
other.

6.9.3 Running time of common coin

We implement the general scheme of Section 6.7 and the threshold coin
scheme from [35]. For both schemes G is instantiated as an order-q sub-
group of Zp, where p = qm+1, for q a 256-bit prime, p a 3072-bit prime,
and m ∈ N. These lengths offer 128-bit security and are chosen accord-
ing to current recommendations for discrete logarithm prime fields [68,
Chapter 4.5.2] 10. The arithmetic is done with NTL [151]. The hash
functions H,H ′, H ′′ use the openSSL implementation of SHA-512 (so
that it’s not required to expand the digest before reducing modulo the
256-bit q [150, Section 9.2]).

The results are shown in Figure 6.4. We only show the benchmark of
CoinShareCombine(), because KeyGen() behaves very similar to Share()
in the VSS, and CoinShareGenerate() and CoinShareVerify() are identi-
cal in the general and threshold scheme (the average time to create and
verify, respectively, one coin share was always approximately 4.5ms). In
Section 6.9.2 we observed that Reconstruct() was slower for the general

10Summary of recommendations from multiple organizations: https://www.keyl
ength.com/en/3

https://www.keylength.com/en/3
https://www.keylength.com/en/3
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scheme, because it involved no exponentiations and the cost of matrix
manipulations dominated the running time. Here, however, CoinShare-
Combine() runs similarly in all cases, as the exponentiations in (6.7)
become dominant. As a matter of fact, the general scheme is sometimes
faster. This is because complex AS often result in recombination vectors
with shorter bit length, as shown in Section 6.9.1, hence exponentiations
are faster.

Figure 6.4. Time taken by CoinShareCombine() in the threshold and
general coin for a varying number of parties.

6.9.4 Running time of distributed signatures

We have implemented the general distributed signature scheme from
Section 6.8. Our extension for generalized operations are made on the bls
library11, which in turn uses mcl12 for pairing operations. The security
of these libraries has been reviewed [136] on behalf of the Ethereum
Foundation. The benchmarks are done over BLS12-381[17], a widely
used pairing-friendly curve offering 128 bits of security [53, Section 4.1].

11https://github.com/herumi/bls, commit 64d13b9
12https://github.com/herumi/mcl, version 1.40

https://github.com/herumi/bls
https://github.com/herumi/mcl
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The observations are similar to those for the previous schemes. Cre-
ating and verifying a single signature share, as shown in Figure 6.5a, does
not depend on the scheme or the complexity of the AS, hence the corre-
sponding algorithms run in constant time. On the other hand, SigShare-
Combine(), as shown in Figure 6.5b, is moderately affected by the com-
plexity of the AS: similar to Reconstruct() in the VSS and different from
CoinShareGenerate() in the common-coin scheme, SigShareCombine()
does not involve exponentiations, but only calculation of the recombi-
nation vector and multiplication of elliptic curve points by constants.
For this reason the computation of the recombination vector dominates
running time, and SigShareCombine() becomes slower on more complex
AS.

We finally remark that the general distributed signature scheme is
considerably more efficient than the state-of-the-art solution: assuming
we have m signatures from an authorized set, the state-of-the-art would
require each party to verify all of them. When a scheme with general
trust is available, the signatures can first be combined. The cost of
combining them remains in all cases much lower than the cost of verifying
each one individually.

(a) Time taken for Sign() and Verify()(b) Time taken for SigShareCombine()

Figure 6.5. Time taken by each algorithm in the threshold and general
distributed signature scheme for a varying number of parties. Figure 6.5a
measures the time for a party to create and verify one signature share
and 6.5b the time to combine an authorized set of signature shares.
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6.10 Discussion

Conclusion. In this chapter we provide the first implementation and
practical assessment of distributed cryptography with general trust. We
fill all gaps on implementation details and show how a system can be
engineered to support general distributed cryptography. We describe,
implement, and benchmark distributed cryptographic schemes, specif-
ically, a verifiable secret-sharing scheme, a common-coin scheme, and
a distributed signature scheme (as a generalization of threshold sig-
natures), all supporting general trust assumptions. For completeness,
we also present the security proofs for all general schemes and handle
specific cases that arise from the general trust assumptions (see Theo-
rem 20). Our results suggest that practical access structures can be used
with no significant efficiency loss. It can even be the case (VSS share ver-
ification, Figure 6.3b) that operations are on average faster with complex
trust structures encoded as Monotone Span Programs (MSP). We nev-
ertheless expect future optimizations, orthogonal to our work, to make
MSP operations even faster. Similar optimizations have already been
discovered for polynomial evaluation and interpolation [157]. We expect
that our work will improve the understanding and facilitate the wider
adoption of general distributed cryptography.

Future work. Distributed key generation (DKG) is a significant com-
ponent in distributed cryptographic schemes. It eliminates the strong
assumption of a trusted dealer by distributing this task among the par-
ties. The basic idea is that each party runs an instance of VSS in
parallel, sharing a random secret, and then locally adds the shares of
the instances that successfully terminated (i.e., their dealer did not get
disqualified). The shared secret, which never becomes known to any
party, is uniquely determined as the sum of the random secrets of the
instances that terminated. This technique can be used in MSP-based
DKG protocols, as well, although we leave the formal description of an
MSP-based DKG scheme as future work. This boils down to the lin-
earity of MSPs: adding two share vectors z1 = Mr1 and z2 = Mr2,
where r1[1] = x1 and r2[1] = x2, and then interpolating from some au-
thorized set A will always result in the sum of the two shared secrets,
i.e., λA(z1 + z2) = λAM(r1 + r2) = x1 + x2.



Chapter 7

Practial large-scale
distributed randomness
generation

This chapter presents a simple and efficient common-coin protocol,
which can be used for generating the randomness required in asyn-
chronous total-order broadcast (ATOB) protocols. The corresponding
full paper [7] additionally presents a seed-generation protocol, which
can be used in proof-of-stake total-order broadcast protocols when
unpredictable nonce values are needed [59, 82]. Both protocols are
secure in a proof-of-stake setting with dynamically changing stake.
They can be plugged into existing ATOB protocols and will turn them
into practical and efficient ATOB protocols with dynamic stake and
with proactive key refreshing. The full paper [7] also shows how to
use our common-coin protocol in DAG Rider [99], a state-of-the-art
DAG-based ATOB protocol.

7.1 Introduction

State of the art. It is well known that asynchronous total-order
broadcast (ATOB) cannot be deterministic [76]. The necessary ran-
domness is usually modelled as a common coin scheme [137], informally
defined as a source random values observable by all participants but



110 Practial large-scale distributed randomness generation

unpredictable for the adversary [35]. Common coins are most practi-
cally implemented using threshold cryptography [39, 65, 135, 35]. This
approach has many benefits. It is conceptually simple and efficient, it
achieves optimal resilience t < n/3, where n parties run the protocol,
and it results in a perfect coin, meaning that it is uniformly distributed
and agreed-upon with probability 1. The drawback, however, is that it
requires a trusted setup or an asynchronous distributed key generation
(ADKG) protocol. Current state of the art ADKG protocols [57, 1, 2]
have communication cost of O(n3).

Given that state-of-the-art ATOB protocols have communication
complexity O(n2), or even amortized O(n), it is evident that the com-
munication cost of ADKG becomes the bottleneck. In a permissioned
setting with a static set of parties, it is common to proactively refresh
the threshold setup [34]. In a proof-of-stake (PoS) setting, particularly,
where the stake is constantly evolving and parties may dynamically join
or leave the protocol, the ADKG protocol must be run periodically.
Recent literature on asynchronous consensus uses committees, which
contain only a subset of the parties, reducing the communication com-
plexity of BA even further to O(n log n) at the cost of tolerating only
t < (1− ε)n/3 corruptions for any ε > 0 [23, 49]. As the protocol run by
the committee assumes an honest supermajority, this paradigm comes
with one of two significant drawbacks. Either the sampled committee
has to be very large, so that its maximal corruption remains below n/3
with overwhelming probability [60]. Otherwise, in order to keep the com-
mittee size small, the corruption level in the ground population must be
assumed lower than n/3 by a considerable margin. Directly porting this
idea to ADKG results in the same drawbacks. Finally, existing DKG
protocols support only flat structures, where every party has the same
weight and in total t < n/3 parties are corrupted. They do not readily
work for a setting where every party holds a different share of the stake.

Seeds in PoS protocols. PoS-based ATOB protocols and
blockchains require, apart from common coins, a second type of
randomness, usually referred to as a seed. In PoS blockchains there is
the notion of accounts with stake on them, of roles, such as “produce
the 42-nd block”, and of a lottery, through which accounts win the right
to execute roles. This is typically [59, 82] implemented using a verifiable
pseudo-random function (VRF) [122]: each account has a private key
for a VRF and applies it to the role, producing a pseudorandom value.
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If this value is above a threshold then the account wins the right to
execute the role. However, for this approach to work the lottery needs
as input not only a role but also a seed. Without it, a party can operate
with several accounts and move all its stake to the luckiest account.
By including a seed in the lottery, however, and by using the stake
distribution from a point in time before the seed was unpredictable one
can mitigate this attack [59].

In practice one can use a common-coin protocol to produce the seeds.
We remark, however, that the two randomness-generation protocols have
different requirements. A common-coin scheme does not have to be
always unpredictable and agreed-upon, but only with some constant
probability [131, 40]. It should, however, be efficient, as it is used in
every agreement instance within the broadcast protocol. On the other
hand, the seed-generation protocol must always be unpredictable and
agreed upon, but it can be slow, as it is only run periodically (e.g., once
per epoch).

Contributions. In this work we address all the aforementioned lim-
itations of randomness generation for the first time. We present an
asynchronous common-coin protocol that

• requires no trusted setup,

• supports optimal resilience t < n/3,

• employs small committees and is concretely efficient,

• directly supports the PoS setting and dynamic participation,

• is modular and can be generically used in any ATOB protocol.

Our methods. We are motivated by the question whether one can
use the simple, practical, and efficient approach of getting common
coins from threshold setup without running inefficient and complicated
protocols whenever the stake has shifted. Building on the idea of
Blum et al. [23], we rely on the fact that there already exists a
functional ATOB: we generate the setup assuming that we already
have the ATOB, and then use the generated setup to keep the ATOB
running. To maintain practical efficiency the crucial step is to avoid
using fully homomorphic encryption. We achieve this by generating
weaker setups than Blum et al. [23], nonetheless still strong enough for
the continued execution of the ATOB.
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A crucial observation is that coins consumed by Byzantine agree-
ment do not need to be perfect, i.e., always unpredictable and agreed
upon [40, 131]. Hence, instead of generating a single, perfect threshold
setup, we generate several candidate setups, such that some constant
fraction of them are good. Many ADKG protocols can be seen as doing
this as their first step, but their next step is to combine them into a
single perfect setup. In order to be combinable, the setups must be of a
particular form, and the committee that holds the setup must be good
(that is, contain less than a threshold corruptions) except with negligible
probability. As our setups are not combined and our committees only
need to be good with a constant probability, our protocols are simpler
and more efficient, and use smaller committees.

Figure 7.1. The high level idea of our protocols. A proposers committee
is elected, and we wait until w proposers broadcast a setup. Assuming 2/3
honesty in the ground population, a proposer is honest with probability
2/3. Each proposer is assigned a holding committee of size n and creates
an (n, τ) threshold setup for it. A committee is hiding if it contains
at most τ corrupted parties, and live if it contains at most n − τ − 1
corrupted parties. A setup is good if its proposer in honest and its
holding committee is hiding and live. We set w so as to have enough
honest proposers, and n and τ so that each holding committee is hiding
with constant probability β and live with all but negligible probability.
As a result, we get good setups with a constant probability γ.

Our common-coin protocol wMDCF follows the approach depicted in
Figure 7.1. It elects a proposers committee, and each elected proposer
is assigned a holding committee, for which it creates a threshold coin
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setup. For this, the proposer acts as a dealer, encrypts the private setup
material under the keys of the holding committee, and broadcasts these
encryptions and the required verifications keys with a single message on
the ATOB. We use a VRF-based lottery to determine both the proposers
and the holding committees, where each party is elected with probability
proportional to its stake. To flip a coin cid in the wMDCF protocol, we
first hash cid with a seed to obtain a pointer to one of the published
setups and then use that setup to obtain the value of cid. Which setup
will be used for each cid is thus unpredictable until the seed is known.

Organization. The rest of this chapter is organized as follows. Sec-
tion 7.3 presents the formal model used in the schemes and Section 7.4
presents the primitives used in our schemes. The common-coin protocol
is presented in modular way, in two steps. First, Section 7.5 presents
wHDCF, a weak honest-dealer coin-flip protocol, which is then used in
Section 7.6 to build the wMDCF common-coin protocol. The schemes are
parameterized over committee sizes and thresholds, and secure bounds
for these are computed in Section 7.7. In Section 7.8 we analyze the
concrete communication cost of our protocols.

7.2 Related work

Multiple common-coin constructions without a trusted dealer have been
proposed in the literature. Ben-Or [20] presents a simple protocol, where
every party flips a local coin. As a result, parties agree on the value of
the coin only with probability Θ(2−n), A common-coin scheme from
verifiable secret sharing has been shown by Canetti and Rabin [40],
but their resulting Byzantine agreement protocol has communication
complexity O(n11). Patra, Choudhury, and Rangan [131] bring this
down to O(n3).

A different approach constructs common coins from publicly veri-
fiable secret sharing. The resulting protocols, such as SCRAPE [41],
ALBATROSS [42], Spurt [56], HydRand [144], and RandHound-
RandHerd [155], are efficient, yet they all make synchrony assumptions.
RandShare [155] has been formalized in the asynchronous communica-
tion setting, but it is, according to its authors, less efficient.

Another line of work is based on time-based cryptography. Protocols
in this category, such as Unicorn [104] and Bicorn [46], employ verifiable
delay functions [25] and rely on the assumption that certain functions



114 Practial large-scale distributed randomness generation

(such as exponentiation in groups of unknown order [141]) can only be
computed serially. None of the aforementioned works explicitly men-
tions the network assumptions. Overviews of random beacon protocols
are given by Raikwar and Gligoroski [139], and by Choi, Manoj, and
Bonneau [47].

Multiple works that circumvent ADKG exist in the literature, but
they either make more assumptions, have non-optimal resilience, or re-
sult in inefficient protocols. Existing PoS blockchains rely on the timely
delivery of honestly generated blocks, hence make timing assumptions.
Ouroboros Praos [59] implements a randomness beacon protocol, used
as seed in their leader-election algorithm, by hashing a large number
of VRF outputs. Partial-synchrony assumptions assure that the hon-
estly generated VRF outputs cannot be delayed arbitrarily by the ad-
versary. King and Saia [100, 101] propose a synchronous common-coin
protocol that makes uses of pseudorandomly selected committees, but
achieves non-optimal resilience. This is improved in the protocol of Algo-
rand [82, 45], where each committee member applies a VRF on the seed
of previous block, and then the smallest valid VRF value sent by some
committee member is kept. The protocol is first described in the syn-
chronous model [82] and later extended to the partially synchronous [45].
Cohen, Keidar, and Spiegelman [49] extend this idea to the asynchronous
model, but their protocol achieves an n = 4.5t resilience. In all these
protocols the coins are not reusable and the whole coin-generation algo-
rithm has to be run repeatedly.

Blum et al. [23] also generate randomness without ADKG. Their
ATOB protocol works in the following way. Assume first that a trusted
dealer publishes on a ledger all the setup material required for one in-
stance of Byzantine agreement and one instance of a multiparty com-
putation (MPC) protocol. Then, on every invocation of the agreement
protocol, parties use the Byzantine-agreement setup in the agreement
protocol and the MPC setup in a tailor-made MPC protocol that re-
freshes the whole setup. Finally, they replace the trusted dealer with
a standard MPC protocol, executed once in a distributed setup phase.
This blueprint solves the problem of dynamic stake elegantly, but, the
proposed MPC protocol for refreshing the setup, which has to be ex-
ecuted for every Byzantine agreement instance, is not efficient: it em-
ploys threshold fully homomorphic encryption, digital signatures, and
zero-knowledge proofs.
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7.3 Model

Ledger. We assume a model with asynchronous authenticated point-
to-point channels. In addition, we assume an asynchronous persistent
total-order broadcast channel. We denote by Ledger the totally-ordered
sequence of messages that have been delivered on the channel. We point
out that if a blockchain has a distinction between final and non-final
messages, then Ledger denotes the final messages. We assume that when
a protocol is started all the parties taking part in the protocol agree on
a session identifier sid and an existing point on the ledger, p ≤ |Ledger|.
We think of p as the starting point of the protocol, which gives consensus
on the context of the protocol like stake distribution and lottery as
discussed below. Protocols can have public output which might not be
explicitly posted on the ledger, but will have a well-defined value and
virtual point p at which they happened.

Definition 13 (Public output). We say that PubOutF is a public
output function if it computes a public output from a ledger Ledger and
a session identifier sid, where either PubOutF(Ledger, sid) = y ∈ {0, 1}∗
or PubOutF(Ledger, sid) = ⊥. We require that if PubOutF(Ledger, sid) 6=
⊥ then PubOutF(Ledger‖m, sid) = PubOutF(Ledger, sid) for all m. We
say that sid gave public output y at position p if |Ledger| ≥ p and
PubOutF(Ledger[1, p − 1], sid) = ⊥ and PubOutF(Ledger[1, p], sid) = y.
Unless multiple sid’s are in scope we will omit the sid parameter. Finally
we will informally say that some protocol gives public output PubOutF
when additionally the ledger is implicit or when it is an eventual property
of the ledger.

Dynamic stake. We consider proof-of-stake defined via the ledger.
For each Ledger there is a stake distribution Σ(Ledger) : P → R0 which
may change as the ledger grows, can be computed in poly-time, and
which gives for each party P its stake Σ(Ledger)(P). For each point
p there is also a stake distribution Σp, which is the stake distribution
used by protocols with p as starting point. It may be different from
Σ(Ledger[1, p]), as discussed below.

Lotteries. In PoS based protocol it is common that parties are selected
at random for carrying out a role in the protocol, like serving on a
committee or producing the next block in a blockchain. To keep the
model simple we assume that this is done via a random oracle. To keep
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the model simple we assume that for each point p on the ledger there is a
random oracle Γp : {0, 1}∗ → {0, 1}λ. We assume that Γp is sampled and
made available to the parties at some point after Σp can be computed
from Ledger. This ensure that Γp is independent of Σp. If Γp was
made available before Σp was fixed then corrupted parties could update
Σp based on Γp and for instance give more stake to parties “lucky” in
Γp. One way to implement this is to iteratively generate random and
unpredictable seeds seed appearing as public outputs. Then for a given
point p let seedp be the latest seed on Ledger[1, p], let Γp(x) = R(seedp, x)
for a random oracle R, let p′ < p be the latest point where seed was
unpredictable, and let Σp = Σ(Ledger[1, p′]).

Our protocols include steps where a party samples a committee cid
of size n. We model this as a function SampleCommitteep(cid, n) →(
Hi
)
i∈[n]

that uses Γp to sample n parties from P with probability

proportional to the stake Σp. As the input is public, the output can
be verified by a function VerifyCommitteep(cid,

(
Hi
)
i∈[n]

) that reruns

SampleCommitteep(cid, n) and verifies that it matches
(
Hi
)
i∈[n]

. We

assume SampleCommitteep(cid, n) is locally computable by every party.
Using our lottery abstraction this could be implemented by calling
Γp(cid, i), for some committee cid and for i ∈ [n], to obtain a number
ri ∈ {0, 2λ − 1}, and then deterministically mapping ri to a party
Pi ∈ P based on Σp. Observe that a party with relatively large stake
can appear multiple times in the committee.

7.4 Primitives

Our schemes make use of the following primitives.

7.4.1 Public-key encryption with full decryption

There are keys (dki, eki), for all Pi ∈ P, for an IND-CPA encryption
scheme with full decryption, PKE. Encrypting a message m ∈ PKE.M
using randomness r ∈ PKE.R results in a ciphertext c = Enceki(m; r) ∈
PKE.C. Given a ciphertext c ∈ PKE.C the decryption algorithm Decdki(c)
returns both m ∈ PKE.M and r ∈ PKE.R. The triple (m, r, c) can then
be verified by anyone holding eki by checking if Enceki(m; r) = c.

Given an invalid ciphertext a zero knowledge proof that the cipher-
text is invalid can be obtained using the secret key.
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Construction using El Gamal. We first show that we can obtain the
properties above in the random oracle model, as long as only encryptions
of random messages are needed. This can then be lifted to a complete
encryption scheme by symmetrically encrypting the message under a
freshly sampled random key.

To encrypt a random value r, use El Gamal withH(r) as randomness.
I.e. if dk = x and ek = h = gx, then you encrypt r as c = (A,B) =
(gH(r), r · hH(r)). To decrypt you first compute r = B/(Ax), then check
if re-encrypting using H(r) as randomness gives back c. If verification
checks out you can simply send r as proof. If the re-encryption does
not match, you provide a proof that r was obtained by decrypting c.
Note that (A,B) decrypts to r (under (g, h)) iff DLg(h) = DLA(B/r),
so this proof can be constructed using the Fiat-Shamir transform of the
Σ-protocol for equality of discrete logarithms.

In the full scheme, in order to encrypt m using randomness r, you
encrypt r as above and additionally include a symmetric encryption of
m using r as key.

To decrypt you first use regular El Gamal decryption to obtain r
and verify it by re-encrypting. If it was encrypted correctly you use it
to decrypt m and return (m, r), otherwise return (⊥, r).

7.4.2 Threshold coin flip

We use a (n, t)-threshold coin-flip (CF) scheme, where n is the total
number of parties, t is the corruption threshold, and the reconstruction
threshold is t+ 1. The scheme has the following interface.

• Setup(n, t) → (vk, sk1, . . . , skn): The dealer generates a verifica-
tion key vk and secret key shares ski of Pi. The secret keys can be
used to create coin shares of multiple coins.

• VerifyKeyShare(vk, i, ski)→ b ∈ {0, 1}: Given the verification keys
vk, it verifies ski.

• Flip(ski, coin)→ (si,wi): Given a coin identifier coin and secret key
ski, it returns a coin share si for coin and potentially a correct-
ness proof wi, i.e., a proof that the coin share has been computed
correctly using ski.

• VerifyCoinShare(vk, coin, si,wi) → b ∈ {0, 1}: It verifies coin share
si for coin identifier coin using the correctness proof wi and verifi-
cation key vk.
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• Combine(coin, {sij}j∈[t+1]) → s ∈ {0, 1}λ: Given t + 1 valid coin
shares sij , for j ∈ [t+1], it returns the value s of the coin identifier
coin.

• VerifyCoin(vk, coin, s)→ b ∈ {0, 1}: It verifies s as the value of coin
identifier coin using the verification key vk.

Security properties. Assuming an honest dealer, i.e., that Setup() is
correctly executed, and that there are no more than t corrupted parties,
the scheme satisfies the following properties.

Completeness: If the dealer is honest then all key shares generated
with Flip(ski, coin) will verify with VerifyCoinShare.

Agreement: For any t+1 valid key shares the value Combine(coin, {sij}j∈[t])
is the same, which define the value scoin.

Unpredictability: The value scoin is unpredictable without honest
shares, i.e., for a set C = {Pij}j∈[t+1] of corrupted parties, if a poly-time
adversary has been given vk and ski for Pi ∈ C for a random setup and
has not been given Flip(ski, coin) for Pi 6∈ C, then it cannot guess scoin
better than at random. This holds even if it has access to an oracle
giving Flip(ski, coin

′) for all honest Pi for all coin′ 6= coin.

Instantiation. Scheme CF can be instantiated with any non-
interactive unique threshold signature scheme, such as BLS threshold
signatures [27, 24]. The dealer picks a random secret key sk and shares

it among all n parties using a polynomial φ(X) =
t∑

k=0

φkX
k, such that

φ0 = sk. The only difference from threshold BLS is in Setup(): it runs
the key generation algorithm of the threshold signature scheme, but
it does not return the verification keys in the form gski2 ∈ G2, where
i ∈ [n] and g2 is the generator of G2, as in the original scheme. Instead,
it returns a vector (V0, . . . , Vt), where Vk = gφk ∈ G2, for k ∈ {0, . . . , t},
i.e., it returns Feldman commitments [74] to the coefficients of φ. This
allows us to implement VerifyKeyShare(), so Pi can verify that its key
share ski is indeed a point on polynomial φ by checking whether

gski2
?
=

t∏
k=0

(Vk)i
k

. (7.1)

Observe that the original verification keys can still be obtained using
(7.1) with input vk and i, hence VerifyCoinShare() and VerifyCoin() need
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no modification. Algorithm Flip() returns a signature share si on mes-
sage coin using the key share ski of party Pi. Algorithm Combine()
creates the threshold signature s from t+1 valid signature shares, which
can then be hashed to get a value in {0, 1}. Algorithms VerifyCoinShare()
and VerifyCoin() invoke the signature verification algorithm, which, in
the case of BLS, only takes as input the message coin and a signatures
share si or signature s, i.e., wi = ⊥, and uses a pairing function. Alter-
natively, one can use the common-coin scheme of Cachin, Kursawe, and
Shoup [35], but VerifyCoin() would additionally need as input the t + 1
valid coin shares and proofs {sij ,wij}j∈[t+1].

7.4.3 Secret sharing

Our construction requires a secret sharing scheme TSS with threshold t
with the following interface.

1. Share(s; r)→ (s1, . . . , sn): It shares a secret s using randomness r
to n secret shares (s1, . . . , sn).

2. Reconstruct({sij}tj=1) → s′: Given t shares it reconstructs some
secret s′.

The hiding property says that the joint distribution of t shares si is
independent of s. We can instantiate TSS with Shamir’s secret sharing
scheme [147].

7.4.4 Digital Signatures

Finally, there are keys (skP, vkP), for all P ∈ P, for a digital signature
scheme DS with unique signatures.

7.4.5 Seed-generation protocol

Our common-coin scheme wMDCF uses a seed-generation sub-protocol
seed. A seed can be thought of as a perfect coin flip: there is agree-
ment on the output and its value is unpredictable before the protocol
starts. The exact protocol we use is presented in the full version of this
work [7]. It follows the same idea as our common-coin scheme: parties
are pseudorandomly elected to form the proposers committee, and each
proposer is assigned a holding committee, to which it secret-shares a
random value. When a new seed value is needed, the members of each
holding committee recombine the secret-shared value, and all the values
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are then added together. The construction makes sure that, except with
negligible probability, the protocol remains live and the value of the seed
is unpredictable.

Syntax. The scheme has the following syntax.

Commit: On input (seed, nid) in a session with session identifier nid a
party starts running the commit protocol and may as a result public
output PubOutSeedCommit.

Open: On input (seed-open, nid), which must be given after public out-
put PubOutSeedCommit, in a session with id nid a party starts running
the opening protocol and may as a result output (done-seed, nid, c), for
c ∈ {0, 1}λ.

Security properties. It satisfies the following security properties.

Termination: If all honest parties get input (seed, nid) then eventually
all honest parties give public output PubOutSeedCommit.

If all honest parties get correct input (seed-open, nid) then eventually
all honest parties give an output (done-seed, nid, ·).
Agreement: If two honest parties have outputs (done-seed, nid, cP)
and (done-seed, nid, cQ), then cP = cQ. Call the common value cnid.

Unpredictability: For each session nid it holds that cnid is unpre-
dictable before the first honest party gets input (seed-open, nid).

7.5 Weak honest-dealer coin flip

In this section we define the weak honest-dealer coin-flip (wHDCF) pro-
tocol. In wHDCF there is a designated dealer D, which is one of the
participating parties. We assume D is given as part of session identifier,
sid = (D, sid′), and hence is known by all parties when the instance is
created. The scheme is weak in the sense that parties may output ⊥ as
the value of the coin, but if two honest parties output a value in {0, 1},
then it will be the same. It is honest-dealer as the coin value becomes
predictable for a corrupted D. The scheme makes use of a commit-
tee verification mechanism SampleCommitteep() proportional to stake at
point p (Section 7.3), an encryption scheme with full decryption PKE
(Section 7.4.1), and an (ncoin, τcoin)-threshold weak coin flip scheme CF
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(Section 7.4.2). Here ncoin and τcoin are protocol parameters, for which
we choose specific values in Section 7.7.

Syntax. The syntax of weak honest-dealer coin-flip is as follows:

Deal: On input (deal, sid) a participating party starts running the
dealing protocol of CF and may as a result produce a public output
PubOutSingleDeal.

Flip: On input (flip, sid, cid), for coin identifier cid, after
PubOutSingleDeal(sid, Ledger) 6= ⊥, a party starts running the
flip protocol of CF and outputs (done-flip, sid, cid, s, π), where
s ∈ {⊥} ∪ {0, 1}λ and π is a proof that s is the output of the coinflip-
ping protocol. The proof can be checked by any party P′ for which
PubOutSingleDeal(sid, LedgerP′) 6= ⊥ using wHDCFVerify(π,m).

Security. The security properties of wHDCF are as follows.

Termination: (1) If D is honest and all honest parties get input
(deal, sid), then eventually PubOutSingleDeal(sid, Ledger) 6= ⊥.

(2) If, after PubOutSingleDeal(sid, Ledger) 6= ⊥, all honest parties get
input (flip, sid, cid), then eventually all honest parties give output
(done-flip, sid, cid, ·), except with negligible probability.

Weak agreement: If two honest parties output
(done-flip, sid, cid, cP, π) and (done-flip, sid, cid, cQ, π), such that
cP 6= ⊥ and cQ 6= ⊥, then cP = cQ, except with negligible probability.
Moreover, if D is honest, then no honesty party P outputs cP = ⊥.

Honest-dealer β-unpredictability: If dealer D of session sid is hon-
est, then each coin flip cid is independently unpredictable with
some constant probability β > 0, where β is defined when
PubOutSingleDeal(sid, Ledger) 6= ⊥ and is independent of cid.

Construction. In a high level, the scheme works as follows. Dealer D
is assigned a coin-holding committee of size ncoin and creates a coin setup
for an (ncoin, τcoin)-threshold coin scheme CF for this committee. Ter-
mination is achieved by appropriately setting the parameters and from
the pseudorandom nature of the committee: if the dealer completes the
setup, there are at least τcoin+1 honest parties in the committee, except
with negligible probability. The weak agreement property is achieved by
verifiable complaints against a corrupted dealer. Upon receiving a com-
plaint valid complaint, a party terminates the Flip protocol outputting⊥.
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If, additionally, D is honest, then our protocol guarantees unpredictabil-
ity with constant probability β, defined as the probability of having at
most τcoin corruptions in the committee, and depending only on ncoin
and τcoin.

Algorithm 9 Scheme wHDCF, algorithm Deal, where an instance sid of
wHDCF is created at point p on Ledger. Code for process Pi.

161:upon input (deal, sid) where sid = (D, sid′) and Pi = D do // only D
162: (H1, . . . ,Hncoin)← SampleCommitteep(sid, ncoin),
163: (vk, sk1, . . . , skncoin)← CF.Setup(ncoin, τcoin)
164: for j ∈ [ncoin] do

165: rj
$← {0, 1}λ

166: ej = PKE.Encekj ((skj , rj))
167: broadcast (sid, vk, (H1, e1), . . . , (Hncoin , encoin)) on Ledger

In Algorithm 9 we implement Deal. The dealer first (line 162)
samples the coin-holding committee of size ncoin and then (line 163)
uses CF to create a coin setup for it. The coin setup includes secret
keys sk1, . . . , skncoin

and verification key vk. Each secret key ski
is encrypted to party’s Pi long term private key eki using a fresh
randomness ri (lines 164–166). The coin setup is broadcast on Ledger.
When a coin-setup is included in Ledger we define the public output
PubOutSingleDeal(sid, Ledger) as (vk, (H1, e1), . . . , (Hncoin , encoin)) if the
included committee verifies using VerifyCommittee. Otherwise the
output is ⊥.

In Algorithm 10 we implement Flip. Only parties in the coin-
holding committee run it. When Pi gets input (flip, sid, cid) and
PubOutSingleDeal(sid, LedgerPi) 6= ⊥, it first reads the coin setup and
tries to decrypt ei to obtain its key share (line 173). Scheme PKE
returns sk′i and the randomness r′i that D is supposed to have used
at encryption time. Party Pi checks whether D has indeed done so
by re-encrypting (sk′i, r

′
i) and checking the result against ei. If it is

different, Pi sends a complaintEncryption message that includes a
zero-knowledge proof that ei decrypts to (sk′i, r

′
i) (lines 174–177) and

stops handling the Flip event. Otherwise, Pi can prove correct decryp-
tion of ei in a complaint message by sending (sk′i, r

′
i). Party Pi then

verifies its key share against the verification vector vk published in the
coin setup, and, if it is invalid, sends a complaintKeyShare message
to C (lines 178–179) and returns. If the check passes, it creates a coin
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Algorithm 10 Scheme wHDCF, algorithm Flip (cid), where an instance
sid of wHDCF is created at point p on Ledger. Code for process Pi,
Pi is one of the Hj in the coin-setup (sid, vk, (H1, e1), . . . , (Hncoin

, encoin
))

published on Ledger.

State:
168: validShares[sid][cid]← [ ]; terminated[sid][cid]← 0
169: justifiedComplaint[sid][cid]← ⊥, for each sid and cid

170:upon input (flip, sid, cid) such that PubOutSingleDeal(sid, Ledger) 6= ⊥ do
171: (vk, (H1, e1), . . . , (Hncoin , encoin))← PubOutSingleDeal(sid, Ledger)
172: let C = {H1, . . . ,Hncoin}
173: (sk′i, r

′
i) = PKE.Decdki(ei)

174: if ei 6= PKE.Enceki((sk
′
i, r
′
i)) then

175: create zk-proof Wi that ei decrypts to (sk′i, r
′
i)

176: send (complaintEncryption, sid, cid,Wi, sk
′
i, r
′
i) to parties in C

177: return
178: if CF.VerifyKeyShare(vk, i, sk′i) = 0 then
179: send (complaintKeyShare, sid, cid, sk′i, r

′
i) to parties in C ; return

180: si = CF.CreateShare(sk′i, cid)
181: send (coinShare, sid, cid, si) to parties in C

182:upon deliver (coinShare, sid, cid, sj) from Pj do
183: if CF.VerifyCoinShare(vk, cid, sj) = 1 then
184: append sj to validShares[sid][cid]

185:upon deliver c = (complaintEncryption, sid, cid,Wj , skj , rj) do
186: e′j ← PKE.Encekj ((skj , rj))
187: if e′j 6= ej and Wj is valid then
188: justifiedComplaint[sid][cid]← c

189:upon deliver c = (complaintKeyShare, sid, cid, skj , rj) do
190: e′j ← PKE.Encekj ((skj , rj))
191: if e′j = ej and CF.VerifyKeyShare(vk, i, ski) = 0 then
192: justifiedComplaint[sid][cid]← c

193:upon |validShares[sid][cid]| = τcoin + 1 and terminated[sid][cid] = 0 do
194: let

(
sj1 , . . . , sjτcoin+1

)
= validShares[sid][cid]

195: s← CF.Combine(cid, {sjk}k∈[τcoin+1])
196: terminated[sid][cid]← 1
197: output (done-flip, sid, cid, s, validShares[sid][cid])

198:upon justifiedComplaint[sid][cid] 6= ⊥ and terminated[sid][cid] = 0 do
199: terminated[sid][cid]← 1
200: output (done-flip, sid, cid,⊥, justifiedComplaint[sid][cid])
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share using the threshold-coin scheme CF (line 180) and sends to the
committee C. All complaints are verifiable: complaintEncryption
is valid if the zk-proof Wj , proving that the published ej decrypts to
(skj , rj)), is valid, and the re-encryption of (skj , rj) gives something
different from ej (lines 185–188). complaintShare is valid if the
re-encryption of (skj , rj) gives the published ej and the key share skj
is deemed invalid by the CF scheme. (lines 189–192). Party Pi outputs
in two cases, whichever comes first. First, upon collecting τcoin + 1
valid coin shares (line 193), in which case the value of the coin is
reconstructed using the underlying CF scheme. Second, upon receiving
a valid complaint (line 198), in which case a ⊥ value is output.

The wHDCFVerify check can be implemented by a function that
verifies a complaint according to the activation rules in line 185 or line
189, or, when given a set of shares, checks that they are valid and reruns
the activation rule in line 193.

Proofs. We first present a more formal version of Honest-dealer β-
unpredictability and then show the proofs. In the following, let f denote
the actual number of corrupted parties in the coin-holding committee.
Then, denote by good-setup, no-unpred, no-live the events that
f ∈ [0, τcoin], f ∈ (τcoin, ncoin − τcoin), and f ∈ [ncoin − τcoin, ncoin], re-
spectively. As the names suggest, all protocol properties will be satisfied
in the first case, while unpredictability may be violated in the second,
and additionally liveness may be violated in the third. In Section 7.7
we choose concrete parameters for the committee election, such that
Pr[good-setup] = β, for β a constant, and Pr[no-live] is negligible.
Observe that SampleCommitteep() is verifiable and unpredictable (see
Section 7.3), hence D cannot affect the probability of these events.

Definition 14 (Honest-dealer β-unpredictability for wHDCF).
We formalize honest-dealer unpredictability as a challenge game played
against the PPT adversary A. The definition implicitly assumes the
termination property, as it does not make sense to define unpredictabil-
ity of a value which is not defined, and the agreement property, as it is
trivial to guess one of the outcomes if two honest parties have different
coins. The following definition demands that the dealing phase results
in a “good” setup with a constant probability, and, if D is honest, such
a good setup always leads to unpredictable coin flips.

Sometimes good: For all sid there exists an event Badsid, which can
be defined in PPT from the view of the adversary once the first honest
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party gives output (done-deal, sid), i.e., the adversary knows if the
event happened. It should hold that Badsid happens with probability at
most 1− β, independently for each sid and independently from D being
honest.

Unpredictable when good: Furthermore, the adversary can win the
following game with probability at most negligibly better than 2−λ. The
adversary may initiate as many sessions sid and coin-flips cid as it wants.
At some point it specifies (sid, cid, g), where sid is a session with an
honest dealer, where Badsid did not happen, where no honest party got
input (flip, cid) yet, and where g ∈ {0, 1}λ. The adversary wins if it can
execute to the point where some honest party outputs (done-flip, cid, c)
with c = g.

Termination. (1) For the first part, assume D is honest. Since D does not
wait for any parties in any step, it successfully broadcasts the coin setup,
and, from the liveness property of Ledger, it will eventually be delivered
on Ledger. (2) Assume (done-deal, sid) has been observed by all honest
parties. Hence, honest parties can read the coin setup from Ledger and
verify it using VerifyCommittee(). By nature of committee election and
by the choice of ncoin and τcoin there are at least τcoin + 1 honest coin
holders. We distinguish two cases. Either the dealer has created valid
key shares and encryptions for all honest coin holders, or there is at least
one honest coin holder, for whom the dealer has created an invalid key
share. Observe that the two cases cover all possible executions. If we are
in the first case, then every honest coin holder Pi will successfully decrypt
ei to get a valid ski. From termination property of CF, and since there
are at least τcoin+1 honest coin holders, it follows that the coin shares of
these parties are sufficient to reconstruct the coin value, hence eventually
every honest party in the committee will output (flip, sid, cid, ·). If we
are in the second case, the honest party can always compute a valid
complaint against the dealer. If ei is incorrect, Pi can prove this by
broadcasting a complaint complaintEncryption, which contains a
zk-proof Wi that ei decrypts to (sk′i, r

′
i). A verifier can always verify the

zk-proof and check that re-encrypting (sk′i, r
′
i) does not give ei. If, on the

other hand, ei is a correct encryption of an invalid key share sk′i, Pi can
also prove this broadcasting sk′i and r′i in a complaintShare message.
A verifier can now verify that (sk′i, r

′
i) indeed re-encrypts to ei, but

CF.VerifyKeyShare(vk, i, sk′i) returns 0. Honest parties will eventually
deliver the complaint and output (flip, sid, cid,⊥).
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Weak agreement. Let P and Q be parties that output cP 6= ⊥ and cQ 6= ⊥
as the value of the coin using sets of t + 1 valid coin shares SP and SQ

in CF.Combine(), respectively. Then, since the shares in SP and SQ

are valid, they all lie on the same polynomial, hence they define the
same secret, and cP = cQ. Additionally, if D is honest, then no valid
complaint can be computed, except with negligible probability, hence
honest parties P and Q output cP 6= ⊥ and cQ 6= ⊥, and, from the
agreement property of CF, we get cP = cQ.

Honest-dealer β-unpredictability. Define β = Pr[good-setup] and
Badsid = ¬good-setup, i.e., Badsid is the event that the committee
assigned to D contains more than τcoin corrupted parties. Given sid and
a point p on Ledger, the committee returned by SampleCommitteep()
is deterministic, hence Badsid happens with probability 1 − β, which is
constant and independent of sid, and can be defined from the view of
the adversary once the coin setup appears on Ledger. The exact value
of β depends on the choice of ncoin and τcoin. The Sometimes good
property is satisfied. Now about the Unpredictable when good property.
When Badsid does not happen, the number of actual corrupted coin
holders is not more than τcoin. The Unpredictability property of the CF
scheme holds in this case, and the Unpredictable when good property of
wHDCF can be reduced to the Unpredictability of CF.

Remark 5 (Weak agreement vs. honest-dealer aggreement).
One can also aim for an honest-dealer agreement property, where, if D
is honest, then honest parties output the same coin value. Our weak
agreement property is stronger: if D misbehaves, then some parties may
output ⊥, but honest parties will never output different coin values. It
reduces to honest-dealer agreement by having parties flip a local coin
whenever ⊥ is output.

7.6 Weak multiple-dealer coin flip

In this section we define the weak multiple-dealer coin-flip (wMDCF)
protocol. It is weak as it inherits the agreement property from wHDCF:
parties may output ⊥, but if two honest parties output a value in {0, 1},
then it will be the same. It is called multiple-dealer as there are mul-
tiple dealers, forming a proposers committee, selected pseudorandomly
using SampleCommitteep(). The protocol uses parameters mwMDCF and
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wwMDCF. Parameter mwMDCF refers to the size of the proposers commit-
tee, i.e., the number of parties that are selected to act as a dealer in an
instance of wMDCF. Parameter wwMDCF refers to the number of parties
in the proposers committee we asynchronously wait for. In Section 7.7
we show how to set these parameters, such that at least one good setup
appears on the ledger, except with negligible probability, and a con-
stant rate γ of the setups are good. The protocol makes use of seed, a
seed-generation sub-protocol described in Section 7.4.5.

Syntax. The syntax of weak Multiple-Dealer Coin-Flip (wMDCF) is
as follows:

Deal: On input (deal, sid) a participating party starts running the
dealing protocol and may as a result help produce a public output
PubOutMultiDeal.

Flip: On input (flip, sid, cid) for a coin identifier cid, after
PubOutMultiDeal(sid, Ledger) 6= ⊥, a party starts running the coin-flip
protocol and outputs (done-flip, sid, cid, s), where s ∈ {⊥} ∪ {0, 1}λ.

Security. The security properties of honest-dealer coin-flip are as fol-
lows. For the agreement and unpredictability properties we use a prob-
ability γ > 0, called the good-setup probability, which depends on the
parameter wwMDCF and on the hiding probability β of wHDCF, and is
constant and independent of sid and cid.

Termination: (1)If all honest parties get input (deal, sid) then even-
tually there is public output PubOutMultiDeal(sid, Ledger) 6= ⊥, except
with negligible probability.

(2) If all honest parties get input (flip, sid, cid) then eventually all hon-
est parties give an output (done-flip, sid, cid, ·), except with negligible
probability.

γ-Agreement: For each session sid and coin identifier cid it holds
that, if two honest parties output (done-flip, sid, cid, cP) and
(done-flip, sid, cid, cQ), such that cP 6= ⊥ and cQ 6= ⊥, then cP = cQ,
except with negligible probability. Moreover, with probability γ
it holds that no honest party outputs ⊥ as the value of the coin.
All together, this means that, if two honest parties have outputs
(done-flip, sid, cid, cP) and (done-flip, sid, cid, cQ), then cP = cQ 6= ⊥
with probability γ.
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γ-Unpredictability: For each session sid and coin identifier cid it holds
that the value of coin cid is unpredictable with probability γ.

Algorithm 11 Scheme wMDCF, algorithm Deal, where an instance sid
of wMDCF is created at some point p on Ledger. Code for process Pi.

State:
201: setups[wwMDCF]← [ ]

202:upon input (deal, sid) do
203: C ← SampleCommittee(nid,mwMDCF)
204: for j ∈ [mwMDCF] such that C[j] = Pi do
205: wHDCF(Deal, ((Pi, j), sid))

206:upon wwMDCF setups PubOutMultiDeal(((Pj , k), sid), Ledger) 6= ⊥
207: such that C[k] = Pj do
208: let setups contain the identifiers which gave public output
209: seed(seed, sid)

Construction. On Algorithm 11 we implement Deal. On input
(deal, sid), a protocol instance is created with some starting point
p. For each time Pi is sampled to be a dealer in a wHDCF instance
(line 203), it creates a new instance of wHDCF and runs the Deal
algorithm. Every party waits for wwMDCF instances of the wHDCF
protocol (started by the dealers sampled in line 203) to give public
output on the Ledger. When this happens, parties run an instance of
the seed protocol (line 209). This seed will be later used in the Flip
algorithm of wMDCF to pseudorandomly choose one of the wwMDCF

setups. We define PubOutMultiDeal = PubOutSeedOpen, so the output
of the seed protocol signals the end of the dealing phase.

In Algorithm 12 we implement Flip. On input (flip, sid, cid) and after
observing public output PubOutMultiDeal every party Pi uses a crypto-
graphic hash function H, to hash (sid, cid, seed) into j ∈ {1, . . . , wwMDCF}
(line 211). Then, the algorithm Flip of the wHDCFj instance is used to
compute the value of coin cid. We assume that each party on the com-
mittee of the selected wHDCF instance disseminate the output to the
ground population.
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Algorithm 12 Scheme wMDCF, algorithm Flip (cid), where an instance
sid of wMDCF is created at some point p on Ledger. Code for Pi.

210:upon input (flip, sid, cid) such that PubOutMultiDeal(sid, Ledger) 6= ⊥ do
211: j ← H(sid, cid, seed)
212: wHDCF(flip, setups[j], cid)

213:upon deliver (done-flip, sid, cid, s, π)
214: if wHDCFVerify(π, s) then
215: output (done-flip, sid, cid, s)

Proofs. We first present the sometimes good property and formalize
the agreement and unpredictability properties, and then show the proofs.

Definition 15 (The sometimes good property). For all sid and cid
there exists an event Badsid,cid, which is defined in PPT from the view of
the adversary once the first honest party gives output (done-deal, sid),
i.e., the adversary knows if the event happened. Moreover, there exists
a probability γ > 0, called the good-setup probability, which depends
on the parameters mwMDCF and wwMDCF and on the hiding probability
β of wHDCF, is constant and independent of sid and cid, and Badsid,cid
happens with probability 1− γ.

We formalize agreement as a challenge game played against the PPT
adversary A. It assumes the termination property, so that the value of
coin-flips actually become known.

Definition 16 (γ-Agreement). We require that the sometimes good
property holds for Badsid,cid. Moreover, The adversary can win the fol-
lowing game with at most negligibly probability. The adversary may
initiate as many sessions sid and coin flips cid as it wants. At some point
it specifies (sid, cid,P,Q), where P has output (done-flip, sid, cid, cP),
Q has output (done-flip, sid, cid, cQ), and sid and cid are such that
Badsid,cid did not happen. The adversary wins if cP 6= cQ.

We formalize unpredictability as a challenge game played against
the PPT adversary A. As with wHDCF, the definition assumes the
termination and agreement properties.

Definition 17 (γ-Unpredictability). We require that the sometimes
good property holds for Badsid,cid. Moreover, the adversary can win
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the following game with probability at most negligibly better than 1/2.
The adversary may initiate as many sessions sid and coin-flips cid as it
wants. At some point it specifies (sid, cid, g), where (sid, cid) is such that
Badsid,cid did not happen, where no honest party got input (flip, sid, cid)
yet, and where g ∈ {0, 1}. The adversary wins if it can execute to
the point where some honest party outputs (done-flip, sid, cid, c) with
c = g.

Termination. (1) The dealing protocol waits in two places, first for
wwMDCF instances of wHDCF, and then for an instance of seed. For
the first one, the choice of parameters guarantees that, except with neg-
ligible probability, at least wwMDCF instances of wHDCF will have an
honest dealer, and each of these instances will terminate, according to
the termination property of wHDCF. For the second, termination follows
directly from the seed protocol.

(2) As the Flip algorithm of wMDCF calls one of the wHDCF in-
stances, the Flip termination of wMDCF directly follows from the Flip
termination property of wHDCF.

Sometimes good. Let Badsid,cid be the event that Hash(sid, cid, seed)
points to a bad coin setup, i.e., to a wHDCF instance sidj whose dealer
is corrupted or whose coin-holding committee has more than τcoin
corruptions (which happens with probability β). The value of seed,
which is included as a parameter when hashing to obtain sidj , is
unpredictable by the adversary, by the unpredictability property of
seed, and becomes known after the wwMDCF coin setups have appeared
on Ledger. Hence, the probability of Badsid,cid happening is independent
of cid, and only depends on the probability β of Hash(sid, cid, seed)
hitting a bad committee. Hence, this event happens with probability
1− γ, which is constant and independent of sid, cid.

γ-Agreement. Let (sid, cid) such that Badsid,cid did not happen, and hence
the dealer of the sidj CF instance, for j = Hash(sid, cid, seed), is honest.
The property then follows from the weak agreement property of wHDCF.

γ-unpredictability. Let (sid, cid) such that Badsid,cid did not happen. This
means that the dealer of the sidj CF instance, for j = Hash(sid, cid, seed),
is honest. It also implies that the event Badsid, defined in the proof honest
dealer β-unpredictability property of wHDCF as the event that the com-
mittee of the sidj instance contains more than τcoin corruptions, did not
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happen. Hence, the property reduces to Honest-dealer β-unpredictability
of wHDCF.

7.7 Setting the parameters

Definition 18 (Binomial distribution). Let X a random variable
counting the number of successes out of n trials, where success happens
with probability p. Then X follows the binomial distribution, i.e., X ∼
B(n, p) and the probability that exactly k successes happen is

Pr[X = k] = Pr[B(n, p) = k] =

(
n

k

)
pk(1− p)(n−k). (7.2)

7.7.1 Sampling a holding committee for wHDCF

Let n denote the size of a holding committee and τ < n/2 denote a
number, such that the holding committee has at most τ corruptions
with a constant probability β, and more than n − τ corruptions only
with a negligible probability ε = 2−λ, where λ is the security parameter.
The idea is the following. If we use a (n, τ)-secet-sharing or common-coin
scheme in the committee, then the committee is hiding with probability
β and live with probability 1 − ε. These capture the parameters of the
wHDCF scheme, where we set n , ncoin and τ , τcoin.

As discussed earlier, we model a committee-election mechanism as
a black-box function SampleCommittee(), which samples parties with
probability proportional to their stake at some well-defined point on the
ledger. In practice, this can be achieved by replacing each party with
a (usually very large) number of smaller, atomic sub-parties, propor-
tional to each party’s stake, and use a VRF to pseudorandomly choose
a sub-party [82]. In this section we assume that the ground popula-
tion (the number of sub-parties) is very large, so that the probability
of choosing a corrupted party does not change after choosing a party.
Hence, SampleCommittee() does sampling with replacement, which can
be modelled with a binomial distribution.

Using (7.2) we have that

β =

τ∑
k=0

Pr[B(n, 1− p) = k]
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and

ε =

n∑
k=n−τ+1

Pr[B(n, 1− p) = k],

for p = 2/3. In Table 7.1 we show various combinations for n and τ , such
that ε ≤ 2−λ for λ = 60, and the resulting hiding probability β.

7.7.2 Sampling a proposer committee for wMDCF

In protocol wMDCF parties have a chance to participate in the proposers
committee, i.e., to win the right to become a dealer in a wVSS or wHDCF
instance, respectively. Parties are again sampled using SampleCommittee
(Section 7.7.1), which returns a committee of size m, but the protocols
only wait for the first w setups to appear on Ledger and only use those.

Necessary conditions. As before, we need to make sure that, except
with negligible probability ε = 2−λ, there are at least w honest par-
ties on the committee to ensure termination. This is bounded as ε in
Section 7.7.1 but with n and τ replaced by m and w − 1 respectively.
But now we additionally need to make sure that, except with negligible
probability at least one of the w setups that appear on Ledger is a good
setup, that is, from an honest party who sampled a committee with less
than τ corruptions. This condition corresponds exactly to the setup in
Section 7.7.1 being hiding, but with the probability p changed to account
for the fact that we are interested in the probability of not just an honest
party but an honest party who provided a good setup making it into any
subset of size w. Since an honest dealer has a β (which depends on the
parameters of the subprotocol) probability of providing a bad setup, we

set p = β · 2/3 and require
w−1∑
k=0

Pr[B(m, 1− p) = k] ≥ 1− 2−λ.

Good-setup probability. Finally, we calculate the probability γ, de-
fined in Section 7.6, that a setup for wMDCF published on Ledger is
good, i.e., the probability of getting an unpredictable and agreed upon
value in each coin flip. We derive this from the expected number of bad
setups, which (by linearity of expectation) is m · (1−β · 23 ), and from the
fact that the adversary can schedule the order of messages, causing all
bad setups and, hence, only w −m · (1− β · 2

3 )) good setups, to appear
on Ledger. This gives us the fraction of good setups that in expectation
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appear on the ledger as

γ =
w − (m · (1− β · 2

3 ))

w
. (7.3)

Putting it all together. We show the resulting parameters with λ =
60 bits of security in Table 7.1. As an example, for a holding committee
with size n = 259 and reconstruction threshold τ = 103, we get hiding
probability β = 98.7%. Then we can sample a proposers committee of
size m = 653 and wait for w = 327. This results in 84, 693 encrypted
shares being posted on the Ledger and for wMDCF it gives a good-setup
probability γ = 31.8%.

n τ β m w γ n · w
653 320 > 1− 260 653 321 32.2% 209.6K
300 125 99.9% 653 322 32.3% 96.6K
280 114 99.6% 653 323 32.1% 90.4K
275 111 99.4% 653 324 32.0% 89.1K
271 109 99.3% 653 325 32.0% 88.1K
265 106 99.0% 653 326 31.9% 86.4K
261 104 98.8% 653 327 31.9% 85.3K
259 103 98.7% 653 327 31.8% 84.7K
257 102 98.6% 659 330 31.6% 84.8K
256 101 98.3% 672 337 31.3% 86.3K
254 100 98.1% 682 342 31.1% 86.9K
252 99 98.0% 692 347 30.8% 87.4K

Table 7.1. This table shows possible values (subject to conditions in
Section 7.7.1) for the holding committee parameters, n and τ , and the
resulting hiding probability β. For each obtainable β, it shows possible
values (subject to conditions in Section 7.7.2) for the proposers commit-
tee parameters, m and w, and the resulting good-setup probability γ.
Each of the w dealers encrypts keys for a committee of size n, which 1
gives a total of m ∗ w encryptions.

7.8 Analysis of communication complexity

To demonstrate the power of being able to sample concretely small com-
mittees, we analyze the concrete complexity of our protocols. Note that
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a purely asymptotic analysis would not show any gains over simply us-
ing a state of the art ADKG protocol with subset sampling and near
optimal resilience. We give all sizes in bits, but for simplicity we treat
group and field elements as λ bits. For instance, we use 3λ as the size
of an encrypted share, which (using Section 7.4.1) consists of 2 group
elements and a symmetrically encrypted share of a secret of size λ. This
will not be true for concrete instantiations, but it only changes our es-
timates by a small constant factor which depends on e.g. the concrete
curves being employed.

We define ATOB complexity as the cost of including a message of a
given size in Ledger. In the following “broadcast” refers to broadcasting
through the ATOB and “multicast” refers to a party sending a message
to all parties in the ground population. As the communication cost of
a broadcast and multicast depend on the concrete implementation we
keep these costs opaque and report the results as a number of broadcasts
and multicasts of various sizes. For inter-committee communication we
assume point-to-point channels are used and give the results in total
number of bits sent though the channels.

The wHDCF protocol has an ATOB complexity of 1 message of size
ncoin ·3λ+λ and no additional communication in the initial setup phase.
The message complexity of each coin flip is at most ncoin

2 · 4λ to recon-
struct the coin (or ⊥) in the committee, and then to disseminate the
value to the ground population each committee member multicasts the
reconstructed coin or a complaint of size at most 4λ, resulting in at most
ncoin

2 · 4λ bits communicated in addition to ncoin multicasts of size 4λ.
The deal phase of the wMDCF protocol has the same complexity as

mwMDCF deal phases of wHDCF and a single run of the seed protocol.
That is, an ATOB complexity of mwMDCF messages of size ncoin · 3λ +
λ and mseed messages of size nvss · 3λ + λ, a multicast complexity of
wseed · nvss multicasts of size at most (τvss + 1) · 2λ, in addition to a
communication complexity of mseed · nvss2 · 4λ bits. Whenever a coin
needs to be flipped using wMDCF, the message complexity is that of
running the selected wHDCF protcol.

To refresh the setup after the stake distribution has changed, one
would need to first run an instance of the seed protocol and then the
deal phase of the wMDCF protocol. Using the best parameters in Ta-
ble 7.1 the concrete cost of refreshing the setup is 1959 messages of size
778λ, and 169386 multicasts of size at most 208λ. The communication
complexity of flipping a coin and disseminating it to all parties is 2592 ·4λ
in addition to 259 multicasts of 4λ bits.
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If we were to assume t < 0.3n in the paradigm of “subset sampling
with almost optimal resilience” [23], and need a committee with honest
supermajority with probability 1−2−60, then one would need to sample
a committee with 16037 parties [60, Table 1]. If we then instantiate a
state of the art ADKG protocol with O(n3λ) communication using the
committee and for the sake of an example assume the concrete cost is
n3λ, then we get a complexity of > 4 · 1012λ. It is then clear that our
approach is far cheaper for all but extremely large values of n.

7.9 Discussion

In this work we have presented protocols for generating randomness in an
asynchronous PoS setting with dynamic participation. The protocols are
practical and concretely efficient, they employ no trusted setup, and they
make use of small committees. We have computed concrete numbers for
the committee size. Specifically, we can have a committee of m = 653
proposers, each generating a setup for n = 359 holders, resulting in
approx. 85K encrypted values posted on Ledger. For κ = 60 bit of
security and assuming optimal corruption 1/3 in the ground population,
this gives randomness-generation protocols that are live with all but
negligible probability. Our common-coin protocol is unpredictable and
agreed-upon with probability approx. 31.8%, and, as it is based on
threshold cryptography, the setup can be used for a flipping a polynomial
number of coins. These committee sizes result from the fact that we
require not all but only a constant factor of our setups to be good.

It is instructive to compare these results against previous literature,
particularly against the approach that runs the randomness-generation
protocols in committees with honest supermajority. Algorand [82, Fig-
ure 3] requires a committee of size approx. 2000, assuming corruption
0.2 in the ground population, and larger than 4000, assuming corruption
0.24, to get good committees with probability 5 · 10−9, or approx. 28
bits of security. Extending this approach to a ground population with
corruption 0.3, which is still sub-optimal, and 60 bits of security, the
authors of GearBox [60, Table 1] show that committees of size 16037
are needed. We remark that asynchronous distributed key generation
protocols, the state-of-the-art approach for threshold-setup generation,
require honest supermajority, hence one would require a committee of
similar sizes and sub-optimal resilience in the ground population.





Chapter 8

Digital signatures with
key extraction from
polynomial commitments

This chapter introduces the concept of Digital Signatures with Key Ex-
traction (DSKE), and presents a DSKE construction from polynomial
commitments. The work of Alpos et al. [10], which is a superset of this
section, additionally presents a forward-forgeable signature construction,
GroupForge. The construction combines a DSKE scheme with a Merkle
tree and timestamps to obtain a deniable signature scheme with a fixed
public key. GroupForge can replace Keyforge in the non-attributable
email protocol of Specter, Park, and Green [153], hence achieving deni-
ability without the need to continuously disclose outdated private keys.
Moreover, Alpos et al. [10] present a second DSKE construction from
hash-based digital signatures [121].

8.1 Introduction

Digital signature schemes [83] play an important role in protecting
the integrity of data transmitted over the Internet. In some jurisdic-
tions [119, 96], a digital signature applied to data can serve as evidence
of the sender’s authorship of the data. Moreover, the signature of a
message remains valid until either the underlying signature scheme is
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broken or the private key is compromised. However, as pointed out by
Borisov, Goldberg, and Brewer in their work on off-the-record (OTR)
communication work [28], this “long-lived” property is unsuitable for
certain types of messages. For instance, if Alice wishes to communicate
privately with Bob, she can encrypt her messages using Bob’s public
key (i.e., for confidentiality) and sign them with her private key (i.e.,
for authenticity). However, if Eve compromises Bob’s computer at
some point in the future, Eve will be able to read all of Bob’s previous
messages from Alice, and use the signatures to prove to Judy that the
messages indeed originated from Alice.

To address this problem, OTR messaging requires an interactive key
agreement protocol between the sender and the recipient to agree on
session keys before exchanging messages. However, this pair-wise key
agreement required in OTR is not scalable for applications such as email
protocols, in which there is often no prior end-to-end interaction among
the involved parties.

Another way to achieve deniability is to simply require the sender
to periodically rotate keys and publish their old private keys [84]. This
method enables any party to forge signatures using the published private
keys and thus offers deniability to old transcripts. In fact, this method
is being suggested to offer deniability in domain keys identified mail
(DKIM) [4], where SMTP servers sign outgoing emails on behalf of the
whole domain using a single key, as a way to safeguard against email
spoofing.

In this chapter we design a signature scheme that allows the recip-
ients to verify the validity of the signature and enables the sender to
gain plausible deniability. It is worth noting that the question itself is,
seemingly, a contradiction due to the non-repudiation property of digital
signature schemes. This work circumvents the contradiction by present-
ing DSKE, a signature scheme based on polynomial commitments [98]
can effectively convince the recipients of the authenticity of the message
for a fixed period of time, while offering the signer plausible deniability.
This is achieved by introducing the notions of an extractable set, a set
of signatures from which the private key can be extracted, and a deni-
able group, a group of recipients that can, using an extractable set of
signatures, collectively reconstruct the private key.

Contributions. Our contributions are summarized as follows:

• We formally define the notion of digital signature scheme with key
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extraction (DSKE). In DSKE, the signer always has an extractable
set, a set of signatures that can be used to extract the private key.

• We construct DSKEpoly, a digital signature scheme from a polyno-
mial commitment primitive. Our DSKEpoly results in short signa-
tures and allows the signers to choose the size of the extractable
set.

Organization. This chapter is organized as follows. Section 8.2
presents the related work, and Section 8.3 outlines the necessary
background and building blocks for DSKE. In Section 8.4 we present
the formal definition of DSKE, and in Section 8.5 we provide a
concrete construction of DSKE from polynomial commitment schemes.
Section 8.6 concludes the chapter.

8.2 Related work

Digital signature schemes with key extraction have already been ex-
plored in the context of double authentication preventing signatures
(DAPS). This primitive enables the extraction of the private key if a
signer creates multiple signatures on the same content. Since DAPS are
genuinely designed with the purpose of double or multiple authentication
prevention [133, 19, 63], they aim at messages of special form, namely
m = (a, p), where a is an address and p is a payload. In case a signer
signs two or more messages with the same address but different payloads,
then its private key is leaked. A downside of many DAPS schemes is
their limited address space, i.e., an exponentially large address space
is not supported. Moreover, some schemes result in considerably larger
key and signature size, compared to standard signature schemes, as they
build on trapdoor identification schemes [19] or involve encryption and
secret sharing [63]. DSKE, on the other hand, essentially provides key
extractability as an inherent feature without making assumption on the
type of message, thereby increasing its applicability. In particular, the
key-extraction property in DSKEpoly directly comes from the polynomial
interpolation theorem.

Specter, Park, and Green formally define the notion of Forward-
Forgeable Signature (FFS) [153] and show how FFS can be used to
achieve deniability in the email protocol. The main idea of their scheme
is to make the signatures forgeable after a fixed delay. They present
two concrete constructions: KeyForge and TimeForge. In KeyForge the
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email server needs to periodically publish expired keys, and in TimeForge
the signers relies on a trusted, publicly verifiable time-keeping service
as a source of a verifiable clock. Forgeability is then derived from the
possibility of obtaining a valid proof by querying the time-keeping service
after a fixed delay.

Arun, Bonneau, and Clark [13] propose a similar notion, called short-
lived signatures. They use a verifiable delay function [25] and a trusted
random beacon [138]. The main idea is use a disjunctive statement of the
form I know the witness (e.g., private key) OR someone solved a VDF
on a specific beacon value, hence satisfying deniability because anyone
can, after some specific time, produce a valid proof by evaluating the
VDF. Our work, on the other hand, offers a simpler approach without
requiring costly VDF evaluations and a trusted random beacon.

8.3 Background

Notation. We express by (pk, sk) a pair of public and private keys.
Moreover, we require that pk can always be efficiently derived from sk,
and we denote extractPK(sk) = pk to be the deterministic function for
doing so. For a field F, we denote F≤d(X) the set of polynomials in F[X]
with degree at most d. We denote by M the message space and S the
signature space.

Hash functions. Our constructions employ the following standard
properties of cryptographic hash functions. We use H : K×M→ {0, 1}λ
to denote a family of hash functions that is parameterized by a key k ∈ K
and message m ∈M and outputs a binary string of length λ.

Definition 19 (Collision resistance [143]). A family H of hash func-
tions is collision-resistant, if for any PPT adversary A, the adversary’s
advantage in finding collisions is:

Pr

[
k

$← K
(x, x′)← A(k)

: (x 6= x′) ∧ (H(k, x) = H(k, x′))

]
≤ negl(λ)

In practice, the key for standard hash functions is public; therefore,
from this point, we refer to the cryptographic hash function h sampled
from a family of hash functions as a fixed function h :M→ {0, 1}λ.
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Polynomial commitment schemes. A polynomial commit-
ment scheme (PCS) allows a prover to commit to a polynomial
f(X) ∈ F≤d(X) and later open f(X) at arbitrary points x, revealing
only the value f(x). We assume a succinct PCS, where the commitment
Cf to f(X) and the opening proofs π consist of single group elements,
for some group G. A PCS consists of the following algorithms.

• Setup(1λ, d) → (ck, vk): The generation algorithm takes as input
a security parameter λ and a maximum degree number d ∈ N and
outputs the public commitment key ck, which allows committing
to polynomials in F≤d(X), and the public verification key vk.

• Com(ck, f(X)) → Cf : The commitment algorithm takes as input
the commitment key ck and a polynomial f(X) ∈ F≤d(X) and
outputs a commitment Cf ∈ G to the polynomial f(X).

• Open(ck, Cf , x, f(X)) → (π, y): The opening algorithm takes as
input a commitment key ck, a commitment Cf , an evaluation point
x, and the polynomial f(X), and outputs y = f(x) ∈ F and a proof
π ∈ G.

• Check(vk, Cf , x, y, π) → b ∈ {0, 1}: The checking algorithm takes
as input the verification key vk, the commitment Cf , a point x,
the claimed evaluation y, and the opening proof π, and outputs 1
iff y = f(x).

Our schemes demand the following correctness, hiding, evaluation
binding, and polynomial binding properties from the polynomial com-
mitment scheme.

Definition 20 (Correctness [98]). Let (ck, vk) ← Setup(1λ, k),
f(X) ∈ F≤d(X), and Cf ← Com(ck, f(X)). Then for any (π, y) output
by Open(ck, Cf , x, f(X)), we have that Check(vk, Cf , x, y, π) → 1.

Definition 21 (Computational hiding [98]). Given (ck, vk), the
commitment Cf , and up to d valid openings (yi, πi) for points xi, where
i ∈ {1, . . . , d}, no PPT adversary can determine the value f(x′), for
x′ 6∈ {x1, . . . , xd}, except with negligible probability.

Definition 22 (Evaluation binding [98]). Given (ck, vk), no PPT
adversary can compute commitment Cf , point x, and two open-
ings (π1, y1), (π2, y2) for x, such that Check(vk, C, x, y1, π1) = 1,
Check(vk, C, x, y2, π2) = 1, and y1 6= y2.

Definition 23 (Polynomial binding [98]). Given (ck, vk), no PPT
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adversary can compute polynomials f(X) and f ′(X), such that f(X) 6=
f ′(X) and Com(ck, f(X)) = Com(ck, f ′(X)).

KZG polynomial commitment scheme. We now present a con-
crete polynomial commitment construction, the KZG [98] scheme. It
works over a bilinear pairing group G = 〈e,G,Gt〉, where G is a group
of prime order p, e is a symmetric pairing e : G × G → Gt, g is a
generator of G, and h ∈ G.

• Setup (1λ, d)→ (G, ck, vk): the algorithm outputs a representation

of the bilinear group G, commitment key ck = {g, gα, . . . , gαd},
and verification key vk = hα, for an α ∈ Zp that is destroyed after
setup.

• Com(ck, f(X)) → Cf : the algorithm computes Cf = gf(α) using
ck and outputs Cf .

• Open(ck, Cf , x, f(X))→ (π, y): the algorithm computes y = f(x)

and the quotient polynomial q(X) = f(X)−y
X−x , and outputs y and

π = Cq = Com(ck, q(X)).

• Check(vk, Cf , x, y, π) → b ∈ {0, 1}: the algorithm outputs 1 if
e(Cf · g−y, h) = e(Cq, h

α · h−x), and 0 otherwise.

The KZG scheme satisfies the correctness, computational hiding, eval-
uation binding, and polynomial binding properties [98].

8.4 Digital signatures with key extraction
(DSKE)

In this section, we formally define the notion of Digital Signatures with
Key Extraction (DSKE). We adopt the standard digital signature def-
inition and introduce a new algorithm to capture the capability of ex-
tracting the private key from a set of signatures.

Definition 24 ((k, δ)-Digital signature with key extraction). A
signature scheme, Σ, with key extraction consists of five algorithms:

• Setup(1λ)→ par: The setup algorithm takes a security parameter
1λ and outputs a set of public parameters, par. This algorithm
runs once, and the public parameters are implicitly input to all
subsequent algorithms.
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• KeyGen() → (pk, sk): The probabilistic generation algorithm out-
puts a pair (pk, sk) of public key and private key.

• Sign(sk,m) → σ: The signing algorithm is a probabilistic algo-
rithm that takes a private key sk and a message m from the mes-
sage spaceM as input and outputs a signature σ in the signature
space S.

• Verify(pk,m, σ) → b ∈ {0, 1}: The verifying algorithm is a deter-
ministic algorithm that takes a public key pk, a message m, and a
signature σ, and outputs the validity of the signature, b ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk) → sk: The extraction algorithm is a
probabilistic algorithm that takes as input a set of distinct message-
signature pairs {mi, σi}i∈[k], such that σi ← Sign(sk,mi), and the
public key pk, and outputs the underlying private key sk with
probability δ and ⊥ with probability 1− δ.

Apart from the straightforward correctness definition, we consider
two other properties of DSKE: unforgeability and the existence of an
extractable set. The security of digital signature is defined through the
following experiment.

The d-times signature experiment SignExpdA,Σ(λ).

1. Setup(1λ) and KeyGen() are run to obtain keys (pk, sk).

2. A is given pk and can ask up to d queries to the signing oracle

Sign(sk, ·). Let Q
Sign(sk,·)
A = {mi}i∈[d] be the set of all messages

for which A queries Sign(sk, ·), where the ith query is a message
mi ∈M. Eventually, A outputs a pair (m∗, σ∗) ∈M× S.

3. The output of the experiment is defined to be 1 if and only if

m∗ /∈ QSign(sk,·)
A and Verify(pk,m∗, σ∗) = 1.

Definition 25 (Existential unforgeability). A digital signature
scheme Σ is existentially unforgeable under a d-times adaptive chosen-
message attack, or d-times-secure, if for all PPT adversaries A the
success probability in the previous experiment is negligible, that is,

Pr[SignExpdA,Σ(λ) = 1] ≤ negl(λ).

Definition 26 (Extractable set). A digital signature scheme has a
(k, δ)-extractable set when the extraction algorithm Extract(·) on input
k distinct message-signature pairs {(mi, σi)}i∈[k] and the public key pk,
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such that each σi is a valid signature on mi under pk, outputs the private
key sk with probability δ. That is,

Pr


mi ∈M, s.t. mi 6= mj , for i, j ∈ [k], i 6= j

(pk, sk)← KeyGen()

σi ← Sign(sk,mi)

Extract
(
{(mi, σi)}i∈[k], pk

)
→ sk′

: sk = sk′

 = δ

8.5 DSKE from polynomial commitment
schemes

In the following, we assume a degree bound d ∈ Z and a polynomial
degree ` ∈ Z that satisfy 1 ≤ ` ≤ d. The idea is to use the polynomial
f(X) of degree ` as the private key. Then the signature on a messagem is
the evaluation of f(X) at point x = h(m), where h is a collision-resistant
hash function. For key extraction we employ polynomial interpolation:
any set of ` + 1 valid message-signature pairs (mi, σi) can reconstruct
f(X). DSKEpoly works as follows.

• Setup(1λ, d): On input the security parameter λ and degree d ∈ N,
the algorithm runs Π.Setup(1λ, d) to obtain (ck, vk), which allows
the signer to commit to polynomials in F≤d(X), and it samples a
collision-resistant hash function h : M→ F. The public parame-
ters, par, contain ck, vk, d, and the specification of h.

• KeyGen(`): On input 1 ≤ ` ≤ d, sample f(X)
$← F`(X) as an

`-degree polynomial, compute Π.Com(ck, f(X)) → Cf , and set
sk = f(X), pk = Cf .

• Sign(sk,m): Parse sk = f(X), compute x = h(m), and run
Π.Open(ck, Cf , x, f(X)) → (π, y). Output the signature, σ =
(π, y).

• Verify(pk,m, σ): Parse pk = Cf and σ = (π, y), compute x =
h(m), and output Π.Check(vk, Cf , x, y, π) ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk): If k ≤ `, or if mi are not all distinct,
then return ⊥. If Verify(pk,mi, σi) = 0 for some i ∈ [k], then re-
turn ⊥. Otherwise, compute xi = h(mi) and parse σi = (πi, yi),
for i ∈ [k]. The (at least `+ 1) pairs (xi, yi) interpolate the unique
polynomial φ(X) ∈ F`(X), where λi(X) are the Lagrange coeffi-
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cients: φ(X) =
∑
i∈[k]

yiλi(X) and λi(X) =
m6=i∏
m∈[k]

X−xm
xi−xm .

Remarks on the degree of f(X). The extraction of the private key
from k ≥ ` + 1 points requires the signer to commit to a polynomial
of degree at most `. As the publicly available information in ck allows
the signer to commit to any polynomial in F≤d(X), stronger properties,
such as strong correctness [98], bounded-polynomial extractability [116],
and knowledge soundness [26], have been formulated in the literature
to enforce the claimed degree on f(X). However, the signer in our
scheme is allowed to choose any ` ∈ [1, d] and has no incentive to commit
to a polynomial of degree larger than `, as that would cost them the
deniability, as we discuss in the following sections. Hence, we can assume
that f(X) is indeed of degree ` and do not require Π to satisfy any
stronger property.

Theorem 22 (Existential unforgeability). Assuming the underlying
polynomial commitment scheme Π satisfies the computational hiding,
evaluation binding, and polynomial binding properties, and that h is a
collision-resistant hash function, the DSKE scheme DSKEpoly is exis-
tentially unforgeable under an `-times adaptive chosen-message attack.
That is,

Pr[SignExp`A,Σpoly
(λ) = 1] ≤ negl(λ)

Proof. Let A be a PPT adversary breaking the signature scheme
DSKEpoly. We construct a PPT algorithm B that runs A as a subrou-
tine and attacks the hiding property of the polynomial commitment
scheme Π, given that Π is evaluation and polynomial binding and that
h is collision-resistant. Specifically, B receives from its challenger up
to ` openings

(
ij , f(ij), wij

)
, for ij ∈ F and j ∈ [`], and for f(X) not

known to B. It outputs (i∗, y∗) for unqueried i∗ and wins if y∗ = f(i∗).
Algorithm B also receives Cf and d as input and is given access to
ck, vk. Algorithm B works as follows:

• Initiate A with input pk = Cf , and create an empty set Squer.

• Whenever A requests a signature on message m, compute x =
h(m) and check whether x ∈ Squer. If this is the case, then B
has already asked his challenger for the opening of point x, so B
does not have to ask again. Otherwise, add x to Squer and obtain
the opening (π, y) of point x from the challenger of B. Return
σ = (π, y) to A.
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• If A fails to output a valid forgery on an unqueried message, then
abort. Otherwise A has output a message m∗ and a forgery σ∗ =
(π∗, y∗) on m∗. We assume wlog A has made ` signature queries
(if not, B queries these values itself) and hence B has openings
(πi, yi) for points xi, with i ∈ [`]. Calculate x∗ = h(m∗). If
x∗ ∈ Squer, then set bad1 ← 1 and abort. Otherwise interpolate
f ′(X) ∈ F`(X) from the `+1 points {(x1, y1), . . . , (x`, y`), (x

∗, y∗)}
and compute Cf ′ = Π.Com(ck, f ′(X)). B distinguishes two cases.

1. If Cf ′ 6= Cf , then set bad2 ← 1 and abort.

2. Otherwise, output (x∗, y∗). Observe that, even though Cf ′ =
Cf , it could still be the case that f(X) 6= f ′(X).

Denote by Pr[HidExp`B,Π(λ) = 1] the probability that B wins the
game above, by Output the event that B outputs some (x∗, y∗), and by
bad3 the event that f(X) 6= f ′(X). Observe that B wins if and only if
Output happens and bad3 does not happen. Moreover, Output happens
if A succeeds in forging a valid signature and bad1 and bad2 do not
happen. Therefore, we have:

Pr[HidExp`B,Π(λ) = 1]

= Pr[Output ∧ bad3]fff ≥ Pr[Output]− Pr[bad3]

= Pr[SignExp`A,Σpoly
(λ) = 1 ∧ bad1 ∧ bad2]− Pr[bad3]

≥ Pr[SignExp`A,Σpoly
(λ) = 1]− Pr[bad1]− Pr[bad2]

− Pr[bad3]

For the bad events, we have the following.

1. The event bad1 implies that A breaks the collision resistance prop-
erty of A, which is assumed secure, hence Pr[bad1] = negl(λ).

2. Event bad2 implies f ′(X) 6= f(X), and hence it must be that
(x∗, y∗) is not a point of f(X), i.e., f(x∗) 6= y∗. Since A suc-
ceeded, point (x∗, y∗) and proof π∗ satisfy Π.Check(vk, Cf , x

∗,
y∗, π∗) = 1. But in this case, B can break the evaluation bind-
ing of Π in the following way. It asks for the opening of point
x∗, hence obtaining (π, y), where y = f(x∗). This destroys any
hopes of B to break the hiding property, but can attack evaluation
binding, using the points (x∗, y∗) and (x∗, y), for which y 6= y∗,
Π.Check(vk, Cf , x

∗, y∗, π∗) = 1, and Π.Check(vk, Cf , x
∗, y, π) = 1.

Since by assumption Π satisfies the evaluation-binding property,
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we get Pr[bad2] = negl(λ).

3. Event bad3 would violate the polynomial-binding property of Π,
since f(X) 6= f ′(X) and Com(ck, f(X)) = Com(ck, f ′(X)), thus
Pr[bad3] = negl(λ).

From the above, and from the assumption that Π is a hiding PCS
(i.e., Pr[HidExp`B,Π(λ) = 1] ≤ negl(λ)), we get

Pr[SignExp`A,Σpoly
(λ) = 1] ≤Pr[HidExp`B,Π(λ) = 1] + Pr[Bad1]+

Pr[Bad2] + Pr[Bad3]

≤negl(λ)

Theorem 23 (Extractable set). Assuming the underlying polynomial
commitment scheme Π satisfies the evaluation binding property, the
DSKE scheme DSKEpoly has a (k, 1 − negl(λ))-extractable set for any
k ≥ `+ 1. That is,

δ = Pr


mi ∈M, for i ∈ [k]

mi 6= mj , for i, j ∈ [k], i 6= j, and k ≥ `+ 1

σi ← Sign(sk,mi), for i ∈ [k]

Extract
(
{(mi, σi)}i∈[k], pk

)
→ sk′

: sk = sk′


= 1− negl(λ)

Proof. The proof follows from two facts. First, by assuming that the
signer does not commit to polynomials of degree bigger than `. Second,
from the evaluation binding property, and since the points (xi, yi) corre-
spond to valid signatures, we know that yi = f(xi), for some polynomial
f(X) ∈ F≤`(X) and for all i ∈ [k], except with negligible probability.
Due to the uniqueness of polynomial interpolation, we know that any
`+ 1 distinct points (xi, yi) define a unique polynomial φ(X) of degree
at most `, hence φ(X) must be the same as f(X), hence sk = sk′ with
probability 1− negl(λ).

8.6 Discussion

Conclusion. In this chapter we have defined the concept of a signa-
ture scheme with key extraction. We present a concrete construction
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based on polynomial commitment schemes, and a formal proof of secu-
rity, demonstrating that signers can consistently achieve deniability by
presenting a set of signatures, which in turn can be used to regenerate
old private keys.

Applications. The full version [10] of this work proposes GroupForge,
which combines DSKE with Merkle hash trees and timestamps to pro-
vide properties akin to KeyForge [153]. Hence, GroupForge has potential
applications in non-attributable email protocols, eliminating the need for
email servers to continuously publish old key material. Moreover, DSKE
can find applications in scenarios where the need for authenticity is mo-
mentary, and deniability is desired in the long term, such as electronic
voting and monetary donations.



Chapter 9

Conclusion

In this thesis we presented distributed protocols with threshold and gen-
eral trust assumptions.

The first part concerned distributed protocols. We started by speci-
fying, encoding, and deploying general trust assumptions in the HotStuff
consensus protocol. Our benchmarks suggest that general trust assump-
tions can be efficiently supported in consensus. We then explored how
different systems, each with its own threshold or general trust assump-
tions, defined on disjoint or intersecting sets of parties, can be com-
posed into a single unified system. This enables the parties running a
distributed protocol, such us consensus, or the nodes of a blockchain, to
dynamically, deterministically, and non-interactively merge and work to-
gether. Last but not least, we extended the results of Guerraoui et al. [86]
to the ERC20 smart contract, one of the most widely adopted smart con-
tracts on Ethereum, and proved that synchronization is only required for
certain well-defined sets of parties. This result can potentially catalyze
the development of more efficient and scalable distributed and decen-
tralized systems.

The second part of this thesis focused on distributed cryptographic
schemes. Returning to the topic of general trust assumptions, we first
described, proved, and benchmark three distributed cryptographic
schemes, namely a verifiable secret sharing, a common coin, and
a distributed signature scheme. Our results suggest that general
assumptions can provide enhanced resilience and expanded express-
ibility at no or insignificant extra cost. Following this, we proposed
a concretely efficient asynchronous common-coin protocol, inherently
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supporting proof-of-stake and dynamic participation. This approach
could replace the existing randomness-generation mechanisms in
prevalent blockchains like Algorand and Cardano, which currently
rely on timing assumptions. Finally, we presented a digital signature
scheme that allows the recipients to verify the validity of the signature,
while enabling the sender to gain plausible deniability. Unlike the
state-of-the-art protocol by Specter, Park, and Green [153], our scheme
does not require the constant publication of old private keys or rotation
of public keys.

We anticipate that our findings can significantly contribute to the
advancement of distributed systems, blockchains, and distributed cryp-
tographic schemes across several aspects, such as resilience to failures,
the expressiveness and freedom of trust assumptions they provide to
users, scalability, efficiency, and deniability.
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[62] V. Daza, J. Herranz, and G. Sáez, “On the computational security
of a distributed key distribution scheme,” IEEE Trans. Computers,
vol. 57, no. 8, pp. 1087–1097, 2008.

[63] D. Derler, S. Ramacher, and D. Slamanig, “Short double- and
n-times-authentication-preventing signatures from ECDSA and
more,” in EuroS&P, pp. 273–287, IEEE, 2018.

[64] Y. Desmedt, “Society and group oriented cryptography: A new
concept,” in CRYPTO, vol. 293 of Lecture Notes in Computer
Science, pp. 120–127, Springer, 1987.

[65] Drand, “A distributed randomness beacon daemon,” 2022. https:
//drand.love.

[66] C. Dwork, N. A. Lynch, and L. J. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–
323, 1988.

[67] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun:
Virtual payment hubs over cryptocurrencies,” in IEEE Symposium
on Security and Privacy, pp. 106–123, IEEE, 2019.

[68] ECRYPT-CSA, “Algorithms, key size and protocols report,”
H2020-ICT-2014 – Project 645421, 2018. https://www.ecrypt
.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf.

[69] W. Entriken, D. Shirley, J. Evans, and N. Sachs, “EIP-721: ERC-
721 Non-Fungible Token Standard.” https://eips.ethereum.org/
EIPS/eip-721, 2018.

https://drand.love
https://drand.love
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721


158 Bibliography

[70] R. Eriguchi and K. Nuida, “Homomorphic secret sharing for multi-
partite and general adversary structures supporting parallel evalu-
ation of low-degree polynomials,” in ASIACRYPT (2), vol. 13091
of Lecture Notes in Computer Science, pp. 191–221, Springer,
2021.

[71] Ethereum Foundation, “Ethereum.” https://ethereum.org/.

[72] Ethereum Foundation, “Ethereum Request for Comments.” https:
//eips.ethereum.org/erc.

[73] Ethereum Foundation, “Shard chains.” https://ethereum.org/en/
eth2/shard-chains/.

[74] P. Feldman, “A practical scheme for non-interactive verifiable se-
cret sharing,” in FOCS, pp. 427–437, IEEE Computer Society,
1987.

[75] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in CRYPTO, vol. 263 of
Lecture Notes in Computer Science, pp. 186–194, Springer, 1986.

[76] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32,
no. 2, pp. 374–382, 1985.

[77] D. Frey, M. Gestin, and M. Raynal, “The synchronization power
(consensus number) of access-control objects: The case of allowlist
and denylist,” CoRR, vol. abs/2302.06344, 2023.

[78] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin back-
bone protocol: Analysis and applications,” in EUROCRYPT (2),
vol. 9057 of Lecture Notes in Computer Science, pp. 281–310,
Springer, 2015.

[79] R. Gennaro, Theory and practice of verifiable secret sharing. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1996.

[80] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust
threshold DSS signatures,” in EUROCRYPT, vol. 1070 of Lecture
Notes in Computer Science, pp. 354–371, Springer, 1996.

https://ethereum.org/
https://eips.ethereum.org/erc
https://eips.ethereum.org/erc
https://ethereum.org/en/eth2/shard-chains/
https://ethereum.org/en/eth2/shard-chains/


Bibliography 159

[81] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-
tributed key generation for discrete-log based cryptosystems,” J.
Cryptol., vol. 20, no. 1, pp. 51–83, 2007.

[82] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Al-
gorand: Scaling byzantine agreements for cryptocurrencies,” in
SOSP, pp. 51–68, ACM, 2017.

[83] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature
scheme secure against adaptive chosen-message attacks,” SIAM J.
Comput., vol. 17, no. 2, pp. 281–308, 1988.

[84] M. Green, “Ok Google: please publish your DKIM secret keys.”
https://blog.cryptographyengineering.com/2020/11/16/ok-googl
e-please-publish-your-dkim-secret-keys, 2020.

[85] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and
D. Seredinschi, “Scalable byzantine reliable broadcast,” in DISC,
vol. 146 of LIPIcs, pp. 22:1–22:16, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[86] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and
D. Seredinschi, “The consensus number of a cryptocurrency,” Dis-
tributed Comput., vol. 35, no. 1, pp. 1–15, 2022.

[87] S. Gupta, “A non-consensus based decentralized financial transac-
tion processing model with support for efficient auditing.” Master
Thesis, Arizona State University, USA, June 2016.

[88] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124–149, 1991.
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