
Asymmetric Trust in Distributed Systems

Inaugural Dissertation

of the Faculty of Science,
University of Bern

Presented by

Luca Zanolini

from Brescia, Italy

Supervisor of the Doctoral Thesis:

Prof. Dr. Christian Cachin
University of Bern, Switzerland

Asymmetric Trust in Distributed Systems

Inaugural Dissertation

of the Faculty of Science,
University of Bern

Presented by

Luca Zanolini

from Brescia, Italy

Supervisor of the Doctoral Thesis:

Prof. Dr. Christian Cachin
University of Bern, Switzerland

Accepted by the Faculty of Science.

Bern, 6th July 2023

The Dean
Prof. Dr. Marco Herwegh

This work is licensed under a Creative Commons Attribution 4.0
International License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Acknowledgments

First of all, I wish to express my gratitude to my advisor, Prof. Dr. Chris-
tian Cachin. He has been more than just an advisor, demonstrating
through his actions what it truly means to be both a mentor and a
leader. His faith in my abilities, his patience, and his constant encour-
agement have been fundamental in shaping the researcher I am today.
To Prof. Dr. Christian Cachin, I owe a debt of gratitude that goes
beyond words.

To my girlfriend, Stefanie, I extend my deepest thanks. Her support,
her love, her patience during the stressful times, and her belief in me
have been my guiding lights through the stormy seas of this journey.

To my parents, whose love has been the foundation on which I built
my dreams, thank you. Your sacrifices and your constant encouragement
have been my beacon, guiding me through every challenge.

This journey would have been entirely different without my dearest
friends - Matteo, Giordano, and Gianluca. Their support, friendship,
and shared growth have been my pillars of strength throughout this
path.

To my colleagues who have journeyed alongside me in this academic
endeavor, I extend my sincere appreciation. Your intellectual contribu-
tions have been integral to my development and success in this path. I
am particularly indebted to Duc, Jovana, and Orestis, whose support
and insights have been invaluable.

Last, but not least, I wish to express my gratitude to my therapist,
Lori Hughes. Lori’s expertise, compassion, and guidance have been cru-
cial in aiding me to cope with my challenges, allowing me to find strength
within myself I didn’t know existed.

Abstract

Secure distributed systems rely on trust. A trust assumption specifies
the failures that a system can tolerate and determines the conditions un-
der which it operates correctly. Trust in secure distributed systems has
traditionally been devised in a symmetric way, where every participant
in the system adheres to the same, global notion of trust through a fail-
prone system, a collection of subsets of participants that can fail together
and are tolerated to fail in an execution. However, recent advances in
the field, particularly in the context of blockchain networks, have led
to the development of new models of trust that allow participants to
express their own beliefs in a subjective way.

In this thesis, we study in detail and extend with new results the
model of asymmetric trust first introduced by Damg̊ard, Desmedt, Fitzi,
and Nielsen (ASIACRYPT 2007), and carried on by Cachin and Tack-
mann (OPODIS 2019). We develop the first asynchronous consensus
protocol that works in this model and evaluate its properties and re-
silience against Byzantine failures. This protocol results in an optimal
randomized Byzantine consensus protocol with subjective, asymmetric
trust and constant expected running time.

Furthermore, we define a composition rule that allows for the joining
of distributed systems based on asymmetric trust. These composition
rule ensures that if the original systems allow for running a particu-
lar protocol (guaranteeing consistency and availability), then the joint
system will as well, while tolerating as many faults as possible.

Finally, we expand the asymmetric trust model to work in permis-
sionless settings, where the number of participants in the system is not
known, such as in blockchain systems. We do so by enabling processes
not only to make assumptions about failures, but also to make assump-
tions about the assumptions of other processes. The resulting model
generalizes existing models such as the classic fail-prone system model

[Malkhi and Reiter, 1998] and the asymmetric fail-prone system model.
Our contributions provide new insights into the notion of trust in

secure distributed systems and offer solutions for enhancing the security
and reliability of these systems in the presence of Byzantine failures.
The results of this thesis have the potential to improve the security
of distributed systems, particularly in applications such as blockchain
systems.

Contents

1 Introduction 1

2 Related Work 5

3 Prerequisites 7

4 Asymmetric Distributed Trust 10
4.1 Definition and preliminary results 10
4.2 Composition of asymmetric Byzantine quorum systems . . 16

4.2.1 The tolerated system of an ABQS 17
4.2.2 How clients interact with an ABQS 19
4.2.3 Composition of ABQS 20
4.2.4 Composition in practice 25

5 Asymmetric Byzantine Consensus 27
5.1 System model . 28
5.2 Revisiting signature-free asynchronous Byzantine consensus 29

5.2.1 Binary validated broadcast 30
5.2.2 Randomized consensus 31
5.2.3 A liveness problem 34
5.2.4 Fixing the problem 36

5.3 Asymmetric randomized Byzantine consensus 38
5.3.1 Asymmetric common coin 39
5.3.2 Asymmetric binary validated broadcast 43
5.3.3 Asymmetric randomized consensus 47

5.4 On asymmetric leader-based Byzantine consensus 51
5.4.1 A solution to the problem 57
5.4.2 Future improvements 60

Contents v

6 Asymmetric Trust in Permissionless Networks 62
6.1 System model . 62
6.2 Preliminaries . 63
6.3 Permissionless Byzantine quorum systems 65
6.4 Leagues . 69
6.5 Comparison with other models 74

6.5.1 Comparison with symmetric fail-prone systems . . 74
6.5.2 Comparison with asymmetric fail-prone systems . 75
6.5.3 Comparison with federated Byzantine agreement

systems . 78
6.5.4 Comparison with personal Byzantine quorum sys-

tems . 80
6.6 Permissionless shared memory 81
6.7 Permissionless reliable broadcast 84

7 Conclusion 91

Bibliography 93

Chapter 1

Introduction

Secure distributed systems rely on trust. Trust specifies the failures that
a system can tolerate and determines the conditions under which it may
operate correctly. Implicitly, this determines the trust in certain com-
ponents to be correct. Traditionally, trust has been expressed globally,
through an assumption on the number or kind of faulty participants (or,
processes), which is shared by every process. An example of this is the
well-known threshold fault assumption: the system tolerates up to a fi-
nite and limited number of faulty processes in the system; no guarantees
can be given beyond this about the correct execution of protocols.

In fault-tolerant replicated systems, trust is defined through the no-
tion of fail-prone system [26], a collection of subsets of processes, called
fail-prone sets, such that each of them contains all the processes that
may at most fail together, and that are tolerated to fail, during a pro-
tocol execution. Fail-prone systems are useful tools for the design of
distributed protocols due to their relationship to quorum systems or,
more specifically, to Byzantine quorum systems.

Byzantine quorum systems have been formalized by Malkhi and Re-
iter [26] to express trust assumptions operationally, under Byzantine
failures, i.e., where faulty processes may behave arbitrarily. A Byzantine
quorum system is a collection of subsets of processes, called quorums,
with the properties that each pair of quorums intersect in at least a cor-
rect process (Consistency), and at least a quorum made exclusively by
correct processes must exist (Availability).

Many distributed algorithms (implementing, e.g., Byzantine reliable
broadcast or consensus) are parameterized by a quorum system Q and

2 Introduction

their guarantees hold under the assumptions of a fail-prone system F
if and only if Consistency and Availability of Q hold. This allows the
designers of a distributed system to make assumptions about failures,
pick a corresponding quorum system, and then choose among existing
algorithms to solve the desired synchronization problem.

Motivated by the requirements of more flexible trust models, partic-
ularly in the context of blockchain networks, new approaches to trust
have been explored. It is evident that a common trust model cannot
be imposed in an open and decentralized or permissionless environment.
Instead, every participant in the system should be free to choose who to
trust and who not to trust. Damg̊ard, Desmedt, Fitzi, and Nielsen [15],
and Cachin and Tackmann [9], extend Byzantine quorum systems to
permit subjective trust by introducing asymmetric Byzantine quorum
systems. They let every process specify their own fail-prone system and
quorum system, and global system guarantees can be derived from these
personal assumptions. How can we formally model asymmetric trust in
distributed protocols? Is it possible to generalize standard distributed
protocols to work with this more flexible trust? If so, what guarantees
can be obtained from them, and to whom are they addressed?

In the first part of this work, we give an answer to these questions.
In particular, in Chapter 4 we recall the theory behind both asymmetric
trust, as originally introduced [15], and asymmetric Byzantine quorum
systems [9], we present fundamental results on two new type of correct
processes, namely wise and näıve processes. We observe that one can
reliably guarantee properties of protocols only to the former ones, i.e.,
those who make the “right” trust assumption in a protocol execution.
In particular, we show that, under certain conditions, guarantees of dis-
tributed protocols can only be given for a subset of the wise processes
that form a so-called guild.

Moreover, we study the problem of composing asymmetric trust as-
sumptions. In particular, starting from two or more running distributed
systems, each one with its own subjective assumption, how can they be
combined, so that their participant processes are joined and operate to-
gether? We formulate the problem of composing asymmetric Byzantine
quorum systems and give methods for assembling trust assumptions from
different, possibly disjoint, systems to a common model. We do so by
introducing composition rules for trust assumptions in the asymmetric-
trust model. Our methods describe the resulting fail-prone systems and
the corresponding Byzantine quorum systems.

In Chapter 5 we start devising protocols, and we present the first

3

asynchronous Byzantine consensus protocol with asymmetric trust. It
uses randomization, provided by an asymmetric common-coin protocol,
to circumvent the impossibility of (purely) asynchronous consensus. Our
protocol takes up the randomized and signature-free implementation of
consensus by Mostéfaoui, Moumen, and Raynal [29], [30]. The protocol
of Mostéfaoui, Moumen, and Raynal comes in multiple versions. The
original one, published at PODC 2014 [30], suffers from a subtle and
little-known liveness problem [36]: an adversary can prevent progress
among the correct processes by controlling the messages between them
and by sending them values in a specific order. The subsequent version
(JACM 2015) [29] resolves this issue, but requires many more commu-
nication steps and adds considerable complexity. Our asymmetric asyn-
chronous Byzantine consensus protocol is based on the simpler version
(PODC 2014). We first revisit this and show in detail how it is possible
to violate liveness. We propose a method that overcomes the problem,
maintains the elegance of the protocol, and does not affect its appealing
properties. Based on this insight, we show how to realize asynchronous
consensus with asymmetric trust, again with a protocol that maintains
the simplicity of the original approach of Mostéfaoui, Moumen, and
Raynal [30]. Furthermore, we study the problem of how to implement
leader-based consensus protocols with asymmetric trust. We present the
problem and give a simple, possible solution in the context of PBFT [13].

One implicit requirement of the asymmetric-trust model is that the
knowledge of the full system membership is required. In particular, even
though participants are free to make their own failure assumptions or
choose their own quorums, maintaining Consistency requires compati-
ble assumptions (in the sense that the resulting quorums will sufficiently
intersect) and thus prior synchronization among every process in the sys-
tem, which is not desirable in a permissionless system. More in general,
global assumptions implying the intersection of quorums are problem-
atic in a permissionless setting because they postulate some form of
pre-agreement or common knowledge, which might be hard to achieve
in practice.

Interestingly, the Stellar network (https://stellar.org [28]), a deployed
blockchain system based on quorums, is able to maintain safety and
liveness without requiring that processes choose intersecting quorums.
Instead, processes choose quorum slices that need not intersect, and the
quorums of a process are defined in terms of the slices of other pro-
cesses. Consensus can then be solved within (disjoint) subsets of pro-
cesses, called a intact sets I; an intact set is a set of correct processes

4 Introduction

such that every two processes in I have all their own quorums that in-
tersect in at least a member of I and such that I is itself a quorum for
every of its members.

In Chapter 6 we observe that quorum slices can be interpreted as a
new kind of failure assumptions: a process assumes that at least one of
its quorum slices is made exclusively of processes that do not fail and
make correct assumptions. In other words, a process’s assumption are
not only about failures, but also about whether other processes make
correct assumptions. In practice, the Stellar model makes it easier for
processes, compared to standard models, to achieve quorum intersection
by relying on the failure assumptions of other processes that might have
more knowledge about the system than they have. In particular, we show
that this new kind of failure assumptions yield a generalization of the
theory of fail-prone systems (i.e., classic, global, fail-prone systems are
a special case) which allows to obtain intersecting quorums even when
processes do not know any common third party. Moreover, based on
this, we introduce the notion of permissionless fail-prone system from
which it is possible to derive a permissionless quorum system. Our
model also leads to a characterization of the Stellar model with standard
formalism [9], [15], [26].

Finally, we implement a single-writer multi-reader register with per-
missionless quorum systems, and we adapt the Bracha broadcast [5] to
work in our model, thereby offering a new toolbox for the design of
permissionless distributed systems.

In Chapter 2 we discuss the related works. Prerequisites for this work
are presented in Chapter 3, and conclusions are drawn in Chapter 7.

Chapter 2

Related Work

Flexible trust structures have recently received a lot of attention [9],
[15], [18], [24], [25], [28], primarily motivated by consensus protocols
for blockchains, as introduced by Ripple (https://ripple.com) and Stel-
lar (https://stellar.org). According to the general idea behind these
models, processes are free to express individual, subjective trust choices
about other processes, instead of adopting a common, global view of
trust.

Damg̊ard, Desmedt, Fitzi, and Nielsen [15] define the basics of asym-
metric trust for secure computation protocols. This model is strictly
more powerful than the standard model with symmetric trust and aban-
dons the traditional global failure assumption in the system. More-
over, they present several variations of their asymmetric-trust model
and sketch synchronous protocols for broadcast, verifiable secret shar-
ing, and general multi-party computation.

Mazières [28] introduces a new model for consensus called federated
Byzantine agreement (FBA) and uses it to construct the Stellar con-
sensus protocol [23]. In FBA, every process declares quorum slices – a
collection of trusted sets of processes sufficient to convince the particular
process of agreement. These slices are subsets of a quorum, which is a set
of processes sufficient to reach agreement. More precisely, a quorum is
defined as a set of processes that contains one slice for each member, and
all quorums constitute a federated Byzantine quorum system (FBQS).

Byzantine quorum systems have originally been formalized by Malkhi
and Reiter [26] and exist in several forms; they generalize the classi-
cal quorum systems [31] aimed at tolerating crashes to algorithms with

6 Related Work

Byzantine failures. Moreover, Malkhi and Reiter [26] introduce the no-
tion of fail-prone system which is then required in order to define a
Byzantine quorum system.

Garćıa-Pérez and Gotsman [18] study the theoretical foundations of
a FBQS, build a link between FBQS and the classical Byzantine quorum
systems, and show the correctness of broadcast abstractions over feder-
ated quorum systems. Moreover, they investigate decentralized quorum
constructions by means of FBQS. Finally, they propose the notion of sub-
jective dissemination quorum system, where different participants may
have different Byzantine quorum systems and where there is a system-
wide intersection property. FBQS are a way towards an extension of
quorum systems in a permissionless setting.

Asymmetric Byzantine quorum systems have been introduced by
Cachin and Tackmann [9] and generalize Byzantine quorum systems [26]
to the model with asymmetric trust. This work also explores proper-
ties of asymmetric Byzantine quorum systems and differences to the
model with symmetric trust. In particular, Cachin and Tackmann [9]
distinguish between different classes of correct processes, depending on
whether their failure assumptions in an execution are correct. The stan-
dard properties of protocols are guaranteed only to so-called wise pro-
cesses, i.e., those that made the “right” trust choices. Protocols with
asymmetric quorums are shown for Byzantine consistent broadcast, reli-
able broadcast, and emulations of shared memory. In contrast to FBQS,
asymmetric quorum systems appear to be a natural extension of sym-
metric quorum systems.

Recently, Losa, Gafni, and Mazières [24] have formulated an abstrac-
tion of the consensus mechanism in the Stellar network by introducing
Personal Byzantine quorum systems (PBQS). In contrast to the notions
of “quorums” in standard models, their definition does not require a
global intersection among quorums. This may lead to several separate
consensus clusters such that each one satisfies agreement and liveness
on its own.

Another approach for designing Byzantine fault-tolerant (BFT) con-
sensus protocols has been introduced by Malkhi, Nayak, and Ren [25],
namely Flexible BFT. This notion guarantees higher resilience by intro-
ducing a new alive-but-corrupt fault type, which denotes processes that
attack safety but not liveness. Malkhi, Nayak, and Ren [25] also define
flexible Byzantine quorums that allow processes in the system to have
different faults models.

Chapter 3

Prerequisites

In this chapter we recall Byzantine quorum systems as originally intro-
duced [26] as they constitute a fundamental part of this work. We refer
to them as symmetric Byzantine quorum systems or, when it is clear
from the context, simply Byzantine quorum systems.

Quorum systems are a key mathematical abstraction in distributed
fault-tolerant computing for capturing trust assumptions. Quorums help
in reaching higher availability and fault-tolerance in distributed systems
[37]. From a classical point of view, a quorum system is a collection of
subsets of processes, called quorums, with the property that each pair
of quorums have a non-empty intersection. It is a generalization of the
concept of a majority in a democratically organized group and it is used
to ensure consistency in the context of crash failures, i.e., when processes
stop executing steps [6].

However, if the failing processes deviate in any conceivable way from
their algorithm, the above definition is not useful. Malkhi and Reiter [26]
introduced a generalization of classical quorum systems called Byzantine
quorum systems, strengthening the definition in a way that the pair-wise
intersection contains also some correct processes.

This notion is defined with respect to a symmetric fail-prone system
F ⊆ 2P , a collection of subsets of the set P of processes (or participants),
none of which is contained in another, such that some F ∈ F with F ⊆ P
is called a fail-prone set and contains all processes that may at most fail
together in some execution [26].

A fail-prone system captures an assumption on the possible failure
patterns that may occur. It specifies all maximal sets of faulty processes

8 Prerequisites

that a protocol should tolerate in an execution; this means that a proto-
col designed for F achieves its properties as long as the set F of actually
faulty processes satisfies F ∈ F∗. Here and from now on, the notation
A∗ for a system A ⊆ 2P , denotes the collection of all subsets of the sets
in A, that is, A∗ = {A′|A′ ⊆ A,A ∈ A}.
Definition 3.1 (Symmetric Byzantine quorum system [26]). A symmet-
ric Byzantine quorum system for F is a collection of sets of processes
Q ⊆ 2P , where each Q ∈ Q is called a quorum, such that the following
properties hold:

Consistency: The intersection of any two quorums contains at least
one process that is not faulty, i.e.,

∀Q1, Q2 ∈ Q,∀F ∈ F : Q1 ∩Q2 ̸⊆ F.

Availability: For any set of processes that may fail together, there ex-
ists a disjoint quorum in Q, i.e.,

∀F ∈ F : ∃ Q ∈ Q : F ∩Q = ∅.

For example, under the common threshold failure model, the quo-
rums are all sets of at least ⌈n+f+1

2 ⌉ processes, where f is the number
of processes that may fail. In particular, if n = 3f + 1, quorums have
2f + 1 or more processes.

The above notion is also known as a Byzantine dissemination quorum
system [26] and allows a protocol to be designed despite arbitrary behav-
ior of the potentially faulty processes. The notion generalizes the usual
threshold failure assumption for Byzantine faults [33], which considers
that any set of f processes are equally likely to fail.

We say that a set system T dominates another set system S if for
each S ∈ S there is some T ∈ T such that S ⊆ T [17]. In this sense,
a quorum system for F is minimal whenever it does not dominate any
other quorum system for F . A maximal set system is defined analo-
gously.

Similarly to the threshold case, where n > 3f processes overall are
needed to tolerate f faulty ones in many Byzantine protocols, symmetric
Byzantine quorum systems can only exist if not “too many” processes
fail.

Definition 3.2 (Q3-condition [20], [26]). A fail-prone system F satisfies
the Q3-condition, abbreviated as Q3(F), whenever it holds

∀F1, F2, F3 ∈ F : P ̸⊆ F1 ∪ F2 ∪ F3.

9

In other words, Q3(F) means that no three fail-prone sets together
cover the whole system of processes. A Qk-condition can be defined like
this for any k ≥ 2 [20].

The following lemma considers the bijective complement of a process
set S ⊆ 2P , which is defined as S = {P \ S|S ∈ S}, and turns F into a
symmetric Byzantine quorum system.

Lemma 3.3 ([26, Theorem 5.4]). Given a fail-prone system F , a sym-
metric Byzantine quorum system for F exists if and only if Q3(F). In
particular, if Q3(F) holds, then F , the bijective complement of F , is a
symmetric Byzantine quorum system.

The quorum system Q = F is called the canonical Byzantine quorum
system of F .

Given a symmetric Byzantine quorum system Q, we define a sym-
metric kernel K, or simply kernel, as a set of processes that overlaps
with every quorum in Q.

Definition 3.4 (Kernel system). A set K ⊆ P is a symmetric kernel
of a symmetric Byzantine quorum system Q whenever it holds

∀Q ∈ Q : K ∩Q ̸= ∅.

This can be viewed as a consistency property.
We also define the symmetric kernel system K of Q to be the set of

all kernels of Q. Given this, the minimal symmetric kernel system is a
kernel system for which every kernel K satisfies

∀K ′ ⊊ K, ∃ Q ∈ Q : K ′ ∩Q = ∅.

For example, under a threshold failure assumption where any f pro-
cesses may fail, every set of

⌊
n−f+1

2

⌋
processes is a kernel. In particular,

n = 3f + 1 if and only if every kernel has f + 1 processes.

Lemma 3.5. For every F ∈ F and for every quorum Q ∈ Q there exists
a kernel K ∈ K such that K ⊆ Q.

Proof. Let Q be a symmetric quorum system for F and let F ∈ F .
From the consistency property of a quorum system we have that for all
Q1, Q2 ∈ Q it holds Q1 ∩ Q2 ̸⊆ F . Then, the set K = Q1 \ F ⊆ Q1

intersects all quorums in Q and is a kernel of Q.

Chapter 4

Asymmetric Distributed
Trust

In this chapter we present the asymmetric trust model, introduced
by Damg̊ard, Desmedt, Fitzi, and Nielsen [15]. In the context of
blockchains, different models of asymmetric trust have been proposed [9],
[15], [23]–[25], [28], united by a shared principle regarding the subjectiv-
ity of truth among the participants, but differentiated by fundamental
properties that determine their limitations and strengths. Our model is
based on asymmetric trust, originally formalized by Damg̊ard, Desmedt,
Fitzi, and Nielsen [15], and later by Cachin and Tackmann [9], in which
every process is free to make its own trust assumption and to express this
with a fail-prone system. This chapter is partially based on the papers
“How to trust strangers: Composition of byzantine quorum systems” [3]
and “Asymmetric asynchronous byzantine consensus” [10].

4.1 Definition and preliminary results

Processes. We consider a system of n processes P = {p1, . . . , pn} that
communicate with each other. The processes interact by exchanging
messages over reliable point-to-point links, specified below.

Failures. A process that follows its protocol during an execution is
called correct. On the other hand, a faulty process may crash or deviate
arbitrarily from its specification, e.g., when corrupted by an adversary;

4.1 Definition and preliminary results 11

such processes are also called Byzantine. We consider only Byzantine
faults here and assume for simplicity that the faulty processes fail right
at the start of an execution.

An asymmetric fail-prone system F = [F1, . . . ,Fn] consists of an
array of fail-prone systems, where Fi denotes the trust assumption of pi.
One often assumes pi ̸∈ Fi for practical reasons, but this is not necessary.

An asymmetric Byzantine quorum system (ABQS) is defined from
an asymmetric fail-prone system and extends the traditional notion of
symmetric Byzantine quorum systems [26], as presented in Chapter 3.

Definition 4.1 (Asymmetric Byzantine quorum system). An asym-
metric Byzantine quorum system for F is an array of collections of sets
Q = [Q1, . . . ,Qn], where Qi ⊆ 2P for i ∈ [1, n]. The set Ci ⊆ 2P is
called the quorum system of pi and any set Qi ∈ Qi is called a quorum
(set) for pi. It satisfies:

Consistency: The intersection of two quorums for any two processes
contains at least one process for which either process assumes that
it is not faulty, i.e.,

∀i, j ∈ [1, n],∀Qi ∈ Qi,∀Qj ∈ Qj ,∀Fij ∈ Fi
∗∩Fj

∗ : Qi∩Qj ̸⊆ Fij .

Availability: For any process pi and any set of processes that may fail
together according to pi, there exists a disjoint quorum for pi in
Qi, i.e.,

∀i ∈ [1, n],∀Fi ∈ Fi : ∃Qi ∈ Qi : Fi ∩Qi = ∅.

Recall that the consistency condition for a symmetric Byzantine quo-
rum system requires that at least one process in the intersection of every
two quorums is correct. In the asymmetric case, quorums are subjec-
tive and defined according to the quorum system for each process. The
asymmetric consistency property states that in the intersection of every
two subjective quorums of two processes there exists at least one process
that is correct according to one of the two processes. On the other hand,
the availability condition in the above definition is a direct extension of
the symmetric case, since it considers the quorum system of each process
separately.

The existence of asymmetric Byzantine quorum systems can be char-
acterized with a property that generalizes the Q3-condition for the un-
derlying asymmetric fail-prone systems as follows.

12 Asymmetric Distributed Trust

Definition 4.2 (B3-condition). An asymmetric fail-prone system F sat-
isfies the B3-condition, abbreviated as B3(F), whenever it holds that

∀i, j ∈ [1, n],∀Fi ∈ Fi,∀Fj ∈ Fj ,∀Fij ∈ Fi
∗ ∩ Fj

∗ : P ̸⊆ Fi ∪ Fj ∪ Fij

The following result, proved by Cachin and Tackmann [9], generalizes
Lemma 3.3 for asymmetric Byzantine quorum systems.

Theorem 4.3. An asymmetric fail-prone system F satisfies B3(F) if
and only if there exists an asymmetric Byzantine quorum system for F.

Asymmetric kernels. Let F = [F1, . . . ,Fn] be an asymmetric fail-
prone system.

Given an asymmetric Byzantine quorum system Q for F, an asym-
metric kernel system for Q is defined analogously as the array K =
[K1, . . . ,Kn] that consists of the kernel systems for all processes in P
with respect to Q; a set Ki ∈ Ki is called an asymmetric kernel, or
simply kernel, for pi.

Näıve and wise processes. The faults or corruptions occurring in
a protocol execution with an underlying quorum system induce a set F
of actually faulty processes. However, no process knows F and this in-
formation is only available to an observer outside the system. In tradi-
tional symmetric Byzantine quorum systems every process in the system
adheres to a global fail-prone system F and the set F of faults or cor-
ruptions occurring in a protocol execution is in F . Given this common
trust assumption, properties of a protocol are guaranteed at each correct
process, while they are not guaranteed for faulty ones. With asymmetric
quorums, there is a distinction among correct processes with respect to
F , namely the correct processes that consider F in their trust assump-
tion and those who do not. Given a protocol execution, the processes
are classified in three different types:

Faulty: A process pi ∈ F is faulty.

Näıve: A correct process pi for which F ̸∈ Fi
∗ is called näıve.

Wise: A correct process pi for which F ∈ Fi
∗ is called wise.

The näıve processes are new for the asymmetric case, as all processes
are wise under a symmetric trust assumption. Protocols for asymmetric
quorums cannot guarantee the same properties for näıve processes as for
wise ones.

4.1 Definition and preliminary results 13

Guilds. A useful notion for ensuring liveness and consistency for pro-
tocols is that of a guild. This is a set of wise processes that contains at
least one quorum for each member; by definition this quorum consists
only of wise processes.

Definition 4.4 (Guild). Given an asymmetric fail-prone system F, an
asymmetric Byzantine quorum system Q for F, and a protocol execution
with faulty processes F , a guild G for F satisfies two properties:

Wisdom: G is a set of wise processes:

∀pi ∈ G : F ∈ Fi
∗.

Closure: G contains a quorum for each of its members:

∀pi ∈ G : ∃Qi ∈ Qi : Qi ⊆ G

Observe that the union of two guilds is again a guild, since the union
consists only of wise processes and contains again a quorum for each
member. All guilds overlap, as the next result shows.

Lemma 4.5. In any execution with a guild G, every two guilds intersect.

Proof. Let P be a set of processes, G be a guild and F be the set of
actually faulty processes. Furthermore, suppose that there is another
guild G′, with G ∩ G′ = ∅. Let pi ∈ G and pj ∈ G′ be two processes and
consider a quorum Qi ⊆ G for pi and a quorum Qj ⊆ G′ for pj . From
the definition of an asymmetric Byzantine quorum system it must hold
Qi ∩Qj ⊈ F , with Qi ∩Qj ̸= ∅ and F ∈ Fi

∗ ∩Fj
∗. It follows that there

exists a wise process pk ∈ Qi ∩Qj with pk ∈ G and pk ∈ G′. Notice also
that G and G′ both contain a quorum for pk.

It follows that every execution with a guild contains a unique maxi-
mal guild Gmax. The next lemma shows that if a guild exists, no quorum
for any process contains only faulty processes.

Lemma 4.6. Let Gmax be the maximal guild for a given execution and
let Q be the canonical asymmetric Byzantine quorum system. Then,
there cannot be a quorum Qj ∈ Qj for any process pj consisting only of
faulty processes.

14 Asymmetric Distributed Trust

Proof. Given an execution with F as set of faulty processes, suppose
there is a guild Gmax. This means that for every process pi ∈ Gmax, a
quorum Qi ⊆ Gmax exists such that Qi∩F = ∅. It follows that for every
pi ∈ Gmax, there is a set Fi ∈ Fi such that F ⊆ Fi. Recall that since Q
is a quorum system, B3(F) holds. From Definition 4.2, we have that for
all i, j ∈ [1, n], ∀Fi ∈ Fi,∀Fj ∈ Gj ,∀Fij ∈ Fi

∗ ∩Fj
∗ : P ̸⊆ Fi ∪Fj ∪Fij .

Towards a contradiction, assume that there is a process pj such that
there exists a quorum Qj ∈ Qj for pj with Qj = F . This implies that
there exists Fj ∈ Fj such that Fj = P \ F .

Let Fi be the fail-prone system of pi ∈ Gmax such that F ⊆ Fi and
let Fj = P \ F as just defined. Then, Fi ∪ Fj ∪ Fij = P. This follows
from the fact that Fi contains F and Fj = P \ F . This contradicts the
B3-condition for F.

Lemma 4.7. Let Gmax be the maximal guild for a given execution and
let pi be any correct process. Then, every quorum for pi contains at least
one process in Gmax.

Proof. The claim naturally derives from the consistency property of an
asymmetric Byzantine quorum system. Consider any correct process pi
and one of its quorums, Qi ∈ Qi. For any process pj ∈ Gmax, let Qj

be a quorum of pj such that Qj ⊆ Gmax, which exists because Gmax is a
guild. Then, the quorum consistency property implies that Qi∩Qj ̸= ∅.
Thus, Qi contains a process in the maximal guild.

Finally, we show with an example that it is possible for a wise process
to be outside the maximal guild.

Example 4.8. Let us consider a seven-process asymmetric Byzantine
quorum system QA, defined through its fail-prone system FA. The nota-
tion Θn

k (C) for a set C with n elements denotes the threshold combination
operator and enumerates all subsets of C of cardinality k. The diagram
below shows fail-prone sets as shaded areas and the notation n

k in front
of a fail-prone set stands for k out of the n processes in the set.

4.1 Definition and preliminary results 15

FA:

3
2

3
2

3
2

4
1

4
1

F1

F2

F3

F4

F6

p2 p3 p4 p6p1 p5

F5

4
1

p7

F7
3
3

One can verify that B3(FA) holds; hence, let QA be the canonical
asymmetric Byzantine quorum system of FA.

QA:

Q1 = {{p1, p3, p5}, {p1, p3, p4}, {p1, p2, p3}}
Q2 = {{p1, p2, p5}, {p1, p2, p4}, {p1, p2, p3}}
Q3 = {{p2, p3, p5}, {p2, p3, p4}, {p1, p2, p3}}
Q4 = {{p1, p2, p3, p4}, {p1, p2, p4, p5}, {p1, p3, p4, p5},

{p2, p3, p4, p5}}
Q5 = {{p1, p2, p3, p5}, {p1, p2, p4, p5}, {p1, p3, p4, p5},

{p2, p3, p4, p5}}
Q6 = {{p2, p4, p5, p6}}
Q7 = {{p1, p2, p6, p7}}

With F = {p4, p5}, for instance, processes p1, p2, p3 and p7 are wise,
p6 is näıve, and the maximal guild is Gmax = {p1, p2, p3}. It follows that
process p7 is wise but outside the guild Gmax, because quorum Q7 ∈ Q7

contains the näıve process p6.
Lemma 4.7 reveals the interesting result that for an execution with

a guild, each quorum of every correct process pi contains at least one
process that is also in the maximal guild Gmax. Since a kernel for pi is a
process set that has some member in common with every quorum of pi,
this implies that Gmax is a kernel for pi.

Corollary 4.9. In every execution with a guild, the maximal guild Gmax

is a kernel for every correct process.

16 Asymmetric Distributed Trust

It follows that whenever all processes in the maximal guild send some
particular message, then every correct process will eventually receive
this message from all processes in one of its kernels. This is exploited
by protocols that use kernels.

A guild can also be seen as a set of sufficiently many wise processes
that allow a protocol to make progress, in the following sense.

Lemma 4.10. Consider an execution, in which the processes in F are
faulty and let Gmax be the maximal guild for F . Let A be a superset of
F that is disjoint from Gmax, i.e., F ⊆ A ⊆ P \ Gmax.

Then, in any execution where the processes in A fail, Gmax is also
the maximal guild for A.

Proof. Let Gmax be the maximal guild in an execution with set of faulty
processes F ⊆ P\Gmax. By definition of a guild, Gmax contains a quorum
for each of its members. This means that there exists a quorum Qi for
every pi ∈ Gmax such that Qi ∩ F = ∅. This also implies that for every
set A ⊇ F , with A ⊆ P \Gmax, we have that Qi∩ A = ∅, and the lemma
follows.

4.2 Composition of asymmetric Byzantine
quorum systems

We now explore the problem of composing trust assumptions, as ex-
pressed by Byzantine quorum systems. Starting from two or more run-
ning distributed systems, each one with its own assumption, how can
they be combined, so that their participant groups are joined and oper-
ate together? A simple, but not so intriguing solution could be to stop all
running protocols and to redefine the trust structure from scratch, with
full knowledge of all assumptions across the participants. With symmet-
ric trust, a new global assumption that includes all participants would
be defined. In the asymmetric-trust model, every process would spec-
ify new personal assumptions on all other participants. Subsequently,
the composite system would have to be restarted. Although this solu-
tion can be effective, it requires that all members of each initial group
express assumptions about the trustworthiness of the processes in the
other groups. In realistic scenarios, this might not be possible, since the
participants of one system lack knowledge about the members of other
systems, and can therefore not express their trust about them. More-
over, one needs to ensure that the combined system satisfies the liveness

4.2 Composition of asymmetric Byzantine quorum systems 17

and safety conditions, as expressed by the B3-condition for quorum in-
tersection. Since the assumptions are personal, it is not guaranteed,
and in practice quite challenging, that the composite system will indeed
satisfy the B3-condition.

Given two ABQS, Q1 defined on processes P1 with fail-prone sys-
tem F1, and Q2 defined on processes P2 with fail-prone system F2, we
want to provide a composition rule that allows the processes P3 = P1∪P2

to form an ABQS Q3 with fail-prone system F3.

4.2.1 The tolerated system of an ABQS

For defining composition with ABQS, we first introduce the central no-
tion of the tolerated system of an ABQS. Recall that in a symmetric-trust
setting, the processes agree on the possible failures, that is, on which
processes might crash or collaborate to break security. In an asymmetric-
trust setting, no such common understanding exists, either because there
is not enough knowledge to make such an assumption on the system, or
because the participants simply do not agree with each other. In this
model, every process expresses its own beliefs and expectations, and no
global notion of “correct” belief exists. In every execution, however,
there will be a ground truth, manifested by a set of actually faulty pro-
cesses, and not all members of the system will have correctly anticipated
this ground truth. Again, since there is no global understanding of the
world, this is expected to happen. However, the participants might still
be able to make progress (where progress is defined by the protocol they
are running), exactly in those executions when a guild exists.

An external process examining an asymmetric-trust system without
any prior knowledge or beliefs about the processes cannot assess the
trust assumptions of any individual process. However, the third process
can evaluate the system based on its ability to make progress through a
guild.

The central concept for composing two ABQS is the tolerated system
of an ABQS. Recall that in an execution where all processes in F ⊂ P
actually fail, there may also be näıve processes, wise processes that form
a guild G, and wise processes outside the guild (Example 4.8). For
a specific guild G ̸= ∅, the union of all those processes outside G is
called a tolerated set because the guild is autonomous without any of
them. Hence, the tolerated set consists of the faulty, the näıve, and the
wise processes outside the guild. The tolerated system contains all the
tolerated sets. Formally, we have the following definition.

18 Asymmetric Distributed Trust

Definition 4.11 (Tolerated system). Given an asymmetric Byzantine
quorum system Q, a set of processes T is called tolerated (by Q) if in
any execution with faulty processes F , a guild G for F and Q exists such
that T = P \ G.

The tolerated system T of an asymmetric Byzantine quorum sys-
tem Q is the collection of all maximal tolerated sets.

Intuitively, the tolerated system of an ABQS reflects the resilience of
the ABQS: even without the processes in a tolerated set, there still exists
a guild. Therefore, the tolerated system characterizes the executions in
which some of the processes in the asymmetric system will be able to
operate correctly and make progress. In that sense, the tolerated system
of an ABQS is the counterpart of the fail-prone system for a symmetric
Byzantine quorum system.

Notice that the tolerated system is a global notion emerging from
the subjective trust choices of the processes; any process that knows
the fail-prone and quorum systems of all processes can calculate it. We
show later that the tolerated systems of two ABQS play a crucial role for
composing them; the processes in the first system will use the tolerated
sets of the second system as their trust assumptions, and vice versa.
Consequently, the processes in the first system only need to know the
tolerated system of the second system.

The following lemma shows that the maximal tolerated system of a
canonical ABQS naturally corresponds to a (global) fail-prone system
among all the processes.

Lemma 4.12. Let Q be an ABQS on processes P with asymmetric fail-
prone system F = Q, i.e., such that Q is a canonical ABQS. Then the
tolerated system T of Q is a (global) fail-prone system among all the
processes in P. In particular, if B3(F), then Q3(T).

Proof. Towards a contradiction, let us assume that T does not satisfy
the Q3-condition. This means that there exist T1, T2, T3 ∈ T such that
T1 ∪ T2 ∪ T3 = P. Also, let G1,G2,G3 be the corresponding guilds, i.e.,
G1 = P \ T1,G2 = P \ T2 and G3 = P \ T3.

Without loss of generality every guild contains at least a process,
and at least a quorum for this process is fully contained in the guild.
By the consistency property of an ABQS, these quorums must intersect
pairwise, hence the guilds also intersect pairwise. This means that there
exist processes pi ∈ G1 ∩ G2 and pj ∈ G2 ∩ G3. Now, because pi is a
member of G1, we can make the following reasoning: pi has a quorum

4.2 Composition of asymmetric Byzantine quorum systems 19

Qi ∈ Qi such that Qi ⊆ G1, the Byzantine quorum system is canonical,
so pi has a fail-prone set Fi = P \ Qi ∈ Fi, thus we get T1 ⊆ Fi, i.e.,
T1 ∈ Fi. With similar reasoning, we get T2 ∈ Fi (because pi ∈ G2),
T2 ∈ Fj (because pj ∈ G2), and T3 ∈ Fj (because pj ∈ G3). But this
is a contradiction, because pi and pj with fail-prone sets T1, T2, and T3

violate the B3-condition in Q.

As has been known before, by Lemma 3.3, if T satisfies the Q3-
condition, then there exists also a symmetric Byzantine quorum system
for the fail-prone system T ; for instance, this may be the canonical
Byzantine quorum system T .

Lemma 4.12 confirms the intuition that the tolerated set of an ABQS
is the counterpart of a fail-prone set in a symmetric-trust system.

4.2.2 How clients interact with an ABQS

Many practical replication protocols separate clients from replicas; in
state-machine replication, clients submit commands, replicas totally or-
der and execute them, and then send back responses to the clients.
When the expected failures among replicas are modeled as a Byzantine
quorum system, that is, with a symmetric trust assumption, the clients
wait for responses from a quorum of replicas. However, if the trust as-
sumption among the replicas is asymmetric, it is unclear which sets of
participants are capable to convince a client to accept a response. The
subjective quorums of the replicas only express their personal beliefs,
which the clients may not share.

One way to resolve this could be to let each client express trust in
the replicas through its own quorum system. But if clients do not have
sufficient knowledge to make such assumptions, they need a global prop-
erty of the quorum system to decide on its responses, and this can be
the tolerated system. Note that every guild formed by replicas corre-
sponds to the complement of a tolerated set. This indicates that (at
least some) replicas did agree on their trustworthiness, and this may
convince the client. Indeed, we will use this idea in the composition
procedure for ABQS. Specifically, the participants of each system may
operate as clients of the other and could send a composition-request
message, waiting for responses from a guild of participants.

20 Asymmetric Distributed Trust

4.2.3 Composition of ABQS

Based on the remarks above, we claim that any form of composition
between two ABQS must satisfy the following conditions. Regarding
notation, we want to compose Q1 with Q2, resulting in Q3, with respec-
tive asymmetric fail-prone systems F1, F2, and F3. For k = 1, 2 and

for any pi ∈ Pk, let F (k)
i be the fail-prone system of pi in Fk, and F (3)

i

the fail-prone system of pi in the resulting F3. Moreover, let Tk be the
tolerated system of Qk.

In the text below, the notation X|P denotes the restriction of a set
X to P.

1. If pi ∈ P1 and pi ∈ P2, then any Fi ∈ F (3)
i must respect the trust

assumptions of pi in P1 and in P2, i.e., it must satisfy Fi|P1
∈ F (1)

i

∗

and Fi|P2
∈ F (2)

i

∗
. If pi is only in P1 (and the same holds for P2),

then any Fi ∈ F (3)
i must respect the assumptions of pi in P1, i.e.,

Fi|P1
∈ F (1)

i

∗
, and Fi|P2

can only be one of the tolerated sets in
P2, i.e., Fi|P2 ∈ T2

∗, since pi has no assumptions for P2.

2. If the B3-condition holds for F1 and for F2, then it also holds for
composite system, for F3.

3. For any pi ∈ P3 and any Fi ∈ F (3)
i , there exists a quorum Qi ∈

Q(3)
i , such that Fi ∩Qi = ∅.

4. Preserving wisdom. In all executions, where there exists a guild
G1 in Q1 and a guild G2 in Q2, the processes in G1 ∪ G2 will form
a guild in Q3. The intuition is that, given an execution with F as
faulty set, if a process correctly foresees F (and thus enjoys the
properties of a guild) in its own system, and if there is a guild in
the other system, then this process should also enjoy the properties
of a guild in the composite system.

5. Reducibility to symmetric. If all processes have the same trust
assumptions (in which case Q1 and Q2 reduce to symmetric Byzan-
tine quorum systems), then the composite system Q3 is a symmet-
ric Byzantine quorum system.

Alpos, Cachin, and Zanolini [3] study the composition of (symmet-
ric) Byzantine quorum systems. Their findings result in a deterministic

4.2 Composition of asymmetric Byzantine quorum systems 21

composition rule among Byzantine quorum systems (and symmetric fail-
prone systems) that guarantees that consistency and availability prop-
erties are satisfied in the composite system.

Lemma 4.13. Property 1 implies Property 5.

Proof. This follows immediately by observing that when all processes in
Pk have the same fail-prone system Fk, for k = 1, 2, then the tolerated

system Tk is Fk itself. Then, Property 1 implies that F (3)
i is the same

for every pi ∈ P3, and that every F ∈ F (3)
i satisfies F |P1

∈ F1
∗ and

F |P2 ∈ F2
∗.

Now let us consider two ABQS Q1 and Q2 on processes P1 and
P2 with asymmetric fail-prone systems F1 and F2, respectively. All
processes in P1 and P2 wish to jointly run a protocol, without making
any extra assumption about the participants of the other set. Intuitively
speaking, each set of processes might have their own issues, their own
agreements and disagreements, their own good and bad executions, but
they still want to work together. As reasoned earlier, each process in P1

is an external observer for P2. Hence, the best a participant in P1 can
do, assuming they have no knowledge, beliefs, or assumptions for the
processes of the second set, is to use the tolerated system of Q2. The
same applies, of course, for processes in P2 with respect to P1. This
leads to the composition procedure we describe next.

Construction 4.14 (Purification). Let Q an ABQS on processes P =
{p1, . . . , pn}, with asymmetric fail-prone system F = {F1, . . . ,Fn}, such
that B3(F), and let T its tolerated system. Assume Q3(T). As we have
seen, this is always the case for canonical ABQS. We want to purify F
so that B3([F1, . . . ,Fn, T]), i.e., ∀Fi ∈ Fi,∀Fj ∈ T ,∀Fij ∈ F∗

i ∩ T ∗ it
holds that P ̸⊆ Fi ∪ Fj ∪ Fij. To do so, every process pi evaluates the
B3-condition including T in the asymmetric fail-prone system F. If it
does not hold, then for any Fi ∈ Fi that violates the B3-condition, pi
removes Fi from Fi, and adds to Fi all those subsets of Fi that do not
violate the B3-condition. This results in a purified fail-prone system,
which, by construction, satisfies the B3-condition.

Intuitively, the purification procedure removes fail-prone systems that
are “useless,” in the sense that they do not influence the existence of a
guild, as shown by the next lemma. Seen from a higher level, it is an
expression of the fact that processes have their own beliefs, but also need
to adapt to those of the others; a process pi might expect a set F to fail

22 Asymmetric Distributed Trust

during an execution and construct its fail-prone system Fi so as to be
protected against F . However, if the beliefs of other processes are such
that the failure of F does not lead to a guild, i.e., F is not tolerated,
then pi can not benefit from including F in Fi.

Lemma 4.15. For every possible execution with a guild G, a process
in G of the non-purified system is also contained in some guild of the
purified system.

Proof. Observe that the Fi ∈ Fi which pi removes cannot be in T ,
because otherwise it would be possible to cover all P with sets in T ;
but this is not possible by the assumption Q3(T). This implies that the
failure of Fi cannot lead to the existence of a guild, and can be removed
from Fi. On the other hand, subsets of Fi can possibly be in T , and pi
keeps those subsets in Fi.

Observe that the purification procedure is deterministic and uses
information that is available to every process in the system: evaluating
the B3-condition, for example, already assumes that every process in
the system knows the asymmetric fail-prone systems of the others and
that Byzantine processes do not lie about their assumptions.

We define the cartesian operator , which will be used in our compo-
sition rule below.

Definition 4.16. Let A = {A1, . . . , Am} and B = {B1, . . . , Bn} be two
sets of subsets of P1 and P2, respectively. We define A ⊗ B as the set
that contains the union of all sets Ai ∈ A∗ and Bj ∈ B∗, under the
restriction that either both Ai and Bj contain exactly the same subset
of the processes common to P1 and P2 or they do not have anything in
common. Formally,

A⊗ B =
{
Ai ∪Bj | Ai ∈ A∗ ∧Bj ∈ B∗∧

(∀C ⊆ P1 ∩ P2 : C ⊆ Ai ⇔ C ⊆ Bj)
}
.

We have the following intermediate result.

Lemma 4.17. Let F1 and F2 be two fail-prone systems of the sets
of processes P1 and P2, respectively, where P1 and P2 might contain
common processes. If Q3(F1) and Q3(F2), then for F3 = F1 ⊗ F2 as a
fail-prone system of P3 = P1 ∪ P2 it holds Q3(F3).

4.2 Composition of asymmetric Byzantine quorum systems 23

Proof. Any F ∈ F3 either does not contain a set of common processes
C among P1 and P2 or it does. In the former case, it is immediate to
see that F |P1

∈ F∗
1 and F |P2

∈ F∗
2 . In the latter case, F has been

created as the union between Fi ∈ F∗
1 and Fj ∈ F∗

2 , both containing
the same subset of P1 ∩ P2. It is thus not possible that a new element
of P1 appears in F |P1 that was not already in Fi, and similarly that a
new element of P2 appears in F |P2 that was not already in Fj . This
implies that F |P1

∈ F∗
1 and F |P2

∈ F∗
2 . Towards a contradiction, let

FA, FB , FC ∈ F3 such that FA ∪ FB ∪ FC = P3. Now consider the
restriction of FA, FB and FC to P1 (and similarly to P2). We have that
FA|P1 ∪ FB |P1 ∪ FC |P1 = P1. However, the sets FA|P1 , FB |P1 , and
FC |P1 are each (subsets of) fail-prone sets in F1. We thus have found
three fail-prone sets that cover P1, a contradiction to F1 satisfying the
Q3-condition.

Construction 4.18 (Composition of ABQS). Let P1 = {p1, . . . , pm+k}
and P2 = {pm+1, . . . , pn} be two sets of processes, with processes
pm+1, . . . , pm+k in common. Let Q1 be an ABQS on processes P1

with asymmetric fail-prone system F1 = {F (1)
1 , . . . ,F (1)

m+k}, and Q2

an ABQS on processes P2 with asymmetric fail-prone system F2 =

{F (2)
m+1, . . . ,F

(2)
n }, where F1 and F2 are purified. Moreover, let T1 and T2

be the tolerated systems of the two ABQS, respectively. The composite
fail-prone system F3 on processes P3 = P1 ∪ P2 is

F3 = [F (1)
1 ⊗ T2, . . . ,F (1)

m ⊗ T2,F (1)
m+1 ⊗F

(2)
m+1, . . . ,

, . . . ,F (1)
m+k ⊗F

(2)
m+k,F

(2)
m+k+1 ⊗ T1, . . . ,F

(2)
n ⊗ T1].

and the composite ABQS Q3 is any asymmetric Byzantine quorum sys-
tem for F3.

Lemma 4.19. The composed fail-prone system F3 resulting from Con-
struction 4.18 satisfies the B3-condition.

Proof. Towards a contradiction, let us assume that the B3-condition
does not hold on F3. This means there exist processes pi and pj and

fail-prone sets Fi ∈ F (3)
i , Fj ∈ F (3)

j , and Fij ∈ F (3)
i

∗
∩ F (3)

j

∗
such that

P3 = Fi ∪Fj ∪Fij . In the following we consider the restriction of Fi, Fj ,
and Fij to P1, i.e., Fi|P1

, Fj |P1
, and Fij |P1

, respectively. We distinguish
two cases for pi and pj . First, consider the case where pi and pj belong to
different sets of processes and let, w.l.o.g., pi ∈ P1 \P2 and pj ∈ P2 \P1.

24 Asymmetric Distributed Trust

By the definition of the ⊗ operator, and with an argument similar to

what we used in the proof of Lemma 4.17, we get that Fi|P1
∈ F (1)

i

∗
,

that Fj |P1
∈ T1∗, that Fij |P1

is a common subset of F (1)∗
i and T ∗

1 , and
that their union covers P1. This is a contradiction because F1 is purified.
Second, consider the case where at least one of pi and pj belongs to both
P1 and P2, and let, w.l.o.g., pi ∈ P1, pj ∈ P1 ∩ P2. (If pi ∈ P1 ∩ P2 the
same reasoning can be applied by projecting in P2.) For this case, we

observe that Fi|P1
∈ F (1)

i

∗
, Fj |P1

∈ F (1)
j

∗
, and that Fij |P1

is a common

subset of a fail-prone set in F (1)∗
i and a fail-prone set in F (1)∗

j . This

contradicts the assumption that B3(F1).

Remark 4.20. Given an ABQS Q1 for an asymmetric fail-prone system
F1 on processes P1, and an ABQS Q2 for F2 on P2, and assuming
that the processes of each system make no assumptions about processes
in the other, a composition of the two systems is only possible if the
corresponding tolerated systems T1 and T2 both satisfy the Q3-condition.
This is because the processes of the first system (and vice versa) are
only external observers for the second system, and therefore only assess
it through its tolerated system. Processes in P1 want to make sure that
whenever the second system is able to make progress (that is, for every
T ∈ T2 that leads to a guild), they will also be able to make progress. To
achieve this, they must consider all tolerated sets T ∈ T2 as a possible
failed set. However, because the processes of the first system do not
assume anything about the second system, the only way to achieve this
is to include all T ∈ T2 in their fail-prone sets. This leads to an ABQS if
and only if the Q3-condition holds in the second system (and vice versa).

Lemma 4.19 and Theorem 4.3 together imply the existence of an
ABQS for F3 as defined in Construction 4.18. This is the asymmetric
canonical quorum system Q3 = F3.

For instance, let us consider two ABQS Q1 and Q2 on processes
P1 = {p1, . . . , pm} and P2 = {pm+1, . . . , pn} with asymmetric fail-prone
systems F1 and F2, respectively, such that P1 ∩ P2 = ∅. Then, the
asymmetric canonical quorum system for F3 is

Q3 = [Q1 ∪ T 2, . . . ,Qm ∪ T 2,Qm+1 ∪ T 1, . . . ,Qn ∪ T 1],

where Qi = F i, Qi ∪ T j = {Qk ∪ Gl | Qk ∈ Qi ∧ Gl ∈ T j} and Gi is a
guild for a tolerated set in Tj . Notice that, by definition, T contains all
the guilds that can be obtained within an ABQS.

4.2 Composition of asymmetric Byzantine quorum systems 25

As a short proof of why Q3 is the canonical asymmetric Byzantine
quorum system of F3, we observe that, by assuming P1 ∩ P2 = ∅, the
asymmetric fail-prone system F3 in Construction 4.18 reduces to

F3 = [F1 ∪ T2, . . . ,Fm ∪ T2,Fm+1 ∪ T1, . . . ,Fn ∪ T1],

where Fi∪Tj = {Fk∪Tl | Fk ∈ Fi∧Tl ∈ Tj}. If we consider the bijective
complement of Fi ∪ Tj this is made by all the sets of the form Fk ∪ Tl

in P3 = P1 ∪ P2. Then, Fk ∪ Tl = F k ∩ T l = (Qk ∪ P2) ∩ (Gl ∪ P1)
where Qk = F k in P1. Finally, (Qk ∪ P2) ∩ (Gl ∪ P1) = (Qk ∩ Gl) ∪
(Qk ∩ P1) ∪ (P2 ∩ Gl) ∪ (P2 ∩ P1). Observe that, by assumption on the
sets of processes, it follows that (P2 ∩ P1) = ∅ and (Qk ∩ Gl) = ∅. So,
Fk ∪ Tl = (Qk ∩ P1) ∪ (P2 ∩ Gl) = Qk ∪ Gl.

4.2.4 Composition in practice

We now sketch a protocol that can be used by two (possibly disjoint)
sets of processes P1 and P2 that form two asymmetric Byzantine quo-
rum systems Q1 and Q2 with asymmetric fail-prone systems F1 and
F2, respectively. We assume that processes in P1 and P2 are running
two different instances of the same Byzantine consensus protocol (i.e.,
providing total-order broadcast) and that F1 and F2 are publicly known.

The composition can be initiated by any process pi in P1. To that
end, process pi, acting as a client for Q1, sends a composition-request
message to every process in P2. Upon receiving this request, processes
in P2 start a round of Byzantine consensus: if a sufficient number of
processes vote for the composition, it will be agreed. Assume the pro-
tocol instance run by Q2 has a history of delivered messages H2 at this
point. Then, upon deciding, processes in P2 send a composition-response
message, which includes H2, back to P1.

The rest of the protocol is symmetric to the first part; any process
in P1 that receives the same composition response from a guild of P2

participates in a round of Byzantine consensus, this time within P1.
This results in P1 sending a composition-acknowledgment message to P2,
which now includes H1, the history of delivered messages in the instance
run by P1. The historiesH1 andH2 can be used by the composed system
to calculate the initial state of the new protocol instance, presumably
using a generic merge function.

The composition-acknowledgment message signals the start of a new
protocol instance run by P1 ∪P2. From this point on, processes use the

26 Asymmetric Distributed Trust

composed fail-prone and quorum systems. Since F2 is known, processes
in P1 can calculate both the tolerated system T2 of Q2 (in the simplest
case by trying all possible failures of P2) and the purified version of F2,
and vice versa for processes in P2. Should the fail-prone systems not
be public, the processes could send them in the composition messages;
however, privacy aspects are beyond the focus of this work.

Chapter 5

Asymmetric Byzantine
Consensus

Consensus represents a fundamental abstraction in distributed systems.
It captures the problem of reaching agreement among multiple processes
on a common value, despite unreliable communication and the presence
of faulty processes. Most protocols for consensus operate under the as-
sumption that the number of faulty processes is limited. Moreover, all
processes in the system share this common trust assumption. Since the
advent of blockchains systems, as we saw in Chapter 4, more flexible
trust models have been introduced, opening up the possibility to imple-
ment consensus with subjective trust.

In this chapter we define asymmetric Byzantine consensus. Then we
implement it by a randomized algorithm, which is based on the protocol
of Mostéfaoui, Moumen, and Raynal [30] as presented in Section 5.2.
Our implementation also fixes the problem described there. Our notion
of Byzantine consensus, which is formally presented in Section 5.3, uses
strong validity in the asymmetric model. Furthermore, it restricts the
safety properties of consensus from all correct ones to wise processes. For
implementing asynchronous consensus, we use a system enriched with
randomization. In round-based consensus algorithms, the termination
property is formulated with respect to the round number r that a process
executes. The corresponding probabilistic termination property can be
guaranteed only for wise processes.

Finally, we conclude this chapter by precisely presenting a problem

28 Asymmetric Byzantine Consensus

that may arise in the asymmetric-trust model with leader-based con-
sensus protocols such as PBFT [13] or HotStuff [38]. We analyze such
problem in Section 5.4 by means of PBFT and we propose a first solution
to it. This chapter incorporates content from the papers “Asymmetric
asynchronous byzantine consensus” [10] and “Brief announcement: Re-
visiting signature-free asynchronous byzantine consensus” [11].

5.1 System model

Protocol. Let P be a set of processes as introduced in Chapter 5.
A protocol for P consists of a collection of programs with instructions
for all processes. Protocols are presented in a modular way using the
event-based notation of Cachin, Guerraoui, and Rodrigues [6].

Functionalities and modularity. A functionality is an abstraction
of a distributed computation, either used as a primitive available to the
processes or defining a service that a protocol run by the processes will
provide. Functionalities may be composed in a modular way. Every
functionality in the system is specified through its interface, containing
the events that it exposes to applications that may call it, and through
a number of properties that define its behavior. There are two kinds of
events in an interface: input events that the functionality receives from
other abstractions, typically from an application that invokes its services,
and output events, through which the functionality delivers information
or signals a condition.

Multiple functionalities may be composed together modularly. In a
modular protocol implementation, in particular, every process executes
the program instructions of the protocol implementations for all func-
tionalities in which it participates.

Links. We assume there is a low-level functionality for sending mes-
sages over point-to-point links between each pair of processes. In a
protocol, this functionality is accessed through the events of “sending a
message” and “receiving a message.” Point-to-point messages are au-
thenticated and delivered reliably among correct processes.

Moreover, we assume FIFO ordering on the reliable point-to-point
links for every pair of processes (except in Section 5.2). This means that
if a correct process has “sent” a message m1 and subsequently “sent”
a message m2, then every correct process does not “receive” m2 unless

5.2 Revisiting signature-free asynchronous Byzantine
consensus 29

it has earlier also “received” m1. FIFO-ordered links are actually a
very common assumption. Protocols that guarantee FIFO order on top
of (unordered) reliable point-to-point links are well-known and simple
to implement [6], [19]. We remark that there is only one FIFO-ordered
reliable point-to-point link functionality in the model; hence, FIFO order
holds among the messages exchanged by the implementations for all
functionalities used by a protocol.

Time and randomization. In this chapter we consider an asyn-
chronous system, where processes have no access to any kind of physical
clock, and there is no bound on processing or communication delays.
The randomized consensus algorithm delegates probabilistic choices to
a common coin abstraction [34]; this is a functionality that delivers the
same sequence of random binary values to each process, where each bi-
nary value has the value 0 or 1 with probability 1

2 .

5.2 Revisiting signature-free asynchronous
Byzantine consensus

In 2014, Mostéfaoui, Moumen, and Raynal [30] introduced a round-
based asynchronous randomized consensus algorithm for binary values.
It had received considerable attention because it was the first protocol
with optimal resilience, tolerating up to f < n

3 Byzantine processes, that
did not use digital signatures. Hence, this protocol needs only authenti-
cated channels and remains secure against a computationally unbounded
adversary. Moreover, it takes O(n2) constant-sized messages in expec-
tation and has a particularly simple structure. Our description here
excludes the necessary cost for implementing randomization, for which
the protocol relies on an abstract common coin primitive, as defined by
Rabin [34].

This protocol, which we call the PODC-14 version [30] in the fol-
lowing, suffers from a subtle and little-known problem. It may violate
liveness, as has been explicitly mentioned by Tholoniat and Gramoli
[36]. The corresponding journal publication by Mostéfaoui, Moumen,
and Raynal [29], to which we refer as the JACM-15 version, touches
briefly on the issue and goes on to present an extended protocol. This
fixes the problem, but requires also many more communication steps
and adds considerable complexity.

30 Asymmetric Byzantine Consensus

In this section, we revisit the PODC-14 protocol, point out in detail
how it may fail, and introduce a compact way for fixing it. We discovered
this issue while extending the algorithm to asymmetric quorums. In
Section 5.3, we present the corresponding fixed asymmetric randomized
Byzantine consensus protocol and prove it secure. Our protocol changes
the PODC-14 version in a crucial way and thereby regains the simplicity
of the original approach.

Before addressing randomized consensus, we recall the key abstrac-
tion introduced in the PODC-14 paper, a protocol for broadcasting bi-
nary values.

5.2.1 Binary validated broadcast

The binary validated broadcast primitive has been introduced in the
PODC-14 version [30] under the name binary-value broadcast.1 In this
primitive, every process may broadcast a bit b ∈ {0, 1} by invoking
bv-broadcast(b). The broadcast primitive outputs at least one value b
and possibly also both binary values through a bv-deliver(b) event, ac-
cording to the following notion.

Definition 5.1 (Binary validated broadcast). A protocol for binary
validated broadcast satisfies the following properties:

Validity: If at least (f + 1) correct processes bv-broadcast the same
value b ∈ {0, 1}, then every correct process eventually bv-delivers b.

Integrity: A correct process bv-delivers a particular value b at most
once and only if b has been bv-broadcast by some correct process.

Agreement: If a correct process bv-delivers some value b, then every
correct process eventually bv-delivers b.

Termination: Every correct process eventually bv-delivers some
value b.

The implementation given by Mostéfaoui, Moumen, and Raynal [30]
works as follows. When a correct process pi invokes bv-broadcast(b) for
b ∈ {0, 1}, it sends a value message containing b to all processes. After-
wards, whenever a correct process receives value messages containing

1Compared to their work, we adjusted some conditions to standard terminology
and chose to call the primitive “binary validated broadcast” to better emphasize its
aspect of validating that a delivered value was broadcast by a correct process.

5.2 Revisiting signature-free asynchronous Byzantine
consensus 31

b from at least f + 1 processes and has not itself sent a value message
containing b, then it sends such message to every process. Finally, once a
correct process receives value messages containing b from at least 2f+1
processes, it delivers b through bv-deliver(b). Note that a process may
bv-deliver up to two values. A formal description, in the asymmetric
model, of this protocol appears in Algorithm 3 in Section 5.3.

5.2.2 Randomized consensus

We recall the notion of randomized Byzantine consensus here and its
implementation by Mostéfaoui, Moumen, and Raynal [30]. In a con-
sensus primitive, every correct process proposes a value v by invoking
propose(v), which typically triggers the start of the protocol among pro-
cesses; it obtains as output a decided value v through a decide(v) event.
There are no assumptions made about the faulty processes. We use
the probabilistic termination property for round-based protocols. It re-
quires that the probability that a correct process decides after executing
infinitely many rounds approaches 1.

Definition 5.2 (Strong Byzantine consensus). A protocol for asyn-
chronous strong Byzantine consensus satisfies:

Probabilistic termination: Every correct process pi decides with
probability 1, in the sense that

lim
r→+∞

P[a correct process pi decides by round r] = 1.

Strong validity: A correct process only decides a value that has been
proposed by some correct process.

Integrity: No correct process decides twice.

Agreement: No two correct processes decide differently.

The probabilistic termination and integrity properties together imply
that every correct process decides exactly once, while the agreement
property ensures that the decided values are equal. Strong validity asks
that if all correct processes propose the same value v, then no correct
process decides a value different from v. Otherwise, a correct process
may only decide a value that was proposed by some correct process [6].
In a binary consensus protocol, as considered here, only 0 and 1 may be
proposed.

32 Asymmetric Byzantine Consensus

The implementation of randomized consensus by Mostéfaoui,
Moumen, and Raynal [30] delegates its probabilistic choices to a common
coin abstraction [6], [34], a random source observable by all processes
but unpredictable for an adversary. A common coin is invoked at ev-
ery process by triggering a release-coin event. We say that a process
releases a coin because its value is unpredictable, unless more than f
correct processes have invoked the coin. The value s ∈ B of the coin
with tag r is output through an event output-coin.

Definition 5.3 (Common coin). A protocol for common coin satisfies
the following properties:

Termination: Every correct process eventually outputs a coin value.

Unpredictability: Unless more than f correct processes have released
the coin, no process has any information about the coin output by
a correct process.

Matching: With probability 1 every correct process outputs the same
coin value.

No bias: The distribution of the coin is uniform over B.

Observe that the unpredictability condition implies that at least f+1
correct processes are required to release the coin in order for a process
to have information about the coin value output by a correct process.

We now recall the implementation of strong Byzantine consensus
according to Mostéfaoui, Moumen, and Raynal [30] in the PODC-14
version, shown in Algorithm 1. A correct process proposes a binary
value b by invoking rbc-propose(b); the consensus abstraction decides
for b through an rbc-decide(b) event.

The algorithm proceeds in rounds. In each round, an instance of
bv-broadcast is invoked. A correct process pi executes bv-broadcast and
waits for a value b to be bv-delivered, identified by a tag characterizing
the current round. When such a bit b is received, pi adds b to values
and broadcasts b through an aux message to all processes. Whenever
a process receives an aux message containing b from pj , it stores b in a
local set aux[j]. Once pi has received a set B ⊆ values of values such
that every b ∈ B has been delivered in aux messages from at least n−f
processes, then pi releases the coin for the round. Subsequently, the
process waits for the coin protocol to output a binary value s through
output-coin(s), tagged with the current round number.

5.2 Revisiting signature-free asynchronous Byzantine
consensus 33

Algorithm 1 Randomized binary consensus according to Mostéfaoui,
Moumen, and Raynal [30] (code for pi)

1: State
2: round← 0: current round
3: values← {}: set of bv-delivered binary values for the round
4: aux← [{}]n: stores sets of values that have been received in
5: aux messages in the round

6: upon event rbc-propose(b) do
7: invoke bv-broadcast(b) with tag round

8: upon bv-deliver(b) with tag r such that r = round do
9: values← values ∪ {b}
10: send message [aux,round,b] to all pj ∈ P

11: upon receiving a message [aux,r,b] from pj such that r = round do
12: aux[j]← aux[j] ∪ {b}

13: upon exists B ⊆ values such that B ̸= {} and
14: |{pj ∈ P |B = aux[j]}| ≥ n− f do
15: release-coin with tag round
16: wait for output-coin(s) with tag round
17: round← round+ 1
18: if exists b such that B = {b} then // i.e., |B| = 1
19: if b = s then
20: output rbc-decide(b)
21: invoke bv-broadcast(b) with tag round
22: // propose b for the next round
23: else
24: invoke bv-broadcast(s) with tag round
25: // propose coin value s for the next round
26: values← [⊥]n
27: aux← [{}]n

34 Asymmetric Byzantine Consensus

Process pi then checks if there is a single value b in B. If so, and if
b = s, then it decides for value b. The process then proceeds to the next
round with proposal b. If there is more than one value in B, then pi
changes its proposal to s. In any case, the process starts another round
and invokes a new instance of bv-broadcast with its proposal. Note that
the protocol appears to execute rounds forever.

5.2.3 A liveness problem

Tholoniat and Gramoli [36] mention a liveness issue with the randomized
algorithm in the PODC-14 version [30], as presented in the previous
section. They sketch a problem that may prevent progress by the correct
processes when the messages between them are received in a specific
order. In the JACM-15 version, Mostéfaoui, Moumen, and Raynal [29]
appear to be aware of the issue and present a different, more complex
consensus protocol.

We give a detailed description of the problem in Algorithm 1. Recall
the implementation of binary-value broadcast, which disseminates bits
in value messages. According to our model, the processes communicate
by exchanging messages through an asynchronous reliable point-to-point
network. Messages may be reordered, as in the PODC-14 version.

Let us consider a system with n = 4 processes and f = 1 Byzantine
process. Let p1, p2, and p3 be correct processes with input values 0, 1, 1,
respectively, and let p4 be a Byzantine process with control over the
network. Process p4 aims to cause p1 and p3 to release the coin with
B = {0, 1}, so that they subsequently propose the coin value for the
next round. If messages are scheduled depending on knowledge of the
round’s coin value s, it is possible, then, that p2 releases the coin with
B = {s}. Subsequently, p2 proposes also s for the next round, and this
may continue forever. We now work out the details, as illustrated in
Figures 5.1–5.2.

First, p4 may cause p1 to receive 2f + 1 [value, 1] messages, from
p2, p3, and p4, and to bv-deliver 1 sent at the start of the round. Then,
p4 sends [value, 0] to p3, so that p3 receives value 0 twice (from p1
and p4) and also broadcasts a [value, 0] message itself. Process p4 also
sends 0 to p1, hence, p1 receives 0 from p3, p4, and itself and therefore
bv-delivers 0. Furthermore, p4 causes p3 to bv-deliver 0 by making it
receive [value, 0] messages from p1, p4, and itself. Hence, p3 bv-delivers
0. Finally, process p3 receives three [value, 1] messages (from itself, p2,
and p4) and bv-delivers also 1.

5.2 Revisiting signature-free asynchronous Byzantine
consensus 35

p1

p3

p2

p4

VALUE, 0
0

1

1

VALUE, 1

VALUE, 1

AUX, 1

p2,p3,p4:
VALUE, 1

AUX, 0

p1,p3,p4:
VALUE, 0

VALUE, 0

p1,p4:
VALUE, 0

AUX, 0

p3: VALUE, 0

AUX, 1

p2,p3,p4:
VALUE, 1

p1,p3,p4:
AUX, 1; AUX, 0

p1,p3,p4:
AUX, 1; AUX, 0

release-coin

release-coin

B={0,1}

B={0,1}

Figure 5.1: The execution of Algorithm 1, where processes p1 and p3
execute Line 14 with B = {0, 1}.

Recall that a process may broadcast more than one aux message. In
particular, it broadcasts an aux message containing a bit b whenever it
has bv-delivered b. Thus, p1 broadcasts first [aux, 1] and subsequently
[aux, 0], whereas p3 first broadcasts [aux, 0] and then [aux, 1]. Process
p4 then sends to p1 and p3 aux messages containing 1 and 0. After
delivering all six aux messages, both p1 and p3 finally obtain B = {0, 1}
in Line 14 (Algorithm 1) and see that |B| ≠ 1 in Line 18 (Algorithm 1).
Processes p1, p3, and p4 invoke the common coin.

The Byzantine process p4 may learn the coin value as soon as p1 or
p3 have released the common coin, according to unpredictability. Let s
be the coin output. We distinguish two cases:

Case s = 0: Process p2 receives now three [value, 1] messages, from
p3, p4 and itself, as shown in Figure 5.2. It bv-delivers 1 and
broadcasts an [aux, 1] message. Subsequently, p2 delivers three
aux messages containing 1, from p1, p4 and itself, but no [aux, 0]
message. It follows that p2 obtains B = {1} and proposes 1 for the
next round in Line 21. On the other hand, p1 and p3 adopt 0 as
their new proposal for the next round, according to Line 24. This
means that no progress was made within this round. The three
correct processes start the next round again with differing values,
again two of them propose one bit and the remaining one proposes
the opposite.

36 Asymmetric Byzantine Consensus

p1

p3

p2

p4

0

1

1

p2,p3,p4:
VALUE, 1

p1,p2,p4:
AUX, 1

B={1}

AUX, 1output-coin(0)

output-coin(0)

bv-broadcast(0)

bv-broadcast(0)

release-coin

output-coin(0)

bv-broadcast(1)

Figure 5.2: Continuing the execution for the case s = 0: Process p2
executes Line 14 with B = {1}. Processes p1 and p3 have already
proposed the coin value s = 0 for the next round, but p2 proposes s = 1.

Case s = 1: Process p4 sends [value, 0] to p2, so that it delivers two
valuemessages containing 0 (from p1 and p4) and thus also broad-
cast [value, 0] (this execution is not shown). Recall that p3 has
already sent [value, 0] before. Thus, p2 receives n− f [value, 0]
messages, bv-delivers 0, and also broadcasts an aux message con-
taining 0. Subsequently, p2 may receive n − f messages [aux, 0],
from p3, p4, and itself. It follows that p2 executes Line 14 with
B = {0} and chooses 0 as its proposal for the next round (in
Line 21). On the other hand, also here, p1 and p3 adopt the coin
value s = 1 and propose 1 for the next round in Line 24. Hence,
no progress has been made in this round, as the three correct pro-
cesses enter the next round with differing values.

The protocol may continue like this forever, producing an infinite exe-
cution with no termination.

5.2.4 Fixing the problem

We show how the problem can be prevented with a conceptual insight
and two small changes to the original protocol. We do this by recalling
the example just presented. The complete protocol and a formal proof
are given in Section 5.3, using the more general model of asymmetric
quorums.

5.2 Revisiting signature-free asynchronous Byzantine
consensus 37

We start by considering the nature of the common coin abstraction:
In any full implementation, the coin is not an abstract oracle, but im-
plemented by a concrete protocol that exchanges messages among the
processes.

Observe now that in the problematic execution, the network reorders
messages between correct processes. Our first change, therefore, is to
assume FIFO ordering on the reliable point-to-point links. This may be
implemented over authenticated links, by adding sequence numbers to
messages and maintaining a buffer at the receiver [6]. Consider p2 in the
example and the messages it receives from the other correct processes,
p1 and p3. W.l.o.g. any protocol implementing a common coin requires
an additional message exchange, where a correct process sends at least
one message to every other process, say, a share message with arbitrary
content (to be specific, see Algorithm 2, Section 5.3). Observe that at
least f + 1 correct processes are required to send a share message in
order for a process to have information about the coin value.

When p2 waits for the output of the coin, it needs to receive, again
w.l.o.g., a share message from n − f processes. Since the other two
correct processes (p1 and p3) have sent two value messages and aux
messages each before releasing the coin, then p2 receives these messages
from at least one of them before receiving enough share messages, ac-
cording to the overlap among Byzantine quorums.

This means that p2 cannot satisfy the condition in Line 14 with |B| =
1. Thus the adversary may no longer exploit its knowledge of the coin
value to prevent termination. (Mostéfaoui, Moumen, and Raynal [29]
(JACM-15) remark in retrospect about the PODC-14 version that a
“fair scheduler” is needed. However, this comes without any proof and
thus remains open, especially because the JACM-15 version introduces
a much more complex version of the protocol.)

Our second change is to allow the set B to dynamically change while
the coin protocol executes. In this way, process p2 may find a suitable
B according to the received aux messages while concurrently running
the coin protocol. Eventually, p2 will have output the coin and its set
B will contain the same values as the sets B of p1 and p3. Observe
that this dynamicity is necessary; process p2 could start to release the
coin after receiving n − f aux messages containing only the value 1.
However, following our example, due to the assumed FIFO order, it will
receive from another correct process also an aux message containing the
value 0, before the share message. If we do not ask for the dynamic-
ity of the set B, process p2, after outputting the coin, will still have

38 Asymmetric Byzantine Consensus

|B| = 1. Mostéfaoui, Moumen, and Raynal in the PODC-14 version
([30, Figure 2, Line 5]) seem to rule this out.

Notice that the common-coin primitive here requires more than f
correct processes to release the coin before it may be predicted by the
faulty processes. Within an implementation, this translates into receiv-
ing a share message from more than 2f processes (or 2f + 1 = n − f
processes, in case n = 3f+1). Abraham, Ben-David, and Yandamuri [1],
[2] show that such an assumption (which they call an 2f -unpredictable
coin) is necessary in order to prevent this liveness problem. With an
ordinary coin primitive (i.e., one where at least one correct process is
required to send a share message, before information about the coin
value may become available), an adversary would still be able to produce
an infinite execution and to violate termination [2, Appendix A].

5.3 Asymmetric randomized Byzantine
consensus

In this section we define asymmetric Byzantine consensus. Then we
implement it by a randomized algorithm, which is based on the protocol
of Mostéfaoui, Moumen, and Raynal [30] as introduced in Section 5.2.
Our implementation also fixes the problem described there.

In an asynchronous binary consensus protocol, every correct process
initially ac-proposes a bit; the protocol concludes at a correct process
when it ac-decides a bit. Our notion of Byzantine consensus uses strong
validity in the asymmetric model. Furthermore, it restricts the safety
properties of consensus from all correct ones to wise processes in the
guild. For implementing asynchronous consensus, we use a system en-
riched with randomization. In the asymmetric model, the corresponding
probabilistic termination property is guaranteed only for wise processes.

Definition 5.4 (Asymmetric strong Byzantine consensus). A protocol
for asynchronous asymmetric strong Byzantine consensus satisfies:

Probabilistic termination: In all executions with a guild, every wise
process ac-decides with probability 1, in the sense that

lim
r→+∞

(P[a wise process pi ac-decides by round r]) = 1.

Strong validity: In all executions with a guild, a wise process only

5.3 Asymmetric randomized Byzantine consensus 39

ac-decides a value that has been ac-proposed by some process in
the maximal guild.

Integrity: No correct process ac-decides twice.

Agreement: No two wise processes ac-decide differently.

5.3.1 Asymmetric common coin

Our randomized consensus algorithm delegates its probabilistic choices
to a common coin abstraction [6], [34]. This primitive is triggered by a
release-coin invocation and terminates by generating an output-coin(s)
event, where s ∈ B represents the random coin value in a range B. We
define this in the asymmetric-trust model.

Definition 5.5 (Asymmetric common coin). A protocol for asymmetric
common coin satisfies the following properties:

Termination: In all executions with a guild, every process in the max-
imal guild eventually outputs a coin value.

Unpredictability: In all executions with a guild, no process has any
information about the value of the coin before at least a kernel
for all wise processes, which consists only of correct processes, has
released the coin.

Matching: In all executions with a guild, with probability 1 every pro-
cess in the maximal guild outputs the same coin value.

No bias: The distribution of the coin is uniform over B.

Here we consider binary consensus and B = {0, 1}. The termination
property guarantees that every process in the maximal guild eventually
output a coin value that is ensured to be the same for each of them
by the matching property. The unpredictability property ensures that
the coin value is kept secret in an execution until at least a kernel for a
wise process, consisting entirely of correct processes, releases the coin.
The existence of a kernel made of correct processes is required in order
to avoid the liveness problem at the consensus protocol presented in
Section 5.2. The analogue of this in the threshold symmetric model,
where f < n/3 processes may fail, would be a coin with threshold 2f ,
where the value is kept secret until at least a set of f+1 correct processes
release the coin. Finally, the no bias property specifies the probability
distribution of the coin output.

40 Asymmetric Byzantine Consensus

The scheme. We recall here the notion of the tolerated system
of an asymmetric Byzantine quorum system from Chapter 4. Ev-
ery asymmetric Byzantine quorum system implies a tolerated system
T = {T1, . . . , TK}, where Tk = P \Gk is the complement of guild Gk, for
each possible guild Gk, where k ∈ {1, . . . ,K}. Crucial for our applica-
tion is the fact that T satisfies the Q3-condition (shown in Lemma 4.12),
hence one can construct a symmetric Byzantine quorum system from T :
the canonical system H = {G1, . . . ,GK}, consisting of all possible guilds
Gk, is such a symmetric Byzantine quorum system. The idea is to use
the tolerated system as a “bridge” from the asymmetric to the symmet-
ric model, since reasoning is simpler in the latter. In the same time, this
approach guarantees that in any execution where the system is able to
make progress (i.e., a guild exists), the processes in the guild will have
enough information to reconstruct the value of the coin.

The common coin scheme follows the approach of Rabin [34] and
assumes that coins are predistributed by a trusted dealer. The scheme
uses Benaloh-Leichter [4] secret sharing, such that the coin is additively
shared within every maximal guild. The dealer shares one coin for
every possible round of the protocol. This requires knowledge of the
symmetric Byzantine quorum system H corresponding to the tolerated
system T . Observe that every process can compute this because F is
globally known.

We assume that before the coin protocol runs, the dealer has chosen
uniformly at random a value s ∈ B and shared it as follows. For every
possible guild G = {pi1 , . . . , pim}, the dealer has picked uniform shares

si1 , . . . , sim−1
and set sim = s +

∑m−1
ℓ=1 siℓ . Share siℓ has been given

to process piℓ , for ℓ ∈ {1, . . . ,m}. This implies that process pi holds a
share for every guild of which it is a member.

The code for process pi to release the coin is shown in Algorithm 2.
Specifically, when asked to release its coin share (Lines 5–9, Algo-
rithm 2), a process pi sends to all other processes a share sG for each
guild G of which pi is a member. Upon receiving such shares, each pro-
cess stores them in a local structure (Lines 11–13, Algorithm 2). When
a process pi has enough shares, i.e., all shares from a guild G, it can
locally add them and output the coin value (Lines 15–17, Algorithm 2).

Theorem 5.6. Algorithm 2 implements an asymmetric common coin.

Proof. Let us consider an asymmetric fail-prone system F such that
B3(F) holds and the corresponding asymmetric Byzantine quorum sys-
tem Q for F. By Lemma 4.12, the tolerated system T of Q satisfies the

5.3 Asymmetric randomized Byzantine consensus 41

Algorithm 2 Asymmetric common coin for round round (code for pi)

1: State
2: H: set of all possible guilds
3: share[G][j]: if pi ∈ G, this holds the share received from pj
4: for guild G; initially ⊥

5: upon event release-coin do
6: for all G ∈ H such that pi ∈ G do
7: let siG be the share of pi for guild G
8: for all pj ∈ P do
9: send message [share, siG , G, round] to pj

10: upon receiving a message [share, s, G, r] from pj such that
11: r = round and pj ∈ G do
12: if share[G][j] = ⊥ then
13: share[G][j]← s

14: upon exists G such that for all j with pj ∈ G, it holds
15: share[G][j] ̸= ⊥ do
16: s←

∑
j:pj∈G share[G][j]

17: output output-coin(s)

Q3-condition. Let H be the Byzantine quorum system for T consist-
ing of all maximal guilds. Assume an execution with a guild, where all
processes in some T ∈ T are faulty and G ∈ H is the maximal guild.

For the termination property, observe that every correct process, and
hence also every process in G, invokes release-coin. This implies that
eventually every process pi ∈ G sends share messages to all processes
in P (Line 9, Algorithm 2), containing the coin shares of pi for every
guild in which pi belongs (Line 6, Algorithm 2), including G. Eventually
every correct process in P receives a share message from every process
in G, computes s (Line 16, Algorithm 2) and triggers output-coin(s).

For the unpredictability property, let us assume an execution with
set of faulty processes F and with maximal guild G ∈ H. Moreover,
let us assume that a correct process pi has output coin s. This implies
that there exists a set Gk ∈ H such that every process in Gk has sent a
share message. From the consistency property of H the set K = Gk \F
intersects every quorum in H.

We show that K is a kernel for all wise processes in such execution.
Let us assume towards a contradiction that there exists a wise process

42 Asymmetric Byzantine Consensus

pj ∈ P and a quorum Qj ∈ Qj for pj such that Qj ∩K = ∅. Observe
that, by construction ofK and by Lemma 4.7,K always contains a (wise)
process in G. This because K is derived by a possible guild Gk ∈ H and,
by definition of guild, every process in Gk has a quorum contained in Gk.
Seen that, by construction, K = Gk \F , then every process in K (which
is correct) has a quorum in Gk containing at least a process in G. Let pi
be a process in K ∩ G.

Since K ⊆ Gk and Gk is a possible guild in H, there must exist
a quorum Qi ∈ Qi for pi such that Qi ⊆ Gk. Since Qj ∩ K = ∅ and
K = Gk\F , it follows that Qi∩Qj ⊆ F . This contradicts the consistency
property of Q, since both pi and pj are wise processes. This implies that
K is a kernel for every wise process consisting of correct processes.

The matching and no bias properties follow directly from the fact
that the coin value for every round is predetermined, albeit not known to
any process, and chosen uniformly at random by the trusted dealer.

Example 5.7. Let us consider a five-process asymmetric quorum system
QD, defined through the following FB.

FB:

F1 = Θ3
1({p3, p4, p5})

F2 = Θ3
1({p3, p4, p5})

F3 = Θ2
2({p1, p2}) ∨ {p4} ∨ {p5}

F4 = Θ2
2({p1, p2}) ∨ {p3} ∨ {p5}

F5 = Θ2
2({p1, p2}) ∨ {p3} ∨ {p4}

The tolerated system is T = {{p1, p2}, {p3}, {p4}, {p5}}. One
can verify that B3(FB) holds; hence, by Lemma 4.12, also Q3(T)
holds. The corresponding symmetric Byzantine quorum system is
H = {{p3, p4, p5}, {p1, p2, p4, p5}, {p1, p2, p3, p5}, {p1, p2, p3, p4}}. Ob-
serve that every G ∈ H a guild in an execution in which the processes in
T = P \ G are faulty.

Let us assume an execution with a set of faulty processes F =
{p1, p2}; this implies that the guild in this execution is G1 = {p3, p4, p5}.

Moreover, we consider just one round round=1 and we show how
Algorithm 2 works. Let us assume that the dealer has chosen s = 1.
Then, for every guild Gk ∈ H, with k ∈ {1, . . . , 4}, the dealer has chosen
uniform shares as follows, where ski denotes the share of process i for
guild Gk.

5.3 Asymmetric randomized Byzantine consensus 43

G1 = {p3, p4, p5} : s13 = 1, s14 = 0, and s15 = s+ s13 + s14 = 0

G2 = {p1, p2, p4, p5} : s21 = 0, s22 = 1, s24 = 1, and s25 = s+ s21 + s22 + s24 = 1

G3 = {p1, p2, p3, p5} : s31 = 0, s32 = 1, s33 = 0, and s35 = s+ s31 + s32 + s33 = 0

G4 = {p1, p2, p3, p4} : s41 = 1, s42 = 0, s43 = 0, and s44 = s+ s41 + s42 + s43 = 0

Every process in G1 = {p3, p4, p5} upon release-coin sends a share
message to every process pj ∈ P for every share it has.

Process p3 is part of G1,G3, and G4. This means that upon release-
coin, p3 sends [share, 1, 1, 1], [share, 0, 3, 1], and [share, 0, 4, 1]
to every process in P.

Process p4 is part of G1,G2, and G4. This means that upon release-
coin, p4 sends [share, 0, 1, 1], [share, 1, 2, 1], and [share, 0, 4, 1]
to every process in P.

Process p5 is part of G1,G2, and G3. This means that upon release-
coin, p5 sends [share, 0, 1, 1], [share, 1, 2, 1], and [share, 0, 3, 1]
to every process in P.

Eventually every process in G1 receives a share message of the form
[share, s1i , 1, 1] from each process pi ∈ G1, computes s ←

∑
i:pi∈G1

s1i
(Line 16, Algorithm 2) and output-coin(1).

Discussion This implementation is expensive because the number of
shares for one particular coin held by a process pi is equal to the number
of guilds in which pi is contained. It would be more efficient to imple-
ment an asymmetric coin “from scratch” according to the protocols of
Canetti and Rabin [12] or of Patra, Choudhury, and Rangan [32]. Al-
ternatively, distributed cryptographic implementations are possible, for
example, implementations relying on the hardness of the discrete loga-
rithm problem [7].

5.3.2 Asymmetric binary validated broadcast

We generalize the binary validated broadcast as introduced by
Mostéfaoui, Moumen, and Raynal [30] to the asymmetric-trust model.
All safety properties are restricted to wise processes, and a guild is
required for liveness. Every process may broadcast a binary value
b ∈ {0, 1} by invoking abv-broadcast(b). The broadcast primitive out-
puts at least one value b and possibly also both values through an
abv-deliver(b) event, according to the following notion.

44 Asymmetric Byzantine Consensus

Definition 5.8 (Asymmetric binary validated broadcast). A protocol
for asymmetric binary validated broadcast satisfies the following prop-
erties:

Validity: In all executions with a guild, let K be a kernel for every
process in the maximal guild. If every process in K is correct
and has abv-broadcast the same value b ∈ {0, 1}, then every wise
process eventually abv-delivers b.

Integrity: In all executions with a guild, if a wise process abv-delivers
some b, then b has been abv-broadcast by some process in the max-
imal guild.

Agreement: In all executions with a guild, if a wise process abv-
delivers some value b, then every wise process eventually abv-
delivers b.

Termination: In all executions with a guild, every wise process even-
tually abv-delivers some value.

Note that it guarantees properties only for processes that are wise or
even in the maximal guild. Liveness properties also assume there exists
a guild.

Algorithm 3 works in the same way as the binary validated broadcast
by Mostéfaoui, Moumen, and Raynal [30] (Section 5.2), but differs in the
use of asymmetric quorums. The condition of receiving value messages
containing b from at least f + 1 processes is replaced by receiving such
messages from a kernel Ki for process pi. Furthermore, a quorum Qi

for pi is needed instead of 2f + 1 messages for abv-delivering a bit.

Theorem 5.9. Algorithm 3 implements asymmetric binary validated
broadcast.

Proof. To prove the validity property, let us consider a kernel K for
every process pi in the maximal guild Gmax. Moreover, let us assume
that every process in K has abv-broadcast the same value b ∈ {0, 1}.
Then, by definition of a kernel, K intersects every Qi for every pi ∈
Gmax. According to the protocol, every process in Gmax eventually sends
[value,b] unless sentvalue[b] = true for some pi ∈ Gmax. However,
if sentvalue[b] = true for pi, process pi has already sent [value,b].
Since every process in the maximal guild eventually sends [value,b],
eventually every correct process pj also receives [value,b] from a kernel

5.3 Asymmetric randomized Byzantine consensus 45

Algorithm 3 Asymmetric binary validated broadcast (code for pi)

1: State
2: sentvalue← [false]2: sentvalue[b] indicates whether pi
3: has sent [value, b]
4: values← [∅]n: list of sets of received binary values
5:
6: upon event abv-broadcast(b) do
7: sentvalue[b]← true
8: send message [value, b] to all pj ∈ P
9:
10: upon receiving a message [value, b] from pj do
11: if b ̸∈ values[j] then
12: values[j]← values[j] ∪ {b}
13:
14: upon exists b ∈ {0, 1} such that
15: {pj ∈ P| b ∈ values[j]} ∈ Ki and
16: ¬sentvalue[b] do // a kernel for pi
17: sentvalue[b]← true
18: send message [value, b] to all pj ∈ P
19:
20: upon exists b ∈ {0, 1} such that
21: {pj ∈ P| b ∈ values[j]} ∈ Qi do // a quorum for pi
22: output abv-deliver(b)

for itself (see Corollary 4.9) and sends [value,b] unless sentvalue[b] =
true. However, as above, if sentvalue[b] = true for pj , process pj has
already sent [value,b]. It follows that eventually every wise process
receives a quorum for itself of values b and abv-delivers b.

For the integrity property, let us assume an execution with a maximal
guild Gmax. Suppose first that only Byzantine processes abv-broadcast b.
Then, the set consisting of only these processes cannot form a kernel for
any wise process. It follows that Line 16 of Algorithm 3 cannot be
satisfied. If only näıve processes abv-broadcast b, then by the definition
of a quorum system and by the assumed existence of a maximal guild,
there is at least one quorum for every process in Gmax that does not
contain any näıve processes (e.g., as in Example 4.8). All näıve processes
together cannot be a kernel for processes in Gmax. Again, Line 16 of
Algorithm 3 cannot be satisfied. Finally, let us assume that a wise
process pi outside the maximal guild abv-broadcasts b. Then, pi cannot
be a kernel for every wise process: it is not part of the quorums inside

46 Asymmetric Byzantine Consensus

Gmax. It follows that if a wise process abv-delivers some b, then b has
been abv-broadcast by some processes in the maximal guild.

To show agreement, let F be the set of faulty processes and sup-
pose that a wise process pi has abv-delivered b. Then it has obtained
[value,b] messages from the processes in some quorum Qi ∈ Qi and
before from a kernel K = Qi \ F for itself. Each correct process in K
has sent [value,b] message to all other processes. Consider any other
wise process pj . Since pi and pj are both wise, we have F ∈ Fi

∗ and
F ∈ Fj

∗, which implies F ∈ Fi
∗ ∩Fj

∗. It follows that K is also a kernel
for pj . Thus, pj sends a [value,b] message to every process. This im-
plies that all wise processes eventually send [value,b] to all processes.
This also implies that eventually every process in Gmax sends [value,b].
By Corollary 4.9, Gmax is a kernel for every correct process pk. Thus,
pk sends a [value,b] message to every process. Therefore eventually ev-
ery wise process receives a quorum for itself of [value,b] messages and
abv-deliver b.

For the termination property, let us assume an execution with a
maximal guild Gmax and set of faulty processes F . Note that in any
execution, every process in P \ F abv-broadcasts some binary values.
We show that there is a set K ⊆ P \ F such that K is a kernel for
every process in the maximal guild consisting of correct processes and
every process in K abv-broadcasts the same value b ∈ {0, 1}. Observe
that a correct process initially abv-broadcasts only one value in {0, 1}.
So, let P \ F = S0 ∪ S1 with S0 and S1 two sets of processes such
that S0 ∩ S1 = ∅ and such that every process in S0 abv-broadcasts b
and every process in S1 abv-broadcasts 1 − b = b. Moreover, let us
assume that neither S0 nor S1 contains a kernel for every process in
the maximal guild. If S0 does not contain a kernel for a process in the
maximal guild, then there exists a process pj ∈ Gmax and a quorum Qj

for pj such that Qj ∩ S0 = ∅. This means that every correct process
in Qj abv-broadcasts b. Similarly, if S1 does not contain a kernel for
a process in the maximal guild, then there exists a process pk ∈ Gmax

and a quorum Qk for pk such that Qk ∩ S1 = ∅. This means that every
correct process in Qk abv-broadcasts b. However, if this is the case,
then Qj ∩ Qk ⊆ F , which contradicts the consistency property of an
asymmetric Byzantine quorum system, given that pj and pk are both
wise. This implies that either S0 or S1 contains a kernel K for every
process in the maximal guild consisting of correct processes and such
that every process in K abv-broadcasts the same value. Termination
then follows from the validity property.

5.3 Asymmetric randomized Byzantine consensus 47

5.3.3 Asymmetric randomized consensus

In the following primitive, a correct process may propose a binary value
b by invoking ac-propose(b); the consensus abstraction decides for b
through an ac-decide(b) event.

Algorithms 4-5 differs from Algorithm 1 in some aspects. Recall
that both algorithms use a system where messages are authenticated
and delivered reliably. Importantly, we assume for Algorithms 4-5 that
all messages among correct processes are also delivered in FIFO order,
even when they do not originate from the same protocol module.

Moreover, Algorithms 4-5 allow the set B to change while recon-
structing the common coin (Line 31). This step is necessary in order to
prevent the problem described in Section 5.2. We prove this statement
in Lemma 5.10.

Finally, our protocol may disseminate decide messages in parallel
to ensure termination. When pi receives a decide message from a ker-
nel of processes for itself containing the same value b, it broadcasts a
decide message itself containing b to every processes, unless it has al-
ready done so. Once pi receives a decide message from a quorum of
processes for itself with the same value b, it ac-decides(b) and halts. This
“amplification” step is reminiscent of Bracha’s reliable broadcast proto-
col [5]. Hence, the protocol does not execute rounds forever, in contrast
to the original formulation of Mostéfaoui, Moumen, and Raynal [30]
(Algorithm 1).

The following result shows that the problem described in Section 5.2
no longer occurs in our protocol.

Lemma 5.10. If a wise process pi outputs the coin with B = {0, 1},
then every other wise process that outputs the coin has also B = {0, 1}.

Proof. Let us assume that a wise process pi outputs the coin with
B = {0, 1}. This means that pi has received share messages from a
quorum Qcoin

i for itself and has B = aux[j] = {0, 1} for all pj ∈ Qi.
Consider another wise process pj that also outputs the coin. It follows
that pj has received share messages from a quorum Qcoin

j for itself as
well. Observe that pi and pj , before receiving the share messages from
every process in Qcoin

i and Qcoin
j , respectively, receive all aux messages

that the correct processes in these quorums have sent before the coin
messages. This follows from the assumption of FIFO reliable point-to-
point links. Quorum consistency implies that Qcoin

i and Qcoin
j have some

correct processes in common. So, pi and pj receive some aux messages

48 Asymmetric Byzantine Consensus

Algorithm 4 Asymmetric randomized binary consensus (code for pi)
Part 1
1: State
2: round← 0: current round
3: values← {}: set of abv-delivered binary values for the round
4: aux← [{}]n: stores sets of values that have been received in
5: aux messages in the round
6: decided← []n: stores binary values that have been reported
7: as decided by other processes
8: sentdecide←false: indicates whether pi has sent a decide message

9: upon event ac-propose(b) do
10: invoke abv-broadcast(b) with tag round

11: upon abv-deliver(b) with tag r such that r = round do
12: values← values ∪ {b}
13: send message [aux, round, b] to all pj ∈ P

14: upon receiving a message [aux, r, b] from pj such that r = round do
15: aux[j]← aux[j] ∪ {b}

16: upon receiving a message [decide, b] from pj such that
17: decided[j] = ⊥ do
18: decided[j] = b

19: upon exists b ̸= ⊥ such that
20: {pj ∈ P | decided[j] = b} ∈ Ki do // a kernel for pi
21: if ¬sentdecide then
22: send message [decide, b] to all pj ∈ P
23: sentdecide←true

24: upon exists b ̸= ⊥ such that
25: {pj ∈ P | decided[j] = b} ∈ Qi do // a quorum for pi
26: ac-decide(b)
27: halt // stop operating when aborted

28: upon exist {pj ∈ P | aux[j] ⊆ values} ∈ Qi do // a quorum for pi
29: release-coin with tag round

5.3 Asymmetric randomized Byzantine consensus 49

Algorithm 5 Asymmetric randomized binary consensus (code for pi)
Part 2
30: upon event output-coin(s) with tag round and
31: exits B ̸= {} such that ∀ pj ∈ Qi, B = aux[j] do
32: round← round+ 1
33: if exists b such that |B| = 1 ∧B = {b} then
34: if b = s ∧ ¬sentdecide then
35: send message [decide, b] to all pj ∈ P
36: sentdecide←true
37: invoke abv-broadcast(b) with tag round
38: // propose b for the next round
39: else
40: invoke abv-broadcast(s) with tag round
41: // propose coin value s for the next round
42: values← [⊥]n
43: aux← [{}]n

from the same correct process before they may output the coin. This
means that if pi has B = {0, 1} after the output-coin event, then every
quorum Qj for pj will contain a process pk such that aux[k] = {0, 1}
for pj . Every wise process therefore must have B = {0, 1} before it can
proceed.

The problem shown in Section 5.2 arose from messages between cor-
rect processes that were reordered in such a way that knowledge of the
common coin value s was able to influence another correct process and
cause it to deliver ¬s alone. Lemma 5.10 above implies that our Al-
gorithms 4-5 prevent this because all wise processes arrive at the same
set B when they output the coin.

Theorem 5.11. Algorithms 4-5 implement asymmetric strong Byzan-
tine consensus.

Proof. To prove the strong validity property, let us assume that a wise
process pi has ac-decided a value b. This means that pi has received
[decide, b] messages from a quorum Qi for itself. Moreover, before
deciding, process pi has received [decide, b] messages from a kernel Ki

for itself and sent [decide, b] to every other process.
Whenever a correct process pi has sent such a decide message con-

taining b in a round r, it has obtained B = {b} and b is the same as the
coin value in the round. Then, pi has received b from a quorum Qi for

50 Asymmetric Byzantine Consensus

itself through aux messages. Every process in Qi has received a [aux,
r, b] message and b has been abv-delivered. According to the integrity
property of the validated broadcast, b has been abv-broadcast by a pro-
cess in the maximal guild and, specifically, values contains only values
abv-broadcast by processes in the maximal guild. It follows that b has
been proposed by some processes in the maximal guild.

For the agreement property, suppose that a wise process has received
[aux, r, b] messages from a quorum Qi for itself. Consider any other
wise process pj that has received a quorum Qj for itself of [aux, r,
b] messages. If at the end of round r there is only one value in B,
then from consistency property of quorum systems, it follows b = b.
Furthermore, if b = s then pi and pj broadcast a [decide, b] message
to every process and decide for b after receiving a quorum of [decide,
b] messages for themselves, otherwise they both abv-broadcast(b) and
they continue to abv-broadcast(b) until b = s. If B contains more than
one value, then pi and pj proceed to the next round and invoke a new
instance of abv-broadcast with s. Therefore, at the beginning of the
next round, the proposed values of all wise processes are equal. The
property easily follows.

The integrity property is easily derived from the algorithm.
The probabilistic termination property follows from two observations.

First, the termination and the agreement properties of binary validated
broadcast imply that every wise process abv-delivers the same binary
value from the validated broadcast instance and this value has been
abv-broadcast by some processes in the maximal guild. Second, we
show that with probability 1, there exists a round at the end of which
all processes in Gmax have the same proposal b. If at the end of round r,
every process in Gmax has proposed the coin value (Line 41, Algorithm 5),
then all of them start the next round with the same value. Similarly,
if every process in Gmax has executed Line 38 (Algorithm 5) they adopt
the value b and start the next round with the same value.

However, it could be the case that some wise processes in the maximal
guild proposes b and another one proposes the coin output s. Observe
that the properties of the common coin abstraction guarantee that the
coin value is random and independently chosen. So, the random value s
is equal to the proposal value b with probability 1

2 . The probability that
there exists a round r′ in which the coin equals the value b proposed
by all processes in Gmax during round r′ approaches 1 when r goes to
infinity.

Let r thus be some round in which every process in Gmax abv-

5.4 On asymmetric leader-based Byzantine consensus 51

broadcasts the same value b; then, none of them will ever change their
proposal again. This is due to the fact that every wise process invokes an
binary validated broadcast instance with the same proposal b. According
to the validity and agreement properties of asymmetric binary validated
broadcast, every wise process then bv-delivers the same, unique value b.
Hence, the proposal of every wise process is set to b and does not change
in future rounds. Finally, the properties of common coin guarantee that
the processes eventually reach a round in which the coin outputs b.
Therefore, with probability 1 every process in the maximal guild sends
a decide message with value b to every process in that round. This
implies that it exists a quorum Qi ⊆ Gmax for a process pi ∈ Gmax such
that every process in Qi has sent a decide message with value b to
every process. Moreover, the set of processes in the maximal guild is a
kernel for pi and for every other correct process pj (Corollary 4.9). If a
correct process pj receives a decide message with value b from a kernel
for itself, it sends a decide message with value b to every process unless
it has already done so. It follows that eventually every wise process
receives decide messages with the value b from a quorum for itself and
ac-decides for b.

5.4 On asymmetric leader-based Byzantine
consensus

In the consensus protocol presented in Section 5.3, no process had a
different role within the protocol. This differs from consensus protocols
such as PBFT [13], [14] or HotStuff [38], where, through the execution,
a process behaves as a coordinator (or leader), and properties for such
protocols are ensured with respect to its behavior. These protocols are
generally referred to as leader-based consensus protocols. In particular,
let us consider PBFT. This is a partially synchronous [16] consensus
protocol that proceeds in epochs, identified with increasing timestamps,
each of them with a designated leader, whose task is to reach consensus
among the processes. If the leader is correct and no further epoch starts,
then the leader succeeds in reaching consensus. But if the next epoch
in the sequence is triggered, the processes abort the current epoch and
invoke the next one, even if some processes may already have decided
in the current epoch. In particular, to reach a consensus, two kind of
operations are described: normal-case operation and epoch change. The
normal-case operation occurs when there are no network delays or faulty

52 Asymmetric Byzantine Consensus

leader and it is made just by a Bracha’s reliable broadcast [5] instance. If
the system behaves correctly there is no need for epoch change operation.
Otherwise, the operation is aborted, a new epoch starts and a new leader
is elected. The epoch change part of the algorithm ensures termination
by allowing the system to change leader in case it is Byzantine. When
the leader is detected to be faulty, or there is a delay in the network
communication, a new epoch starts with a new selected leader.

To better understand the tasks executed by the leader, we recall the
abstraction used by Cachin, Guerraoui, and Rodrigues [6] called condi-
tional collect, and we generalize it with a (symmetric) quorum system.
The purpose of the conditional collect is to collect information in the
system, in the form of messages from all processes, in a consistent way.
This abstraction, which will be used within the consensus protocol, is
parameterized by a predicate C(), defined on a vector M of size n, i.e.,
the total number of processes in the system, of messages, and it should
only output a collected vector that satisfies such predicate such that
M [i] is either equal to undefined or corresponds to the input message
of process pi. A conditional collect primitive should collect the same
vector of messages at every correct process such that this vector satis-
fies the predicate. Correct processes must all input messages that will
satisfy the predicate. More precisely, we say that the correct processes
input compliant messages when each correct process pi inputs a message
mi and any vector M with M [i] = mi satisfies C(M).

Definition 5.12 (Quorum-based conditional collect). A protocol for
quorum-based conditional collect satisfies:

Consistency: If the leader is correct, then every correct process collects
the same M , and this M contains processes forming a quorum with
messages different from undefined.

Integrity: If some correct process collects M with M [j] ̸= undefined
for some process pi and pi is correct, then pi has input message
M [i].

Termination: If all correct processes input compliant messages and the
leader is correct, then every correct process eventually collects some
M such that C(M) = true.

It can be shown [6] that Algorithm 6 implements quorum-based con-
ditional collect.

5.4 On asymmetric leader-based Byzantine consensus 53

Algorithm 6 Quorum-based signed conditional collect cc with leader
pℓ (Code for pi)

1: State
2: messages← [undefined]n: set of messages sent by processes
3: Σ← [⊥]n: signatures of the processes
4: collected← false

5: upon event input(m) do
6: σ ← sign(pi, cc ∥ pi ∥ input ∥ m)
7: send message [send, m, σ] to leader pℓ

8: upon receiving a message [send, m, σ] from pj do // only leader pℓ
9: if verifysig(pj , cc ∥ pj ∥ parallel ∥ m,σ) then
10: messages[j]← m
11: Σ[j]← σ

12: upon exists m ̸= undefined such that
13: {pj ∈ P| messages[j] = m} ∈ Q and
14: C(messages) do // only leader pℓ
15: send message [collected, messages, Σ] to all pj ∈ P
16: messages← [undefined]n

17: Σ← [⊥]n

18: upon receiving a message [collected, M , Σ] from pℓ do
19: if ¬collected and exists m ̸= undefined such that
20: {pj ∈ P| M [j] = m} ∈ Q and C(M) and
21: for all pj ∈ P such that M [j] ̸= undefined it holds
22: verifysig(pj , cc ∥ pj ∥ input ∥M [j],Σ[j]) then
23: collected← true
24: output collected(M)

Cachin, Guerraoui, and Rodrigues [6] analyze PBFT [13] in a mod-
ular way, deconstructing it into different modules. In Algorithms 7-8
we present, and generalize, the consensus module of PBFT, called here
quorum-based Byzantine read/write epoch consensus, which makes use
of the conditional collect implemented in Algorithm 6.

Algorithms 7-8 can be seen as divided in a read phase (Algorithm 7)
and a write phase (Algorithm 8). The read phase collects states from
all processes to ascertain if a value might have already decided in a pre-
vious epoch. In the presence of Byzantine processes, the leader might
write an wrong value. For this reason each process must replicate the

54 Asymmetric Byzantine Consensus

leader’s computation and write a value to verify the leader’s choice. The
algorithm starts by the leader sending a read message to all processes,
which triggers every process to invoke a conditional collect primitive (Al-
gorithm 6). Every process inputs a message [state, valts, val, writeset]
containing its state. The leader in conditional collect is the leader pℓ of
the epoch. In the write phase, when a process has received a quorum
Q ∈ Q of write messages containing the same value v, it sets its state
to (ets, v) and broadcasts an accept message with v. When a process
has received a quorum Q ∈ Q of accept messages containing the same
value v, it decides v.

In Algorithms 7-8 we make use of a conditional collect with the aim
of collecting information in the system in the form of messages from all
processes in a way that is consistent among them.

Every correct process in Algorithms 7-8 initializes the conditional
collect with a predicate sound(·) defined as

sound(states) ≡ (∃ (ts, v) | binds(ts, v, states)) ∨ unbound(states))

which determines whether there exists a value that must be written
during the write phase. If such a value exists, the read phase must
identify it or conclude that no such value exists.

We say that states binds ts to v, writing binds(ts, v, states), whenever

{pj ∈ P| states[j] = [state, ts, v,ws]} ∈ Q

for some ts, v,ws and both the following conditions hold.

1. given a timestamp/value pair (ts, v),

{pj ∈ P| states[j] = [state, ts′, v′, ·]∧
ts′ < ts ∨ (ts′, v′) = (ts, v)} ∈ Q

2. given a timestamp/value pair (ts, v), there exists ws′ such that

{pj ∈ P| states[p] = [state, ·, ·,ws′]∧
∃ (ts′, v′) ∈ ws′ such that ts′ ≥ ts ∧ v′ = v} ∈ C

with C a set of core sets [21], [22]; a core set is a minimal set
of processes that contains at least one correct process in every
execution.

5.4 On asymmetric leader-based Byzantine consensus 55

Algorithm 7 Quorum-based Byzantine Read/Write Epoch Consensus
(Code for pi) Read phase

1: State
2: valts: timestamp of the current state of a process
3: val: value of the current state of a process
4: writeset: timestamp/value pairs of the current state
5: that a process has ever written
6: states[i]← (valts, val,writeset)
7: written← [⊥]n
8: accepted← [⊥]n
9: ets: instance of the epoch consensus with timestamp ts
10: cc: instance of the conditional collect primitive

11: upon input propose(v) do // only leader pℓ
12: if val =⊥ then val← v
13: send message [read] to all pj ∈ P

14: upon receiving a message [read] from pℓ
15: input a message [state, valts, val, writeset] to cc

16: upon output collected(states) do
17: // states[i] = [state, ts, v, ws] or states[i] = undefined
18: tmpval←⊥
19: if exists ts ⩾ 0, v ̸=⊥ from states such that
20: binds(ts, v, states) then
21: tmpval← v
22: else if exists v ̸=⊥ such that
23: unbound(states) and states[ℓ] = [state, ·, v, ·] then
24: tmpval← v
25: if tmpval ̸=⊥ then
26: if exists ts such that (ts, tmpval) ∈ writeset then
27: writeset← writeset \ {(ts, tmpval)}
28: writeset← writeset ∪ {(ets, tmpval)}
29: send message [write, tmpval] to all pj ∈ P

We say that states is unbound, writing unbound(states), whenever

{pj ∈ P| states[j] = [state, ts, v,ws]} ∈ Q

for some ts, v,ws and the timestamps of the entries in states of all the
processes in some quorum are equal to 0.

Although this formalization works in a system where every process

56 Asymmetric Byzantine Consensus

Algorithm 8 Quorum-based Byzantine Read/Write Epoch Consensus
(Code for pi) Write phase

30: upon receiving a message [write, tmpval] from pj do
31: written[j]← v

32: upon exists v such that {pj ∈ P| written[j] = v} ∈ Q do
33: (valts, val)← (ets, v)
34: written← [⊥]n
35: send message [accept, val] to all pj ∈ P

36: upon receiving a message [accept, v] from pj
37: accepted[j]← v

38: upon exists v such that {pj ∈ P| accepted[j] = v} ∈ Q do
39: accepted← [⊥]n
40: output decide(v)

41: upon input abort do
42: output aborted(valts, val,writeset)
43: halt // stop operating when aborted

has the same quorum system Q, we show subsequently that such a for-
mulation faces certain issues within an asymmetric-trust model

Problem with asymmetric trust Algorithms 6-7-8 show that the
leader, upon collecting a quorum Q of messages, executes some tasks,
and broadcasts the result of these tasks (together with the received quo-
rum Q of processes that sent the messages, as a certificate) to every
other processes. At that point, every process, upon receiving the re-
sult and the certificate from the leader, repeats the same tasks that the
leader did, in order to verify that it did not behave maliciously. It can
be shown [6] that, if the leader is correct, this verification will output
the same result as the leader’s.

A key observation here is that both the leader and the other processes
verify the messages based on a quorum Q, which is the same for every
process. However, if we consider an asymmetric quorum system, where
every process pi has its own quorum system Qi, then Qi might not
contain any quorum Qi such that Qi = Qℓ, with Qℓ a quorum for the
leader pℓ. In other terms, if a leader pℓ receives messages from a quorum
Qℓ for itself, it executes some tasks based on Qℓ, and it broadcasts the

5.4 On asymmetric leader-based Byzantine consensus 57

result of these tasks together with the certificate based on Qℓ to every
process, then a process pi, upon receiving what pℓ sent, should verify
based on its own quorum system Qi, possibly outputting a different
result.

Because of that, one cannot just substitute a symmetric quorum
system Q with an asymmetric quorum system Q without doing some
required considerations and changes.

5.4.1 A solution to the problem

We present a possible solution to the problem presented above by means
of the tolerated system of an asymmetric quorum system, as discussed
in Section 4.2.3.

Recall that every asymmetric Byzantine quorum system (where
at least a guild can be obtained) implies a tolerated system T =
{T1, . . . , TK}, where Tk = P \ Gk is the complement of guild Gk, for
each possible guild Gk, where k ∈ {1, . . . ,K}. One can construct a
symmetric Byzantine quorum system from T : the canonical system
H = {G1, . . . ,GK}, consisting of all possible guilds Gk, is such a symmet-
ric Byzantine quorum system, connecting the asymmetric to the sym-
metric model.

So, let T = {T1, . . . , TK} be the tolerated system for Q, and let H =
{G1, . . . ,GK} be a symmetric quorum system consisting of all possible
guilds Gk. We modify the quorum-based conditional collect primitive
from Algorithm 6 in order to obtain Algorithm 9.

Algorithm 9 differs from Algorithm 6 in Line 13 and Line 20. In
particular, since Q is known to every process in the system, so are the
tolerated system T and the derived symmetric quorum system H. In
other terms, we parameterize the conditional collect through the sym-
metric Byzantine quorum system originated from the asymmetric trust
of the system. In this way, given an execution, every process can verify
the output of the leader through H.

Algorithm 9 is parameterized also by a predicate C which, in the
context of the quorum-based Byzantine read/write epoch consensus pro-
tocol (Algorithm 7-8) corresponds to

sound(states) ≡ (∃ (ts, v) | binds(ts, v, states)) ∨ unbound(states)) .

Since sound is also parameterized by a symmetric Byzantine quorum
system through bind and unbound, we require for sound, in order to

58 Asymmetric Byzantine Consensus

Algorithm 9 Asymmetric signed conditional collect cc with leader pℓ
(Code for pi)

1: State
2: messages← [undefined]n: set of messages sent by processes
3: Σ← [⊥]n: signatures of the processes
4: collected← false

5: upon event input(m) do
6: σ ← sign(pi, cc ∥ pi ∥ input ∥ m)
7: send message [send, m, σ] to leader pℓ

8: upon receiving a message [send, m, σ] from pj do // only leader pℓ
9: if verifysig(pj , cc ∥ pj ∥ parallel ∥ m,σ) then
10: messages[j]← m
11: Σ[j]← σ

12: upon exists m ̸= undefined such that
13: {pj ∈ P| messages[j] = m} ∈ H and
14: C(messages) do // only leader pℓ
15: send message [collected, messages, Σ] to all pj ∈ P
16: messages← [undefined]n

17: Σ← [⊥]n

18: upon receiving a message [collected, M , Σ] from pℓ do
19: if ¬collected and exists m ̸= undefined such that
20: {pj ∈ P| M [j] = m} ∈ H and C(M) and
21: for all pj ∈ P such that M [j] ̸= undefined it holds
22: verifysig(pj , cc ∥ pj ∥ input ∥M [j],Σ[j]) then
23: collected← true
24: output collected(M)

work in an asymmetric-trust model, to consider the Byzantine quorum
system H. Properties of Algorithm 9 directly follows from those of
Algorithm 6, since we are considering a symmetric Byzantine quorum
system H.

At this point, the remaining part of the quorum-based Byzantine
read/write epoch consensus can be generalized as it follows. Observe
that the read phase (Algorithm 7) does not make use of quorums (ex-
cept for the conditional collect, which we already generalized), so for
simplicity we only generalize the write phase (Algorithm 8).

5.4 On asymmetric leader-based Byzantine consensus 59

Algorithm 10 Asymmetric Byzantine Read/Write Epoch Consensus
(Code for pi) Write phase.

25: upon receiving a message [write, tmpval] from pj do
26: written[j]← v

27: upon exists v such that {pj ∈ P| written[j] = v} ∈ Qi do
28: (valts, val)← (ets, v)
29: written← [⊥]n
30: send message [accept, val] to all pj ∈ P

31: upon receiving a message [accept, v] from pj
32: accepted[j]← v

33: upon exists v such that {pj ∈ P| accepted[j] = v} ∈ Qi do
34: accepted← [⊥]n
35: output decide(v)

36: upon input abort do
37: output aborted(valts, val,writeset)
38: halt // stop operating when aborted

Theorem 5.13. Algorithms 7-10, implemented with the asymmetric
signed conditional collect (Algorithm 9), satisfy the following properties.
In all executions with a guild,

Validity: If a wise process decides v, then v was proposed by the
leader pℓ of some epoch consensus with timestamp ts’ ≤ ts and
leader pℓ′ .

Agreement: No two correct processes decide differently.

Integrity: Every correct process decides at most once.

Lock-in: If a wise process has decided v in an epoch consensus with
timestamp ts’ ≤ ts, then no correct process decides a value different
from v.

Termination: If the leader pℓ is correct, has proposed a value, and
no wise process aborts this epoch consensus, then every process
in Gmax eventually decides some value.

Abort Behavior: When a correct process aborts an epoch consensus,
it eventually will have completed the abort; moreover, a correct

60 Asymmetric Byzantine Consensus

process completes an abort only if the epoch consensus has been
aborted by some correct process.

Proof. For the validity property, let us assume that a wise process pi
decides for a value v. Process pi only decides for the value v received in
an acceptmessage from a quorum for itself and that any correct process
only sends an accept message with v after receiving v in a write
message from a quorum for itself. Any correct process only sends a
write message with v either after collecting a vector states that binds ts
to v or after collecting states that is unbound and choosing v as proposed
by the leader pℓ. For the latter, the validity property easily follows. For
the former, one can apply the same reasoning backward, until it reaches
an epoch where states is unbound. Validity property follows.

The agreement property follows from the consistency property of an
asymmetric Byzantine quorum system, while the integrity property can
be seen from the protocol.

The reasoning for the proof of the lock-in property closely mirrors
the approach adopted in the proof presented by Cachin, Guerraoui, and
Rodrigues in Section 5.6.3 of [6], although with a change in the quorum
structure. Specifically, we are considering an asymmetric Byzantine quo-
rum system in our case.

For the termination property, given that the asymmetric conditional
collect as implemented in Algorithms 7-10 makes use of the symmetric
Byzantine quorum system derived from the tolerated system, one can
apply the same reasoning as Cachin, Guerraoui, and Rodrigues in Sec-
tion 5.6.3 of [6]. However, it should be noted that once all the correct
processes have verified the computation performed by the leader and
sent a write message with value v, every wise process pi eventually
receives a quorum Qi for itself of such messages and sends an accept
message. Eventually, every process pj in the maximal guild receives a
quorum Qj for itself of accept messages with value v and decides for v.
The termination property thus follows.

The abort behavior property is satisfied because the algorithm returns
an event aborted(states) immediately and only if it has been aborted.

5.4.2 Future improvements

The proposed solution, although it solves the issue described at the
beginning of this section, comes with some trade-off. In particular, it is
clear that we need to rely on a symmetric Byzantine quorum system in

5.4 On asymmetric leader-based Byzantine consensus 61

order to verify the work of the leader, losing part of the subjectivity of
the asymmetric-trust model. However, observe that such a symmetric
quorum system is actually derived from an asymmetric system; in other
words, it can be seen as a good compromise, in order to achieve consensus
in an asymmetric setting.

A possible improvement to this solution could be to devise a com-
position rule among the quorum systems in an asymmetric Byzantine
quorum system, in order to correctly verify the tasks done by the leader.
This composition rule should take into account wise processes, in a given
execution with a guild. In particular it should be in a way that, given
the asymmetric conditional collect parameterized with asymmetric quo-
rums, if the leader pℓ is wise, then every other process pi in the guild
collects the same M , and this M contains processes forming a quorum
Qi for pi with messages different from undefined, end it should ensure
that if all the wise processes input compliant messages and the leader
is wise, then every process in the guild eventually collect some M such
that C(M) = true. Another improvement, more into the direction
of HotStuff [38], would be to better understand how threshold signa-
ture schemes generalizes to the asymmetric-trust model. In this way,
one could devise HotStuff allowing for signature verification based on
asymmetric quorums. We leave these open questions for future works.

Chapter 6

Asymmetric Trust in
Permissionless Networks

Fail-prone systems as studied so far require every process to know the full
system membership in order to guarantee safety through globally inter-
secting quorums. Thus, they are of little help in an open, permissionless
setting, where such knowledge may not be available. In this chapter, we
propose a model that expands the theory of fail-prone systems to make
it applicable to permissionless systems. Our model generalizes existing
models such as the symmetric fail-prone system model [26] and the asym-
metric fail-prone system model [9]. Moreover, it gives a characterization
with standard formalism of the model used by the Stellar blockchain.
The content of this chapter is taken from the paper “Quorum systems
in permissionless networks” [8].

6.1 System model

Processes. Differently from Chapter 4 and Chapter 5, here we con-
sider an unbounded set of processes P = {p1, p2, ...} that communicate
asynchronously with each other by sending messages. Moreover, we as-
sume that processes do not necessarily know which other processes are
in the system (i.e., each process only knows a subset of P).

Links. We assume that point-to-point communication between any
two processes (that know each other) is available, as well as a best-effort

6.2 Preliminaries 63

gossip primitive that will reach all processes.

6.2 Preliminaries

Processes make failure assumptions about other processes. However,
since a process does not know exactly who is part of the system, it
cannot make failure assumptions about the whole system. Instead, each
process pi makes assumptions about a set Pi ⊆ P, called pi’s trusted set ,
using a symmetric fail-prone system Fi over Pi. We say that Pi and Fi

constitute pi’s assumptions and they remain fixed during an execution.
A permissionless fail-prone system (abbreviated PFPS) describes the

assumptions of all the processes:

Definition 6.1 (Permissionless fail-prone system). A permissionless
fail-prone system is an array F = [(P1,F1) , (P2,F2) , . . .] that associates
each process pi to a trusted set Pi ⊆ P and a fail-prone system Fi over
Pi. We refer to (Pi,Fi) as the configuration of process pi.

We now consider a fixed PFPS F.

Definition 6.2 (Tolerated execution and tolerated set). We say that
the assumptions of a process pi are satisfied in an execution if the set
A of processes that actually fail is such that there exists a fail-prone set
F ∈ Fi and:

1. A ∩ Pi ⊆ F ; and

2. the assumptions of every member of Pi \ F are satisfied.

If pi ∈ P has its assumptions satisfied in an execution e, we say that
pi tolerates the execution e.

Finally, a set of processes L tolerates a set of processes A if and only
if every process pi ∈ L \ A tolerates an execution e with set of faulty
processes A.

Example 6.3. Consider a set of processes P = {p1, p2, p3, p4} and a
permissionless fail-prone system F = [(P,F1), (P,F2), (P,F3), (P,F4)]
with F1 = {{p3, p4}}, F2 = {{p1, p4}}, F3 = {{p1, p4}}, and F4 =
{{p1, p2}}. Then, P tolerates the sets ∅, {p1}, {p4} and {p1, p4}. To
see this, let us assume an execution e with set of faulty processes A =
{p1, p4}. Then, for every pi ∈ P \A, there exists a fail-prone set F ∈ Fi

such that A ∩ P ⊆ F . In particular, P \A = {p2, p3} and {p1, p4} ∈ F2

and {p1, p4} ∈ F3. The same reasoning can be applied for the other sets.

64 Asymmetric Trust in Permissionless Networks

Note that here we depart significantly from the traditional notion of
fail-prone systems [9], [26]: in a PFPS, a process not only makes assump-
tions about failures, but also makes assumptions about the assumptions
of other processes.

Next we define survivor sets analogously to Junqueira and Marzul-
lo [21]. In the traditional literature, a survivor set of pi is the comple-
ment, within P, of some fail-prone set. However, defining them as the
complement of fail-prone sets within Pi does not work because of Item 2
in Definition 6.2. To obtain this definition, we first define a slice.

Definition 6.4 (Slice). A set F ⊆ P is a slice of pi if and only if pi
has a fail-prone set F ∈ Fi such that F = Pi \ F .

For any S ⊆ P we often say pi has a slice in S when a slice of pi is
contained in S or when S contains a superset of a slice of pi.

Definition 6.5 (Survivor-set system). A survivor-set system Si of pi is
the minimal set of subsets S of P such that:

1. pi has a slice in S; and

2. every member of S has a slice in S.

Each S ∈ Si is called a survivor set of pi.

Example 6.6. Continuing from Example 6.3, process p1 has only one
slice consisting of {p1, p2}, processes p2 and p3 have the set {p2, p3} as
slice, and process p4 has the set {p3, p4} as slice. Moreover, the survivor-
set systems are S1 = {{p1, p2, p3}, {p1, p2, p3, p4}} for process p1, S2 =
{{p2, p3}, {p1, p2, p3, p4}} for process p2, S3 = {{p2, p3}, {p1, p2, p3, p4}}
for process p3, and S4 = {{p2, p3, p4}, {p1, p2, p3, p4}} for process p4.
This follows from Definition 6.5: given a survivor set S ∈ Si for pi,
process pi must have a slice in S and every member of S must have a
slice in S. So, for example, given the survivor set {p1, p2, p3} in the
survivor set system S1 for p1, process p1 has a slice in {p1, p2, p3}, i.e.,
{p1, p2}, and every process pi ∈ {p1, p2, p3} has a slice in {p1, p2, p3},
i.e., {p2, p3}.

Lemma 6.7. The assumptions of a process pi ∈ P are satisfied in an
execution e with set of faulty processes A if and only if there exists a
survivor set S ∈ Si of pi such that S does not fail.

6.3 Permissionless Byzantine quorum systems 65

Proof. Let pi be a process such that, given an execution e with set of
faulty processes A, the assumptions of pi are satisfied in e. This implies
that, by Definition 6.2, there exists a set of processes such that each
of these processes has its assumptions satisfied. Moreover, by Defini-
tion 6.4, each of these processes has a slice F j such that F j ∩ A = ∅.
This leads to have a set S obtained as union of all of these slices such
that S ∩ A = ∅ and such that S is minimal with respect to this union,
in the sense that is the minimal set of processes such that every process
in S has its assumptions satisfied. The set S is a survivor set of pi.

Conversely, we show that given a survivor set S of pi, given a process
pi ∈ S and given an execution e with set of faulty processes A, if S∩A =
∅, then the assumptions of pi are satisfied in e. Observe that, from the
assumptions, we have that every process in S has a slice F in S such
that F ∩A = ∅. This means that for every process pi in S, there exists
a fail-prone set F ∈ Fi such that Pi ∩ A ⊆ F . This implies that every
process in S has its assumptions satisfied and, in particular, that pi ∈ S
has its assumptions satisfied in e.

6.3 Permissionless Byzantine quorum sys-
tems

A symmetric fail-prone system [26] determines a canonical Byzantine
quorum system known to all processes through the Q3-condition. Specif-
ically, given a fail-prone system F , the Q3-condition requires that no
three fail-prone sets of F cover the complete set of processes and this
condition holds if and only if there exists a quorum system for F [20],
[26]. Such a quorum system could be, for example, the complement
of every fail-prone set of F , which we call the canonical quorum sys-
tem. Traditional algorithms such as read-write register emulations [26],
Byzantine reliable broadcasts [5], [35] or the PBFT algorithm [14] make
use of quorums.

In the model of asymmetric trust [15] the assumptions of the pro-
cesses may differ, and asymmetric Byzantine quorum systems [9], [10]
allow to implement the above-mentioned algorithms in a more flexible
way. However, they still require a system that is known to every process.

In a permissionless system, processes do not know the membership
and have different, partial, and potentially changing views of its compo-
sition.

Given a PFPS, we would therefore like to obtain a quorum system to

66 Asymmetric Trust in Permissionless Networks

implement algorithms for register emulation, broadcast, consensus and
more, while allowing the processes to have different assumptions in an
open network.

We are therefore interested in defining a notion of quorums for open
systems where:

1. each process has its own quorum system; and

2. the quorums of a process pi depend on the assumptions of other
processes, which pi learns by communicating with them.

In other words, we consider scenarios in which each process pi com-
municates with other processes, continuously discovers new processes,
and learns their assumptions. During this execution, pi determines its
current set of quorums as a function of what it has learned so far. Im-
portantly, this means that the quorums of a process evolve as the process
learns new assumptions, and that faulty processes can influence pi’s quo-
rums by lying about their assumption.

We now formalize this model using the notions of a view and a quo-
rum function.

Definition 6.8 (View). A view V = [V1,V2, . . .] is an array with one
entry V[j] = Vj for each process pj such that:

1. either Vj is the special value ⊥; or

2. Vj = (Pj ,Fj) consists of a set of processes Pj and a fail-prone
system Fj over Pj.

Observe that every process pi has its local view V, whose non-⊥
entries represent the assumptions that pi has learned at some point in
an execution. Every other process pj such that V[j] = ⊥ is a process
that pi has not heard from. We denote with Υ the set of all the possible
views.

We assume that, for every process pj , a process pi’s view contains
the assumption that pi has most recently received from pj . Finally, note
that F is a view in which no process is mapped to ⊥. In particular, F
represents the global view if the system could be entirely observed. Since
processes cannot observe the complete system, they normally only have
partial knowledge of F. Moreover, this knowledge evolves over time.

Definition 6.9 (Domain of a view). For a view V, the set of processes
pi such that V[i] ̸= ⊥ is the domain of V.

6.3 Permissionless Byzantine quorum systems 67

Next, we assume that every process determines its quorums according
to its view using a function Q called a quorum function. We assume
that all correct processes use the same Q and that they do not change
it during an execution. We then have the following definition.

Definition 6.10 (Quorum function). The quorum function Q : P ×
Υ → 2P maps a process pi and a view V to a set of sets of processes
such that Q ∈ Q(pi,V) if and only if:

1. a slice of pi is contained in Q; and

2. for every process pj ∈ Q with V[j] ̸= ⊥ and V[j] = (Pj ,Fj), there
exists F ∈ Fj such that Pj \ F ⊆ Q.

Every element of Q(pi,V) is called a permissionless quorum for pi (in
V).

In the context of this chapter, whenever it is clear from the context,
we refer to a permissionless quorum simply as quorum. Notice that in
the first condition, the quorum Q may itself be a slice of pi. Moreover,
Q is a quorum for every one of its members and it is defined by slices
of every pi ∈ Q. As shown in the following lemma, a quorum for pi in
view V for pi is a survivor set of pi.

Lemma 6.11. For every view V for pi ∈ P, every quorum Qi ∈ Q(pi,V)
is a survivor set of pi. Moreover, given S a survivor set of pi, there exists
a view V for pi such that S ∈ Q(pi,V).

Proof. Let Qi ∈ Q(pi,V) be a quorum for pi with V a view for pi. By
Definition 6.10, all processes in Q including pi have a slice in Q. From
Definition 6.5, this implies that Q is a survivor set of pi.

Moreover, given a survivor set S of pi, the set S consists of slices
of every member of S. This means that there exists a view V for pi in
which S satisfies Definition 6.10 and it is a quorum for pi. This is the
view V defined as follows:

1. for every pj ∈ S, V′[j] = F[j], and

2. for every pj ̸∈ S, V′[j] = (∅, {∅}).

Example 6.12. Let us consider Example 6.3 with survivor-set systems
as shown in Example 6.6. Since all the processes already know all the
configurations of every other process, we have that Si = Q(pi,F), with
F the permissionless fail-prone system.

68 Asymmetric Trust in Permissionless Networks

Combining the quorum sets of all processes, we now obtain a per-
missionless Byzantine quorum system for F.

Definition 6.13 (Permissionless Byzantine quorum system). A permis-
sionless Byzantine quorum system for P and F is an array of collections
of sets Qperm = [Q(p1,F),Q(p2,F), . . .], where Q(pi,F) is called the
quorum system for pi and is determined by the quorum function Q.

Observe that our notion of a quorum system differs from that in
the existing literature [9], [26], [27]. In particular, standard Byzantine
quorum systems are defined through a pair-wise intersection among quo-
rums. This is possible in scenarios where the full system membership
is known to every process. However, in permissionless settings, this
requirement cannot as clearly be achieved globally.

Definition 6.14 (Current quorum system). Let V be the view repre-
senting the assumptions that a process pi has learned so far. Then the
current quorum system of pi is the set Q(pi,V). Moreover, a set of
processes Q is a current quorum of pi if and only if Q ∈ Q(pi,V); we
also say that pi has a quorum Q.

Note that, in this model, each process has its own set of quorums
and the set of quorums of a process changes throughout an execution as
the process learns the assumptions of more processes. Importantly, note
that faulty processes may lie about their configuration and influence the
quorums of correct processes. In an execution e with faulty set A, a cor-
rect process pi might have a view in which the assumptions of processes
in A are arbitrary because processes in A lied about their assumptions.
However, processes outside A do not lie about their assumptions. We
capture this with the following definition.

Definition 6.15 (T-resilient view). Given a set of processes T , we say
that a view V is T -resilient if and only if for every process pi ̸∈ T , either
V[i] = ⊥ or V[i] = F[i].

Intuitively, a correct process pi will either not have heard from pj ̸∈ A
or it will have the correct assumption for pj . Thus, pi’s view is A-resilient
at all times in execution e.

As we said, processes in A may lie about their assumptions causing
quorums to contain unreliable slices. Moreover, processes in A may aim
at preventing intersection among quorums of correct processes. In the
following definition we characterize the notion of worst-case view, i.e.,

6.4 Leagues 69

when faulty processes gossip only empty configurations. By doing so,
quorums of correct processes will contain fewer members, increasing the
chances of an empty intersection among them.

Definition 6.16 (Worst-case view). Given a set of processes T , the
worst-case view with respect to T is the view V∗

T such that:

1. for every pi ∈ P \ T , V∗
T [i] = F[i], and

2. for every pi ∈ T , V∗
T [i] = (∅, {∅}).

Finally, every quorum for a process pi ̸∈ A in a A-resilient view
contains a quorum for pi in a worst-case view with respect to A. This
is shown in the following lemma.

Lemma 6.17. Consider a set of processes T , a T -resilient view V, and
a process pi ̸∈ T . Moreover, let us assume that processes in T may lie
about their assumptions. For every quorum Qi ∈ Q(pi,V), there exists
a quorum Q′

i ∈ Q(pi,V∗
T) such that Q′

i ⊆ Qi.

Proof. Let T be a set of processes, V be a T -resilient view, pi a process
not in T . Since V is a T -resilient view, for every pj ̸∈ T it holds either
V[j] = ⊥ or V[j] = F[j]. However, processes in T may lie about their
assumptions and, because of that, the view of process pi ̸∈ T may contain
arbitrary configurations received from processes in T .

If Qi ∈ Q(pi,V) is a quorum for pi in V, then Qi might contain slices
of processes in T which are derived from false assumptions. One can
easily show that by starting from a T -compatible view and by removing
the configurations received by processes in T , it is possible to obtain
the corresponding worst-case view. By removing configurations from V,
also Qi becomes smaller, i.e., with less members, obtaining a quorum
Q′

i ⊆ Qi. In fact, by removing from Qi a slice F j of a process pj ∈
T , also slices of other processes in F j might get removed in order for
Definition 6.10 to be satisfied on Q′

i. This proves the lemma.

6.4 Leagues

We now define the notion of a league. In Section 6.7 we show how a
league allows to implement Bracha broadcast.

Definition 6.18 (League). A set of processes L is a league for the
quorum function Q if and only if the following properties hold:

70 Asymmetric Trust in Permissionless Networks

Consistency: For every set T ⊆ P tolerated by L, for every two T -
resilient views V and V′, for every two processes pi, pj ∈ L \ T ,
and for every two quorums Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V′) it
holds (Qi ∩Qj) \ T ̸= ∅.

Availability: For every set T ⊆ P tolerated by L and for every pi ∈ L\
T , there exists a quorum Qi ∈ Q(pi,F) for pi such that Qi ⊆ L\T .

If we consider an execution e tolerated by a league L, where A is
the set of faulty processes, the consistency property of L implies that,
at any time, any two quorums of correct processes in L have some cor-
rect process in common. This is similar to the consistency property of
symmetric and asymmetric Byzantine quorum systems [9], [26].

Moreover, since the set of faulty processes A is tolerated by L, by
the availability property of L, every correct process in L has a quorum
in F consisting of only correct processes.

Example 6.19. Observe that the set P as introduced in Example 6.3 is
a league. In fact, for every set T tolerated by P, i.e., ∅, {p1}, {p4} and
{p1, p4}, for every two processes pi, pj ∈ P\T and for every two quorums
Qi ∈ Si and Qj ∈ Sj as in Example 6.12, it holds (Qi∩Qj)\T ̸= ∅, and
for every pi ∈ P \T , there exists a quorum Qi ∈ Si such that Qi ⊆ P\T.

The following lemma shows that the union of two intersecting leagues
L1 and L2 is again a league, assuming that for every set T tolerated by
both the leagues, L1 and L2 have a common process not in T .

Lemma 6.20. If L1 and L2 are two leagues such that L1 ∩ L2 ̸= ∅ and
such that for every set T tolerated by L1 ∪ L2, there exists a process
pk ∈ (L1 ∩ L2) \ T , then L1 ∪ L2 is a league.

Proof. Let L1 and L2 be two leagues such that L1∩L2 ̸= ∅. For every T
tolerated by L1∪L2 (and so, tolerated by L1 and L2, independently), for
every pi ∈ L1\T and pj ∈ L2\T , for every two T -resilient views V and V′

for pi and pj , respectively, let Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V′) be two
quorums for pi and pj , respectively. Observe that, by assumption, for
every tolerated set T by L1∪L2 there exists a process pk ∈ (L1 ∩ L2)\T .
Let pk ∈ L1 ∩ L2 and let Qk ∈ Q(pk,V) be a quorum for pk such that
Qk ⊆ L1, according to availability property of L1. From consistency
property of L2, (Qk ∩Qj) \ T ̸= ∅ and every process in this intersection
belongs to L1. Observe that, Qj is a quorum for every of its member.
This implies that Qj is a quorum for every process in (Qk ∩Qj) \T and

6.4 Leagues 71

every process in (Qk∩Qj)\T has quorum in L1. Moreover, (Qk∩Qi)\T ̸=
∅. It follows that (Qi ∩Qj) \ T ̸= ∅.

Finally, by availability property of L1 and L2, for every tolerated set
T by L1 and L2 and for every process pi ∈ L1 \ T and pj ∈ L2 \ T ,
eventually there exists a quorum Qi ∈ (pi,F) for pi and a quorum Qj ∈
Q(pj ,F) for pj such that Qi ⊆ L1 \ T and Qj ⊆ L2 \ T , respectively.
If pi = pj ∈ L1 ∩ L2, then there exists a quorum Qi for pi such that
Qi ⊆ (L1 ∪ L2) \ T .

In the following lemma we show that we can characterize the con-
sistency property of a league just by considering worst-case views. In-
tuitively, this result relies on the observation that every T -resilient view
can be seen as extensions of worst-case views with respect to T ⊆ P,
in the sense that a T -resilient view can be obtained by starting from
a worst-case view with respect to T and by considering the non-empty
configurations received by processes in T .

Lemma 6.21. The consistency property a league L holds if and only
if for every set T ⊆ P tolerated by L, for every two worst-case views
V∗

T and V′∗
T with respect to T , for every two processes pi, pj ∈ L \ T ,

and for every two quorums Qi ∈ Q(pi,V∗
T) and Qj ∈ Q(pj ,V′∗

T) it holds
(Qi ∩Qj) \ T ̸= ∅.

Proof. Let us assume that the consistency property of a league L holds.
Since the property holds for every pair of views, it must hold also for
worst-case views. The implication easily follows.

Let us now assume that for every set T ⊆ P tolerated by L, for
every two worst-case views V∗

T and V′∗
T with respect to T , for every two

processes pi, pj ∈ L \ T , and for every two quorums Qi ∈ Q(pi,V∗
T) and

Qj ∈ Q(pj ,V′∗
T) it holds (Qi ∩Qj)\T ̸= ∅. Observe that, given a quorum

Qi ∈ Q(pi,V∗
T) for pi in a worst-case view V∗

T , all the quorums obtained
by also considering all the possible configurations received from processes
in T that are not in V∗

T do contain Qi. Moreover, there cannot exist a T -
resilient view that does not consist of configurations of a worst-case view
with respect to T . If this was the case, then by removing configurations
received from processes in T one would obtain a worst-case view with
respect to T , reaching a contradiction. So, all the quorums obtained from
T -resilient views will also intersect in processes that are not contained
in T .

Now we show how a league can be abstracted and defined without
considering views. This will be useful in Section 6.5 when we compare

72 Asymmetric Trust in Permissionless Networks

our model with other permissionless models. First, we introduce the
following definitions.

Definition 6.22 (Inclusive up to). A set I ⊆ P is inclusive up to a set
T ⊆ P if and only if for every pi ∈ I \ T , process pi has a slice in I.

If we consider an execution e with set of faulty processes A then a
set of processes I is inclusive up to A if and only if every correct process
in I has a slice contained in I.

Definition 6.23 (Rooted at). A set R ⊆ P is rooted at a process pi if
and only if pi has a slice in R. A set R ⊆ P is rooted in a set T ′ ⊆ P
whenever R is rooted at a member of T ′.

Lemma 6.24. If V is a T -resilient view and Qi ∈ Q(pi,V) for some
process pi, then Qi is inclusive up to T and rooted at pi.

Proof. If V is a T -resilient view then, by Definition 6.15, processes out-
side T do not lie about their assumptions. By definition of a quorum
Qi for a process pi in a view V, every process in Qi, and so in Qi \ T ,
has a slice in Qi. This implies that Qi is inclusive up to T and rooted
at pi.

In the following lemma we show that given a set of processes T
tolerated by L ⊆ P, for every set of processes I inclusive up to T and
rooted at pi ∈ L \ T it is possible to find a T -resilient view in which I is
a quorum for pi. This view is a worst-case view with respect to T .

Lemma 6.25. Let L be a set of processes. For every set T ⊆ P tolerated
by L, if I ⊆ P is a set inclusive up to T and rooted at pi ∈ L \ T , then
there is a T -resilient view in which I is a quorum for pi.

Proof. Let T ⊆ P be a tolerated set by a set of processes L and let I ⊆ P
be a set inclusive up to T and rooted at pi ∈ L \T . This implies that pi
and every other process pj ∈ I \ T have a slice in I. Let us consider the
worst-case view V∗

T with respect to T . Clearly, V∗
T is T -resilient. This

implies that, in V∗
T , the set I is a quorum for pi, i.e., I ∈ Q(pi,V∗

T).

Remark 6.26. Observe that given a set of processes L and a worst-
case view V∗

T with respect to a set T ⊆ P tolerated by L, every quorum
Qi ∈ Q(pi,V∗

T) for pi ∈ L \ T is inclusive up to T and rooted at pi.
Moreover, given the set I of all the sets I ⊆ P inclusive up to T and

rooted at pi ∈ L \ T , the set I contains all the quorums Qi ∈ Q(pi,V)

6.4 Leagues 73

for every T -resilient view V. In fact, by Definition 6.22, given a set of
processes I inclusive up to a set of processes T , the requirement of having
a slice in I is only for processes in I \ T , leaving processes in T ∩ I with
no requirements on the choice of their slices.

However, given a T -resilient view V, by Definition 6.10, a quorum
Qi for pi requires instead every process in Qi to have a slice contained
in Qi. This means that given a T -resilient view V, quorum Qi for pi is
contained in I, being a special case of inclusive set up to T .

Lemma 6.27. The consistency property of a league L holds if and only
if for every set T ⊆ P tolerated by L, and for every two sets I ⊆ P
and I ′ ⊆ P that are rooted at L \ T and inclusive up to T it holds
(I ∩ I ′) \ T ̸= ∅.

Proof. Let us assume that the consistency property of a league L holds.
Suppose by contradiction that there is a set T ⊆ P tolerated by L and
two sets I ⊆ P and I ′ ⊆ P that are inclusive up to T and rooted at
L \ T in pi and pj , respectively, such that (I ∩ I ′) \ T = ∅.

By Lemma 6.25, there are a T -resilient view V in which I is a quorum
for pi and a T -resilient view V′ in which I ′ is a quorum for pj and we
reached a contradiction.

Let us now assume that for every set T ⊆ P tolerated by L, and for
every two sets I ⊆ P and I ′ ⊆ P that are inclusive up to T and rooted
at L \ T it holds (I ∩ I ′) \ T ̸= ∅.

Let I and I ′ be the sets of all the sets I ⊆ P and I ′ ⊆ P inclusive
up to T and rooted at pi ∈ L\T and pj ∈ L\T , respectively. The proof
follows from the reasoning in Remark 6.26: for every two T -resilient
views V and V′, every quorum Qi ∈ Q(pi,V) for pi is contained in I
and every quorum Qj ∈ Q(pj ,V) for pj is contained in I ′.

Lemma 6.28. The availability property of a league L holds if and only
if for every set T ⊆ P tolerated by L, every member of L \ T has a
survivor set in L \ T .

Proof. Let us assume that the availability property of a league L holds,
i.e., for every set of processes T tolerated by L and for every pi ∈ L \ T ,
there exists a quorum Qi ∈ Q(pi,F) for pi such that Qi ⊆ L \ T . This
means that, by Definition 6.5, every process in L \ S has a survivor set
in L \ S.

Let us now assume that for every set T ⊆ P tolerated by L, every
member of L \ T has a survivor set S in L \ T . Let pi be a process

74 Asymmetric Trust in Permissionless Networks

in L, by Definition 6.10 we have that S ∈ Q(pi,F) for pi. The proof
follows.

6.5 Comparison with other models

In this section we compare our model with the symmetric model based
on fail-prone systems [26], with the asymmetric model [9], [15], with the
federated Byzantine agreement system model [28], and with the personal
Byzantine quorum system model [24].

6.5.1 Comparison with symmetric fail-prone sys-
tems

We show that symmetric fail-prone systems and quorums (Chapter 3)
can be understood as a special case of our model, when every process
knows the entire system and assumes the same, global fail-prone system.

Recall that, in a symmetric system, the failures that are tolerated by
the processes are all possible subsets of fail-prone sets in F and we have
Pi = P for every pi ∈ P. Every process also knows the global quorum
system.

We define a bijective function f between the set of fail-prone systems
and a subset of PFPS such that f(F) = [(P,F), . . . , (P,F)] with n
repetitions and we notice that in symmetric fail-prone systems there is
only one view, namely V = f(F).

We define the quorum function Q : P ×Υ→ 2P such that for every
process pi ∈ P, Q(pi, f(F)) = F . Observe that any set in F is a slice of
every process pi ∈ P according to Definition 6.4. In the next theorem we
consider this quorum function and show that, given some assumptions
on F , any set in F is also a quorum for every process pi ∈ P according
to Definition 6.10.

Theorem 6.29. Let P be the set of all processes and F the fail-prone
system for P. Then Q3(F) holds if and only if P is a league for the
quorum function Q in f(F).

Proof. Let us first assume that Q3(F) holds. This means that for every
F1, F2, F3 ∈ F , P ̸⊆ F1 ∪ F2 ∪ F3. It follows that F is a quorum system
for F . Consistency property of F implies that for every tolerated set F ,
for every two processes pi and pj in P \ F and for every two quorums

6.5 Comparison with other models 75

Qi ∈ Q(pi, f(F)) and Qj ∈ Q(pj , f(F)) for pi and pj , respectively, it
holds that (Qi ∩Qj) \ T ̸= ∅.

The availability property of F implies that for every set F ∈ F
tolerated by P, every process pi ∈ P \ F has a quorum in P \ F : given
F , there exists a quorum Q ∈ Q(pi, f(F)) such that Q ∩ F = ∅ and
Q ⊆ P \ F . It follows that P is a league for the quorum function Q in
f(F).

Let us now assume that P is a league for the quorum function Q in
f(F). The consistency property of P implies that for every T tolerated
by P (which are all the sets in F), for every two processes pi and pj
in P \ T , for every two quorums Qi ∈ F and Qj ∈ F for pi and pj ,
respectively, it holds (Qi∩Qj)\T ̸= ∅.Moreover, by availability property
of P there exists a quorum in P \T (which is the same for every process
pi ̸∈ T). This implies that, for every fail-prone set F ∈ F , there is a
quorum Qi such that Qi ∩ F = ∅.

These two facts imply that F is a symmetric Byzantine quorum
system for F and so Q3(F) holds.

6.5.2 Comparison with asymmetric fail-prone sys-
tems

Recall that, in the asymmetric model [15] (Chapter 4), every process
is free to express its own trust assumption about the processes in one
common globally known system through a subjective fail-prone system.

Let P be a set of processes in the asymmetric model and F′ =
[F ′

1, . . . ,F ′
n] be an asymmetric fail-prone system. Define the func-

tion g from asymmetric fail-prone systems to PFPS such that g(F′) =
[(P,F ′

1), . . . , (P,F ′
n)]. Observe that, in an asymmetric system, the fail-

ures that may be tolerated by the processes are possible subsets of fail-
prone sets in the fail-prone systems of F′ and Pi = P for every pi ∈ P.
Moreover, as in the symmetric model, there is only one view, which is
V = g(F′).

We define the quorum function Q : P × Υ → 2P such that for
every guild G ⊆ 2P , if pi ∈ G then Q(pi, g(F′)) = {G,P}, otherwise
Q(pi, g(F′)) = {P}.

Observe that a quorum in the asymmetric model is a slice according
to Definition 6.4 and, for every process pi ∈ P, every set in Q(pi, g(F′))
is a quorum according to Definition 6.10.

Through the following theorem we establish the relationship between
the asymmetric model and the permissionless model.

76 Asymmetric Trust in Permissionless Networks

Theorem 6.30. Let us consider an asymmetric model among a set P
of processes with asymmetric fail-prone system F′. If B3(F′) holds and
P tolerates some sets T ⊆ P, then there exists a quorum function Q
such that P is a league in g(F′).

Proof. Let us assume that P tolerates some sets T ⊆ P and let us
consider the quorum function Q defined in this section in the context
of the asymmetric model. This means that, for every set T tolerated by
P, every process pi ∈ P \ T has a slice contained in P \ T . This implies
that in every execution in which T is the set of faulty processes, every
process in P \ T is wise and P \ T is a guild.

Moreover, let us also assume that B3(F′) holds. This implies the
existence of an asymmetric Byzantine quorum system Q′ such that for
every set T tolerated by P, for every two processes pi and pj in P\T and
for every two quorums Qi ∈ Q′

i and Qj ∈ Q′
j for pi and pj , respectively,

it holds that (Qi ∩Qj) \ T ̸= ∅.
Observe that the set P \T ∈ Q(pi, g(F′)) is a quorum in the permis-

sionless model for every pi ∈ P \ T according to Definition 6.10. This
implies that P satisfies availability property of a league.

Finally, for the consistency property observe that for every process
pi ∈ P, the set system Q(pi, g(F′)) satisfies Definition 6.10; by construc-
tion we have at most only two quorums for every pi which are P and
P \ T both satisfying Definition 6.10.

Consistency of Q′ implies intersection among the quorums in
Q(pi, g(F′)), for every process in P \ T .

It follows that P is a league for the quorum function Q in g(F′).

Theorem 6.30 shows a relation between the asymmetric model and
the permissionless model. In particular, if B3(F′) holds and P tolerates
some sets T , then the quorum function Q makes P a league.

However, we could have scenarios in which only a subset of P toler-
ates some sets T . In particular, we have the following result.

Lemma 6.31. Let P = {p1, . . . , pn} be a set of processes, F′ be an
asymmetric fail-prone system over P and g(F′) the corresponding PFPS
as described in the text. Moreover, let us consider an execution e with
set of faulty processes A with guild G. Then, G is the only set that
tolerates e.

Proof. By definition of guild, every process in G is wise and has a quorum
contained in G. Observe that, given a wise process pi, there exists a fail-
prone set F ∈ F ′

i in F′ such that A ⊆ F . Moreover, a quorum Qi for

6.5 Comparison with other models 77

pi in the asymmetric model satisfies Definition 6.4 and it is then a slice
of pi. This implies that every process in G has its assumptions satisfied
according to Definition 6.2. Moreover, every process in G has a slice
contained in G.

In the following lemma we characterize a link between the notion of
a guild, in a given execution, and a league.

Lemma 6.32. Let us consider an asymmetric Byzantine quorum system
Q′ and a guild G in any execution with set of faulty processes A. Then,
G is a league for the quorum function Q in g(F′).

Proof. The result follows from Theorem 6.30 by applying the same rea-
soning with G instead of P \ T as a guild.

In the following lemma we show a scenario where no asymmetric
Byzantine quorum systems exist but it is possible to find a league for Q
in g(F′).

Lemma 6.33. There exists an asymmetric fail-prone system F′ such
that:

1. there is no asymmetric Byzantine quorum system for F′, but

2. there exists a quorum function Q that make P a league in g(F′).

Proof. We prove this lemma through an example with four processes.
Consider an asymmetric fail-prone system F′

4 over four processes p1, p2,
p3, and p4 with F ′

1 = {{p3, p4}}, F ′
2 = {{p1, p4}}, F ′

3 = {{p1, p4}}, and
F ′

4 = {{p1, p2}}, as in Example 6.3.

Observe that, by the availability property of an asymmetric Byzan-
tine quorum system, p1 must have a quorum in {p1, p2} and p4 must
have a quorum in {p3, p4}. Since {p1, p2} and {p3, p4} are disjoint, it is
impossible to satisfy the consistency property. Thus, there does not exist
any asymmetric Byzantine quorum system for F′

4. Another way to see
this is by observing that B3(F′

4) does not hold: {p3, p4} ∪ {p1, p2} = P.
However, as shown in Example 6.19, P is a league in g(F′

4). So,
there is no asymmetric Byzantine quorum system for F′

4 but Q makes
P a league in g(F′

4).

78 Asymmetric Trust in Permissionless Networks

6.5.3 Comparison with federated Byzantine agree-
ment systems

The federated Byantine agreement system (FBAS) model has been in-
troduced by Mazières [28] in the context of the Stellar white paper.
Differently from the models presented before in this section, the FBAS
model is a permissionless model, where processes, each with an initial
set of known processes, continuously discover new processes. In a FBAS,
every process pi chooses a set of slices, which are sets of processes suffi-
cient to convince pi of agreement and a set of processes Qi is a quorum
for pi whenever pi has at least one slice inside Qi and every member of
Qi has a slice that is a subset of Qi. In particular, a quorum Qi is a
quorum for every of its members.

However, despite the permissionless nature of a FBAS, a global in-
tersection property among quorums is required for the analysis of the
Stellar Consensus Protocol (SCP), and the scenario with disjoint quo-
rums is not considered by Mazières.

A central notion in FBAS is that of intact set; given a set of pro-
cesses P, an execution with set of faulty processes A and a set of correct
processes W = P \A, a set of processes I ⊆ W is an intact set [18], [24]
when the following conditions hold:

1. Consistency: for every two processes pi and pj in I and for every
two quorums Qi and Qj for pi and pj , respectively, Qi∩Qj∩I ̸= ∅;
and

2. Availability: I is a quorum for every of its members.

Every process in I is called intact, while every process in P \ I
(correct or faulty) is called befouled and some properties of the Stellar
Consensus Protocol are guaranteed only for intact processes. Moreover,
the union of two intersecting intact sets is an intact set. Finally, by
requiring a system-wide intersection among quorums (as in the case of
the SCP) one obtains an unique intact set (Lemma 34, [18]).

We first show that our model generalizes the FBAS model by showing
that a quorum in FBAS satisfies Definition 6.10.

In FBAS a notion of fail-prone system is missing and definitions are
given with respect to an execution with a fixed set of faulty processes A.
However, because processes define slices, an implicit fail-prone system
for every process can be derived.

6.5 Comparison with other models 79

In particular, given a set of processes P = {p1, p2, . . .}, every process
in P defines its slices based on a known subset Pi ⊆ P by pi and Si is a
slice for pi ∈ P if and only if pi ∈ Si and Si ⊆ Pi [18]. Let Si ⊆ 2P be
the set of slices of pi, we can derive the following definition.

Definition 6.34. (Federated fail-prone system) A set F ⊆ P is a fail-
prone set of pi if and only if there exists a slice Si ∈ Si of pi such that
F = Pi\Si. The set F ′′

i ⊆ 2P of all the fail-prone sets of pi is called fail-
prone system of pi. Finally, we call the set F′′ = [(P1,F ′′

1), (P2,F ′′
2), . . .]

the federated fail-prone system.

In a FBAS, processes discover other processes’ slices during an ex-
ecution and so pi implicitly learns other processes’ federated fail-prone
sets. Moreover, correct processes do not lie about their slices [18], [28].

It easy to observe that given different sets of slices received from
different processes, Definition 6.34 implies Definition 6.8, obtaining a
notion of view V in the FBAS model, and, because correct processes do
not lie about their slices, Definition 6.15. We define the set Υ′ to be the
set of all the possible views in the FBAS model.

Given the notion of view in the FBAS model, we define the quorum
function Q : P × Υ′ → 2P such that Q(pi,V) contains all the sets
Qi, called quorums, with pi ∈ Qi and such that every process pj ∈ Qi

has a slice in Qi. So, a quorum as defined by Mazières [28] satisfies
Definition 6.10. Finally, in the FBAS model we introduce the notion of
survivor set as defined in Definition 6.5.

In the following theorem we show that, by assuming a stronger con-
sistency property for a league L, i.e., that the intersection among any
two quorums of any two correct processes in the league contains some
correct member of the league, then L is an intact set in every execution
tolerated by L.

Theorem 6.35. Let L be a league for the quorum function Q and let us
assume that for every set T ⊆ P tolerated by L, for every two T -resilient
views V and V′, for every two processes pi, pj ∈ L\T , and for every two
quorums Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V′) it holds (Qi ∩Qj ∩ L) \T ̸=
∅, then L is an intact set for every every set T ⊆ P tolerated by L.

Proof. Let L be a league for the quorum function Q and let T be a set
of processes tolerated by L. If for every two T -resilient views V and
V′, for every two processes pi, pj ∈ L \ T , and for every two quorums
Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V′) it holds (Qi ∩Qj ∩ L) \ T ̸= ∅, then

80 Asymmetric Trust in Permissionless Networks

the consistency property of intact sets follows. The availability property
of an intact set follows by observing that, in F, the set L\T is a quorum
for every of its members.

Observe that without the stronger consistency property assumed in
Theorem 6.35, since quorums of correct processes in L may intersect in
correct processes (not necessarily in L), it may be the case that L is not
an intact set.

6.5.4 Comparison with personal Byzantine quorum
systems

The personal Byzantine quorum system (PBQS) model has been intro-
duced by Losa, Gafni, and Mazières [24] in the context of Stellar con-
sensus aiming at removing the system-wide intersection property among
quorums required by Mazières [28] for the SCP.

In the PBQS model a quorum for pi is a non-empty set of processes
Qi such that if Qi is a quorum for pi and pj ∈ Qi, then there exists a
quorum Qj for pj such that Qj ⊆ Qi. In other terms, a quorum Qi for
some process pi must contain a quorum for every one of its members.

Losa, Gafni, and Mazières [24] point out that a global consensus
among processes may be impossible since the full system membership
is not known by the processes, and define the notion of consensus clus-
ter as a set of processes that can instead solve a local consensus, i.e.,
consensus among the processes in a consensus cluster can be solved. In
particular, given an execution with set of faulty processes A, a set of
correct processes C is a consensus cluster when the following conditions
hold:

1. Consistency: for every two processes pi and pj in C and for every
two quorums Qi and Qj for pi and pj , respectively, Qi ∩Qj ̸⊆ A;
and

2. Availability: for every pi ∈ C there exists a quorum Qi for pi such
that Qi ⊆ C.

Losa, Gafni, and Mazières [24] prove that the union of two intersect-
ing consensus clusters is a consensus cluster and that maximal consensus
clusters are disjoint. The latter implies that maximal consensus clusters
might diverge from each other.

6.6 Permissionless shared memory 81

In the following we show a relationship between the notions of league
and consensus cluster. To do so, we first show that a quorum Qi for pi
as defined in Definition 6.10 is also a quorum for pi in the PBQS model.

Lemma 6.36. Let Qi ∈ Q(pi,V) be a quorum for a process pi in a view
V according to Definition 6.10. Then Qi is a quorum for pi in the PBQS
model.

Proof. Definition 6.10 implies that Qi is a quorum for every of its mem-
bers. This means that for every process pj ∈ Qi, the set Qi is a quorum
for pj such that Qi ⊆ Qi. The result follows.

In the following result we show that, given a league L, for every set
T ⊆ P tolerated by L, the set L \ T is a consensus cluster.

Theorem 6.37. Let L be a league for the quorum function Q. Then,
for every set T ⊆ P tolerated by L, the set L \ T is a consensus cluster.

Proof. Let L be a league for the quorum function Q and let T be a set
of processes tolerated by L. Lemma 6.36 implies that for every process
pi and for every view V, all the quorums in Q(pi,V) for pi are quorums
in the PBQS model. So, the consistency and availability properties
of a league imply that L \ T satisfies the consistency and availability
properties of a consensus cluster, making L \ T a consensus cluster.

6.6 Permissionless shared memory

In this section we present a first application of permissionless Byzantine
quorum systems by showing how to emulate shared memory, represented
by a register.

A register stores values and can be accesses through two operations:
write(v), parameterized by a value v belonging to a domain V, and out-
puts a token ack when it completes; and read, which takes no parameter
and outputs a value v ∈ V upon completion. In this work we consider
only a single-writer register, where only a designated process pw may
invoke write, and allow multiple readers, i.e., every process may execute
a read operation. After a process has invoked an operation, the regis-
ter may trigger an event that carries the reply from the operation. We
say that the process completes the operation when this event occurs.
Moreover, after a process has invoked an operation on a register, the
process does not invoke any further operation on that register until the

82 Asymmetric Trust in Permissionless Networks

previous operation completes and we say that a correct process accesses
the registers in a sequential manner. An operation o precedes another
operation o′ in a sequence of events whenever o completes before o′ is
invoked. Two operations are concurrent if neither one of them precedes
the other.

Definition 6.38 (Permissionless SWMR). A protocol for permissionless
single-writer multi-reader register satisfies the following properties. For
every league L and every execution tolerated by L:

Termination: If a correct process pi ∈ L invokes an operation on the
register, pi eventually completes the operation.

Validity: Every read operation of a correct process in L that is not
concurrent with a write returns the last value written by a correct
process in L; a read of a correct process in L concurrent with a
write of a correct process in L may also return the value that is
written concurrently.

In Algorithm 11, the writer pw waits until receiving ack messages
from all processes in a quorum Qw ∈ Q(pw,V). The reader pr waits for
a value message with a value/timestamp pair from every process in a
quorum Qr ∈ Q(pr,V).

The function highestval(S) takes a set of timestamp/value pairs S
and returns the value of the pair with the largest timestamp.

Finally, the protocol uses digital signatures, with operations signi,
invoked by process pi, and verifyi. In particular, signi takes a message
m ∈ {0, 1}∗ as input and returns a signature σ ∈ {0, 1}∗, while verifyi
takes as input a signature σ and a message m ∈ {0, 1}∗ and returns
true if and only if pi signed the message m and obtained σ, or false
otherwise.

Theorem 6.39. Algorithm 11 implement permissionless SWMR.

Proof. Let us consider a league L and a tolerated execution e with set of
faulty processes A. To prove the termination property, let us consider a
writer pw. By assumption, process pw is correct in the league L and, by
the availability property of L, eventually there exists a quorum Qw ∈
Q(pw,F) contained in L\A. Therefore, pw will receive sufficiently many
ack messages and the write will return. Let pr be a reader in L \ A.
As above, eventually there exists a quorum Qr ∈ Q(pr,F) contained in
L \A. Because the writer is correct and in the league, all the responses
from processes in Qr satisfy the checks and read returns.

6.6 Permissionless shared memory 83

Algorithm 11 Emulation of a permissionless SWMR regular register
(Code for pi)

1: State
2: tsw: sequence number of write operations, stored only by writer pw
3: idr: identifier of read operations, used only by reader
4: ts, v, σ: current state stored by pi: timestamp, value, signature

5: upon invocation write(v) do // if pi = pw
6: tsw ← tsw + 1
7: σ ← signw(write∥w∥tsw∥v)
8: send message [write, tsw, v, σ,Fi] through gossip
9: wait for receiving a gossiped message [ack, (Pj ,Fj)]
10: from all processes in Q(pw,V)
11: V[j]← (Pj ,Fj)

12: upon receiving a gossiped message [write, ts′, v′, σ′, (Pw,Fw)]
13: from pw do // every process
14: if ts′ > ts then
15: V[w]← (Pw,Fw)
16: (ts, v, σ)← (ts′, v′, σ′)
17: send message [ack,F[i]] through gossip to pw

18: upon invocation read do // if pi = pr
19: idr ← idr + 1
20: send message [read, idr,F[i]] through gossip
21: wait for receiving gossiped messages [value, rj , tsj , vj , σj , (Pj ,Fj)]
22: from all processes in Q(pr,Vr)
23: such that rj = idr and verifyw(σj ,write∥w∥tsj∥vj)
24: V[j]← (Pj ,Fj)
25: return highestval({(tsj , vj)| j ∈ Qr}

26: upon receiving a gossiped message [read, r, (Pr,Fr)]
27: from pr do // every process
28: Vi[r]← (Pr,Fr)
29: send message [value, r, ts, v, σ,Fi] through gossip to pr

For the validity property, observe that by assumption both the writer
pw and the reader pr are correct processes in L \ A. If the writer pw
writes to a quorum Qw ⊆ Q(pw,V) for itself, and the reader pr reads
from a quorum Qr ⊆ Q(pr,V′) for itself, with V and V′ two A-resilient
views, by the consistency property of L it holds (Qw ∩ Qr) \ A ̸= ∅.

84 Asymmetric Trust in Permissionless Networks

Hence, there is some correct process pi ∈ Qw ∩ Qr that received the
most recently written value from pw and returns it to pr.

Observe that, from the properties of the signature scheme, any value
output by read has been written in some preceding or concurrent write
operation.

6.7 Permissionless reliable broadcast

In this section we show how the Bracha broadcast [5], protocol that
implements Byzantine reliable broadcast, can be adapted to work in our
model. First, we introduce the following definitions and results.

Definition 6.40 (Blocking set). A set B ⊆ P is said to block a process
pi if B intersects every slice of pi.

Definition 6.41 (Inductively blocked). Given a set of processes B, the
set of processes inductively blocked by B, denoted by B+, is the smallest
set closed under the following rules:

1. B ⊆ B+; and

2. if a process pi is blocked by B+, then pi ∈ B+.

As a consequence of Definition 6.41, given an execution, the set B+

can be obtained by repeatedly adding to it all the processes that are
blocked by B+ ∪B. Eventually no more processes will be added to B+.

Moreover, given an execution e with set of faulty processes A, if
a league L tolerates A, then processes in L \ A cannot be inductively
blocked by A. This is shown in the following lemma.

Lemma 6.42. Let L be a league and T be a set tolerated by L. Then,
no process in L \ T is inductively blocked by T , i.e., T+ ∩ (L \ T) = ∅.

Proof. Let us assume that T+ ∩ (L \ T) ̸= ∅. This means that there
exists a process pi ∈ L \ T that is blocked by T+, i.e., T+ intersects
every slice of pi, including the slice contained in the quorum Qi ⊆ L \ T
for pi.

Clearly, (L \ T) ∩ T = ∅, and this means that there exists a set T ′

with T ′ ⊆ T+ \ T such that T ′ intersects every slice of pi, including the
slice contained in the quorum for pi consisting only of correct processes
in L. This means that we can find a process pj ∈ T ′ with pj ∈ L \ T
and pj blocked by T . Since L is a league, process pj must have a slice

6.7 Permissionless reliable broadcast 85

in L \ T . However, T cannot intersect every slice of pj because L \ T is
disjoint from T . We reached a contradiction.

Intuitively, starting from A+ = ∅, we first consider the processes that
are blocked by A. Trivially, every process in A is blocked by A, and so
A+ = A. Moreover, no process in L \ A can be blocked by A. If this
was the case, then there would exist a process pi ∈ L \ A such that A
intersects all of its slices, including the slice contained in the quorum
Qi ⊆ L \ A, which we know to exist due to the availability property of
L. So, only processes pj not in L\A can be blocked by A. Let pj be such
process. This means that A∪ {pj} ⊆ A+. Now, we can repeat the same
reasoning, by considering all the processes blocked by A ∪ {pj}. Again,
no processes in L \ A can be blocked by A ∪ {pj}. In fact, if A ∪ {pj}
blocked a process pk ∈ L \ A, then every slice of pk would contain pj ,
including the slice contained in L \ A. However, this would imply that
pj ∈ L \ A which would contradict the fact that pj is a process not in
L \A.

In the following theorem we show that if a correct process pi in a
league L is blocked by a set B, then B = B∪{pi} blocks another process
pj ̸∈ B∪A. Then, B′ = B∪{pj} blocks another process pk ̸∈ B′∪A and
so on, until, eventually, every correct process in the league is blocked.

Theorem 6.43 (Cascade theorem). Consider the quorum function Q,
a league L, and a set T ⊆ P tolerated by L. Moreover, let us consider a
process pi ∈ L \T , a T -resilient view V for pi, a quorum Qi ∈ Q(pi,V),
and a set B ⊆ P disjoint from T such that Qi \ T ⊆ B. Then, either
L \ T ⊆ B or there exists a process pj ̸∈ B ∪ T that is blocked by B.

Proof. It suffices to assume by contradiction that L \ (B ∪ T) ̸= ∅ and
that, for every pj ̸∈ B ∪ T , process pj has a slice disjoint from B. This
implies that S = B ∪ T is a survivor set of every process pj ∈ S; since
L \ (B ∪T) ̸= ∅ , this includes also at least one process pj ∈ L \ (B ∪T).

Let us consider such a process pj ∈ L\ (B∪T) and consider the view
V′ for pj such that:

1. for every pk ̸∈ T , V′[k] = F[k]; and

2. for every pk ∈ T , V′[k] = (∅, {∅}).

Observe that V′ is a T -resilient view for pj . By Lemma 6.11, we have
that S ∈ Q(pj ,V′) . This implies that S ∩Qi ⊆ T . But combined with
the fact that pj ∈ L \ (B ∪ T), this contradicts the consistency property
of L.

86 Asymmetric Trust in Permissionless Networks

We will see how this theorem has a direct effect on the liveness of
permissionless Byzantine reliable broadcast.

In a Byzantine reliable broadcast, the sender process may broadcast
a value v by invoking r-braodcast(v). The broadcast primitive outputs a
value v through an r-deliver(v) event. Moreover, the broadcast primitive
presented in this section delivers only one value per instance. Every
instance has an implicit label and a fixed, well-known sender ps.

Definition 6.44 (Permissionless Byzantine reliable broadcast). A pro-
tocol for permissionless Byzantine reliable broadcast satisfies the follow-
ing properties. For every league L and every execution tolerated by L:

Validity: If a correct process ps r-broadcasts a value v, then all correct
processes in L eventually r-deliver v.

Integrity: For any value v, every correct process r-delivers v at most
once. Moreover, if the sender ps is correct and the receiver is
correct and in L, then v was previously r-broadcast by ps.

Consistency: If a correct process in L r-delivers some value v and an-
other correct process in L r-delivers some value v′, then v = v′.

Totality: If a correct process in L r-delivers some value v, then all
correct processes in L eventually r-deliver some value.

We implement this primitive in Algorithms 12-13, which are derived
from Bracha broadcast [5] but differs in some aspects.

In principle, the protocol follows the original one, but does not use
one global quorum system known to all processes. Instead, the correct
processes implicitly use the same quorum function Q (Definition 6.10),
of which they initially only know their own entry in Q. They discover
the quorums of other processes during the execution.

Because of the permissionless nature of our model, we consider a
best-effort gossip primitive to disseminate messages among processes
instead of point-to-point messages.

A crucial element of Bracha’s protocol is the “amplification” step,
when a process receives f + 1 ready messages with some value v, with
f the number of faulty processes in an execution, but has not sent a
ready message yet. Then it also sends a ready message with v. This
generalizes to receiving the same ready message with value v from a
blocking set for pi and is crucial for the totality property.

6.7 Permissionless reliable broadcast 87

Finally, we introduce the any message as a message sent by a process
pi that is blocked by two sets carrying two different values v and v′. The
reason for this new message lies in the consistency property of L: given
an execution e with set of faulty processes A tolerated by L, the con-
sistency property of L implies that any two quorums of any two correct
processes in L have some correct process in common. Quorum inter-
section is then guaranteed only for correct processes in L and nothing
is assured for correct processes outside L, which might gossip different
values received by non-intersecting quorums. In particular, if a correct
process pi is blocked by a set containing a value v and later is blocked
by a set containing a value v′ ̸= v, then pi gossips an any message con-
taining ∗. any messages are then ignored by correct processes in L. As
we show in the Theorem 6.45, correct process in L cannot be blocked by
sets containing different values.

Theorem 6.45. Algorithms 12-13 implement permissionless Byzantine
reliable broadcast.

Proof. Observe that all the properties assume the existence of a league
L and an execution e with set of faulty processes A tolerated by L.

Let us start with the validity property. Since the sender ps is correct
and from the availability property of L, every correct process pi in L
eventually receives a quorum Qi for itself of echo messages containing
the value v sent from ps and updates its view V according to the views
received from every process in Qi.

Then, pi gossips [ready, v, F[i]] containing the value v and its cur-
rent view F[i] unless sent-ready = true. If sent-ready = true then pi
already gossiped [ready, v, F[i]].

Observe that there exists a unique value v such that if a correct
process in L sends a ready message, this message contains v. In fact, if a
process pi ∈ L\A sends a readymessage, either it does so after receiving
a quorum Qi for itself of echo messages containing v or after being
blocked by a set of processes that received ready messages containing v.

In the first case, if a correct process pi in L receives a quorum Qi

for itself of echo messages containing v and another correct process pj
in L receives a quorum Qj for itself of echo messages containing v′, by
the consistency property of L, v = v′ and both send a ready message
containing the same v.

In the second case, first observe that by Lemma 6.42 we know that
pi ∈ L \ A cannot be inductively blocked by processes in A. Moreover,
correct processes in L cannot be blocked by sets containing different

88 Asymmetric Trust in Permissionless Networks

Algorithm 12 Permissionless Byzantine reliable broadcast protocol
with sender ps (Code for pi) Part 1

1: State
2: sent-echo← false: indicates whether pi has gossiped echo
3: echos[j]← [⊥]: received echo messages from other processes
4: sent-ready← false: indicates whether pi has gossiped ready
5: readys[j]← [⊥]: received ready messages from other processes
6: sent-any← false: indicates weather pi has gossiped [any, ∗, F[i]]
7: delivered← false: indicates whether pi has delivered a value
8: V[j]← if i = j then F[i] else ⊥: the current view of pi

9: upon invocation r-broadcast(v) do
10: send message [send, v, F[s]] through gossip // only sender ps

11: upon receiving a gossiped message [send, v, (Ps,Fs)] from ps and
12: ¬sent-echo do
13: sent-echo← true
14: V[s]← (Ps,Fs)
15: send message [echo, v, F[i]] through gossip

16: upon receiving a gossiped message [echo, v, (Pj ,Fj) from pj do
17: if echos[j] =⊥ then
18: V[j]← (Pj ,Fj)
19: echos[j]← v

20: upon exists v ̸=⊥ such that {pj ∈ P| echos[j] = v} ∈ Q(pi,V) and
21: ¬sent-ready do
22: sent-ready← true
23: send message [ready, v, F[i]] through gossip

24: upon receiving a gossiped message [ready, v, (Pj ,Fj)] from pj do
25: if readys[j] =⊥ then
26: V[j]← (Pj ,Fj)
27: readys[j]← v

values. If this was the case, then there would exist two correct processes
pi and pj in L and two slices of pi and pj , respectively, in L\A containing
two correct processes in L that received two different values v after echo.
Again, by the consistency property of L, this is not possible.

Hence, every correct process pj in L gossips [ready, v, F[j]]. Eventu-
ally, every correct process pi in L receives a quorum for itself containing

6.7 Permissionless reliable broadcast 89

Algorithm 13 Permissionless Byzantine reliable broadcast protocol
with sender ps (Code for pi) Part 2

28: upon exists v ̸=⊥ such that {pj ∈ P| readys[j] = v} blocks pi and
29: ¬sent-ready do
30: sent-ready← true
31: send message [ready, v, F[i]] through gossip

32: upon exists v′ ̸=⊥ such that {pj ∈ P| readys[j] = v′} blocks pi and
33: readys[i] = v and v ̸= v′ and sent-ready and ¬sent-any do
34: sent-any← true
35: send message [any, ∗, F[i]] through gossip

36: upon receiving a gossiped message [any, ∗, (Pj ,Fj)] from pj do
37: V[j]← (Pj ,Fj)
38: readys[j]← ∗

39: upon exists v ̸=⊥ such that {pj ∈ P| readys[j] = v} ∈ Q(pi,V) and
40: ¬delivered do
41: delivered← true
42: output r-deliver(v)

[ready, v, (Pj ,Fj)] messages and r-delivers v.
The first part of the integrity property is ensured by the delivered flag.

For the second part observe that, by assumption, the receiver pi is correct
and in L. This implies that the quorum for pi used to reach a decision
contains some correct processes that have gossiped echo containing a
value v they received from ps.

For the totality property, let us assume that a correct process pi ∈ L
r-delivered some value v. If pi ∈ L \A r-delivered some value v, then it
has received ready messages containing v from a quorum Qi for itself.
From Theorem 6.43 we know that exists a set B such that Qi \ A ⊆ B
and either L \A ⊆ B or B blocks at least a process pj ∈ L \ (B ∪A) in
an A-resilient view V′ for pj .

In the latter case, pj gossips a ready message containing v and B
becomes B ∪ {pj}. Observe that, by assumption, if a correct process
receives a gossiped message, then eventually every other correct process
receives it too. Eventually, L \ A is covered by B and this means that
every correct process in L is blocked with the same value v.

Moreover, observe that given two correct processes not in L, they
may become ready for different values received from non-intersecting

90 Asymmetric Trust in Permissionless Networks

quorums of echo messages. Because of this, if a correct process pj ̸∈ L
observes a blocking set B containing a value v′ different from a value
v that has previously gossiped in a ready message and such that
sent-any = false, process pj gossips an any message containing the
value ∗. Eventually every correct process pi in L receives a quorum Qi

for itself of [ready, v, (Pj ,Fj)] messages and it r-delivers v.
Finally, for the consistency property notice that by the consistency

property of L, every two quorums Qi and Qj of any two correct processes
pi and pj in L intersect in some correct process pk. Process pk could
then be outside L. If pk ̸∈ L then, as seen for the totality property,
it can be blocked by sets containing different values. If this is the case
then pk gossips an any message. Correct processes in L then ignore the
values received from pk and wait until receiving a quorum unanimously
containing the same value v. Observe that, because L tolerates A, by
availability property of L every correct process in L eventually receives a
quorum made by correct processes in L. The consistency property then
follows.

Chapter 7

Conclusion

In this thesis we explored the notion of asymmetric trust in secure dis-
tributed systems prone to Byzantine failures. Our results offer a new
approach to establish trust in systems where a global trust framework
among participants cannot be imposed, such as blockchain systems.

We analyzed ways to work with systems with asymmetric trust. In
particular, we showed how asymmetric trust assumptions of (possibly
disjoint) systems can be composed deterministically, so that groups of
participants may join each other and collaborate under a composed trust
assumption with appealing properties.

We devised the first asymmetric asynchronous Byzantine consensus
protocol and showed that consensus protocols with asymmetric trust
can be obtained by starting from existing, well-known protocols with
symmetric trust.

Finally, we extended the asymmetric trust model to cope with per-
missionless settings, which also resulted in a characterization with stan-
dard formalism of the model used by the Stellar blockchain. In partic-
ular, we introduced a new way of specifying trust assumptions among
participants in a permissionless setting: participants not only make as-
sumptions about failures, but also make assumptions about the assump-
tions of other participants. This led to formally define the notions of
permissionless fail-prone system and permissionless quorum system, and
to design protocols to solve known synchronization problems such as
Byzantine reliable broadcast.

Although our results have opened up new ideas for approaching trust
in blockchain sysyems, there are still open questions that require fur-

92 Conclusion

ther research. For instance, the role of asymmetric threshold cryptog-
raphy, or how to best cope with leader-based consensus protocols in
an asymmetric-trust setting. Nonetheless, our results have carried on a
new way of thinking about subjective trust in secure distributed systems
such as blockchain systems, and we believe that they will provide a solid
foundation for future research in this area.

Bibliography

[1] I. Abraham, N. Ben-David, and S. Yandamuri, “Efficient and adap-
tively secure asynchronous binary agreement via binding crusader
agreement,” in PODC ’22: ACM Symposium on Principles of Dis-
tributed Computing, Salerno, Italy, July 25 - 29, 2022, A. Milani
and P. Woelfel, Eds., ACM, 2022, pp. 381–391.

[2] I. Abraham, N. Ben-David, and S. Yandamuri, Efficient and adap-
tively secure asynchronous binary agreement via binding crusader
agreement, Cryptology ePrint Archive, Paper 2022/711, 2022.

[3] O. Alpos, C. Cachin, and L. Zanolini, “How to trust strangers:
Composition of byzantine quorum systems,” in 40th International
Symposium on Reliable Distributed Systems, SRDS 2021, Chicago,
IL, USA, September 20-23, 2021, IEEE, 2021, pp. 120–131.

[4] J. C. Benaloh and J. Leichter, “Generalized secret sharing and
monotone functions,” in Proc. CRYPTO, ser. Lecture Notes in
Computer Science, vol. 403, 1988, pp. 27–35.

[5] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf.
Comput., vol. 75, no. 2, pp. 130–143, 1987.

[6] C. Cachin, R. Guerraoui, and L. E. T. Rodrigues, Introduction
to Reliable and Secure Distributed Programming (2. ed.) Springer,
2011.

[7] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using
cryptography,” J. Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

94 Bibliography

[8] C. Cachin, G. Losa, and L. Zanolini, “Quorum systems in per-
missionless networks,” in 26th International Conference on Prin-
ciples of Distributed Systems, OPODIS 2022, December 13-15,
2022, Brussels, Belgium, E. Hillel, R. Palmieri, and E. Rivière,
Eds., ser. LIPIcs, vol. 253, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, 17:1–17:22.

[9] C. Cachin and B. Tackmann, “Asymmetric distributed trust,” in
Proc. OPODIS, ser. LIPIcs, vol. 153, 2019, 7:1–7:16.

[10] C. Cachin and L. Zanolini, “Asymmetric asynchronous byzantine
consensus,” in Data Privacy Management, Cryptocurrencies and
Blockchain Technology - ESORICS 2021 International Workshops,
DPM 2021 and CBT 2021, Darmstadt, Germany, October 8, 2021,
Revised Selected Papers, J. Garc̀ıa-Alfaro, J. L. Muñoz-Tapia, G.
Navarro-Arribas, and M. Soriano, Eds., ser. Lecture Notes in Com-
puter Science, vol. 13140, Springer, 2021, pp. 192–207.

[11] C. Cachin and L. Zanolini, “Brief announcement: Revisiting
signature-free asynchronous byzantine consensus,” in 35th Inter-
national Symposium on Distributed Computing, DISC 2021, Octo-
ber 4-8, 2021, Freiburg, Germany (Virtual Conference), S. Gilbert,
Ed., ser. LIPIcs, vol. 209, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, 51:1–51:4.

[12] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement
with optimal resilience,” in Proc. STOC, 1993, pp. 42–51.

[13] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proc. USENIX, 1999, pp. 173–186.

[14] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4,
pp. 398–461, 2002.

[15] I. Damg̊ard, Y. Desmedt, M. Fitzi, and J. B. Nielsen, “Secure pro-
tocols with asymmetric trust,” in Proc. ASIACRYPT, ser. Lecture
Notes in Computer Science, vol. 4833, 2007, pp. 357–375.

[16] C. Dwork, N. A. Lynch, and L. J. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–
323, 1988.

[17] H. Garcia-Molina and D. Barbará, “How to assign votes in a dis-
tributed system,” J. ACM, vol. 32, no. 4, pp. 841–860, 1985.

Bibliography 95

[18] Á. Garc̀ıa-Pèrez and A. Gotsman, “Federated byzantine quorum
systems,” in Proc. OPODIS, ser. LIPIcs, vol. 125, 2018, 17:1–17:16.

[19] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related
problems,” in Distributed Systems (2nd Ed.) S. J. Mullender, Ed.,
ACM Press, 1993, pp. 97–145.

[20] M. Hirt and U. M. Maurer, “Player simulation and general adver-
sary structures in perfect multiparty computation,” J. Cryptol.,
vol. 13, no. 1, pp. 31–60, 2000.

[21] F. P. Junqueira and K. Marzullo, “Synchronous consensus for de-
pendent process failure,” in Proc. ICDCS, 2003, pp. 274–283.

[22] F. P. Junqueira, K. Marzullo, M. Herlihy, and L. D. Penso,
“Threshold protocols in survivor set systems,” Distributed Com-
put., vol. 23, no. 2, pp. 135–149, 2010.

[23] M. Lokhava, G. Losa, D. Mazières, et al., “Fast and secure global
payments with stellar,” in Proc. SOSP, 2019, pp. 80–96.

[24] G. Losa, E. Gafni, and D. Mazières, “Stellar consensus by instan-
tiation,” in Proc. DISC, ser. LIPIcs, vol. 146, 2019, 27:1–27:15.

[25] D. Malkhi, K. Nayak, and L. Ren, “Flexible byzantine fault toler-
ance,” in Proc. ACM CCS, 2019, pp. 1041–1053.

[26] D. Malkhi and M. K. Reiter, “Byzantine quorum systems,” Dis-
tributed Comput., vol. 11, no. 4, pp. 203–213, 1998.

[27] D. Malkhi, M. K. Reiter, and A. Wool, “The load and availability
of byzantine quorum systems,” SIAM J. Comput., vol. 29, no. 6,
pp. 1889–1906, 2000.

[28] D. Mazières, The Stellar consensus protocol: A federated model for
Internet-level consensus, Stellar, available online, 2016.

[29] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous binary byzantine consensus with t ¡ n/3, o(n2) messages,
and O(1) expected time,” J. ACM, vol. 62, no. 4, 31:1–31:21, 2015.

[30] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-

chronous byzantine consensus with t 2¡n/3 and o(n2) messages,”
in Proc. PODC, 2014, pp. 2–9.

[31] M. Naor and A. Wool, “The load, capacity, and availability of
quorum systems,” SIAM J. Comput., vol. 27, no. 2, pp. 423–447,
1998.

96 Bibliography

[32] A. Patra, A. Choudhury, and C. P. Rangan, “Asynchronous byzan-
tine agreement with optimal resilience,” Distributed Comput.,
vol. 27, no. 2, pp. 111–146, 2014.

[33] M. C. Pease, R. E. Shostak, and L. Lamport, “Reaching agreement
in the presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234,
1980.

[34] M. O. Rabin, “Randomized byzantine generals,” in Proc. FOCS,
1983, pp. 403–409.

[35] T. K. Srikanth and S. Toueg, “Simulating authenticated broad-
casts to derive simple fault-tolerant algorithms,” Distributed Com-
put., vol. 2, no. 2, pp. 80–94, 1987.

[36] P. Tholoniat and V. Gramoli, “Formal verification of blockchain
byzantine fault tolerance,” in 6th Workshop on Formal Reasoning
in Distributed Algorithms (FRIDA’19), 2019.

[37] M. Vukolic, “The origin of quorum systems,” Bulletin of the
EATCS, vol. 101, pp. 125–147, 2010.

[38] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abra-
ham, “Hotstuff: BFT consensus with linearity and responsiveness,”
in Proceedings of the 2019 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2019, Toronto, ON, Canada, July 29
- August 2, 2019, P. Robinson and F. Ellen, Eds., ACM, 2019,
pp. 347–356.

	Introduction
	Related Work
	Prerequisites
	Asymmetric Distributed Trust
	Definition and preliminary results
	Composition of asymmetric Byzantine quorum systems
	The tolerated system of an ABQS
	How clients interact with an ABQS
	Composition of ABQS
	Composition in practice

	Asymmetric Byzantine Consensus
	System model
	Revisiting signature-free asynchronous Byzantine consensus
	Binary validated broadcast
	Randomized consensus
	A liveness problem
	Fixing the problem

	Asymmetric randomized Byzantine consensus
	Asymmetric common coin
	Asymmetric binary validated broadcast
	Asymmetric randomized consensus

	On asymmetric leader-based Byzantine consensus
	A solution to the problem
	Future improvements

	Asymmetric Trust in Permissionless Networks
	System model
	Preliminaries
	Permissionless Byzantine quorum systems
	Leagues
	Comparison with other models
	Comparison with symmetric fail-prone systems
	Comparison with asymmetric fail-prone systems
	Comparison with federated Byzantine agreement systems
	Comparison with personal Byzantine quorum systems

	Permissionless shared memory
	Permissionless reliable broadcast

	Conclusion
	Bibliography

