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Abstract

Distributed key generation (DKGQ) is a critical step during the initialization
phase of distributed cryptosystems. The generation and distribution of cryp-
tographic keys is a crucial prerequisite for many cryptographic primitives
like digital signatures, threshold ciphers or pseudorandom number genera-
tors. In threshold cryptosystems, no single party is assumed to be trustworthy.
However, one can assume that only a certain number of nodes, up to a thresh-
old, is corrupted. Hence, collaboration between the participants is required
to generate and distribute keys in a reliable and robust way, tolerating the
presence of malicious parties. In this work, we present an asynchronous key
generation protocol based on the well-known synchronous DKG protocol of
Gennaro et al. [1]. Our main motivation is to build a protocol that assumes
the availability of a total order broadcast primitive, and, hence, is suitable to
run on existing blockchain infrastructure. We implement the protocol as part
of the threshold cryptography service Thetacrypt [2].
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Introduction

Nowadays, distributed computing systems are omnipresent. Examples include large-
scale software services running in the cloud and blockchains running on thousands of
computers all over the world. To guarantee confidentiality, integrity, authentication, and
non-repudiation in such systems where one does not know who to trust is an active field
of research in both industry and the academic world. Cryptography, and distributed
cryptography in particular, provides tools and techniques to enforce security in distributed
systems. Of particular relevance are threshold cryptosystems, where one assumes that a
certain number of parties in the system is corrupted and controlled by an adversary.

Threshold cryptosystems provide cryptographic primitives like threshold signatures
and threshold ciphers. Protocols implementing those primitives require a certain number
of correct parties to collaborate to sign a message or decrypt it, respectively. Many of
those cryptographic primitives assume the existence of a key or a key pair that is required
to perform the cryptographic operation. Hence, the cryptosystems require a setup phase
to generate and distribute those keys. The process that generates the keys is called key
generation. There are two general approaches for key generation. The first approach
assumes the existence of a trusted party that generates and distributes the keys. This
approach cannot be used in environments where there is no trust in anyone. Hence, the
second approach requires the parties to collaborate and follow a protocol to set up the
keys. This is called distributed key generation (DKG). Protocols implementing DKG
must be designed in a way that they can tolerate malicious parties.

Numerous protocols for DKG have been presented. In the literature, the solutions
proposed by Pedersen [3] and later by Gennaro et al. [1] have gained the most interest
and popularity. They became a starting point for subsequent research. However, both
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CHAPTER 1. INTRODUCTION 5

protocols assume a synchronous system which makes them impractical for real-world use
cases. Most real-world systems can be represented more realistically by an asynchronous
model. That is the reason why, recently, several DKG protocols for asynchronous systems
were published, like the one from Kokoris et al. [4] or from Abraham et al. [5].

However, neither of the mentioned protocols was designed for usage on an existing
blockchain infrastructure. Hence, we designed a protocol that assumes the existence of a
total order broadcast primitive, which is provided by modern blockchains. We took the
synchronous protocol of Gennaro et al. as a starting point and modified it in a way that it
works in an asynchronous system. We implemented the protocol and integrated it into a
threshold cryptography service called Thetacrypt, which is developed by the Cryptology
and Data Security research group at the University of Bern, Switzerland.

This thesis is structured as follows: Chapter 2 introduces core definitions and notions
about distributed systems and cryptography used throughout this work, and presents
the current state of research about DKG. Chapter 3 describes our asynchronous DKG
protocol. Chapter 4 elaborates on the implementation and the testing of the protocol,
while the final chapter 5 discusses the contribution of our work to the research field, as
well as opportunities for future work.



Background

2.1 Definitions

2.1.1 Distributed Cryptosystems

A distributed cryptosystem consists of multiple, possibly independent, parties that col-
laboratively perform cryptographic operations. We denote as n the number of parties in
such a cryptosystem. Many operations of a cryptosystem assume the existence of some
key or, in the case of public key cryptography, the existence of a key pair. An example is
digital signatures where the signer uses a secret key to sign a message. The recipient
uses the corresponding public key to validate the signature on the message. Another
example is encryption, where a public key is used to encrypt a message and the recipient
of the message uses the corresponding secret key to decrypt the message.

Threshold cryptosystems are a subgroup of distributed cryptosystems where it is
assumed that a certain number of parties, a threshold, are controlled by an adversary. The
adversary tries to interfere with the operations of the cryptosystem. We let ¢ denote the
number of parties that are adversarially controlled. They might deviate from the protocol
in any way and/or leak information to the adversary.

Threshold cryptosystems are based on secret sharing. That is, a secret — usually the
secret key — is shared among the parties such that no single party knows the whole secret.
Instead, each party knows just a part of it and the parties have to collaborate to recover
and use the secret in cryptographic operations.

A well-known method for secret sharing is Shamir’s scheme [6]. It is based on the
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fact that a polynomial of degree k£ can be uniquely reconstructed when k + 1 points
on it are known. Hence, a dealer who wants to share a secret s chooses a polynomial
p(z) = Zf:o a;z" such that ag = s. The dealer then generates shares for each party p;
by computing s; = p(j) for j = 1,...,n, and sends each share to the corresponding
party. By construction, it requires the shares of at least k£ 4 1 parties to reconstruct the
secret, using Lagrange interpolation. By setting £ = ¢ we make sure that the adversary is
unable to learn the secret because, for that, at least ¢ 4 1 shares are required. If any ¢ 4 1
parties should be able to reconstruct the secret, then n > 2t is necessary.

Cryptographic protocols for threshold cryptosystems must work correctly and provide
security even though the adversary controls a certain number of parties participating in
the protocol. The protocols operating in such a setting usually define certain assumptions
on the number of corrupted parties ¢ with respect to the total number of parties n.

2.1.2 Distributed Key Generation

As already mentioned, threshold cryptosystems require cryptographic keys for many
of their operations. Hence, key generation is an important problem in such systems.
Distributed cryptosystems usually run through a setup phase during which the keys are
generated and distributed.

There are two basic approaches to solving the key generation problem in distributed
cryptosystems: the first approach assumes the existence of a special party that generates
the key’s parts and hands them out to the parties. The advantage is that this approach
is very simple and fast: only a single party performs all the work and all other parties
just wait to receive the key parts. The big disadvantage of this approach is that all parties
have to trust this special party. That is why that party is often called the trusted dealer.
Furthermore, the trusted dealer has to be online whenever keys have to be generated,
making it a single point of failure.

The second approach is to let the parties collaboratively generate the key pair. The
advantage of this approach is that there are no additional trust assumptions except for
the number ¢ of corrupted parties. The disadvantage of this approach is that it requires
interaction, synchronization, and agreement between the parties, taking a considerable
amount of time to complete. This approach is referred to as distributed key generation
(DKG) and implementing such a protocol is the focus of this work.

2.1.3 Basic Models

All protocols that we will discuss in this work make certain assumptions about the
environment they are designed for. In particular, the protocols use abstractions to
describe time, communication, process crashes, and the capabilities of the adversary. In
this section, we give a brief overview of these models. We do so by using the terminology
and definitions from Cachin et al. [7].
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Timing Model

The notion of time plays an important role in distributed cryptosystems and distributed
systems in general. Depending on the model of time used in a distributed system,
processes that are running in that system may or may not make certain time-related
assumptions.

All systems fall in between two basic categories: asynchronous and synchronous
systems. Synchronous systems allow processes to make assumptions about upper bounds
for computation and networking delays. Asynchronous systems, on the other hand, have
no notion of time. This means that processes are not allowed to make any timing-related
assumptions, at all.

While the synchronous model is useful in theory, we usually encounter a hybrid
model between synchronous and asynchronous in practice.

Communication Model

A distributed system is formed by multiple parties that collaborate. To allow the parties
to work together, they need a way to communicate with each other. Hence, the parties
are connected through one or multiple communication channels.
We distinguish between point-to-point channels and broadcast channels.
Point-to-point channels connect exactly two parties in the system. A party uses such
a channel to send a message to a specific other party. Such channels might provide
additional guarantees such as the following:

* Reliable delivery. No message is lost.
* No duplication. A message is delivered exactly once.

* Authentication. A message that is delivered by the recipient has been sent by
the sender. No other party can intercept the channel and forge messages without
getting noticed.

A broadcast channel connects every party with all other parties. Hence, a message
that is posted on this channel will be delivered to all parties in the system. Broadcast
channels might also have some additional properties:

* Reliable delivery. If a message is delivered by any process, it is eventually delivered
by all processes.

* Causal order. If a broadcasted message m; caused another broadcasted message
meg, then all processes deliver the messages in order m; — ms.

e Total order. All messages are delivered by all processes in the very same (global)
order.
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Process Failure Model

Parties in distributed systems can fail in different ways:

Crash-stop failure. A party stops executing steps forever. This is the simplest
failure model.

Crash-recovery failure. A party stops executing steps, but recovers later. It might
have lost its internal state in the meantime, or its state might be outdated.

* Arbitrary failure, also known as byzantine failure. A party might deviate from a

protocol in any way. This is the most general assumption.

The protocols we will see in this work assume arbitrary failures of parties.

Adversarial Model

Protocols in a distributed cryptosystem have to define the capabilities of the adversary.
An adversary can be characterized by the following properties:

Computation power. An adversary might be computationally bounded or un-
bounded. A computationally bounded adversary can be modeled by a probabilistic
polynomial-time Turing machine.

Participation. An adversary might be passive or active. A passive adversary shows
eavesdropping behavior whereas an active adversary maliciously participates in
the protocol, trying to disrupt it.

Behavior. An adversary might be static or adaptive. A static adversary corrupts the
parties at the beginning of the protocol, and the selection remains stable throughout
the protocol run. An adaptive adversary chooses who to corrupt during the protocol
run.

Communication. An adversary might be rushing. This means that he speaks last in
every round of communication after seeing all messages sent by the non-corrupted
parties. This way he can try to bias the protocol output.

Most protocols that we will discuss assume a static, computationally bounded, active
adversary that speaks last.
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2.1.4 Cryptographic Assumptions

The distributed key generation protocols we are discussing in this work operate under the
discrete-log assumption. That assumption states that it is computationally infeasible to
compute discrete logarithms in certain algebraic groups. Of particular interest are groups
modulo large primes.

The concept of a “large” prime can be formalized by introducing a security parameter
k where the length of the binary representation of the prime number grows polynomially
when increasing k. Nowadays, choosing &£ > 2048 is considered to be secure.

Let p be a large prime number for which there exists another large prime number ¢
such that ¢ divides p — 1. For any pair of prime numbers p and ¢, we define a subgroup
G of order ¢ in Z;. We denote as g a generator of the group G. Given an elementy € GG
we can write y = ¢ mod pforz € [1,...,q|. z is then called the discrete logarithm of
y with respect to g.

2.2 Related Work

2.2.1 Synchronous DKG Protocols

One of the first distributed key generation protocols for discrete log-based threshold
cryptosystems was presented by Pedersen [3] in 1992. It is a synchronous protocol
that provides resilience against a static, computationally bounded, active adversary that
corrupts at most t < n/2 parties.

The protocol of Pedersen, as detailed by Gennaro et al. [1], works in rounds where
in every round a party acts as a dealer to share a randomly chosen value that represents a
part of the secret key. The other parties validate those shares against the commitments
published by the dealing party and broadcast a complaint if the validation fails. The
blamed party then reveals its shares such that the other parties can check them. The
parties construct a set of qualified parties that behave correctly. The secret key is then
composed of the shared values of the parties in that qualified set. The public key is
reconstructed based on the values published by the parties in the qualified set.

The protocol uses Feldman’s verifiable secret sharing scheme internally that provides
computational security of the secret being shared. The protocol uses authenticated point-
to-point channels to distribute the shares among the parties, and a broadcast channel to
publish commitments, complaints and revelations.

Later, Gennaro et al. [1] found a flaw in the protocol of Pedersen that allows an
attacker to influence the distribution of the generated keys such that it is not uniform. In
the very same paper, they present a protocol, that is resistant to such an attack. We will
refer to their protocol as G/JKR-DKG. GJKR-DKG follows the same basic structure as
the one from Pedersen, but it uses Pedersen’s verifiable secret sharing scheme internally
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that provides not computational but perfect (information-theoretic) secrecy of the shared
secret. The protocol is synchronous and resistant to a static, computationally bounded,
active adversary that corrupts up to ¢t < n/2 parties. The protocol uses authenticated
confidential point-to-point channels to distribute the shares among the parties, and a
broadcast channel to publish commitments, complaints and revelations. We will describe
GJKR-DKG in detail in the next section.

2.2.2 GJKR-DKG Protocol

GJKR-DKG works under the discrete-log assumption. In addition, Gennaro et al. assume
the existence of a second group generator i of G where G is defined as explained in
section 2.1.4. Note that the discrete log of h with respect to the primary group generator
g must not be known to anyone to provide security.

The protocol operates in two phases. In the first phase, the sharing phase, each party
shares a random value using Pedersen’s verifiable secret sharing scheme. The party p;
chooses a random value z; and two random polynomials f;(2) = a + anz + -+ + a2’
and f!(z) = bjy + b1z + -+ + by2" of degree ¢ such that z; = a;p = f;(0). p; then
broadcasts commitments Cy;, = g%*hb* mod p for k = 0,...t. After that, p; computes
shares s;; = fi(j),s;; = fi(j) for each party p; and sends them to each party using a
direct encrypted point-to-point channel. Each party p; verifies the shares it received from
another party p; by checking

t
GO RS = H(Cik)jk mod pfori=1,...,n (2.1)
k=0
If the check fails for some index ¢, the party that encountered the failing check
broadcasts a complaint against party p;. The blamed party answers the complaint by
broadcasting the values (s;;, sgj). The other parties can then verify whether party p;
answered the complaint with valid shares. Each party maintains a list of disqualified
parties that either received more than ¢ complaints or answered a complaint with values
that do not pass the check. Each party constructs a set of non-disqualified parties QUAL.
Gennaro ef al. [1] show that, in the end, all honest parties build the same set. The shared
values of the parties in QUAL will be used for constructing the shared secret key z. Note
that z is never explicitly computed by any party, but it equals z = ZpieQU AL Zi
In the second phase, the public key reconstruction phase, the parties in QUAL re-
construct the public key y = ¢® mod p. Each party p; € QUAL exposes y; = g*
mod p using Feldman’s verifiable secret sharing scheme by computing and broadcasting
Ay = g% mod pfor k = 1,...,t. The other parties verify those values by verifying
that
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t
g% = [[(Aw)" mod p 2.2)
k=0
If the check fails for an index ¢, the verifying party p; complains against p; by
broadcasting the values (s, s;;). The other parties then reconstruct the share 2; of p;
by pooling the shares they got from p;. Finally, the parties compute the public key

Yy = HieQUAL y; where y; = A;p = g*.

2.2.3 Asynchronous DKG Protocols

The two DKG protocols we have seen in section 2.2.1 are both synchronous. Recent
research presented DKG protocols that work under asynchronous assumptions.

Kokoris et al. [4] presented an asynchronous DKG in 2019. Their protocol builds
upon asynchronous verifiable secret sharing that is used to build a common coin abstrac-
tion. That abstraction is then used to build a binary agreement abstraction that is, finally,
used to build an asynchronous DKG protocol. Their protocol provides resilience against
an adaptive, computationally bounded, active adversary that corrupts up to ¢t < n/3 par-
ties. They use authenticated confidential point-to-point channels and a reliable broadcast
channel.

In 2021, Abraham et al. [5] presented another asynchronous DKG protocol that
improved the communication complexity in comparison to the protocol of Kokoris et
al. They managed to not require a binary agreement primitive, which is one reason why
they achieved less communication complexity. Their protocol is resistant against a static,
computationally bounded, active adversary that corrupts up to ¢ < n/3 parties. They use
authenticated confidential point-to-point channels and a reliable broadcast channel.

In 2022, Das et al. [8] came up with an asynchronous DKG protocol that used another
approach to improve the communication cost compared to the protocol of Kokoris et al.
Their protocol uses a new asynchronous complete secret sharing protocol internally to
let each party share a part of the secret key. Their protocol then uses multiple reliable
broadcasts to suggest sets of parties whose shares should be used for key generation.
Finally, they run parallel asynchronous binary agreements to agree on the set of parties
used for key generation. Their protocol is resistant against a static, computationally
bounded, active adversary that corrupts up to t < n/3 parties. They implemented their
protocol and ran some experiments to assess its performance by running a variable
number of parties on a cloud service. Their protocol takes between 8.5 seconds (for
n = 16) and 134 seconds (for n = 64) to generate keys.



Protocol Design

In this chapter, we present our asynchronous DKG protocol. It uses a total order broadcast
channel and authenticated confidential point-to-point channels between all parties. It
provides resilience against a static, computationally bounded, active adversary that
corrupts up to t < n/3 parties.

3.1 Motivation

The motivation to design and implement an asynchronous DKG protocol is that asyn-
chronous protocols are more relevant in practice than synchronous ones. We designed a
new asynchronous protocol instead of implementing one of those presented in section
2.2.3 because we wanted to integrate a DKG protocol into an existing blockchain infras-
tructure. Blockchains provide a total order broadcast abstraction to order transactions,
which in turn allows the implementation of a replicated state machine. Neither of the
mentioned protocols was designed with the availability of a total order broadcast primi-
tive in mind. Hence, we came up with our own protocol that exploits the properties the
blockchain infrastructure, namely treating its total order broadcast primitive as a black
box. Besides that, the asynchronous DKG protocols presented in section 2.2.3 lack the
simplicity of G/JKR-DKG. This work is an attempt to bring the simplicity of the original
protocol to the asynchronous world.

13
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3.2 The Protocol

The main idea behind our protocol is to take the synchronous GJKR-DKG as a base and
adapt it to the asynchronous world. Hence, the high-level steps of our protocol are the
same as in the original protocol. Our protocol, too, is divided into a sharing phase and
a public key reconstruction phase. Be aware that in the following sections, the sharing
and the public key reconstruction phases are described separately from each other. But,
when it comes to implementing them, they cannot be that strictly separated. Some logic
of the reconstruction phase depends on the state that is built during the sharing phase,
and some events that are described in the public key reconstruction phase might already
occur while a party is still doing operations that are described in the sharing phase. As a
consequence, the logic of both phases interleave in the actual implementation.

3.2.1 Sharing Phase
Recall the sharing phase of G/KR-DKG:

S.1 Each party p; acts as a dealer to choose and share parts of the secret key z;.

S.2 The other parties validate the shares and complain against the dealing party in case
it sent invalid shares.

S.3 The blamed party defends itself by publishing the shares it sent to the blaming
party.

S.4 The other parties validate the shares published by the blamed parties.

S.5 The parties build up a set QUAL of qualified parties whose key shares should be
used for key generation of the secret key x and reconstruction of the public key y
based on .

S.6 Each party computes its share of the secret key x; based on the shares they received
from the members of QUAL.

Our protocol follows the same steps. However, because we operate in an asyn-
chronous setting, the steps cannot be done in the same way. We use three key ideas to
deal with the challenges imposed by the asynchrony.

Consider step S.2 above: during the sharing phase of the original protocol, the parties
complain in case they receive an invalid share. They implicitly assume an upper time
bound on how long it takes a party to get the shares, validate them, and raise a complaint,
if necessary. In the asynchronous world, such an assumption cannot be made.

Hence, we need another way to tell whether or not a party complained against another
party which leads us to the first key idea of our protocol: instead of letting the parties
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P A =D received valid shares from pq, and ps
D {\/’1‘ \/\’/ -7
D3 ’\/ /0\ \,L -t---- - =- p1 received invalid shares from p; and p4
P4 '\//0\ \)f’ -
s L I
Ds x: J'_\ } -F-- —\—:—: > pp did not yet receive shares from ps, pg, and py;
s
b

Figure 3.1. An example verification vector of party p; in a system with n = 7 parties.

complain immediately, we let them build up a local vector of size n holding their votes
on the shares they received from the other parties. We call such a vector a verification
vector. Initially, all entries in the verification vector are empty, denoted by L. This
means, that the party did not receive a share from any party yet. If a party p; receives a
valid share from party p; it sets the j-th entry in its verification vector to 1. If it received
an invalid share from p;, instead, it would set the j-th entry to 0. Figure 3.1 shows an
example of a verification vector with some entries already filled in.

As soon as a party has at least (n — ¢) non-empty entries in its local verification
vector, it broadcasts its current verification vector and all subsequent updates to it. This
exploits the second key idea of our design: we use a total order broadcast primitive to
allow the parties to share a common view on who sent valid or invalid shares to whom,
without revealing the shares themselves.

Recall that the goal of the sharing phase is to decide which parties will be part of the
qualified set QUAL. In GJKR-DKG they do so by making an implicit assumption on the
time it takes for the honest parties to (a) send, receive, and validate all shares, (b) send,
receive and answer complaints, and (c) validate the answers on the complaints. Again,
this is not possible in the asynchronous setting.

Hence, we use a different strategy that represents the third key idea of our design: the
parties use the verification vectors they receive through the broadcast to build a so-called
verification matrix that has n x n entries. Each column vector of the matrix corresponds
to a verification vector of a single party. Hence, the i-th column in the verification matrix
of party p; is equivalent to the verification vector it builds when it receives shares from
other parties. The j-th column in the verification matrix of party p; is the verification
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Equivalent to verification vector of py, filled in when p; broad-
, casted its verification vector upon receiving > (n — t) shares
,~ from other parties

o171 1 0 0 1 (1,
pli1i1 1 0 0 1 :1;
b i L l Lo ol i L Verification vector of pr,
4 pa 3 n 3 0 1 1 1 1 |1 ._|_filledin when p; receives it
1 l | l from p; through total order
4ps [1Li0 0 1 1 L ;0 | broadcast
pe 101 1 L 0 1 (1]
pe\iLi L L1 L1 )
7 " This entry means that p; re-
Pr P2 P3 P+ Ps Pe D1 ceived a valid share from pg

Figure 3.2. The verification matrix of party p; in a system with n = 7 parties. Parties p,
and p5 are corrupted.

vector it received from party p; through the total order broadcast. This includes the
verification vector p; publishes itself. Figure 3.2 shows an example of a verification
matrix and illustrates the meaning of the different parts of the matrix.

If a party p; receives a verification vector V' from another party p; with the entry at
index ¢ set to 0, meaning that p; complains about p;, it broadcasts the shares it sent to p;
before to all parties. The other parties can then verify whether p; sent correct shares to p;
and set the corresponding entry in their verification matrix.

We want to emphasize that all entries in the verification matrix of a party p; are only
modified upon reception of messages through the total order broadcast channel, and these
messages can be either updated verification vectors or shares in response to complaints.
The way the verification matrix is computed ensures that all correct processes end up
with the same entries in their local verification matrix.

The second last step S.5 of the sharing phase consists of deciding which parties will
be part of QUAL. For this, after each change to the verification matrix we try to find
a set of 2¢ + 1 candidate parties out of the total n parties such that the corresponding
sub-matrix of the verification matrix has only *1’ entries. This means that all the chosen
parties received the shares from all other chosen parties — or at least claim they have, in
case they are malicious. Constructing QUAL like this ensures that every party p; € QUAL
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p1 1 1 1 1 0 1 1
P2 1 1 1 1 0 1 1
ps 1 1 1 1 0 1 1

4 Da 1 1 1 1 1 1 1

7 Ds L 0 o 1 1 L o0
2 1 1 1 1 0 1 1
pr L L 1L 1 1 1 1

Pr P2 pP3 Psa ps DPe Pt

Figure 3.3. An example for the construction of the qualified set out of the verification
matrix of p;. Parties p, and p5 are corrupted.

will be able to construct its part of the secret key x; in the last step S.6 of the sharing
phase. x; is defined as z; = ij couaL Sji mod p. We will eventually be able to find
a set of parties that matches the condition since the 2¢ + 1 honest parties eventually
receive the shares from each other. As soon as we find a candidate set S that matches the
condition, we set QUAL + S.

The algorithm that produces the candidate sets must generate them in some determin-
istic order that is the same for all (honest) parties. If this holds, and because all correct
parties computed the same verification matrix in steps S.2 - S.4, all correct parties end
up with the same set QUAL.

Figure 3.3 illustrates the construction of the qualified set. Parties p; to ps and pg
are a candidate set because they all received the shares from each other. Note that, in
this example, the corrupted party p, will be part of QUAL, whereas the honest party p7
will not be included. This does not matter as the other parties in QUAL will be able
to compensate for future possibly faulty behavior of p,. We will briefly discuss the
resilience of the protocol later in section 3.3.

The pseudocode of the sharing phase is listed in algorithms 1 and 2. The pseudocode
is written in an event-based reactive programming style, where all logic is executed in
response to events that happen. These events might either be messages that are delivered
or a predicate on the local state of a party that evaluates to t rue. Furthermore, the
algorithms use helper functions that are listed in section 3.2.3.
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Algorithm 1 Asynchronous distributed key generation (sharing phase, process p; € P)

1: state
2:

00 3 N Lt AW

commitments < [L|": associative set of commitments

shares < [ L]": associative set of shares

verificationMatrix < [ 1]"*": the verification matrix
verificationVector < [ L]": the verification vector

revelations < [1]"*™: associative set holding revelations of shares
QUAL < (): set of qualified parties

verificationSent < (: before verification vector sent

9: upon event init()

10: Zi (E Zq

11: choose random polynomial f;(z), f/(z) over Z, of degree ¢ such that:

12: fi(2) < a0 +anz+ - + a2’

13: fl’(z) — bio—l—bilz—l—---+bitzt

14 Z2i = Q0 = fZ(O)

15: compute Cjj, < g%*h%* mod pfork =0,...,t

16: atomically broadcast message [COMMIT, {Cjo, . .., Ci }]

17: forj=1,...,ndo

18: compute s;; < f;(j) mod ¢

19: compute s;; < f;(j) mod ¢

20: send [SHARE, (s;5, 5};)] to pj € P

21: upon atomically delivering a message [COMMIT, {Cjo, ..., Cj; }] from p;
such that commitments [j] =L do

22: commitments [j] < {Cjo, ..., Cj}

23: if shares [j] #L then

24: verificationVector [j| < isValidShare(shares [j] , commitments [j])

25: if verificationSent = 1 then

26: atomically broadcast [VERIFICATION, verificationVector)
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Algorithm 2 Asynchronous distributed key generation (sharing phase, process p; € P)
(cont.)

27: upon delivering a message [SHARE, (s;i, s7;)] from p; such that shares[j] =L do

28: shares [j] < (sji, 8};)

29: if commitments [j] #L then

30: verificationVector [j| < isValidShare(shares [j] , commitments [j])
31: if verificationSent = 1 then

32: atomically broadcast [VERIFICATION, verificationVector)

33: upon verificationSent = 0 A ‘{pj € P|verificationVector [j] #L}‘ >n—tdo
34: atomically broadcast [VERIFICATION, verificationVector]
35: verificationSent < 1

36: upon atomically delivering a message [VERIFICATION, V;] from p;
such that isValid Verification Vector(V;) = 1 do

37: fork=1,...,ndo
38: if verificationMatrix [k] [j] # 1 then
39: verificationMatrix [k [j] < V; [k]
40: if V; [i] = 0 A commitments [i] #L
Ap; did not already reveal (s;5, s;;) (see line 41) then
41: atomically broadcast [REVEAL, (sij, 5;;)]

42: upon atomically delivering a message [REVEAL, (s;i, 8%;)] from p; do

43: revelations [j] [I] < (s;1, s7;)

44: let isValidRevelation < isValidShare(revelations [j] [l] , commitments [1])
45: verificationMatrix [j] [l] < isValidRevelation

46: if [ = i then

47: verificationVector [j| < isValidRevelation

48: if verificationSent = 1 then

49: atomically broadcast [VERIFICATION, verificationVector|

50: upon 3S where S < {p; € P | p; has shares from all p, € S} A [S| =2t + 1 do
51 QUAL « S

52: if p; € QUAL then

53: let Xi — @

54: for p, € QUAL do

55: let (s, s),;) < shares[v]

56: X; + X; U {Sm'}

57: compute secret key share x; as x; < > sieX; Sl

58: start reconstruction phase of the protocol (see algorithm 3)
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3.2.2 Public Key Reconstruction Phase
Recall the public key reconstruction phase of GJKR-DKG:

R.1 Each party p; in QUAL acts as a dealer to share the value g*, where z; is the secret
from the sharing phase. We will refer to these shares as public key shares.

R.2 The other parties validate the public key shares and complain against the dealing
party in case it sent invalid public key shares.

R.3 The blaming party reveals the secret key shares it got from the party it complained
about.

R.4 The other parties validate those shares. In case the complaint is valid the other
parties reconstruct the secret for the blamed party.

R.5 Finally, the parties use the public key shares to recover the public key .

Again, our protocol does basically the same. As a consequence, we face similar
challenges imposed by asynchrony as in the first phase. The main problem in this phase
is how we can decide whether or not we should reconstruct the secret of a party. To
solve this problem, we follow a similar approach as in the first phase: we let the parties
validate the public key shares they received from the others through total order broadcast,
build a verification vector, and broadcast those vectors. The parties use those vectors to
build a verification matrix to decide which parties (in QUAL) behaved correctly in phase
1 (their shares pass equation 2.1) and phase 2 (their public key shares pass equation 2.2).
However, the naive approach of just letting the parties in QUAL vote falls short. We need
2t 4 1 votes for a party to get a majority of correct parties voting in favor of it. But we
only have a total of 2¢ + 1 parties in QUAL, and up to ¢ of them might be malicious.
Hence, we also let the parties outside of QUAL participate in the vote.

There is a subtle difference between the voting in the sharing phase and the one in
the public key reconstruction phase: in the former, the blamed party reveals its shares. In
the latter, it is the blaming party that reveals the shares it got from the party it complains
about. As a consequence, the structure of the verification vectors is a bit different. Instead
of just broadcasting a 0 entry to indicate a complaint, the complaining party broadcasts
the shares it considers invalid within the verification vector. The other parties are then
able to validate the shares themselves. Figure 3.4 shows an example of a verification
vector with embedded shares in case of a complaint.

If a party confirms (locally) that a complaint is justified, it knows that the shares for
the blamed party have to be reconstructed. It broadcasts the shares it got from the blamed
party and waits for the other (correct) parties to do the same. As soon as it gets more than
t shares, it is able to reconstruct the secret of the blamed party locally by doing Lagrange
interpolation using the shares it collected.
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4 1
P2 1
D3 (0, (s31, %)) --F---- -~ p1 received invalid shares from p; and p,
P4 (0, (sa1,80)) - [
Ds L
Pe 1L
p7 L
p1

Figure 3.4. An example verification vector of party p; in a system with n = 7 parties. p;
complains about the shares it received from parties p3 and p, by embedding the shares it
got from ps3, and p, respectively.

The process of validating the public key shares embedded into a verification vector
involves some subtleties. A party p; needs the commitments Co, . .., Cj; as well as the
public key shares Ajo, ..., A;; from the blamed party p; to perform the validation of a
complaint. However, it might be the case that one or both preconditions are not fulfilled:

* In case the verifying party does not have the public key shares Aj, ..., Aj; from
the blamed party, the original complaint — delivered through total order broadcast
— cannot be justified. The complaining party must have received the public key
shares from the blamed party through total order broadcast beforehand. Otherwise,
it cannot raise a valid complaint. Hence, all other parties received the public key
shares, too. Hence, it is safe to just ignore the complaint.

* In case the verifying party does not have the commitments Cjo, ..., C}; from a
blamed party, the blamed party cannot be a member of QUAL. Hence, it is safe to
ignore the complaint because the inputs of the blamed party are not used for public
key reconstruction anyway.

The broadcasting of reconstruction shares, too, contains a small detail that requires
further explanation. Assume that a party p; wants to reveal a share of a party p,, that got a
justified complaint. It can be the case that p; did not receive the shares (sy;, szj) from py.,
e.g. because the connection between both parties is slow. It is safe for p; to do nothing in
that case because, by construction of QUAL, there are enough other correct parties that
will be able to reveal the shares they got from p;, to allow secret reconstruction.

When a party p; receives reconstruction shares (sy, s);) from p; to reconstruct the
secret of py, it has to validate them against the commitments Cyy, . . . , C; it got from py
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through total order broadcast. If p; has not yet received the commitments it indicates
misbehavior of p;. If p; was correct it would have broadcasted the reconstruction shares
upon receiving a valid complaint against pj; through total order broadcast. A (valid)
complaint can only be raised by a correct party if it received the commitments of p;
before through total order broadcast. This means that p; would also have them. Hence, it
is safe for p; to simply ignore the reconstruction shares it got from p;.

As said earlier, the parties use the verification vectors they received through the
broadcast channel to build a verification matrix. Like in the first phase, the correct
parties will end up with an identical verification matrix, because they fill the entries upon
receiving information through the total order broadcast channel. Evaluating the rows
of the verification matrix, counting the 1s per row, we can decide whether the secret
of a party does not have to be reconstructed. This is the case when a party got at least
2t 4+ 1 votes. We call those parties validated parties. As soon as we have at least ¢ + 1
validated parties we can trigger secret reconstruction for the remaining ¢ parties in QUAL.
This allows us to deal with an adversary that does not send any messages throughout the
second phase.

As soon as we get all public key shares of all parties in QUAL — either by directly
using the values received from the party or through reconstruction — we can compute
the public key and complete the protocol run. Each (honest) party in QUAL now holds a
share of the secret key and the public key.

The detailed steps of the public key reconstruction phase are described in the al-
gorithms 3 and 4. Again, the algorithms use helper functions that are listed in section
3.2.3.
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Algorithm 3 Asynchronous distributed key generation (pk reconstruction phase, process

Pi)
59: state
60: QUAL <+ QUAL from sharing phase: set of qualified parties
61: nouvar < |QUALY: size of the qualified set
62: pubKeyShares + [1]"?UL: associative set of public key shares
63: pubKeyVerificationMatrix < [ L]""+*™: verification matrix
64: needsReconstruction < [ L]"?%L: bit-vector indicating whether public key share
for a party has to be reconstructed
65: reconstructionShares < [(]"%Y*": multiset of reconstruction shares
66: reconstructed < [ L]V associative set of reconstructed public key shares
67: pubKeyVerificationSent < 0 // before verification vector sent
68: reconstructedParties < (): set of parties the public key share was reconstructed for
69: validatedParties < (): set of parties that sent correct public key share
70: upon event init()
71: if p; € QUAL then
72: compute A;; < g%* mod pfork =0,...,t
73: atomically broadcast [PUBKEYSHARES, { A;o, ..., Ait}]
74: upon atomically delivering message [PUBKEYSHARES, {Ajo, ..., A;;}] from p; € QUAL do
75: pubKeyShares[j| < {Ajo, ..., Aji}
76: pubKeyVerificationMatrix[j][i] < isValidPubKeyShare(shares|j], pubKeyShares|j|)
77: if pubKeyVerificationSent = 1 then
78: let V; < buildPubKey Verification Vector()
79: atomically broadcast [PUBKEY VERIFICATION, V}]

80: upon pubKeyVerificationSent = 0
A|{pjlp; € QUAL, pubKeyVerificationMatrix [j] [i] #L}| > n —t do

81: let V; <— buildPubKey Verification Vector()
82: atomically broadcast [PUBKEY VERIFICATION, V}]
83: pubKeyVerificationSent < 1

84: upon atomically delivering message [PUBKEY VERIFICATION, V] from p; do
such that is ValidPubKey Verification Vector(V;) = 1 do

85: fork =1,...,noyar do

86: if pubKeyVerificationMatrix[k][j] # 1 do

87: pubKeyVerificationMatrix[k|[j] < V;[k]
88: if Vj[k] = {0, (s, 83;)} A

pubKeyShares|k] #L N\ commitments[k] #L A

isValidComplaint((s;, i), pubKeyShares[k], commitments[k]) = 1 then
89: needsReconstruction[k] < 1
90: if shares[k] #L do
91: atomically broadcast [RECONSTRUCTIONSHARE, shares|k]]
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Algorithm 4 Asynchronous distributed key generation (pk reconstruction phase, process
pi) (cont.)

92: upon atomically delivering message [RECONSTRUCTIONSHARE, (s, s;)] from p;
such that commitments[k] #1 do

93: if isValidShare((sy;, s},;, commitments[k])) = 1 then

94: reconstructionShares[k] < reconstructionShares[k] U (sy;, s;)

95: upon |reconstructionShares[j|| > t A needsReconstruction[j] = 1 for any p; € QUAL do
96: reconstructed[j] < reconstruct(reconstructionShares[j])
97: reconstructedParties < reconstructedParties U p;

98: upon cannotBePubKeyDisqualified(p;) = 1 for any p; € QUAL do
99: validatedParties < validatedParties U {p;}

100: upon |validatedParties| = t + 1 do

101: for p; € QUAL\ (reconstructedParties U validatedParties) do

102: needsReconstruction[j] < 1

103: if shares[j| # 1 do

104: atomically broadcast [RECONSTRUCTIONSHARE, shares|j|]

105: upon reconstructedParties U validatedParties = QUAL do

106: letY <

107: for p, € reconstructedParties do

108: let z,. « reconstructed|r]

109: Y « Y U{g*}

110: for p, € validatedParties do

111: let {Ayo,..., Ay} < pubKeyShares|v]
112: Y <« YU{Aw}

113: compute public key y as y < HijY y; mod p

114: terminate
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3.2.3 Helper Functions

The algorithms in this section contain some helper functions that are used by the protocol.

Algorithm 5 Asynchronous distributed key generation (helper functions, process p; € P)
115: function isValidShare((s;, s;j), [Clo,--.,Cl]) — {0,1}

0, if gSuh%i £ HZZO(C’lk)jk mod p

1, if gsl-ihsgj = HZ,:O(C’lk)jk mod p

116: return {

117: function is ValidPubKeyShare((s;;, sgj), Ao, -, Ap]) — {0, 1}
0, if g # [Th_o(Aw)" mod
118: return{ 1 U Hf:o( k) " moeap
if g% = [,_o(Aix)? mod p
119: function is ValidComplaint((s;, sgj), [Aio, - -5 Anl, [Cio, - - -, Cie]) — {0, 1}
120: return is ValidShare((s;, sgj), [Cio,...,Cy]) =1
A isValidPubKeyShare((si;, s;;), [Aio, - - -, Au]) = 0

121: // A party cannot be disqualified if at least 2t + 1 parties voted for it
122: function cannotBePubKeyDisqualified(p; € P) — {0,1}

123: let confirmCount < countPubKey VerificationOccurrences(1, j)
124: if confirmCount > 2t then

125: return 1

126: return 0

127: function countPubKey VerificationOccurrences(val € {0,1},5 € {1,...,n}) > c€N
128: let count < 0

129: fori=1,--- ,ndo

130: if pubKeyVerificationMatrix [j] [l] = val then
131: count <— count + 1

132: return count

133: function isValid Verification Vector(V; € [{L,0,1}]") — {0,1}
1, f{lveVjjv#L} >n—t

134: return .
0, otherwise
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Algorithm 6 Asynchronous distributed key generation (helper functions, process p; € P)
(cont.)

135: function is ValidPubKey Verification Vector(V; € [{J_, {0, (sji, 85;)}, 1}
L e Vijo £1} > t+1

0, otherwise

) —{0,1}

} NQUAL

136: return {

137: function buildPubKey Verification Vector() — {1, {0, (sji, s7;) }, L }"eut
138: let V; « [L]nous

139: for j =1,...,n9gyar do

140: if pubKeyVerificationMatrix[j][i] = 1 then
141: Viljl « 1

142: else if pubKeyVerificationMatrix[j][i] = 0 then
143: Vilj] < {0, shares[j|}

144: else

145 Vilj] +L

146: return V;

147: function reconstruct({(sx, s7;.) }) — 2 € Zg
148: let z; < perform Lagrange interpolation using {(s;, ;) }
149: return z;

3.3 Security

We will not give formal proof of the security of our protocol. Instead, we will reason
informally why our protocol maintains the same level of security and leave formal
security proof as a subject for future work. Gennaro et al. define the following security
property a secure DKG protocol has to fulfill:

No information on [the secret] x can be learned by the adversary except for
what is implied by the value y = ¢® mod p.

Furthermore, they define a requirement for the distribution of the generated secret
key x:

x is uniformly distributed in Z,, and, hence, y is uniformly distributed in the
subgroup generated by [the generator] g

These requirements must be fulfilled by our protocol, as well. We assume that the
adversary, in the worst case, controls up to t parties, where ¢t < n/3. W.Lo.g. let
p1, - - -, ¢ be the corrupted parties.
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3.3.1 Sharing Phase

Recall the sharing phase of our protocol. During this phase, each party commits to a
secret and shares it using Shamir’s secret sharing. The shares are validated by the other
parties. They hold a vote to agree on a set of qualified parties QUAL whose inputs should
be used for key generation.

During the sharing phase, the adversary could try to learn the secrets being shared by
the correct parties. The adversary can force other parties to reveal their shares by letting
the corrupted parties complain about honest ones. Let p. be a party that is correct and
blamed by the adversary. p. will react to the complaints by revealing the shares (s., S...)
where k = 1, ..., t. The adversary will obtain at most ¢ shares of the secret being shared
by p.. Due to this fact, and because honest parties will never complain against other
honest parties, the adversary is not able to obtain enough shares to reconstruct the secret
of pe.

The adversary could try to influence the distribution of the secret key by trying to
disqualify a correct party. However, for a party to be disqualified at least ¢+ 1 parties must
vote against it. That is, at least one correct party must vote against another correct party,
which will never happen. Hence, the adversary cannot force a party to be disqualified.
However, if the adversary behaves correctly during the sharing phase some, or all, of the
corrupted parties could become members of QUAL, effectively preventing some honest
parties from being included in QUAL. Nevertheless, because we have 2t 4 1 parties in
QUAL we have at least ¢ 4 1 honest parties in QUAL, whereas the contribution of a single
honest party will suffice to guarantee the generation of an unbiased key pair.

At the end of the sharing phase, all honest parties end up with the same set QUAL.
They build QUAL based on the verification matrix, which they computed locally based
on the verification vectors published through total order broadcast by the other parties.
Hence, all honest parties compute the same verification matrix, and, as a consequence,
the same set QUAL. All members within QUAL got votes from at least 2¢ + 1 parties,
which means they got at least ¢ + 1 votes from correct parties. There are 2¢ 4 1 parties in
QUAL of which at least t + 1 are correct.

3.3.2 Public Key Reconstruction Phase

Recall the public key reconstruction phase of our protocol. The parties in QUAL broadcast
their shares of the public key. The other parties validate those shares and hold a vote on
whether the secret of a party has to be reconstructed using the information shared during
the first phase, or not.

During this phase, the adversary could try to force the reconstruction of the secret
of a correct party. Because all parties would expose the shares they got from that party
during reconstruction, the adversary would learn the secret from that party. Let p. again
denote a correct party and p, a corrupted party. The adversary has two ways to force the
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other parties to reconstruct the secret of p.:

* He could reveal some shares (5.4, 5., ) and claim he got them from p... Those shares
(Scas S, ) must satisfy equation 2.1 but not equation 2.2 and must be different from
the real (s, S.,,) that p, received from p.. Coming up with such shares is infeasible
under the discrete log assumption, and, hence, the adversary cannot force correct
parties to reveal the shares they got from p, in that way.

* The adversary could publish valid public key commitments of all parties he controls
before any other (honest) party does so. That way, ¢ (malicious) parties publish
correct public key shares. If one honest party then reveals a valid public key share,
too, the other parties would then start reconstructing the secret from the remaining
t (honest) parties in QUAL. As a consequence, the adversary can learn the secrets
of ¢t honest parties. But there is one honest party left in QUAL whose secret will
not be reconstructed. The contribution of that single honest party is sufficient to
guarantee the generation of an unbiased secret key.

The adversary could try to attack termination of the protocol. He could do so by
behaving correctly during the sharing phase but showing malicious behavior during
the second phase. For instance, he could remain silent and not send any public key
shares, verification vectors and reconstruction shares. However, since there are at least
t + 1 correct parties in QUAL they are eventually able to reconstruct the secrets of the
malicious parties in QUAL.

In both phases, the adversary could also try to forge messages, hereby impersonating
other parties. However, the authenticated point-to-point channels used in our protocol
guard against message alteration and identity theft. Furthermore, the total order broadcast
ensures that all correct parties deliver the messages through that channel in the same
order. As a consequence, the adversary cannot trick an honest party into having another
view of the state of the protocol than the other (correct) parties.



Protocol Implementation

4.1 Thetacrypt

Thetacrypt [2] is a software service, written in Rust, that implements several threshold
cryptography primitives like ciphers, signatures, and coins. It aims to provide threshold
cryptography as a service. The service is developed by the Cryptology and Data Security
research group [9] at the University of Bern, Switzerland.

The service is split into three layers, depicted in figure 4.1. The service layer provides
an RPC API to host applications. Host applications might be ordinary applications
running on multiple network nodes, or smart contracts running on a blockchain. The
core layer implements the cryptographic primitives, the protocols, and the orchestration
logic. It uses the MIRACL Core library [10] internally, which provides elliptic curve
cryptography, hash functions, and other cryptographic functions. The network layer
provides abstractions for the communication between the peers within the network. It
allows peers to exchange direct messages using the available network infrastructure,
or to broadcast messages using a total order broadcast channel that is provided by the
availability of an underlying blockchain.

Before this work, the keys used by the cryptographic primitives provided by Theta-
crypt were generated using the trusted dealer approach (recall section 2.1.2). This work
aims to add support for distributed key generation to Thetacrypt. Hence, we implement
our DKG protocol as a part of Thetacrypt.

29
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Figure 4.1. The architecture of Thetacrypt.

4.2 Protocol Architecture

Figure 4.2 shows the architecture of our implementation of the DKG protocol. We will
elaborate on the responsibility and functionality of each component.

The Thetacrypt node is an instance of Thetacrypt running within a host application on
some machine. The different instances are connected through a peer-to-peer network and
a total order broadcast channel that allow them to exchange arbitrary messages. A Theta-
crypt node may participate in multiple different protocol runs of different cryptographic
operations at a time. For example, a node might participate in a decryption operation,
while at the same time checking a signature on some document, and running a coin flip
protocol in parallel. In figure 4.2, this is expressed with the component called other
protocol instances. All protocols require the different nodes to exchange messages with
each other. Hence, every node depends on a component called instance manager that
decides for every incoming message to which protocol instance it belongs and dispatches
it accordingly. It does so by checking a dedicated field in the message header that
uniquely identifies a protocol instance. Note that before a message is handed over to the
instance manager, there is some component that checks the integrity and authenticity of
the incoming messages. We omitted this component in the figure to enhance readability.

So far, all components mentioned are independent of a specific protocol. This means
that all dispatching decisions could be done without deserialization of the message
payload or knowledge about the logic of the protocols. Once a message is passed to
the correct protocol instance, knowledge about the protocol message types and internals
is required to further process a message. There are two components responsible for
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Figure 4.2. The architecture of our implementation of the DKG protocol. Components
with a dashed border already existed before our work.

receiving and sending protocol-specific messages. Both are part of the protocol instance.
The message receiver takes an incoming message, deserializes its payload, and passes it to
the correct message handler of the protocol logic implementation. In our implementation,
the message receiver just calls the correct function of the protocol logic, passing the
deserialized message as an argument. The protocol logic then manipulates its state
according to the rules of the protocol. As a consequence, messages to other parties might
be sent, or a message might be broadcast to all parties. To do so, the protocol logic
passes all necessary data to the message sender. That component serializes the data and
publishes them either to the total order broadcast channel or sends them to some specific
party through the peer-to-peer channel.

4.3 Implementation Details

In this section, we describe some specialties of the implementation that play an important
role during the execution of the protocol, yet might not be that obvious when looking at
the pseudocode in section 3.2.
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4.3.1 Selection of Alternative Group Generators

Recall that in G/JKR-DKG the existence of two generators g and h of the group G is
assumed. The same holds for our protocol. Thetacrypt originally only provided a single
generator per mathematical group it supports. Hence, we had to find additional group
generators. The most important property of the two group generators is that the discrete
logarithm of h with respect to g is not known. Hence, we chose a random group element.
However, to ensure that an external party can verify that we created the generators the
way we claim, we have to disclose the source of the randomness that we used to choose
the group element.

To achieve this, we take some sequence of characters from a public source, hash it
to a point on the elliptic curve on which the group is defined, and use that point as a
generator. As a sequence of characters, we took the following string, encoded as UTF-8:

thetacrypt_6995e2de6891c724bfeb2db33d7b87775£913adl

The first part is just the name of the Thetacrypt library, and the second part is the
Git commit hash of version 6.4 of the Linux kernel [11]. We use the map2point
function of the MiraclCore library to map the string to a point on the elliptic curve. Their
implementation internally uses an SHA?2 hash function, and then follows the approach
described in [12] to map the hashed input to a point on the elliptic curve.

We created the generators once and defined them in the source code as constants
for further use. This gives better performance compared to recreating them whenever
Thetacrypt is initialized. The script that was used for generator creation is included in
the Thetacrypt. This allows users of the service to verify that the constants defined in the
code match the ones that are output by the script.

4.3.2 Deterministic Ordering of Protocol Parties

Both GJKR-DKG and our own protocol assume the existence of some deterministic
global ordering of the parties participating in the protocol. This ordering is used at
multiple places in the protocol:

* When creating shares.
* When verifying shares in equation 2.1.

* When building the verification vector and the verification matrix for assigning a
row and a column to a party.

* When selecting 2t + 1 parties out of the candidates to form QUAL.

* When verifying commitments in equation 2.2.
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There are multiple solutions to obtain this ordering. We suggest taking the binary
value of the IP address of each party, ordering those in ascending order, and using this
ordering in the protocol. Note that this ordering breaks if a new party joins the network.
However, since Thetacrypt does not support dynamic membership at the moment, this is
a usable method.

4.3.3 Construction of the Qualified Set

Recall that, during the sharing phase, we have to decide on the set QUAL of parties whose
input will be used for the computation of the secret and the public key. We do so by
finding a subset of 2¢ + 1 out of the n parties who received valid shares from all parties
in that subset. In our implementation, we use a naive approach to find the subset. We
simply enumerate the possible candidate sets in a deterministic way and check whether
the condition holds for the members of that candidate set.

This approach is computationally expensive for large n since the number of possible
candidate sets is given by (2 ;_‘H). Hence, the enumeration of all candidate sets is an
exponential time operation. Finding a more optimized way to construct the candidate set
is an optimization left to future work.

Note that it is critical for the protocol that the enumeration of the candidate sets
produces them in the same order for all (honest) parties. Otherwise, there is no guarantee
that all honest parties end up with the same set QUAL. In our implementation, we consider
the parties according to their global ordering and then use the algorithm provided by
Itertools [13] to generate the candidate sets.

4.3.4 Commitment Schemes

Our protocol makes use of two different commitment schemes. During the sharing
phase, it uses a Pedersen Commitment [3] to commit to the coefficients a;, . . . , a;; and
bio, - - . , by of the sharing polynomials f; and f;. The commitment is computed as g% hbi*
mod p for k = 1,...,t and is information-theoretically hiding.

During the public key reconstruction phase, our protocol uses a simple discrete log-
based commitment to commit to the coefficients a;, . . ., a;; of the sharing polynomial
fi. In this case, the commitment is computed as ¢g** mod p for k = 1,...,¢ and is
computationally hiding.

We decided to implement both commitment schemes in Thetacrypt as a separate
module such that they can be reused by other protocols in Thetacrypt. Listing 1 shows
an example of how the commitment schemes (Pedersen in this example) can be used in
Thetacrypt.
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1 let group = Group::Blsl2381;
2 let mut rng = RNG::new(RngAlgorithm::MarsagliaZaman) ;

4 // Define the value we want to commit to.
5 let x = BigImpl::new_rand(&group, &group.get_order (), &mut rng);

// Get some randomness that is used for hiding.
8 let r = BigImpl::new_rand(&group, &group.get_order (), &mut rng);

10 let params = CommitmentParams::Pedersen (
11 PedersenCommitmentParams: :init (x, r));

13 // Commit to x, using the randomness r for hiding.
14 let ¢ = Commitment::commit (&params) ;

16 // Verify whether the commitment holds. The function would
17 // return false if we pass a different x or r to it.
18 let result = c.verify (&params);

20 assert (result == true);

Listing 1. Usage of the Pedersen Commitment implementation.

4.4 Testing

The source code of Thetacrypt contains a set of unit tests that verify the correctness of its
functionality. However, not all parts of the source code are equally well covered by unit
tests. Furthermore, the usual process to test some functionality of Thetacrypt is to bring
up multiple instances of Thetacrypt using a local deployment and initialize a protocol
run. This process is cumbersome and slow and becomes more complex if a blockchain
platform is used underneath. We were looking for an easier and faster way to test the
DKG protocol.

We followed two approaches for testing that are in line with the well-known testing
pyramid, as shown in figure 4.3. First, we use unit tests to cover the individual compo-

End-to-End Tests
Complete system

Integration Tests
Multiple components

Unit Tests
Individual components

Figure 4.3. The test pyramid, showing the different test levels and their scope.
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nents of our implementation. This means that we mock the behavior of dependencies of
a certain component to test a component in isolation. Second, we use infegration tests to
test the integration of the different DKG-related components. In our case, this means
that we simulate the network and run multiple participating parties in different threads of
a single test process.

4.4.1 Unit Testing

To facilitate unit testing, we aimed to decompose the protocol implementation into smaller
components with well-defined responsibilities that can be individually tested. Parts of this
approach are already shown in figure 4.2 when we elaborated on the architecture of our
implementation and the role of the message sender and receiver. But the decomposition
is also present on a lower level of the code. For instance, we introduced a dedicated
struct VerificationTable that represents the verification matrix, along with the operations
that manipulate it. Remember that two instances of a verification matrix are used in our
protocol: one during the sharing phase, and one during the public key reconstruction
phase. Factoring that functionality out into a dedicated struct allows code reuse and
reduces redundancy. We also use a dedicated component that is responsible for sending
messages to other parties. Its responsibility is to assemble and serialize messages and to
post them to the right communication channel. Hence, the protocol logic is not cluttered
with message serialization and message dispatching code.

4.4.2 Integration Testing

To implement our integration testing approach we had to provide mock implementations
for the message sender and receiver that underneath simulate the behavior of the network.
Hence, we had to find or implement replacements for the peer-to-peer channels and the
total order broadcast channel that work in-process and allow message exchange between
different threads. Fortunately, the well-known Rust library Tokio [14] that is already used
in Thetacrypt provides primitives for both:

* The tokio: :sync: :broadcast structs and functions provide a broadcast
implementation for inter-process communication that guarantees the ordering of
messages.

* The tokio:sync: :mpsc structs and functions provide a multi-producer-single-
consumer channel implementation for inter-process communication.

The listings 2 - 6 show an integration test of our protocol implementation. The test is
divided into a setup, a running, and a verification stage. During the setup stage, the test
first defines the global parameters like the mathematical group G, including its generators
g and h. Furthermore, it chooses n and ¢ and generates a set of party identifiers.
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// Define a set of party IDs and their unique index

let party_ids: BTreeMap<String, usize> = create_party_ids();
//Set up global parameters like the mathematical group, n, and t.
let params = setup_global_parameters (&party_ids);

Listing 2. Protocol integration test, setup stage: global parameters

In the second step of the setup stage, the test creates all the communication chan-

nels, the parties participating in the protocol themselves, along with some supporting
components.

// Set up broadcast channel.
let (broadcast_sender, _broadcast_receiver) =
tokio::sync::broadcast::channel (100);

// Set up the channel through which the parties will expose

// some results of their local computations for testing purposes.

let (result_sender, result_receiver) =
tokio::sync::mpsc::channel (100);

// Set up channel for p2p broker.
let (p2p_broker_ sender, p2p_broker_receiver) =
tokio::sync::mpsc::channel (100);

// Create the parties participating in the protocol, along with
// their communication channels.
let (parties, party_p2p_senders) = create_parties/
&party_ids, &params, p2p_broker_sender, &broadcast_sender,
result_sender);

// Set up the broker that will dispatch direct messages
let mut p2p_broker = create_p2p_broker (
pP2p_broker_ receiver, party_p2p_senders);

// Set up the result collector who gathers all protocol results

// from all parties.

let mut result_collector = create_result_collector (
result_receiver);

Listing 3. Protocol integration test, setup stage: components

Note that we do not use a dedicated channel to bidirectionally connect every pair

of parties. Instead, we use a central message broker. If a party wants to send a direct
message to some other party, it sends the message to the central broker, which then
forwards it to the other party. This allows us to reduce the number of point-to-point
communication channels from O(n?) to O(n) but introduces a central instance for
communication dispatching. In the real system, this would not be tolerable, but in our
testing scenario, this is sufficient as the security aspect is not of interest. Furthermore, we
can manipulate the message exchange at that central point to simulate an adversary that,
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for instance, prevents messages from a certain party from being delivered. This enables
us to verify that the protocol works correctly despite adversarial actions.

Furthermore, we let each party p; expose some of its results to a so-called result
collector. These results include the chosen secret x;, the selected set QUAL, as well as
the secret key share and the public key y it computed. Of course, no party would expose
those values in a real deployment. We only expose those values in the test to be able to
verify the correctness of the protocol run at the end of the test.

The last step during the setup stage is to create and start all the threads that will run a
component each.

36 let mut threads = Vec::new();
37

33 // Set up the threads that run one party each.
39 for mut party in parties {

40 let party_thread = spawn (async move {
41 party.listen () .await;

42 1)

43

44 threads.push (party_thread);

45}

46

41 // Set up the thread that runs the message broker.

4 let p2p_broker_thread = spawn (async move {

49 pP2p_broker.listen () .await;

0 });

51

52 threads.push (p2p_broker_thread);

53

s4a // Set up the thread that runs the result collector.
55 let result_collector_thread: JoinHandle<Vec<DkgResultMessage>> =

56 spawn (async move {
57 let results = result_collector.listen() .await;
58 return results;

59 1)
Listing 4. Protocol integration test, setup stage: threads creation

In the running stage we trigger a protocol run by broadcasting a Run message to all
parties. The parties will then run the protocol. We wait for all parties to finish.

61 // Run protocol
62 let _result = broadcast_sender.send(DkgInboundMessage: :Run);

& // Wait for protocol to finish

s for thread in threads {

66 let _thread_ join_result = thread.await;
67 }

Listing 5. Protocol integration test, running stage: run protocol and wait for completion
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During the verification stage, we first gather all the results that the result collector
received from the different parties. Finally, we evaluate a set of assertions against the
collected results to validate that the parties computed the expected results:

* We validate that all (correct) parties computed the same set QUAL.
* We validate that all (correct) parties in QUAL computed the same public key .

* We validate that the public key y corresponds to the secrets z; that were chosen

by the qualified parties at the beginning of the protocol. That is we verify that
Y=g p; EQUAL i

* We validate that the secret key shares z; computed by the parties in QUAL can be
used to reconstruct the secret key x, and it holds that y = g*.

6 // Collect the result of the protocol run

70 let results = result_collector_thread.await.unwrap();

71

72 let chosen_secrets = get_chosen_secrets (&results);

73 let qualified _parties = get_computed_qualified_ sets(&results);
74 let public_keys = get_computed_public_keys (&results);

75 let secret_key_ shares = get_computed_secret_key_shares (&results);
76

77 // Assert that all parties computed the same qualified set.

78 let qualified _parties =

79 assert_unique_qualified_parties(&qualified_parties);

80

81 // Assert that all parties computed the same public key.

82 let public_key = assert_unique_public_key (&public_keys);

83

8¢ // Assert that the public key corresponds to the secrets chosen
8s // by the qualified parties.

86 assert_public_key_corresponds_to_chosen_secrets(

87 &public_key, &chosen_secrets, &qualified_parties);

88

89 // Assert that the public key corresponds to the secret key

9 // defined by the secret key shares.

91 assert_public_key_ corresponds_to_secret_key (

9 &public_key, &secret_key_shares, &qualified_parties);

Listing 6. Protocol integration test, verifying stage



Conclusion

5.1 Our Contribution

In this work, we took the existing synchronous DKG protocol of Gennaro et al. and
transformed it into an asynchronous protocol. Our protocol is designed in a modular
way. It exploits the properties of a total order broadcast primitive and authenticated
point-to-point channels, which makes it usable on top of existing environments like
blockchains that provide an implementation of those primitives.

Our protocol provides security against an adversary that corrupts up to ¢t < n/3
parties. The protocol has the same simplicity as the original synchronous protocol. It
consists of a sharing phase and a public key reconstruction phase. During the first phase,
the parties decide on a set of parties QUAL whose inputs will be used to generate a
secret key. They do so by building and broadcasting so-called verification vectors to
vote on whether or not a certain party behaved correctly. The properties of the total
order broadcast ensure that all correct parties end up with the same set QUAL. During
the second phase, the parties in QUAL collaboratively reconstruct the public key based
on their inputs. They again hold a vote on the parties in QUAL that behaved correctly,
reconstructing the inputs of the parties that showed malicious behavior.

We implemented our protocol in the Rust programming language and integrated
it into the Thetacrypt threshold cryptography service. Furthermore, we developed a
testing infrastructure that allows running the protocol on a single machine within a
single process, using multiple threads to simulate the different parties participating in
the protocol. This enables testing of the protocol and facilitates further development.

39
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This approach can also be generalized to the other protocols and schemes in Thetacrypt,
resulting in a better developing and testing experience.

5.2 Future Work

The treatment of certain aspects of our protocol exceeded the scope of this work, and,
hence, is left for future work. First, our protocol lacks formal correctness and security
proof. Coming up with such proofs should not be hard as one can build on the proofs of
the original synchronous GJKR-DKG protocol. Second, the Thetacrypt service does not
yet support open membership. That is, the number of parties is fixed upon initialization
of the system and cannot be changed later. Using our DKG protocol makes it possible to
add the open membership feature to Thetacrypt in the future. Third, we use the simplest
algorithm one can think of to find the qualified set by simply enumerating possible
candidate sets, which is a O(2") operation. One should aim at optimizing this part of
the protocol. Fourth, we did not assess the performance and scalability of our protocol.
It would be interesting to run experiments on a real deployment of the system to obtain
reliable performance metrics for our protocol and compare it to others.
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