
Implementing Distributed Randomness
Adapting a random beacon protocol to run in practice

Master Thesis

Marius Asadauskas

Faculty of Science at the University of Bern

Cryptology and Data Security Research Group

Supervised by
Prof. Dr. Christian Cachin

Dr. Orestis Alpos & Mariarosaria Barbaraci

February 2024

Abstract

Creating randomness inside deterministic machines comes with many difficulties, especially
when doing so in a distributed environment. However, there exist many random beacon
protocols that accomplish just that. These protocols all vary in runtime, communication
complexity, cryptographic primitives, and many other aspects. Despite the topic being
heavily researched, distributed randomness still struggles to find mainstream adoption. In this
thesis, we will examine how distributed randomness functions. We will also implement and
improve upon an existing random beacon protocol and transform it from a synchronous to an
asynchronous setting. Our work aims at finding reasons why distributed randomness has not
found success in practice.

1

Contents

1 Introduction 4
1.1 Motivation . 5

2 Background 7
2.1 Cyclic groups . 7
2.2 Cryptographic assumptions . 8

2.2.1 Decisional Diffie-Hellman assumption . 8
2.2.2 Random oracle model . 8

2.3 Non-interactive zero-knowledge proofs . 9
2.4 Commits and reveals . 11

2.4.1 Commit phase . 11
2.4.2 Reveal phase . 12

2.5 Two-party coin flip . 12
2.6 Secret sharing . 14

2.6.1 Polynomial secret sharing . 14
2.7 Theoretical lower limit . 15

3 Design 16
3.1 SCRAPE explained . 16

3.1.1 Phases of SCRAPE . 17
3.1.1.1 Setup phase . 17
3.1.1.2 Commit phase . 18
3.1.1.3 Reveal phase . 20
3.1.1.4 Recovery phase . 20

3.1.2 Randomness calculation . 21
3.1.3 NIZK verification . 21
3.1.4 Degree verification . 22

3.2 Changes to SCRAPE . 23
3.2.1 Adding shares . 23
3.2.2 Asynchronous SCRAPE . 24

4 Implementation 26
4.1 Thetacrypt . 26

5 Evaluation 28
5.1 Docker . 28
5.2 Methodology . 29
5.3 Findings . 30

5.3.1 Average runtime . 30
5.3.2 Number of messages . 33

2

CONTENTS 3

5.3.3 Communication cost . 34
5.4 Results . 35

5.4.1 Average runtime . 35
5.4.2 Number of messages . 36
5.4.3 Communication cost . 36
5.4.4 Summary . 36

5.5 Randomness test . 37

6 Conclusion 40
6.1 Possible attack on SCRAPE . 40
6.2 Scarcity of public randomness . 41
6.3 Future work . 42

6.3.1 Security . 42

1
Introduction

The usefulness of randomness in our digital world cannot be overstated. From the most simple coin-tossing
algorithm to the most complex neural network, algorithms require a certain amount of randomness to
function. This stands in contrast to the deterministic nature of computers. Hence, it has been widely
researched on how to overcome this hurdle and create randomness inside deterministic machines. Locally,
this question has been mostly solved. Ranging from insecure solutions such as linear-feedback shift
registers, where one simply shifts bits and uses linear operations to get randomness, to secure solutions
such as pseudorandom generators, entropy collection, and many more. Furthermore, solutions inside
hardware exist, such as trusted execution environments [1], chemical reactions, and others that guarantee
randomness through aspects outside of software. These methods are all great for private randomness,
where one creates and consumes a random value internally. However, when it comes to public randomness,
these methods do not suffice.

Contrary to private randomness, public randomness is needed when the public has to be able to trust a
random value and verify its authenticity. An old-fashioned example of public randomness would be the
lottery. The public needs to be able to trust the randomness of the lottery, since lottery companies have a
significant financial incentive to rig the numbers. If the lottery were to simply create a private random
value and tell it to the public, there would be no reason to believe its authenticity. Hence, to calm the
doubts of the public, companies normally put on a show. A common way they do so is by recreating the
urn model. They toss balls with numbers into an urn, mix the balls, and then randomly pick out balls
from the urn to create the final lottery numbers. Recording the process and then putting it on television
for anybody to see. In doing so, they give the public a way to verify the authenticity of the random value,
and transform private randomness into public randomness. While a great solution in practice, it does not
translate well into our digital world. Usually, a computer can not wait a week for a random value to be
created, as is the case with most lotteries.

Furthermore, public randomness is not only needed in cases such as lotteries and other forms of
gambling. Another example would be random inspections. Multiple studies have found that police
searches are unfair and target minorities disproportionately [2]. By using public randomness, one could
ensure the honesty of random inspections and prove that they are not biased by race or other factors.

As of the writing of this thesis, there are only a couple of public randomness providers. One of which
is a service known as DRand [3], which provides a verifiable random number every 30 seconds for the

4

CHAPTER 1. INTRODUCTION 5

public to use as they see fit. DRand does so by running a cryptographic protocol on a distributed network
of nodes that creates a random number. A cryptographic protocol that creates randomness is also known as
a random beacon protocol, and the process can be seen as creating distributed randomness.

1.1 Motivation
Although there are only a couple of random beacons running in practice, the topic of distributed randomness
is heavily researched. As seen in Table 1.1, there exist a plethora of random beacon protocols that all vary
in cryptographic primitive, communication complexity, unpredictability, and many other aspects. This
leaves us with many options to choose from when trying to implement distributed randomness. We aim to
pick out one or multiple random beacon protocols and implement them ourselves, as to find out why such
a researched topic remains somewhat unused in practice.

Protocol Fault
Tolerance

Comm. Compl. Unpredict-
ability

Cryptographic NetworkBest Worst Primitive Assumption
Commit-Reveal f = 0 O(n2) O(n2) 1 Commit DDH Async.

Albatross [4] n > 2f O(n3) O(n4) 1 PVSS DDH Sync.
Bicorn [5] n > 2f O(n2) O(n3) 1 Timed commit RSW Sync.
Drand [6] n > 2f O(n2) O(n3) 1 Thr. BLS uniq. Sig, CDH Sync.
Dfinity [7] n > 2f O(n2) O(n3) f + 1 Thr. BLS uniq. Sig, CDH Sync.
GULL [8] n > 2f O(n3) O(n3) 1 PVSS DDH Sync.

GRandPiper [9] n > 2f O(n2) O(n2) f + 1 PVSS q-SDH, SXDH Sync.
BRandPiper [9] n > 2f O(n2) O(n3) 1 (P)VSS q-SDH, SXDH Sync.

HERB [10] n > 3f O(n2) O(n3) 1 Thr. ElGamal DDH Sync.
HydRand [11] n > 3f O(n2) O(n3) f + 1 PVSS DDH Sync.
OptRand [12] n > 2f O(n2) O(n2) 1 PVSS q-SDH, SXDH Sync.
RandHerd [13] n > 3f O(c2n) O(n4) 1 Thr. Schnorr DL Sync.

RandHound [13] n > 3f O(c2n) O(c2n2) 1 PVSS DL Sync.
RandShare [13] n > 3f O(n3) O(n4) 1 (P)VSS DL Async.

RandRunner [14] n > 2f O(n) O(n2) f + 1 Trapdoor VDF tVDF, DL Sync.
SPURT [15] n > 3f O(n2) O(n2) 1 PVSS DBS Psync.

SCRAPE [16] n > 2f O(n3) O(n4) 1 PVSS DDH/DBS Sync.
STROBE [17] n > 2f O(n2) O(n3) 1 VSS RSA, DL Sync.
Unicorn [18] n > 2f O(n2) O(n3) 1 VDF RSW Sync.

Table 1.1: Existing random beacon protocols

In Table 1.1, we documented existing random beacon protocols and their characteristics. With a
majority of the data being gathered from a summary of knowledge on distributed random beacons by Choi
et al. [19] and the rest being extracted from the individual random beacon research papers. This table
serves to emphasize the amount of research that has been done in the field of distributed randomness and
acts as a guide when choosing which protocols to implement.

The first column of Table 1.1 contains the names of the random beacon protocols and the papers in
which they were first described. The second column describes the fault tolerance of each protocol. It is
important to note that n defines the network size, while f describes the number of adversaries the network
can tolerate. For example, n > 2f is known as an honest majority assumption and implies that a verifiable
random output will be created, as long as more than half the network is honest. The third and fourth
columns describe the communication complexity of each protocol with regard to the network size n. We
differentiate between the best-case scenario, where there is no adversarial behavior, and the worst-case

CHAPTER 1. INTRODUCTION 6

scenario, where the maximum tolerated amount of adversarial behavior is present. Sending a bit via a
point to point message has a complexity of O(1), while a broadcast has one of O(n). Furthermore, a
client specified parameter c is relevant in RandHerd [13] and RandHound [13]. The fifth column describes
the unpredictability of a protocol. With 1 being the optimal value, it refers to the number of protocol
iterations a rushing adversary can predict into the future. A rushing adversary is one that can see and send
all messages before every other participant. This value is at least 1, since a rushing adversary can always
see the output of the protocol before every other participant. However, in some protocols, this value lies
at f + 1 since they contain leadership elections and a rushing adversary can control up to f leaders in a
row. Hence, to ensure that a random value is unknown, a user must wait f + 1 iterations in some protocols
and only a single one in others. The sixth column describes the cryptographic primitive that is used in the
protocol, such as verifiable secret sharing (VSS), and publicly verifiable secret sharing (PVSS) using secret
sharing, verifiable delay functions (VDF), trapdoor VDF, and timed commitments using some form of
proof of work, and finally threshold BLS, ElGamal, and Schnorr using threshold signatures. The seventh
column describes the cryptographic assumption that must hold for the randomness generation to be secure,
with some assumptions being more strict compared to others. The final column describes the network
setting required for the protocol to function. This can be either synchronous, partially synchronous [20], or
asynchronous. A synchronous network is one where messages are guaranteed to arrive after a finite time
bound. In asynchronous networks, there exists no time bound, and messages may arrive after any finite
amount of time. Finally, partially synchronous networks combine both modes by being asynchronous until
a so-called global stabilization time (GST) happens, after which they are synchronous.

2
Background

In this chapter, we present the background knowledge needed to understand how random beacons function.
This includes cryptographic concepts and assumptions, commit schemes, secret sharing, and further topics.

2.1 Cyclic groups
To understand how random beacons function, we must first understand what kind of output we can expect
from them. After all, the statement ”Our random beacon protocol output 1” does not deliver any sort of
meaning until we know what other outputs were possible. Assuming the output was uniformly chosen
from {0, 1}, then 1 had a chance of 1/2, but from the set {0, . . . , n− 1}, it had a chance of 1/n. To more
clearly define the space in which random beacons function, we must take a closer look at group theory.

In group theory [21], a group G is defined as a set of elements together with an operation < G, · >, for
which the following four properties hold

1. Closure: ∀a, b ∈ G : a · b ∈ G

2. Associativity: ∀a, b, c ∈ G : a · (b · c) = (a · b) · c

3. Identity element: ∃e ∈ G,∀a ∈ G : e · a = a · e = a

4. Inverse element: ∀a ∈ G,∃b ∈ G : a · b = b · a = e.

The simplest, yet one of the most interesting groups, is the cyclic group. Which is defined by a single
element g of order q and an operation ·, such that

G = {g0 = e, g, g2, . . . , gq−1}, |G| = q.

If we define our outputs to be uniformly chosen from a cyclic group, statements such as ”Our random
beacon protocol output 1” suddenly gain meaning. Furthermore, the element g is known as a generator
and acts as an important cryptographic tool.

7

CHAPTER 2. BACKGROUND 8

2.2 Cryptographic assumptions
To prove the security of a cryptographic protocol, one must often make some underlying assumptions.
These assumptions allow for authentication schemes, zero-knowledge proofs, and many other protocols to
be provably secure as long as the underlying assumptions hold. In the following section, we will take a
closer look at some standard assumptions that are important when generating randomness.

2.2.1 Decisional Diffie-Hellman assumption
A commonly used assumption when generating randomness is the decisional Diffie-Hellman assumption.
It states that given a cyclic group G of order q, a generator g, and two triples

(ga, gb, gab), (ga, gb, gc),

it is hard to know which triple was created using two random variables a, b ∈ Zq, and which one
was created using three random variables a, b, c ∈ Zq. In other words, the decisional Diffie-Hellman
assumption states that gab seems like a random value, even if one knows ga and gb. This assumption is
crucial when generating random values. It is also important to note that a, b, c are finite field elements in
Zq and ga, gb, gc, gab are group elements in G.

The decisional Diffie-Hellman assumption builds upon the discrete logarithm problem, which states
that given two group elements x and y in G, it is hard to find k ∈ Zq such that

x = yk.

2.2.2 Random oracle model
Another commonly used assumption when generating randomness is the access to a random oracle. An
oracle being an entity that provides wisdom, and the randomness property being the lack of predictability
in events. In other words, a random oracle provides an unpredictable answer to any question. Furthermore,
once a random oracle provides a value, they remember the randomness they provided and will deliver the
same output to a specific input. If one party asks a random oracle a question and another party asks the
exact same question, they will both receive the exact same answer. An ideal random oracle can be seen in
Algorithm 1, if we assume the question to be an input of any length and the answer to be an output of a
fixed length. Furthermore, with := we define values, with = we compare values, and with← we randomly
pick a value from a set.

Algorithm 1 Ideal random oracle
state

A := [] //Initialize an empty directory
H(x)

if A[x] = ⊥ then
A[x]← {0, 1}l //Create a random value and save it under x

return A[x]

In practice, random oracles are realized using cryptographic hash functions. A famous example, and
the hash function used in our thesis, being SHA-256 [22]. Using only bit shifts and logical operations, a
hash function deterministically turns any input into a seemingly random output. The use cases for such a
function are vast and include fingerprinting, prime number generation, improving storage, and many more.
When generating randomness, hash functions can also be used in multiple ways.

CHAPTER 2. BACKGROUND 9

The simplest way would be to decouple the output from the input. Assume we have a function
f(x) := x. A malicious party could choose the exact output of a function by changing x. However, turning
the function into g(x) := H(f(x)) would not allow an adversary to determine the exact output. It would
only allow an adversary to pick a preferable output. Hence, adding a hash function on top of a random
number generator provides an extra layer of security. Another use case for random oracles lies in the
creation of non-interactive zero-knowledge (NIZK) proofs.

2.3 Non-interactive zero-knowledge proofs
To understand NIZK proofs, we must first understand zero-knowledge proofs in general. Hence, in the
following section, we will first go into detail on zero knowledge proofs by looking at a concrete example
that is used in multiple random beacon protocols. Namely, zero-knowledge proofs of equality, which were
first described by Chaum and Pedersen [23]. A zero-knowledge proof of equality is used to prove that two
values are equal in their exponent. In other words, given two generators g1, g2 and two values y1, y2 one
can prove that

logg1(y1) = logg2(y2) = x

without revealing the secret value x. How this is done can be seen in Figure 2.1.

Figure 2.1: Illustration of a zero knowledge proof of equality

In Figure 2.1 our protocol consists of two parties, the prover and the verifier. Furthermore, two
generators g1, g2, two values y1, y2, and the order of the underlying group q are assumed to be known. In
this zero-knowledge proof, the prover wants to show that logg1(y1) = logg2(y2) = x without revealing
x. If they could reveal x, it would be as simple as sending x to the verifier, who could then check that
gx1 = y1 and gx2 = y2. What the prover does instead is, firstly, they create a random value r ← Zq. This
random value is also known as the blinding factor. The prover then raises both generators to the power of
the blinding factor t1 ← gr1 and t2 ← gr2 and then sends both to the verifier. Once the verifier receives
these values, they create a challenge by picking a random value c ← Zq. The prover then responds to

CHAPTER 2. BACKGROUND 10

the challenge by sending back s← (r − xc). Once the verifier receives s and checks that t1 = yc1g
s
1 and

t2 = yc2g
s
2 the protocol is over and the prover has shown to the verifier that logg1(y1) = logg2(y2) = x.

This interactive protocol can be considered a zero-knowledge proof, as it fulfills the three properties
that are required to be a zero-knowledge proof.

1. Completeness: If the statement is true, the verifier will be completely convinced by its truthfulness.

2. Soundness: If the statement is false, no prover can convince a verifier that it is true, except with a
negligible probability.

3. Zero-knowledge: If a statement is true, a verifier learns no information other than the fact that it is
true.

Completeness holds, since for i ∈ {1, 2}

yci g
s
i = yci g

r−xc
i

= yci g
r
i (g

x
i)

−c

= tiy
c
i y

−c
i

= ti.

Soundness holds, since given two valid transcripts (t1, t2, c, s), (t1, t2, c′, s′) with c ̸= c′ one can extract
x by calculating

ti = yci g
s
i = yc

′

i gs
′

i

yc−c′

i = gs
′−s

i

g
x(c−c′)
i = gs

′−s
i

x(c− c′) = s′ − s (mod q)

x =
s′ − s

c− c′
(mod q).

Furthermore, the proof is zero-knowledge, since one can create transcripts (t1, t2, c, s) of real proofs with
the same distribution as the real proof by computing

c← Zq

s← Zq

t1 ← yc1g
s
1

t2 ← yc2g
s
2.

To extend a zero knowledge proof and make it non-interactive, we must add one further property.

4. Non-interactiveness: The statement can be proven without the verifier having to interact with the
prover.

To accomplish this, we must remove any interactions between the prover and the verifier. With the only
interaction being when the verifier creates a challenge c← Zq . We do so by using a random oracle instead.
The idea being that instead of requesting a challenge from a verifier, we ask the oracle to create a challenge
by calculating c← H(t1||t2) and s← (r − xc) and then sending (c, s) to the verifier. Once the verifier
receives (c, s) they can calculate t1 and t2 and then check that the challenge was created correctly. An
illustration of a non-interactive zero-knowledge proof of equality can be found in Figure 2.2.

CHAPTER 2. BACKGROUND 11

Figure 2.2: Illustration of a non-interactive zero-knowledge proof of equality

2.4 Commits and reveals
There are two main phases that appear in most distributed randomness protocols. The commit phase and
the reveal phase. The commit phase allows participants to lock in their values without revealing them.
Meanwhile, the reveal phase does the opposite. It allows participants to open up their committed values
once they do not have to be kept secret anymore.

These phases appear in most distributed randomness protocols since distributed randomness should be
created by all participants equally, however, each participant should choose a random value independently
of all other participants. Hence, participants first commit to their values, and only once everyone has
committed to a value, can they reveal them, and the final randomness gets calculated.

2.4.1 Commit phase
As mentioned before, the commit phase is where participants lock in their secret values. This is done with
a one-way commit function, Com(r, s). As an input, a commit function takes a secret value s and some
randomness r, also known as the blinding factor. These inputs then get put through a one-way function,
meaning that given Com(r, s) there exists no efficient way to calculate Com−1(), that leads to the inputs
(r, s). The only way to find out the inputs of a commit function is to wait for the commit to be revealed or
to test all possible inputs. Furthermore, testing all possible inputs should be computationally infeasible or
mathematically impossible.

This leads us to the different commit schemes that exist. A commit function can either have perfect
binding or it can have perfect hiding. With perfect binding, the secret value s cannot be changed once it
has been committed to. With perfect hiding, the secret value cannot be extracted from the commit before it
has been revealed. It is impossible to have both, since perfect binding implies computational hiding and
perfect hiding implies computational binding [24]. To illustrate the difference, we shall take a common
example of a commit function using a random oracle,

Com(r, s) := H(r||s).

If we set the length of the blinding factor r to zero and assume s ∈ {0, 1} to be the only meaningful

CHAPTER 2. BACKGROUND 12

input Com(r, s) := H(s), then the commit function has perfect binding and computational hiding. The
function has computational hiding since, given a commit H(s) an adversary could compute all possibilities
H(0) and H(1), as to find out which value s was committed to. Furthermore, the commit function has
perfect binding since a committed value s cannot be changed, assuming Com(r, 0) = H(0) ̸= H(1) =
Com(r′, 1).

If we instead set the length of the blinding factor r to be unlimited and assume s ∈ {0, 1}, then
we have perfect hiding and computational binding. The function has computational binding, since an
adversary could compute new blinding factors r′ until they found a collision Com(r, s) = Com(r′,¬s).
This collision exists, since the length of r is unlimited and the output length of the random oracle is limited.
Once a collision is found, an adversary could reveal (r′,¬s) after committing to (r, s), meaning that the
commit function has computational binding. However, it has perfect hiding since, given Com(r, s) both s
and ¬s are possible. Hence, the secret value s can never be found out.

Summarizing, perfect binding protects the integrity of the commit function, while perfect hiding
protects the secret value s. When generating randomness, both schemes are valid. If an adversary could
figure out all other commits, they could choose a fitting value to commit to, which would lead to a desired
output. If an adversary could change their commit, they could wait for all commits to be revealed and reveal
a value that would lead to a desired output. In both cases, an adversary with infinite computational power
could influence the outcome, however, an adversary with limited computational power could influence
neither. But perfect binding forces an adversary to calculate all other commits, while perfect hiding only
forces them to change a single commit. Hence, perfect binding imposes a higher computational toll on an
adversary.

2.4.2 Reveal phase
In the reveal phase, a party simply has to open their commit. This is usually done by broadcasting the
values used inside the commit function. A reveal looks as follows,

Open(r, s) := (r, s).

Once received, participants can compare the reveal to the previous commit Com(Open(r, s)) = Com(r, s).
Furthermore, the timing of a reveal is important. A reveal should only be done once enough participants
have committed to their values. An early reveal would make the previous commit ineffective. A late reveal
would slow down the flow of a protocol. Lastly, a reveal that never arrives can cause issues. As mentioned,
if a party does not decide to reveal a commit themselves, it is impossible or computationally infeasible to
reveal it in their stead. Hence, the protocol could lose liveness. For this reason, some commit schemes
implement a recovery option, where parties can work together to recover a value.

2.5 Two-party coin flip
To give a concrete example of distributed randomness, we shall take a closer look at one of the simplest
examples. A two party coin flip. In other words, a protocol where two parties interactively generate and
agree upon a random value in {0, 1}.

The protocol illustrated in Figure 2.3 consists of two phases, as mentioned in Section 2.4. A phase in
which the participants commit to their random values, and a phase in which they reveal their committed
values. The protocol starts with both Alice and Bob flipping a random coin themselves. We will later add
these coin flips together modulo 2, as to get the resulting random coin flip. In the commit phase, Alice and
Bob both lock in their coin flips with the help of a random oracle and a blinding factor, e.g. by computing
Com(r, s) := H(r||s). This ensures that the committed coin flips cannot later be changed. Since the
blinding factor has variable length r ← {0, 1}∗, we have perfect hiding and computational binding. Once

CHAPTER 2. BACKGROUND 13

Figure 2.3: Illustrating example of distributed randomness

Alice and Bob have committed to their randomness, both know that neither can change their coin flips
a and b anymore. Hence, the reveal phase begins, where both parties reveal the values that were used to
create the commit. They do so by sending (ra, a) and (rb, b) to each other. To ensure that nothing was
changed, Alice must check that the commit of (b, r) is equal to the value previously received, and Bob
must do the same. Once the verification is complete, both Alice and Bob can be sure that a and b are
independent of each other. The final randomness then gets calculated by taking both values and adding
them together, modulo 2. In other words, XORing both values together.

This protocol guarantees security as long as a single party is honest. Even if the other party behaves
maliciously, the resulting coin flip will still be random. To show this, we first define two random variables,
A := ”The coin flip of Alice” and B := ”The coin flip of Bob”. Furthermore, we define Z := A ⊕ B.
W.l.o.g. we assume that the coin flip of Alice is honest. It follows that P [A = 0] = P [A = 1] = 1

2 and

P [Z = 0] = P [A = 0 ∩B = 0] + P [A = 1 ∩B = 1]

= P [A = 0]P [B = 0] + P [A = 1]P [B = 1]

=
1

2
P [B = 0] +

1

2
P [B = 1]

=
1

2
(P [B = 0] + P [B = 1]) =

1

2
.

P [Z = 0] =
1

2
=⇒ P [Z = 1] =

1

2
.

We see that no matter what distribution Bob chooses, the resulting coin flip remains fair.
The main issue, however, with this type of randomness generation protocol is that it does not guarantee

liveness. When a single party behaves maliciously, they can prevent the protocol from ever finishing. This
stems from the fact that we cannot force a party to open their commit unless they desire to do so. If a
participant does not open their commit, the reveal phase never ends, and the protocol does not lead to
a result. Hence, for this protocol to work, we need both parties to participate in it and a single party to
honestly generate a random coin flip.

This example provides good insight into how distributed randomness generates values. The protocol

CHAPTER 2. BACKGROUND 14

itself does not create randomness, instead, it takes values from multiple parties and adds them together
into a completely new random value. However, we must ensure liveness, since doing so ensures that the
protocol has a guaranteed random output. For this, secret sharing is a viable option.

2.6 Secret sharing
When keeping a secret, such as a password or any other type of sensitive information, storing it on a single
device might seem like the safest option. Only having to worry about a single point of failure makes a
secret more manageable. However, this single point of failure also implies that only one device must fail
for the secret to be lost forever. A possible solution would be to create backups of the secret by copying it
onto multiple devices. This would ensure liveness, but it would decrease security since there would now
be multiple possibilities for the secret to be revealed. To solve these issues, secret sharing can be applied.

In (f + 1)-of-n secret sharing, one can convert a secret into n secret shares and then distribute these
among n participants. To then recover the secret, it takes any set of f + 1 distinct shares. In the case of
(f + 1)-of-n secret sharing, the number f + 1 is also known as a quorum, as it describes the minimum
number of nodes needed to reconstruct the secret. In other words, even if n− (f + 1) shares get lost, as
long as a quorum of nodes still exists, one can recover the secret. Furthermore, an adversary with f or
fewer shares cannot create a quorum and should know nothing about the secret.

For this reason, the number of participants n inside a network is often chosen depending on how many
adversaries one can tolerate. For example, n > 2f implies that one has an honest majority, since f is the
number of adversarial or faulty nodes and n is the network size.

Secret

Share 1 Share 2 ... Share f+1 ... Share n

Recovered Secret

Figure 2.4: Example of (f + 1)-of-n secret sharing

2.6.1 Polynomial secret sharing
A concrete example of secret sharing is polynomial secret sharing, also known as Shamir’s secret shar-
ing [25]. With the main idea being that a polynomial of degree f is clearly defined by any f + 1 distinct
points. Hence, one can put a secret at position zero of a polynomial and share the values p(i) with nodes
i ∈ {1, . . . , n}. To then reconstruct the secret at position zero, f + 1 nodes must work together and
interpolate the point at position zero. Since we assume that there are at most f adversaries, we can be
sure that the secret can only be reconstructed with the permission of an honest party. More clearly, to do
(f + 1)-of-n polynomial secret sharing, one must follow the following steps.

1. Create f random coefficients {c1, . . . , cf} from a finite field e.g. Zq. Together with the secret s
the coefficients define the polynomial at position zero. Said polynomial looks as follows, p(x) :=
s+ c1x+ x2x

2 + · · ·+ cfx
f and also results in a value from the finite field.

2. Send secret shares p(i) to participants i ∈ {1, . . . , n} over secure channels.

CHAPTER 2. BACKGROUND 15

3. Delete the secret s yourself, as to avoid a single point of failure.

To then recover the secret, one has to collect f + 1 secret shares and use Lagrange interpolation to
reconstruct the secret from its shares.

2.7 Theoretical lower limit
When talking about distributed or public randomness, it is important to understand, that it is not here
to replace private randomness. Firstly, to create a distributed random value, one often needs private
randomness. Furthermore, there exists a theoretical lower limit that comes with distributed randomness
and distributed computing in general. The limit arises when taking physical distance into consideration. If
we take a look at the two-party coin flip from Section 2.5 and imagine one party being in Switzerland and
the other party being in New Zealand, which is practically on the other side of the world. We know that
information cannot travel faster than the speed of light. Assuming we do not dig a hole through the center
of the earth, the minimum amount of time for any information to reach New Zealand from Switzerland lies
at around 19′000′000m

300′000′000m/s ≈ 0.063sec. This can be seen as a minimal communication delay between the
two parties. Furthermore, the protocol consists of two phases, so the shortest runtime for the protocol lies
at around 0.126sec.

Even with it being a minimal time, it is orders of magnitude slower than what it takes a computer to
generate a random coin flip locally. Furthermore, there is no clear solution to this issue. One way would be
to reduce the distance between participants, however, this would lead to the system being less distributed
and more restrictive. Another solution would be to generate multiple numbers in batches, however, getting
multiple random values at once rarely replaces getting multiple random values in succession. Hence, it
should be expected that distributed randomness will take a longer amount of time to generate a random
value. It is not meant to replace all the random values we consume. Instead, it provides a form of verifiable
randomness for the public to believe in.

3
Design

3.1 SCRAPE explained
For our random beacon implementation, we chose to implement the protocol defined by Cascudo and
David in their 2017 paper titled ”SCRAPE: Scalable Randomness Attested by Public Entities” [16]. There
were multiple reasons for this choice. Firstly, while researching other papers, we found that many led back
to SCRAPE. Famous examples include Albatross [4] by the same authors and OptRand [12] by Bhat et al.
Albatross takes SCRAPE and applies packed Shamir secret sharing to it. This allows for the generation of
O(n2) uniformly random values instead of a single value. OptRand improves upon SCRAPE by having an
epoch leader that handles most of the network traffic and processing. Both of these protocols improve
upon SCRAPE, but they still stem from it. Furthermore, they add complexity to the protocol and are more
difficult to implement. For our research, a simple, state-of-the-art protocol sufficed.

Objective reasons for choosing SCRAPE were its cryptographic primitive, unpredictability, honest
majority assumption, reusable setup, the fact that all it needs, communication-wise, is a public ledger, its
linear number of exponentiations per verification, and many more.

Regarding its cryptographic primitive, SCRAPE uses PVSS, which stands for publicly verifiable
secret sharing. Allowing for any entity, even ones not involved in the protocol, to verify and validate that
all computations were done correctly. This seemed the most fitting for generating public randomness.
Furthermore, SCRAPE has a perfect unpredictability of 1, meaning that the next random value is not
known by any party. SCRAPE also has an honest majority assumption. As long as n > 2f , with n being
the number of nodes and f the number of malicious or faulty nodes, SCRAPE will deliver an honest
output. Furthermore, the setup of SCRAPE is reusable, meaning that it only has to be done once in the
first iteration. In later iterations, parties can reuse the public keys exchanged in the setup phase. As long
as a public ledger or a blockchain exists, where users can post data, SCRAPE can function. It does not
rely on point to point links, broadcasts, or any other means of communication other than a public ledger.
SCRAPE was also the first PVSS based protocol to only require a linear number of exponentiations per
verification, meaning that it is more efficient than its predecessor’s computation wise.

All of these factors are what set SCRAPE apart from other works and led to our choice. However,
SCRAPE was also problematic in certain aspects compared to other works. One aspect being that with
a maximum amount of malicious behavior, SCRAPE has a communication complexity of O(n4), as

16

CHAPTER 3. DESIGN 17

can be seen in Table 1.1, and requires a network to do O(n2) Lagrange interpolations, to calculate the
final randomness. Lastly, SCRAPE requires a synchronous network to function, while asynchronous
assumptions simplify implementation efforts and allow for more natural and robust protocols. We will
address these issues in Section 3.2 after explaining SCRAPE.

3.1.1 Phases of SCRAPE
The random beacon protocol described in SCRAPE is made up of four phases. The setup phase consists
of waiting for n public keys. This only happens in the first iteration and in later iterations, the protocol
consists of the remaining three phases. The commit phase is where the protocol waits for f + 1 commits.
The reveal phase is where the protocol waits for all commits to be opened. Lastly, the recovery phase is
where the protocol waits for f + 1 recovery shares for each unopened commit.

It is important to note that the setup and the reveal phases of SCRAPE are what make the protocol
synchronous. Waiting for n public keys and waiting for all commits to be opened is only possible in a
synchronous network setting, since one has to know when to stop waiting. In the following subsection, we
will go into detail on all four phases.

3.1.1.1 Setup phase

Before a party is allowed to participate in the random beacon protocol, their public key must be known to
all other participants. For this, each party must complete a setup where they create a public and secret key
pair. The public key must then be shared with all other participants. To do this, a party must first pick a
random value from Zq which is then set as their secret key

sk ← Zq.

Afterward, the public key gets derived from the secret key. This is done by calculating

pk := hsk.

With h being a generator of the underlying cyclic group G. The sharing of the public keys is then done
through the public ledger. A participant must simply post their public key to take part in the protocol. The
setup in pseudocode form can be seen in Algorithm 2. With Post(val) being the function to post values
onto the public ledger and Receive(val) being the function invoked after a value is posted onto the public
ledger. Furthermore, we represent each participant with a unique process inside {p1, . . . , pn}.

Algorithm 2 Setup (process pi).
1: state
2: sk := 1
3: pks := [⊥]n //Empty array of public keys

4: upon event INIT do
5: sk ← Zq //Create a random secret key
6: invoke Post(hsk)

7: upon Receive(pkj) from pj such that pks[j] = ⊥ do
8: pks[j] := pkj

As mentioned before, this process must only be done once when starting the protocol. Afterward,
all participants know each other’s public keys, and the protocol may be run as many times as needed.

CHAPTER 3. DESIGN 18

Furthermore, the setup can be implemented in such a way that nodes can be replaced, removed, and added
at will, with only the affected nodes having to run the setup again. However, proactive key refreshes should
still be possible in the case that a key has been used too often.

3.1.1.2 Commit phase

Once the setup is complete, all n public keys are known, and the protocol moves on to the commit phase.
This can also be seen as the secret sharing phase, with randomness being the secret. Each participant starts
by picking a random value s← Zq and uses (f + 1)-of-n polynomial secret sharing to share this value
among all other participants, as explained in Section 2.6. For this, a party defines a random polynomial
p(x) := s+c1x

1+ · · ·+cfx
f which has degree f and the secret random value s at position zero. SCRAPE

then defines the commit of a participant to consist of three parts, encrypted shares, commitments, and
NIZK proofs.

1. Encrypted shares {ŝ1, . . . , ŝn} exists to make the recovery of a secret possible, in case a party does
not reveal a secret themselves. Furthermore, the shares are encrypted with the public keys of the
participants ŝi = pk

p(i)
i , so that one party alone could not figure out the secret behind them. Instead,

at least f + 1 parties must work together to recover the secret.

2. Commitments {v1, . . . , vn} with vi = gp(i) exist to allow figuring out the degree of the secret
sharing polynomial p(x). The degree of the polynomial p(x) should not be higher than f , otherwise
it would not be (f + 1)-of-n secret sharing.

3. NIZK proofs {e, z1, . . . , zn} ensure that the commitments and the encrypted shares are created by
the same polynomial p(x). This is done with a NIZK proof of equality, which we described in
Section 2.3. With e being the challenge created by the SHA-256 [22] hash function and {z1, . . . , zn}
being the responses to the challenge.

Once the commit is shared and verified, a party has committed to their randomness. Furthermore, if an
adversary decides not to reveal their commit, f + 1 parties may work together to recover the secret instead.
This property is what allows SCRAPE to have a guaranteed output. As long as a quorum of honest parties
exists, commits can be opened. Lastly, a plain commit to the secret Com(s, r) also gets published. This
exists, so that one could simply open their secret instead of having to interpolate over all encrypted shares.
What kind of commitment scheme to use is open to the reader. Since we have two generators, a Pedersen
commitment scheme [26] would be possible. Here a party publishes Com(s, r) := gshr, which has
perfect hiding and computational binding. However, we could also use a perfect binding scheme in which
one publishes Com(s) := gs. This would be in line with all of our other commitments. Furthermore,
gs can be calculated by any public entity using Lagrange interpolation, since {gs1 , . . . , gsn} are known.
Hence, the plain commit is already included with the previous commit. The pseudocode form of how to
produce a commit can be seen in Algorithm 3.

With the words commit, commitment, and plain commit being used inside the SCRAPE protocol and
causing confusion, Table 3.1 differentiates the words.

CHAPTER 3. DESIGN 19

Algorithm 3 Commit function
9: Commit(pks)

10: s← Zq //Pick a random polynomial of degree f with p(0) = s
11: for i ∈ 1, . . . , f do
12: ci ← Zq

13: p(x) := s+ c1x
1 + · · ·+ cfx

f

14: for i ∈ 1, . . . , n do
15: vi := gp(i); ŝi := pks[i]p(i) //Create commitments v and encrypted shares ŝ
16: wi ← Zq //Create a NIZK proof using a random oracle
17: α1,i := gwi ;α2,i := pks[i]wi

18: e := H(v1, ŝ1, . . . , vn, ŝn, α1,1, α2,1, . . . , α1,n, α2,n)
19: for i ∈ 1, . . . , n do
20: zi := wi − p(i) · e
21: return (ŝ1, . . . , ŝn, v1, . . . , vn, e, z1, . . . , zn)

Type Meaning

Commitment Refers to the group elements vi = gp(i) that allow for the degree of the polyno-
mial p() to be checked.

Commit
Refers to the vector that participants share during the commit phase. The vector
consists of encrypted shares, commitments, and NIZK proofs and looks as
follows, (ŝ1, . . . , ŝn, v1, . . . , vn, e, z1, . . . , zn).

Plain commit Refers to the value Com(r, s) that gets posted onto the public ledger. It allows
for s = p(0) to be easily revealed, without the recovery having to take place.

Table 3.1: Different types of commits

CHAPTER 3. DESIGN 20

3.1.1.3 Reveal phase

Once f + 1 parties have committed to their randomness and the commit vectors have been validated, the
output of the random beacon protocol is determined, and the protocol moves on to the reveal phase. We
wait for f + 1 commits, since we can then be sure that at least one commit comes from an honest party.
Similarly to the two-party coin flip described in Figure 2.3, we can be sure that the output is truly random,
as long as one of the committed secrets is truly random. Since the output is determined, the protocol may
not accept any further commits once the reveal phase has begun. Furthermore, to get the output of the
protocol, all commits must be opened.

The reveal phase consists of publishing the respective (s, r) values, which were used to produce the
plain commit. Once received, parties must verify that Com(s, r) is equal to the previously sent commit.
This involves performing Lagrange interpolation on {v1, . . . , vf+1} to calculate gs and ensuring that s was
revealed correctly. Applying Lagrange interpolation on the commitments entails O(n) exponentiations.
It follows that with O(n) reveals, each node performs O(n2) exponentiations, and the entire network
performs O(n3) exponentiations.

If all commits get opened, the protocol finds itself in the best-case scenario of SCRAPE. We may skip
the recovery phase and calculate the final randomness. However, if even a single commit is not revealed,
the protocol moves on to the recovery phase.

3.1.1.4 Recovery phase

For every party that does not open their commit, the remaining participants must recover it on their behalf.
This is possible, since (f + 1)-of-n secret sharing was used during the commit phase. Hence, a quorum
can work together by decrypting their encrypted shares and reconstructing the secret. Although decrypting
might not be the most fitting word, considering that a decrypted share looks as follows,

s̃i := ŝ
1

ski
i = (pk

p(i)
i)

1
ski = (hskip(i))

1
ski = h

skip(i)

ski = hp(i).

Hence, decrypted shares s̃i are marked with a tilde, as they are the generator h raised to the power of the
secret share p(i). Furthermore, the recovery vector, which participants must post, is made up of two parts.
The decrypted share s̃i, and a NIZK proof of equality {e, z}, which proves that the share was decrypted
correctly, by showing logh(pki) = logs̃i(ŝi) = ski. The pseudocode of the decryption process can be
seen in Algorithm 4.

Algorithm 4 Decryption
22: Decrypt(ski, (ŝ1, . . . , ŝn))

23: s̃i := ŝ
sk−1

i
i //Decrypt the share

24: w ← Zq //Create a NIZK proof using a random oracle
25: α1 := hw;α2 := s̃wi
26: e := H(pki, ŝi, α1, α2)
27: z := w − e · ski
28: return (s̃i, e, z)

Once f + 1 encrypted shares have been decrypted, we make use of an adapted version of Lagrange
interpolation to reconstruct the original secret. The only difference being that the Lagrange coefficients
are used in the exponent. Hence, O(n) exponentiations have to be done. The pseudocode of the adapted
version of Lagrange interpolation can be seen in Algorithm 5.

In SCRAPE, the recovery of a commit can happen at most f times, since we assume at least one
commit to be from an honest party. However, SCRAPE also functions if all f + 1 commits have to be

CHAPTER 3. DESIGN 21

Algorithm 5 Recovery
29: Recover(s̃α1 , . . . , s̃αf+1)
30: val := 1
31: for j ∈ {1, . . . , f + 1} do
32: λj :=

∏
k ̸=j

αk
αk−αj

//Calculate Lagrange coefficients

33: val := val · s̃λj
αj

34: return val

recovered. Although, this would be the worst-case scenario of SCRAPE, since recovering a commit is
more complex compared to revealing a commit, considering that a quorum has to work together, instead of
a single party.

3.1.2 Randomness calculation
For simplicity reason, we define the secrets of the f + 1 nodes, that participated in the commit phase, as
{s1, . . . , sf+1}. Assuming all secrets have been revealed, then the values {s1, . . . , sf+1} are known. To
get a random value r′ that follows from all other random values, one can calculate

r′ :=

f+1∑
i=1

si.

However, r′ can only be calculated when all commits get revealed. If we assume commit i ∈ {1, . . . , f+1}
does not get revealed and has to be recovered, then hsi is known instead of si. Since we assume the
discrete logarithm problem to be hard, one cannot get si from hsi and one cannot calculate r′ if a single si
is unknown. To solve this issue, SCRAPE does not calculate r′ but instead calculates

r :=

f+1∏
i=1

hsi ,

which is equivalent to

r =

f+1∏
i=1

hsi = h
∑f+1

i=1 si = hr′ .

And since r′ is random, it follows that hr′ is random as well. The only difference being that r′ ∈ Zq,
while r ∈ G. However, the problem of differing groups can be solved with the help of a random oracle.
Calculating H(r′) or H(r) both result in a random value in {0, 1}l. This way, SCRAPE outputs the same
random value no matter how many commits get recovered or revealed.

3.1.3 NIZK verification
As mentioned in the previous subsection, during two phases of SCRAPE, a NIZK proof is used. Once,
during the commit phase and once during the recovery phase. In both instances, the purpose is similar.
The first NIZK proof is used to prove that logpki

(ŝi) = logg(vi) = p(i). The second NIZK proof is used
to prove that logh(pki) = logs̃i(ŝi) = ski. These zero-knowledge proofs are known as proofs of equality,
and they are explained in more detail in Section 2.3. The pseudocode form of the NIZK proof verification,
can be found in Algorithm 6.

CHAPTER 3. DESIGN 22

Algorithm 6 NIZK check

CheckCommitNIZK(ŝ1, . . . , ŝn, v1, . . . , vn, e, z1, . . . , zn)
35: for j ∈ 1, . . . , n do
36: α1,j := gzjvej ;α2,j := pk

zj
j ŝej

37: return e = H(v1, ŝ1, . . . , vn, ŝn, α1,1, α2,1, . . . , α1,n, α2,n)

CheckRevealNIZK(s̃j , e, z)
38: α1 := hzpke

j ;α2 := s̃zj ŝ
e
j

39: return e = H(pkj , ŝj , α1, α2)

3.1.4 Degree verification
An important, if not the most important, contribution of SCRAPE was its degree verification algorithm,
which can be run with a linear number of exponentiations. SCRAPE accomplished this by simplifying
the problem of checking the degree of the underlying polynomial. Since given a set of commitments
{gp(1), gp(2), . . . , gp(n)}, one must check that the underlying polynomial p(x) has a degree of ≤ f . Not
doing so would leave an obvious attack possibility. An adversary could share a polynomial of degree
> f and then interpolating different points would lead to different results. To illustrate such an attack,
we take the simplest example: f = 1, n = 3, p(x) = x2, and an order q. This leads to the secret shares
{(1, 1), (2, 4), (3, 9)}. Taking the points (1, 1), (2, 4) and interpolating them, gives us the secret value
q− 2. However, taking the points (1, 1), (3, 9) leads to the value q− 3. This allows an adversary to choose
which randomness they would prefer by withholding their share. Hence, it is important to ensure that p(x)
has a degree ≤ f .

To check the degree of {gp(1), . . . , gp(n)} let us first talk about checking the degree of {p(1), . . . , p(n)}.
We know that given f + 1 points, we are able to uniquely identify a polynomial of degree f . One option
would be to Lagrange interpolate all possible sets of f +1 points and ensure that they all result in the same
value. However, this method would be inefficient, as it would require O(n!) Lagrange interpolations. A
more efficient method would be to reconstruct the polynomial p(x) given f + 1 points and then evaluate
p(x) on the remaining n−(f+1) points, ensuring that all values stem from the same polynomial of degree
f . However, polynomial reconstruction requires O(n3) multiplications, making this method inefficient as
well. SCRAPE solves this problem in a way that follows from results in error-correcting code theory [27].
Firstly, a verifier creates a second random polynomial p′ with deg(p′) = n − f − 2. Multiplying both
polynomials together should result in a polynomial with deg(p′p) = (n− f − 2) + (f) = n− 2. For a
polynomial of degree n− 2 it holds that the coefficient of xn−1 is equal to 0. Furthermore, from Lagrange
interpolation it follows that p(x)p′(x) =

∑n
i=1(

∏
j ̸=i

x−j
i−j)p(i)p

′(i). Lastly, equating the coefficients of
xn−1 from both sides results in the following equation

0 =

n∑
i=1

∏
j ̸=i

1

i− j
p(i)p′(i).

SCRAPE uses this equation to verify that the degree of a polynomial is ≤ f . While this method
seems to require O(n2) multiplications, one can reduce this to O(n) by precomputing the coefficients
λi :=

∏
j ̸=i

1
i−j , which are the same in each execution of the verification algorithm. Furthermore, since

the shares are in the exponent of the generator, the verification requires a linear number of exponentiations
and looks as follows,

1 = g0 = g
∑n

i=1 λip(i)p
′(i) =

n∏
i=1

gp(i)gλip
′(i).

CHAPTER 3. DESIGN 23

The pseudocode for what has been described may be seen in Algorithm 7.

Algorithm 7 Degree verification

40: CheckDegree(v1, . . . , vn)
41: for i ∈ 0, . . . , n− f − 2 do
42: ai ← Zq

43: p′(x) := a0 + a1x
1 + · · ·+ an−f−2x

n−f−2 //Pick a random polynomial of degree n− f − 2
44: for i ∈ 1, . . . , n do //Verify, the commitments are of degree f
45: λi :=

∏n
j ̸=i

1
i−j

46: c⊥i := λip
′(i)

47: return 1 =
∏n

i=1 v
c⊥i
i

3.2 Changes to SCRAPE
While analyzing SCRAPE we decided to expand upon the existing protocol, as many other papers
do [4], [12]. Doing so allowed us to improve upon SCRAPE and make it more simple, efficient, and
asynchronous.

3.2.1 Adding shares
The largest change we made to SCRAPE, was to add all encrypted shares together once the underlying
commits were validated. Doing so allowed us to exploit an interesting property of polynomial secret
sharing. Interpolating all secret shares and then adding all secrets together, is the same as adding all secret
shares together and then interpolating the added secret. We show this via a direct proof.

Given a quorum Q of size f + 1, it holds that

∀s1, s2 ∈ Zq : s1 + s2 =
∏
i∈Q

λip1(i) +
∏
i∈Q

λip2(i)

=
∏
i∈Q

λip1(i) + λip2(i)

=
∏
i∈Q

λi(p1(i) + p2(i)).

This is essential to our changes in SCRAPE, since originally we would have interpolated all secrets
from the shares and then added the secrets together. With f + 1 secrets, this implies doing Lagrange
Interpolation f + 1 times in the worst-case. To avoid this worst-case scenario, we instead add all shares
together and interpolate only once. Hence, even if all commits do not get revealed, we only need to recover
a single secret.

We begin our protocol with an array containing n neutral elements C := [1]n. Once a valid commit
arrives, we add the encrypted shares to our array by calculating C[i] · = ŝi for all i ∈ {1, . . . , n}. Once
f + 1 valid commits have arrived, we are left with the following array

C = [pk
p1(1)+···+pf+1(1)
1 , . . . , pk

p1(n)+···+pf+1(n)
n].

Decrypting f + 1 shares and interpolating them at position zero leaves us with r := hp1(0)+···+pf+1(0).
This is the same result as in the original SCRAPE protocol.

CHAPTER 3. DESIGN 24

Since we add all encrypted shares together, we have to do O(n2) multiplications. However, we
only have to do a single Lagrange interpolation, which requires O(n) exponentiations. Meanwhile, in
SCRAPE, we need to do f + 1 Lagrange interpolations, which amounts to O(n2) exponentiations per
node. Afterward, SCRAPE adds the secrets together, causing O(n) multiplications. Since exponentiations
are more expensive compared to multiplications, we expect adding the shares together to be more efficient.
Furthermore, only O(n) decrypted shares have to be posted instead of O(n2), which adds more reasons as
to why our protocol should perform better.

0 1 2 3 4 5 6

0
1
2
3
4
5
6 f

g
f+g

Figure 3.1: Illustration of adding shares

In Figure 3.1, we illustrate a simple example of adding two polynomials together. The beige polynomial
f and the orange polynomial g get added together and result in the red polynomial. We see that adding
the functions together trivially causes the secrets at x = 0 and all secret shares to be added. However, as
shown previously, the statement also works in the opposite direction. Adding all secret shares together
causes the resulting polynomial to be the addition of f and g.

3.2.2 Asynchronous SCRAPE
SCRAPE is almost asynchronous. However, two aspects make it synchronous. Firstly, in the setup
phase, we wait for n public keys. The idea being that after a certain amount of time, we stop waiting for
public keys, and that defines the n of the protocol. Doing this is only possible in a synchronous network,
otherwise, we would not know when to stop waiting for public keys. This problem can be solved by
assuming that n = 3f +1 and waiting for 2f +1 public keys instead. There are at most f dishonest nodes,
it follows that 2f + 1 public keys will always arrive at some point.

The other problem is located in the reveal phase. There, we wait for all plain commits to be opened.
In an asynchronous network, this could lead to waiting forever if a party does not reveal their commit.
To avoid this, we must have an upper bound on message delays. However, having an upper bound on
message delays is equivalent to being in a synchronous network. This issue can be avoided altogether by
skipping the reveal phase. Instead, we move straight to the recovery phase, once f + 1 valid commits have
arrived. These changes would make SCRAPE asynchronous. However, SCRAPE does not do this, since it
would result in the worst-case scenario, where all f + 1 commits have to be recovered. Fortunately, in
Section 3.2.1 we simplified the recovery process. Instead of having to recover f + 1 commits, we only
have to recover a single added commit. Hence, once f + 1 commits have been validated, we move on to
the recovery phase and wait for any set of f + 1 shares to be decrypted, and then we interpolate the added
secrets using Lagrange interpolation.

In summary, the idea behind asynchronous SCRAPE is to not wait for every party to open their
plain commit, but instead recover the secret by default. This allows us to skip the reveal phase entirely.

CHAPTER 3. DESIGN 25

Furthermore, without a reveal phase, we can also skip posting plain commits, since they would not
be used. What remains is the modified setup, commit, and recovery phase. All of which can be run
asynchronously. Adding all of our changes together, we are left with the following pseudocode that can be
seen in Algorithm 8.

Algorithm 8 Asynchronous SCRAPE (process pi).
48: state
49: ski := 1 //Secret key
50: pks := [⊥]n //Array of Public keys
51: Commits := [⊥]n //Array of Commits
52: Recoveries := [⊥]n //Array of Recovery shares
53: AddedCommit := [1]2f+1 //Array with 2f + 1 many neutral elements

54: upon event INIT do
55: ski ← Zq

56: invoke Post(hsk)

57: upon Receive(pkj) from pj such that |pks ̸= ⊥| ≤ 2f ∧ pks[j] = ⊥ do
58: pks[j] := pkj

59: upon |pks ̸= ⊥| > 2f ∧ pks[i] ̸= ⊥ do //2f + 1 keys, start commit phase
60: Ci := Commit(pks)
61: invoke Post(Ci)

62: upon Receive(Cj) from pj such that |Commits ̸= ⊥| ≤ f ∧ Commits[j] = ⊥ do
63: if Cj is valid then
64: AddedCommit.add(Cj)
65: Commits[j] := Cj

66: upon |Commits ̸= ⊥| > f ∧ pks[i] ̸= ⊥ do //f + 1 commits, start recovery phase
67: Ri := Decrypt(ski, AddedCommit)
68: invoke Post(Ri)

69: upon Receive(Rj) from pj such that |Recoveries ̸= ⊥| ≤ f ∧Recoveries[j] = ⊥ do
70: if Rj is valid then
71: Recoveries[j] := Rj

72: upon |Recoveries ̸= ⊥| > f do //f + 1 recovery shares, calculate final randomness
73: return Recover(Recoveries)

4
Implementation

In this chapter, we discuss the implementation of our random beacon protocol.

4.1 Thetacrypt
For the implementation of our protocol, we chose to use Rust, which is a general-purpose programming
language that enforces memory safety [28]. Furthermore, we wrote the code in Rust using the Tokio
library [29] which provides an asynchronous runtime for Rust. Although it is possible to write protocols
without Tokio and with standard runtimes, we found it better to make every aspect of our implementation
asynchronous.

To simplify the implementation process, we developed our protocol on top of Thetacrypt [30], which
is a threshold cryptography library written in Rust. Thetacrypt was developed by the Cryptology and Data
Security research group at the University of Bern and allowed us to implement our cryptographic protocol
without having to worry about networking, handling datatypes, finite field operations, and many other
aspects that come with writing cryptographic protocols.

Figure 4.1 shows an illustration of the architecture of Thetacrypt taken from its GitHub page [31]. We
can see that the architecture of Thetacrypt is made up of three distinct layers.

1. Firstly, the service layer, which consists of the RPC handler. The RPC handler is responsible for
handling the API and managing other requests from users.

2. The core layer implements the logic, the primitives, and the orchestration code that is needed to run
the different cryptographic protocols that exist within Thetacrypt.

3. The network layer implements the modules to exchange peer-to-peer messages between the partici-
pating parties. It also offers an interface to post messages onto a public ledger.

As mentioned, we did not have to make changes to every layer. Inside the service layer, we made no
meaningful changes, since we made use of the API without adapting it. Furthermore, we also made no
meaningful changes in the network layer, since an interface to post messages onto a public ledger was
already provided, and that was all that SCRAPE needed communication-wise. The only changes we made

26

CHAPTER 4. IMPLEMENTATION 27

Figure 4.1: Illustration of the architecture of Thetacrypt [31]

were inside the core layer. Inside the core layer, we adapted the protocols module and the schemes module.
Inside the protocols module, we wrote high-level code that handled incoming and outgoing messages, and
determined which protocol phase one found themselves in. The code which we added to the protocols
module, was very similar to the pseudocode seen in Algorithm 8. However, it still took 544 lines of code
to transform the pseudocode into its real world equivalent. Furthermore, writing only high-level code
did not suffice for our implementation. For the low-level code that handled the underlying cryptographic
functions, we had to modify the schemes module. The code inside the schemes module was similar to the
remaining pseudocode and took up 612 lines of code. The protocols module would then communicate
with the schemes module through an interface, which we also expanded.

5
Evaluation

In this chapter, we firstly discuss the methodology used for testing and benchmarking our implementation.
Afterward, we look at the results that follow from our simulations and research. Lastly, we observe the
output of a statistical test suite which we ran on our random beacon protocol outputs.

5.1 Docker
To simulate nodes in our distributed randomness network, we made use of the Docker engine [32], which
is a useful tool for OS-level virtualization. However, we shall talk about the other options we considered
as well.

Hardware Hardware

Host OS Hypervisor

Docker

App 1 App 2 App 3 App 4 App 5 App ...

App 1 App 2 App 3

Guest OS Guest OS Guest OS

VM VM VM

Hardware

Host OS

App 1

OS-level virtualization Hardware-level virtualization No virtualization

Figure 5.1: Illustrating example of virtualization

In Figure 5.1, one can find the three options we considered for running our protocol on top of hardware.
The most intuitive option would be to use no virtualization. This can be seen on the right-hand side of
Figure 5.1. No virtualization implies that each Thetacrypt instance would run on its own set of hardware.
Hence, running a large-scale simulation would require numerous devices. The benefit of this method
would be that it would provide the most authentic simulation, since a distributed randomness network can
have multiple nodes located anywhere in the world. A way to deploy nodes across the world would be

28

CHAPTER 5. EVALUATION 29

to use cloud computing services such as AWS. We could use their elastic compute cloud [33] to borrow
multiple machines in different locations around the globe. Furthermore, using no virtualization allows us
to run as close to bare-metal performance as possible. However, the distributed randomness protocol is not
nearly computationally heavy enough to warrant the use of a separate machine for each node. Furthermore,
using services such as AWS can become costly, which we wanted to avoid.

The second option would be to use hardware-level virtualization. This can be seen in the middle of
Figure 5.1. Virtualizing the hardware allows us to run multiple virtual machines on a single device. Each
VM would then run its own instance of Thetacrypt and represent a node. However, here we run into the
opposite problem. Running a VM incurs a large overhead, and after a certain number of VMs, the device
would be overloaded. This would lead to needing multiple devices and, in turn, the same issues as with no
virtualization.

The third option is OS-level virtualization, which can be seen on the left-hand side of Figure 5.1. This
type of virtualization can be best described by a quote, from David Wheeler: ”All problems in computer
science can be solved by another level of indirection.” Docker embodies this quote by putting software
into containers and then running the containers on top of software. Doing so incurs a smaller overhead
compared to hardware-level virtualization. The containers only load the minimum number of packages that
are necessary for the software to run, instead of loading a fully fledged operating system as hardware-level
virtualization does. For our work, we used Docker to containerize Thetacrypt and run multiple instances
on top of a single device. This way, we could simulate an entire distributed randomness network on a
single device. The only thing that should differ in a real-world setting would be the latency of the nodes
and the variation in computational power between nodes.

5.2 Methodology
To test our protocol in a fair and reproducible manner, we required a reproducible setup. Hence, we
decided on the following experimental setup. In each simulation, we firstly created n docker containers,
which represented the nodes participating in the protocol. Each of the n docker containers ran an instance
of Thetacrypt. To make communication between these nodes possible, we created a further container that
acted as a blockchain stub. The only job of the blockchain stub was to receive messages from nodes and
broadcast them back in total order. Lastly, we created a client that started the protocol and specified the
number of iterations the protocol should run for. With the first iteration resulting in a single random value
and containing the setup phase, the commit phase, and the recovery phase. Later iterations functioned the
same, except they skipped the setup phase, as the public keys were known. Once the number of iterations
was reached, the protocol terminated, and the client received a JSON with a log of the entire protocol and
the amount of time that was spent in each iteration. The entire simulation was run locally with no message
delays on an 8-core AMD machine with 16 GB of RAM. However, the specifics did not matter too much,
as we simply needed a device that could run our simulations and had constant computational power, to
standardize our tests and allow for the comparison of the results.

Inside each simulation, we recorded three metrics. The average runtime of the protocol, the number
of messages that got posted to the blockchain, and the communication cost of the protocol. Measuring
the runtime of a protocol acted as a substitute for the computational complexity of said protocol, since
there were no message delays, the computational complexity should have been the only factor influencing
runtime. Furthermore, we averaged the runtimes to make the data accurate. We also measured the number
of messages posted to the blockchain, since each message to the blockchain incurred an overhead. Lastly,
we measured the communication cost by measuring how many bytes the protocol required to function.
The higher the communication cost, the more costly it would be to post the protocol onto a blockchain.
Hence, it is important for a random beacon protocol to try to minimize the communication cost.

CHAPTER 5. EVALUATION 30

5.3 Findings
In the following section, we present the findings of our research where we implemented our adapted
version of SCRAPE, which we will from here on refer to as async. SCRAPE, and the worst-case scenario
of SCRAPE. We then ran experiments according to the methodology presented in Section 5.2 for both
protocols and compared the results to each other. This was done to see whether our changes to SCRAPE
improved the protocol in regard to the measured metrics. Furthermore, the simulations showed us the
real-world cost of distributed randomness. We only compared async. SCRAPE with the worst-case
scenario of SCRAPE, since the other scenarios could not be transformed into an asynchronous setting.
However, async. SCRAPE is asynchronous by design, and the worst-case scenario of SCRAPE could be
made asynchronous by waiting for 2f + 1 instead of n keys in the setup phase, skipping the reveal phase,
and recovering every commit instead. Recovering all commits is equivalent to the worst-case scenario of
SCRAPE, since in the best-case scenario, all commits would be revealed and no recovery would have to
be done.

5.3.1 Average runtime

Number of ite
rations

2
4

6
8

10

Number of nodes 4
5

6
7

8
9

10

Runtim
e in m

s.

0

200

400

600

800

1000

Worst-case SCRAPE
Async. SCRAPE

Figure 5.2: Runtime measurements with up to 10 nodes and 10 iterations

Figure 5.2 contains the results of a small-scale simulation, where we recorded the average runtime
of the worst-case scenario of SCRAPE and the average runtime of async. SCRAPE. The small-scale
simulation ran with up to 10 nodes and 10 iterations, as to highlight some significant properties of both
protocols. The averages were calculated by running the simulation 100 times and then taking the average
time from each iteration. The average runtime of async. SCRAPE can be seen on the orange-colored
surface, while the exact values can be found in Table 6.1. The average runtime of the worst-case scenario
of SCRAPE can be seen on the blue surface, and the exact values can be found in Table 6.2. Furthermore,

CHAPTER 5. EVALUATION 31

the x-axis represents the number of nodes that were used to run the protocol. This number ranges from 4
to 10, with 4 being the smallest number of nodes we could simulate, given f = 1 and n > 3f = 3, and
10 being the maximum number of nodes since we only wanted to run a small-scale simulation here. The
y-axis represents the number of iterations the protocol was run for. This ranges from 1 to 10, since we told
the protocol to stop after producing 10 random values. Lastly, the z-axis represents the average runtime of
the protocol in milliseconds. This value ranges from 0 ms. to 1000 ms, with 1000 ms. being equivalent to
1 second. Hence, a lower value on the z-axis indicates a smaller runtime and is beneficial for a protocol.

Firstly, we observe that in this small-scale setting, the runtimes between both protocols do not differ by
much. The biggest difference can be seen at the maximum simulation size. With 10 nodes and after 10
iterations, the average runtime of the worst-case scenario of SCRAPE lies at 897.3 ms, while the average
runtime of async. SCRAPE lies at 615.8 ms. If we turn this into random values per second, we get that
with 10 nodes async. SCRAPE produced 16.2 random values a second, while the worst-case scenario of
SCRAPE produced 11.1 random values a second. It follows that async. SCRAPE was 45.7% faster. The
smallest difference can be seen at the smallest simulation size. With 4 nodes and after 1 iteration, async.
SCRAPE took 85.4 ms, while the worst-case scenario of SCRAPE took 92.8 ms. It follows that async.
SCRAPE was only 8.7% faster than the worst-case scenario of SCRAPE. This stems from the fact that the
first iteration, in both protocols, contains the setup phase, and it takes a while for the nodes to initialize and
do further precomputation. It is important to note that in every simulation, async. SCRAPE outperformed
the worst-case scenario in terms of runtime. We also see that the runtimes depended heavily on the number
of tolerated adversaries f . With 4, 5, and 6 nodes, the average runtimes were practically equivalent. This
comes from n ∈ {4, 5, 6} only tolerating a single adversary, f = 1. We see the same trend with 7, 8, and 9
nodes as they could tolerate up to 2 adversaries, f = 2. 10 nodes was once again different since 10 nodes
could tolerate up to 3 adversaries, f = 3. Another aspect we observe is that the runtime increased linearly
with every iteration. Lastly, we see that the runtime increased polynomially when we increased the number
of nodes. However, the experimental setup is still too small to make definitive conclusions.

Number of ite
rations

10
20

30
40

50

Number of nodes 10
20

30
40

50

Runtim
e in sec.

0
100
200
300
400
500
600

Worst-case SCRAPE
Async. SCRAPE

Figure 5.3: Runtime measurements with 50 nodes and 50 iterations

CHAPTER 5. EVALUATION 32

Figure 5.3 shows the results of a larger-scale simulation compared to the small-scale simulation seen
in Figure 5.2. We recorded the average runtimes of both async. SCRAPE and the worst-case scenario
of SCRAPE. However, here we ran the experiments for up to 50 nodes and 50 iterations. The averages
were calculated by running the simulation 10 times and taking the average runtimes. The runtime of async.
SCRAPE can be seen on the orange-colored surface, and the exact data for async. SCRAPE can be found
in Table 6.3. The runtime of the worst-case scenario of SCRAPE can be seen on the blue-colored surface,
while the exact data for the worst-case scenario of SCRAPE can be found in Table 6.4. The x-axis of
Figure 5.3 represents the number of nodes that were used to run the protocol. This number ranges from 5
to 50 since we started with 5 nodes and increased the number by 5 until we reached 50 nodes. The y-axis
represents the number of iterations the protocol ran for. This ranges from 1 to 50 iterations, since after 50
iterations, the protocol stopped. In other words, after producing 50 random values, the protocol stopped.
Lastly, the z-axis represents the average runtime in seconds. The z-axis ranges from 0 to 600 seconds, with
600 seconds being equivalent to 10 minutes.

Similarly to the smaller scale simulation, we can see that our protocol was strictly faster than the worst-
case scenario of SCRAPE. Furthermore, we see the difference more clearly now. The largest difference is
observed at the maximum simulation size. With 50 nodes and after 50 iterations, the average runtime of
async. SCRAPE lies at 164.2 seconds, while the worst-case scenario of SCRAPE lies at 544.7 seconds.
It holds that async. SCRAPE produced 18.3 random values per minute, while the worst-case scenario
of SCRAPE produced 5.5 random values per minute. It then follows that async. SCRAPE was 231.7%
faster than the worst-case scenario of SCRAPE. We continue to see that the runtime increased linearly
when raising the number of iterations. However, there were some exceptions in the worst-case scenario of
SCRAPE. With 40, 45, and 50 nodes, the runtime increased drastically in multiple locations. This can be
attributed to the system being overloaded when running too many docker containers. Furthermore, we see
that increasing the number of nodes causes the runtime to grow polynomially.

10 20 30 40 50
Number of nodes

0

100

200

300

400

500

Ru
nt

im
e

in
 se

c.

Runtime with 50 iterations
Worst-case SCRAPE
Async. SCRAPE

Figure 5.4: Runtime measurements with 50 iterations

In Figure 5.4, we take a closer look at how the increase of nodes influenced the average runtime of
both protocols. We do so by only looking at the runtime after 50 iterations, where the runtimes are the
highest, and leaving the number of nodes to be variable. This is the same as looking at the xz-plane at
50 iterations in Figure 5.3. Hence, the x-axis remains the number of nodes and the y-axis becomes the

CHAPTER 5. EVALUATION 33

runtime in seconds. Similarly, the average runtime of async. SCRAPE can be seen on the orange line,
while that of the worst-case scenario of SCRAPE can be seen on the blue line. As before, we see that
the worst-case scenario of SCRAPE and async. SCRAPE both scaled polynomially when increasing the
network size. However, this graph emphasizes more clearly, that the exponent of async. SCRAPE was
lower than the exponent of the worst-case scenario of SCRAPE.

5.3.2 Number of messages
In the following section, we compare the number of messages that got posted to the blockchain in async.
SCRAPE with the number of messages that got posted in the worst-case scenario of SCRAPE. Since each
message that gets posted to the blockchain incurs an overhead, this metric is important to measure and aim
to reduce.

Number of ite
rations

10
20

30
40

50

Number of nodes 10
20

30
40

50

Num
ber of m

sgs
0

5000
10000
15000
20000
25000
30000

Worst-case SCRAPE
Async. SCRAPE

Figure 5.5: Message number with 50 iterations and 50 nodes

Figure 5.5 shows the number of messages that got posted to the blockchain in async. SCRAPE and
the number of messages that got posted to the blockchain in the worst-case scenario of SCRAPE. We
ran the experiments for up to 50 nodes and 50 iterations. We did not take averages, since the number of
messages that got posted to the blockchain did not differ between simulations with the same parameters.
The number of messages that async. SCRAPE posted can be seen on the orange-colored surface, while the
exact data can be found in Table 6.5. The number of messages that the worst-case scenario of SCRAPE
posted can be seen on the blue-colored surface, while the exact data can be found in Table 6.6. The graph
seen in Figure 5.5 has the same dimensions, as the average runtime graph seen in Figure 5.3, with the
only difference being the z-axis. Here, the z-axis represents the number of messages that got posted to the
blockchain for a given simulation. This number ranges from 0 to 30’000, since with the largest simulation
size, the worst-case scenario of SCRAPE posted slightly less than 30’000 messages.

Our experimental data shows that async. SCRAPE always outperformed the worst-case scenario of

CHAPTER 5. EVALUATION 34

SCRAPE by a wide margin. With the largest difference being at the maximum simulation size. With
50 nodes and after 50 iterations, the worst-case scenario of SCRAPE posted 29’783 messages to the
blockchain, while async. SCRAPE posted 3’463 messages. Hence, async. SCRAPE posted only 11.6% as
many messages as the worst-case scenario of SCRAPE did. The smallest difference can be seen at the
smallest simulation size. With 5 nodes and after a single iteration, async. SCRAPE posted 14 messages,
and the worst-case scenario of SCRAPE posted 17 messages to the blockchain. Hence, async. SCRAPE
posted 82.4% as many messages as the worst-case scenario of SCRAPE did. We also see that the message
number grew linearly when we increased the number of iterations. Furthermore, increasing the number of
nodes caused the number of messages to grow quadratically in the worst-case scenario of SCRAPE, while
increasing the number of nodes caused the number of messages in async. SCRAPE to grow linearly. This
stems from the fact that the worst-case scenario of SCRAPE must post (f + 1)2 recovery messages, while
async. SCRAPE only has to post f + 1 many.

5.3.3 Communication cost
In the following section, we compare the communication cost of both protocols to each other. Doing so
allows us to see how much space we should expect our random beacon protocols to take up on a blockchain.
Since memory is valuable in public ledgers, it is important to try to minimize the communication cost size.

Number of ite
rations

10
20

30
40

50

Number of nodes 10
20

30
40

50

Cost in M
B

0
2
4
6
8

10
12
14

Worst-case SCRAPE
Async. SCRAPE

Figure 5.6: Communication cost with 50 iterations and 50 nodes

Figure 5.6 presents the number of bytes required by the async. SCRAPE protocol and the number of
bytes required by the worst-case scenario of SCRAPE. We ran the experiments for up to 50 nodes and 50
iterations. Furthermore, we did not take averages, since the communication cost did not differ between
different executions with the same parameters. The communication cost of async. SCRAPE can be seen on
the orange-colored surface, and the exact data can be found in Table 6.7. The communication cost of the
worst-case scenario of SCRAPE can be seen on the blue-colored surface, and the exact data can be found

CHAPTER 5. EVALUATION 35

in Table 6.8. The graph seen in Figure 5.6 has the same dimensions, as the average runtime graph seen
in Figure 5.3, with the only difference being the z-axis. Here, the z-axis represents the amount of bytes
needed for the protocol to function and be verifiably valid. This size is measured in megabytes, i.e., 106

bytes. The size ranges from 0 MB to 14 MB, since the maximum communication cost of all simulations
was slightly less than 14 MB.

Firstly, we observe that the communication cost between async. SCRAPE and the worst-case scenario
of SCRAPE did not differ by much. Although it is important to note that in all experiments, async.
SCRAPE took up less space compared to the worst-case scenario of SCRAPE. The biggest difference can
be seen at the maximum simulation size of 50 nodes and after 50 iterations. There async. SCRAPE took
up 9.7 MB, while the worst-case scenario of SCRAPE took up 13.6 MB. It follows that async. SCRAPE
required only 71.3% as much space as the worst-case scenario of SCRAPE did. The smallest difference
can be seen at the smallest simulation size of 5 nodes and after a single iteration. There, we see that async.
SCRAPE took up 3328 bytes, while the worst-case scenario of SCRAPE took up 3904 bytes. Hence,
async. SCRAPE took up 85.2% as many bytes. Furthermore, we see that the communication cost grew
linearly with the number of iterations and quadratically with the number of nodes for both protocols.

5.4 Results
The following sections summarizes the results of our findings that stem from implementing async.
SCRAPE, the worst-case scenario of SCRAPE, and further research.

5.4.1 Average runtime
Firstly, when looking at the small scale simulation seen in Figure 5.2, we notice that the runtime of both
protocols depends heavily on f . This makes sense if we highlight where throughout the protocols f is
important. In the setup phase, both protocols wait for 2f + 1 keys to be shared. Afterward, in the commit
phase, each commit is made up of 2f + 1 encrypted shares, commitments, and NIZK proofs. Before the
recovery phase can start, each protocol waits for f + 1 commits to arrive. Then async. SCRAPE waits for
f + 1 recovery shares, while the worst-case scenario of SCRAPE waits for (f + 1)2 shares. All of these
factors add together and explain why the runtimes depend so heavily on f . The only factor that depends
directly on n is the responsiveness of the network and f itself, given that n > 3f . We see in the findings
that with 6 nodes and after 10 iterations, async. SCRAPE was slightly faster than with 5 nodes and 10
iterations. This happens, since from 5 to 6 nodes f remains the same, however, the responsiveness of the
network increases. In a non-local simulation, this difference would be more prominent.

Moving on to the larger scale simulation seen in Figure 5.3. We notice that the runtime increases
polynomially when the number of nodes n increases. This is highlighted in Figure 5.4. While the runtime
increase undoubtedly seems polynomial, the value in the exponent of the runtime is less clear. However,
we do see that async. SCRAPE seems to have a lower exponent compared to the worst-case scenario of
SCRAPE. This is to be expected since, in terms of exponentiations, a network running async. SCRAPE
requires O(n2), while one running the worst-case scenario of SCRAPE requires O(n3). Furthermore,
the number of messages sent by async. SCRAPE is O(n), while the worst-case scenario of SCRAPE
sends O(n2). Considering that each message is equivalent to a total order broadcast, it follows that async.
SCRAPE has a communication complexity of O(n3) and the worst-case scenario of SCRAPE has one of
O(n4). Since async. SCRAPE requires fewer exponentiations and has a lower communication complexity,
it follows that the runtime should also have a lower exponent. One between O(n2) and O(n3), while
the runtime of the worst-case scenario of SCRAPE should be between O(n3) and O(n4). Furthermore,
Figure 5.4 support the claim that async. SCRAPE has an exponent of O(n2) while the worst-case scenario
of SCRAPE has one of O(n3).

CHAPTER 5. EVALUATION 36

5.4.2 Number of messages
In the message graph, which can be found in Figure 5.5, we see the largest difference between both
protocols. However, these differences did not translate into runtime or communication cost differences
as directly as we expected. To understand why, we must first understand what kind of messages async.
SCRAPE saves on. The worst-case scenario of SCRAPE sends more messages compared to async.
SCRAPE, since in the recovery phase it has to send (f + 1)2 messages, while async. SCRAPE only has to
send f + 1 messages. Hence, the messages that async. SCRAPES saves on are recovery messages. These
are made up of three values (s̃, e, z), with each value being 256 bits long. Hence, a recovery message only
takes up 768 bits, or 96 bytes. Considering that at the maximum simulation size, the worst-case scenario
of SCRAPE posted 26’320 more messages, this equates to only a couple of megabytes, which is what we
saw in the communication cost graph seen in Figure 5.6. The majority of the size is still taken up by the
commits. Even removing all recovery shares would not change the communication cost too drastically.

In terms of computational complexity, a recovery message only contains a single NIZK proof that must
be verified. This requires a constant number, O(1), of computations, hence receiving a recovery message
should not influence the runtime by much. However, receiving f + 1 recovery shares causes the protocol
to do a Lagrange interpolation. Hence, the worst-case scenario of SCRAPE requires f more Lagrange
interpolations. This does influence the computational complexity of the protocol. Hence, we see a larger
difference in the average runtime compared to the communication cost.

5.4.3 Communication cost
In the communication cost graph, which can be found in Figure 5.6, we see the smallest differences
between both protocols. As mentioned, this comes from the fact that the commits are unchanged in both
protocols, and the commits take up O(n2) bytes. Hence, without removing these commits or making them
smaller, we cannot get below a communication cost of O(n2).

5.4.4 Summary
To summarize and explain our findings, we document them in Table 5.1. Furthermore, the best-case
scenario data of SCRAPE stems from a paper written by Cascudo and David named ”ALBATROSS:
Publicly AttestabLe BATched Randomness Based On Secret Sharing” [4].

Protocol Setup Commit Reveal Recovery Total exponentiations
Worst-case SCRAPE O(n) O(n2) - O(n3) O(n3)
Best-case SCRAPE O(n) O(n2) O(n3) - O(n3)
Async. SCRAPE O(n) O(n2) - O(n2) O(n2)

Table 5.1: Exponentiations per network

Table 5.1 contains the number of exponentiations required in the entire network, for each phase of
SCRAPE. With exponentiations being the most computationally heavy operation in cyclic groups, it
is worth comparing these values. The first column contains the protocol names. We compare async.
SCRAPE, with the worst and best-case scenarios of SCRAPE. The second column describes the number
of exponentiations needed in the setup phase. This is always O(n), since n parties have to create a
public key hsk. The third column describes the commit phase and states that all protocols require O(n2)
exponentiations in the commit phase. This follows from the fact that f + 1 commits need to be made,
with each commit requiring a linear number of exponentiations. Afterward, the reveal phase only pertains
to the best-case scenario of SCRAPE since in both async. SCRAPE and the worst-case scenario of
SCRAPE no reveals happen. The reveal phase requires O(n3) exponentiations, since each node has to do a

CHAPTER 5. EVALUATION 37

Lagrange interpolation for each reveal, as to verify it. It follows that O(n) nodes have to do O(n) Lagrange
interpolations, with each interpolation needing O(n) exponentiations. Hence, the complexity is O(n3).
The recovery phase only applies to async. SCRAPE and the worst-case scenario of SCRAPE. Similarly
to the reveal phase, in the worst-case scenario of SCRAPE O(n) nodes need to perform O(n) Lagrange
interpolations. However, in async. SCRAPE O(n) nodes have to perform a single Lagrange interpolation.
Hence, async. SCRAPE has a complexity of O(n2), while the worst-case scenario of SCRAPE has one of
O(n3). Lastly, the final column describes the total number of exponentiations required by each protocol.
This value is calculated by summing everything together. It follows that both the worst-case and beast-case
scenarios of SCRAPE require O(n3) exponentiations, while async. SCRAPE only requires O(n2).

Protocol Number of messages Communication cost Network
Worst-case SCRAPE O(n2) O(n2) Async.
Best-case SCRAPE O(n) O(n2) Sync.
Async. SCRAPE O(n) O(n2) Async.

Figure 5.7: Further comparisons between async. SCRAPE and SCRAPE

In Figure 5.7, one can find further comparisons that follow from our research and findings. We once
again compare Async. SCRAPE, with the worst and best-case scenarios of SCRAPE. The second column
contains the number of messages that need to be sent in each protocol. The best-case scenario of SCRAPE
requires the same number of messages, as async. SCRAPE, which is O(n). However, the worst-case
scenario requires O(n2) messages, since it requires for (f + 1)2 recovery shares to be sent. Since each
message is equivalent to a total order broadcast, the communication complexity follows by taking the
number of messages and multiplying them by O(n2). Afterward, we see that the communication cost is
O(n2) bytes in all three protocols. This holds since all protocols contain the same commits, which take
up O(n2) bytes. However, since reveals are smaller than recovery shares, we can expect the best-case
scenario of SCRAPE to be slightly smaller than async. SCRAPE, which is then again smaller than the
worst-case scenario of SCRAPE in terms of communication cost. Lastly, the network assumption of the
protocols can be found in the final column. As mentioned before, async. SCRAPE and the worst-case
scenario of SCRAPE are asynchronous, while the best-case scenario of SCRAPE requires a synchronous
setting.

To summarize, through our findings and research, we see that async. SCRAPE outperforms the
worst-case scenario of SCRAPE. It follows that our changes had a positive effect in both theory and
practice. Although we were not able to implement the best-case scenario of SCRAPE, we also expect our
protocol to outperform the best-case scenario of SCRAPE in practice. We expect this, since the number of
required exponentiations is lower in async. SCRAPE and the remaining parameters are equivalent.

5.5 Randomness test
Given a finite value, it is not possible to prove or disprove that the value was generated randomly. The only
way to prove or disprove randomness is through mathematical analysis. Thankfully, the randomness of the
SCRAPE random beacon protocol was mathematically proven in its paper [16]. Furthermore, our only
major change to SCRAPE was to add commits together, which did not change the output of SCRAPE. This
was shown in Section 3.2.1. Hence, the randomness of SCRAPE implies the randomness of our protocol.

Testing the randomness of our protocol would be a waste of resources, since it was already mathemat-
ically proven. However, testing the randomness of an implementation is different. A single bug could
turn a random beacon protocol into a completely deterministic one. Hence, it makes sense to test the
randomness of an implementation, as a precaution. For this, we made use of the NIST statistical test suite
for random and pseudorandom number generators [34]. Created by Rukhin et al. for the U.S. Department

CHAPTER 5. EVALUATION 38

of Commerce, this test suite’s purpose is to test whether values seem random or not. It does so by applying
multiple mathematical tests that compare a bitstream to a bitstream created by random coin flips. To test
our implementation, we firstly ran our protocol 10’000 times and saved the 256-bit outputs into a file. We
then ran the test suite on said file.
--
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--
8 11 9 10 14 10 9 9 8 12 0.955835 100/100 Frequency

12 12 18 6 7 8 12 5 12 8 0.129620 100/100 BlockFrequency
8 14 5 10 10 12 9 8 16 8 0.401199 100/100 CumulativeSums
7 14 10 8 7 9 10 11 12 12 0.851383 99/100 CumulativeSums

15 14 11 6 11 8 11 10 7 7 0.514124 100/100 Runs
13 13 7 9 10 10 15 12 5 6 0.366918 97/100 LongestRun
7 7 4 15 23 9 8 6 11 10 0.001399 100/100 Rank

19 6 9 9 6 14 9 12 8 8 0.108791 96/100 FFT
20 11 10 8 11 11 9 12 3 5 0.028817 99/100 ApproximateEntropy
19 4 19 8 12 9 5 10 9 5 0.002203 100/100 Serial
14 10 14 13 7 7 12 11 6 6 0.383827 100/100 Serial
14 4 9 12 9 11 10 10 10 11 0.739918 97/100 LinearComplexity

- -

Table 5.2: Async. SCRAPE randomness report

Table 5.2 contains the findings from the NIST statistical test suite, which we ran on a file containing
10’000 values generated by our implementation of async. SCRAPE. Firstly, the test suite divided the file
into 100 bitstreams, each bitstream containing 100 values. Each value was made up of 256 bits, hence
each bitstream contained 25’600 bits, with NIST recommending more than 20’000 bits per bitstream.
Afterward, the test suite was evaluated for each bitstream and the report was generated from these results.
Inside the report the number of rows corresponds to the number of statistical tests applied. Furthermore,
columns 1 to 10 correspond to the frequency of p-values distributed into 10 buckets arising from each
statistical test. Column 11 contains a p-value that comes from applying a chi-square test on the previous
10 columns. If the resulting p-value is larger than 0.001, then the bitstreams differ from each other and are
uniformly distributed. If the p-value is smaller than 0.001 then the bitstreams are too similar and the data
is not random. Column 12 is the proportion of bitstreams that passed each test. As long as more than 95
out of 100 bitstreams passed the test, can the data that the bitstreams stem from be considered random.
The 13th column contains the names of the corresponding statistical tests.

All the following tests took a bitstream and mathematically compared it to an ideal bitstream made up
of random coin flips. Firstly, the frequency statistical test took each bitstream and checked whether the
likelihood of a zero was the same as the likelihood of a one. 100 of the 100 bitstreams passed this test.
Afterward, the block frequency test checked whether there were any local deviations in the frequency of
ones and zeros by looking at smaller blocks instead of the entire bitstream. Here 100 out of 100 bitstreams
passed as well. The cumulative sums test transformed zeros into minus ones and then checked what
the highest sum of any subsection of a bitstream was. This was passed by 100 out of 100 bitstreams.
Subsequently, the test was reversed, and the smallest cumulative sum was tested. Hence, the smallest
subsection of the bitstream was checked. Here the first failure happened, however, the remaining 99
bitstreams passed. Hence, the statistical test was considered passing, since more than 95 bitstreams passed.
The runs statistical test checked how long the longest sequence of identical bits was. Once again, 100
out of 100 bitstreams passed the test. Similarly to the block frequency test, the longest-run test looked
at individual blocks of data instead of the entire bitstream. It then checked for the longest sequence of
ones inside each block to spot local derivations. Here, 97 of 100 bitstreams passed. The rank test took

CHAPTER 5. EVALUATION 39

a bitstream and divided it into binary matrices. The binary matrices were then tested for their rank, to
find linear dependencies inside the matrices. 100 of the 100 bitstreams passed. The FFT statistical test
took each bitstream and performed a fast Fourier transform on it. The FFT transformed the bitstreams
into Fourier series, which were then tested for emerging patterns. This test failed the most compared to all
other tests. However, since 96 of the bitstreams passed, the statistical test was still considered a success.
The approximate entropy test calculated the approximate entropy of a bitstream by checking how many
bitstrings of length m appeared compared to how many of length m+ 1 appeared. With m depending on
the length of the bitstream. 99 of 100 bitstreams passed the approximate entropy test. The serial statistical
test was similar to the approximate entropy test, since it also checked how many bitstrings of length m
appeared and if this was expected from a random sequence. With m = 1 this test would be equivalent
to the frequency test. Furthermore, the first serial test compared bitstrings of length m with strings of
length m− 1. The second serial test compared bitstrings of lengths m, m− 1, and m− 2 with each other.
In both cases, the tests passed 100 out of 100 times. Finally, the linear complexity test checked whether
the data was created through a linear shift register. This was accomplished by calculating the minimum
length of the linear shift register needed to create the bitstream. 97 out of 100 bitstreams passed the linear
complexity test. Overall, all statistical tests passed both in terms of p-values and proportion. Hence, the
NIST statistical test suite recognized the values created by async. SCRAPE as random.

--
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--
56 8 3 7 4 5 2 2 8 5 0.000000 * 57/100 * Frequency
86 4 0 3 2 1 1 1 1 1 0.000000 * 29/100 * BlockFrequency
59 10 8 7 5 4 1 2 3 1 0.000000 * 56/100 * CumulativeSums
64 8 3 4 7 2 6 1 2 3 0.000000 * 53/100 * CumulativeSums
47 8 8 8 7 2 4 5 2 9 0.000000 * 72/100 * Runs
36 13 8 7 9 4 5 7 6 5 0.000000 * 90/100 * LongestRun
17 10 8 8 20 5 4 4 14 10 0.001399 94/100 * Rank
11 15 7 9 9 10 9 15 4 11 0.350485 94/100 * FFT
82 7 4 3 0 0 2 0 1 1 0.000000 * 38/100 * ApproximateEntropy
77 5 6 2 2 0 5 1 2 0 0.000000 * 40/100 * Serial
52 8 4 8 6 5 7 1 4 5 0.000000 * 71/100 * Serial
13 6 8 8 9 10 7 5 19 15 0.042808 97/100 LinearComplexity

- -

Table 5.3: Our thesis randomness report

To contrast the previous results seen in Table 5.2, we also ran the NIST statistical test suite on
undoubtedly non-random data. For this, we chose an earlier version of our master thesis. The final report
generated by the NIST statistical test suite can be seen in Table 5.3. The report structure is the same as
seen in Table 5.2, with the only difference being the results. We see that the previous version of our master
thesis failed every single test, other than the linear complexity test. It did not fail the linear complexity
test, since the master thesis was not generated by a linear shift register. Furthermore, the bitstreams were
deemed too similar to each other in all tests other than the rank test, the FFT test, and the linear complexity
test. The bitstreams were deemed too similar, since they all contained English words and other similar
information, hence they also contained similar bytes. We see that the NIST statistical test suite correctly
deemed our master thesis to be non-random. This gives support to the previous claims, where the NIST
statistical test suite deemed our random beacon implementation to be random. However, the possibility
that a monkey with a typewriter typed a previous version of this thesis is not zero, and in that case, the
NIST statistical test suite would have wrongly classified the data as non-random.

6
Conclusion

In the following chapter, we conclude our thesis. We do so by discussing distributed randomness in general
and possible future work. We also discuss further considerations that appeared when analyzing distributed
randomness.

6.1 Possible attack on SCRAPE
While analyzing our findings, we ran into a possible problem that comes with SCRAPE. Namely, that
SCRAPE assumes the existence of a public ledger, or blockchain, to ensure total order. However, SCRAPE
does not account for the presence of financially motivated miners inside the blockchain. These miners
might behave maliciously to some extent when a financial reward can be extracted. This type of malicious
behavior can be seen when miners themselves do front-running attacks [35].

A different type of financially motivated attack exists for SCRAPE inside blockchains. When a commit
does not get opened f + 1 recovery shares have to be posted. This is a concern since it discourages miners
from accepting reveals. If they accept a reveal, then a single value gets posted onto the blockchain. If they
do not accept a reveal, then f + 1 parties have to post all the values necessary to recover a commit onto
the blockchain. In the case of SCRAPE 3(f + 1) 256-bit values get posted onto the blockchain instead of
a single 256-bit value, when a miner does not accept a reveal. Hence, miners are financially motivated to
not accept reveals in the hopes that a recovery will take place. Especially with a blockchain running at full
capacity, a miner suffers no loss from ignoring a reveal and instead putting a different transaction onto the
blockchain. This reward for miners comes at the cost of participants and leads to the worst-case scenario
of SCRAPE. However, what makes this attack less likely compared to front-running, is the fact that miners
do not profit directly from refusing a reveal. Since the recovery would only happen in later blocks, so too
would the profit only appear in later blocks. However, the blockchain in general would see more demand,
hence it would still benefit a miner indirectly to refuse a reveal. An illustration of the described attack can
be seen in Figure 6.1.

A possible counter to this type of attack is paying more to post reveals onto a blockchain compared to
other data. If a party were to pay 3(f + 1) times the normal transaction fee for a reveal transaction, miners
would lose their financial incentive and instead accept reveals right away. Furthermore, it might be enough
to make a reveal slightly more expensive compared to a normal transaction. Since ignoring a reveal would

40

CHAPTER 6. CONCLUSION 41

Committer Blockchain

Commit

Participants

Commit

Reveal

Recover

Figure 6.1: Illustration of financially incentivized attack on SCRAPE

then come at a cost for the miner. Another counter is to improve a blockchain and ensure that it does
not run at full capacity. Or, the recovery of the random value could be done off chain. Furthermore, any
defenses that apply to front-running should also apply to this type of attack, since preventing front-running
usually entails obfuscating transactions.

It is still important to note that this type of attack might be transferable to all types of commit and
reveal schemes running on a blockchain. As long as a recovery phase exists and requires more space or
computational power than the reveal phase, this attack is viable. In async. SCRAPE this is not a problem
since we always recover. Hence, miners cannot refuse reveals, since there are no reveals to be refused.

6.2 Scarcity of public randomness
This thesis set out to analyze and research existing random beacon protocols and pick one, or multiple, to
implement. In doing so, we hoped to find out why random beacons have not found mainstream success.
We read multiple papers and took a closer look at many protocols. In the end, we decided to implement
SCRAPE and in doing so, we improved upon it. We made SCRAPE asynchronous by adding the shares
together, which made the worst-case communication complexity decrease from O(n4) to O(n3) and the
number of exponentiations decrease from O(n3) to O(n2). Since we were able to do all this, we found
that existing protocols can still be made more efficient, robust, and versatile. We also assume that our
version of SCRAPE can be further improved upon. This shows us that random beacons still have much
space left to grow.

Space for improvement is a good thing when it comes to research. However, it makes distributed
randomness difficult to trust. In cryptography, a protocol is trusted and accepted if it has withstood the
test of time, and when it comes to random beacons, very few have done so. Every year, multiple new
and improved protocols come out, and all of them differ in certain aspects from each other. Furthermore,
the variation between the protocols makes comparing them more complex and leads to there being no
definitive best random beacon protocol out there. It all depends on what is needed and what setting one is
working in.

Lastly, if there is one thing we found out during development, it is that even the simplest random
beacon protocol is still difficult to comprehend and implement. Even with Thetacrypt making the process
more smooth, it still took multiple weeks to understand distributed randomness and multiple weeks to
implement it. For this reason, it is understandable that developers would be hesitant to sink a lot of time
into implementing a distributed random beacon. The scenario where all of their work becomes redundant

CHAPTER 6. CONCLUSION 42

once the newest random beacon protocol gets released is not hard to imagine. However, as time moves on
and a random beacon protocol exists uninterrupted for a longer time frame, more distributed randomness
providers should appear.

6.3 Future work
As discussed, random beacons can still be improved upon. A possible next step would be to create a new
random beacon protocol that does not depend on any previous work. While this does offer the possibility
of discovering a groundbreaking random beacon protocol, the chances of doing so are slim considering
how many different random beacon protocols already exist. Instead, we could listen to a common phrase
in academia and try to stand on the shoulders of giants. Taking multiple protocols into consideration and
building up on them instead. Since both Albatross and OptRand stem from SCRAPE, it should be possible
to combine both works into one. Furthermore, we could also incorporate our work into the mix. Doing so
would lead to, admittedly, more complexity, but it would also lead to a more robust and powerful protocol.
This protocol would be stronger than its parts, and could probably be improved upon even further. This
would lead to a new and improved random beacon protocol without luck being involved.

It is also worth looking into, generalizing the formula of async. SCRAPE, and transferring it to all
random beacon protocols. Creating a general way to transform random beacons into an asynchronous
setting by removing the reveal phase and going straight to the recovery phase. However, this would
lead to problems when applied to proof of work based protocols, since the recovery there is much more
computationally heavy compared to PVSS. However, removing the reveal phase would eliminate the
possible attack on SCRAPE described in Section 6.1.

Lastly, while working on distributed randomness, and SCRAPE in general we made use of many
cryptographic methods, i.e. secret sharing, hash functions, NIZK proofs, commitment schemes, and many
more, all to create a single random value. It is not far-fetched that instead of sharing a random value, one
could adapt SCRAPE to share more meaningful values with other participants. A possible adaptation of
SCRAPE and async. SCRAPE could lead to a distributed key generation protocol. Another adaptation
could lead to an anonymous voting system. It would be interesting to explore other options and see
different possible use cases of SCRAPE.

6.3.1 Security
When it comes to random beacons, the security requirements are somewhat different compared to other
fields of cryptography. One does not have to encrypt into the future, one simply has to encrypt for the
present. Once the protocol is finished, so is the need for the values to be cryptographically secure. Modern
cryptography has a security standard of 128 bits. This means that breaking an encryption would require at
least 2128 computations, which is far beyond what any modern computer is capable of.

To show this, we shall take the currently fastest computer in the world, which is the frontier super-
computer [36]. It is capable of 1.1 · 1018 computations per second. This is equal to around 3.5 · 1025
computations a year. For the frontier supercomputer 128 bits of security would take

years · 3.5 · 1025 = 2128 =⇒ years ≈ 243.1.

Hence, breaking 128 bits of security would take longer than the age of the universe. However, this
calculation is flawed, since it neglects the fact that computers improve over time. Although it is no longer
holds, we shall take Moore’s law, which states that the number of transistors in an integrated circuit doubles
about every two years, into consideration. We simplify Moore’s law and assume that the computational

CHAPTER 6. CONCLUSION 43

power doubles every two years. Solving the following equation leads to

3.5 · 1025
∫ years

0

2
x
2 dx = 2128 =⇒ years ≈ 83.2

Hence, our current encryptions are safe for around 83.2 years according to Moore’s law. This assumes that
no other forces, such as quantum cryptography, come into play. Our random beacon protocol, however,
does not need to be secure for 83 years. It only needs to be secure for the commit and reveal phase to
pass without anyone being able to see the commits or falsify the reveals. Once those phases are done, the
random value has already been generated. By setting a time to live (TTL) for our randomness, we can
adapt the required security level. This could be done deterministically, like in the Bitcoin network, where
the hash must have a certain number of zeros depending on the speed of the network. With a TTL of 10
minutes and the frontier supercomputer as our adversary, we would only need around 70 bits of security.
Cutting down the message size by around 45.3%. This solution would benefit a blockchain, where every
bit of data is costly. Furthermore, a lower security level simplifies the computations, which would make
the computation cost lower.

Appendix

+------------------+-------+-------+-------+-------+-------+-------+-------+
| Nodes\Iterations | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
+------------------+-------+-------+-------+-------+-------+-------+-------+
1	85.4	87.0	87.6	121.8	123.6	126.6	154.3
2	116.2	117.5	118.8	164.1	164.6	166.8	205.1
3	142.9	144.2	145.8	193.4	193.9	197.3	255.3
4	163.6	165.2	167.9	223.3	223.4	226.8	305.0
5	182.1	185.2	187.6	253.3	252.7	256.4	355.8
6	199.5	204.4	205.0	283.1	281.9	286.0	407.2
7	216.6	223.0	222.8	313.0	310.3	314.7	458.3
8	232.8	240.6	239.5	342.5	339.3	343.9	510.9
9	248.8	257.8	255.8	371.5	368.3	373.0	562.8
10	264.6	274.9	271.7	400.4	397.0	402.4	615.8
+------------------+-------+-------+-------+-------+-------+-------+-------+

Table 6.1: Async. SCRAPE runtime in milliseconds, up to 10 nodes

+------------------+-------+-------+-------+-------+-------+-------+-------+
| Nodes\Iterations | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
+------------------+-------+-------+-------+-------+-------+-------+-------+
1	92.8	93.2	95.4	134.7	135.4	137.4	187.7
2	129.1	129.5	132.3	177.1	176.2	179.0	265.1
3	156.3	156.2	158.3	218.1	215.9	218.8	342.3
4	180.0	180.5	183.1	258.5	255.1	258.3	420.4
5	200.8	202.5	206.3	298.4	294.2	296.9	498.6
6	221.9	224.0	228.5	337.6	332.4	336.4	579.1
7	243.0	245.4	249.5	376.8	372.3	377.1	660.3
8	263.6	265.6	270.4	416.4	411.0	416.6	740.6
9	284.5	286.3	291.2	455.3	449.2	455.9	820.2
10	305.0	306.2	311.6	493.4	489.4	495.5	897.3
+------------------+-------+-------+-------+-------+-------+-------+-------+

Table 6.2: SCRAPE worst-case runtime in milliseconds, up to 10 nodes

44

CHAPTER 6. CONCLUSION 45

+------------------+-------+--------+--------+--------+---------+---------+
| Nodes\Iterations | 1 | 10 | 20 | 30 | 40 | 50 |
+------------------+-------+--------+--------+--------+---------+---------+
5	0.092	0.281	0.448	0.614	0.771	0.963
10	0.164	0.634	1.155	1.676	2.234	2.789
15	0.233	1.31	2.537	3.743	4.925	6.15
20	0.443	3.167	6.049	9.066	12.051	14.958
25	0.792	6.182	12.109	18.104	24.202	30.075
30	1.046	8.41	16.544	24.834	33.037	41.402
35	1.59	14.423	28.285	42.688	57.118	72.033
40	2.25	19.623	39.338	59.151	79.448	100.4
45	2.521	23.495	47.283	71.703	96.496	122.127
50	3.756	32.135	63.829	96.516	129.786	164.212
+------------------+-------+--------+--------+--------+---------+---------+

Table 6.3: Async. SCRAPE runtime in seconds, up to 50 nodes

+------------------+-------+--------+---------+---------+---------+---------+
| Nodes\Iterations | 1 | 10 | 20 | 30 | 40 | 50 |
+------------------+-------+--------+---------+---------+---------+---------+
5	0.098	0.305	0.487	0.673	0.86	1.033
10	0.176	0.866	1.678	2.466	3.25	3.996
15	0.259	1.853	3.616	5.408	7.096	8.869
20	0.533	4.787	9.533	14.149	18.91	23.576
25	0.964	10.196	20.153	30.135	46.049	59.116
30	1.342	15.978	37.603	58.58	78.563	97.804
35	2.396	28.78	71.576	105.2	148.382	181.163
40	3.414	40.09	88.373	170.894	222.01	293.848
45	4.243	50.865	157.041	221.377	315.565	387.98
50	6.157	75.933	218.697	349.624	455.538	544.713
+------------------+-------+--------+---------+---------+---------+---------+

Table 6.4: SCRAPE worst-case runtime in seconds, up to 50 nodes

+------------------+-----+-----+------+------+------+------+
| Nodes\Iterations | 1 | 10 | 20 | 30 | 40 | 50 |
+------------------+-----+-----+------+------+------+------+
5	14	68	128	188	248	308
10	31	157	297	437	577	717
15	42	204	384	564	744	924
20	59	293	553	813	1073	1333
25	76	382	722	1062	1402	1742
30	87	429	809	1189	1569	1949
35	104	518	978	1438	1898	2358
40	111	565	1069	1573	2078	2582
45	121	654	1246	1838	2430	3022
50	131	743	1423	2103	2783	3463
+------------------+-----+-----+------+------+------+------+

Table 6.5: Async. SCRAPE number of messages, up to 50 nodes

CHAPTER 6. CONCLUSION 46

+------------------+-----+------+-------+-------+-------+-------+
| Nodes\Iterations | 1 | 10 | 20 | 30 | 40 | 50 |
+------------------+-----+------+-------+-------+-------+-------+
5	17	98	188	278	368	458
10	52	367	717	1067	1417	1767
15	78	563	1101	1640	2179	2718
20	137	1073	2113	3153	4193	5233
25	212	1742	3442	5142	6842	8542
30	258	2139	4229	6319	8409	10499
35	357	3048	6038	9028	12018	15008
40	472	4117	8167	12217	16267	20317
45	538	4714	9354	13994	18634	23274
50	677	6023	11963	17903	23843	29783
+------------------+-----+------+-------+-------+-------+-------+

Table 6.6: SCRAPE worst-case number of messages, up to 50 nodes

+------------------+-------+-------+-------+-------+-------+-------+
| Nodes\Iterations | 1 | 10 | 20 | 30 | 40 | 50 |
+------------------+-------+-------+-------+-------+-------+-------+
5	0.003	0.029	0.058	0.087	0.116	0.145
10	0.012	0.111	0.221	0.332	0.442	0.552
15	0.018	0.172	0.343	0.514	0.685	0.856
20	0.035	0.335	0.667	1.0	1.333	1.666
25	0.057	0.55	1.099	1.647	2.195	2.743
30	0.07	0.678	1.354	2.03	2.706	3.382
35	0.1	0.975	1.946	2.918	3.89	4.861
40	0.136	1.325	2.646	3.967	5.288	6.609
45	0.156	1.52	3.036	4.551	6.067	7.583
50	0.199	1.95	3.896	5.841	7.787	9.732
+------------------+-------+-------+-------+-------+-------+-------+

Table 6.7: Async. SCRAPE communication cost in megabytes, up to 50 nodes

CHAPTER 6. CONCLUSION 47

+------------------+-------+-------+-------+-------+-------+--------+
| Nodes\Iterations | 1 | 10 | 20 | 30 | 40 | 50 |
+------------------+-------+-------+-------+-------+-------+--------+
5	0.004	0.035	0.07	0.104	0.139	0.173
10	0.015	0.146	0.291	0.435	0.58	0.725
15	0.024	0.23	0.458	0.687	0.916	1.144
20	0.047	0.456	0.909	1.363	1.817	2.27
25	0.078	0.758	1.513	2.269	3.024	3.78
30	0.096	0.938	1.873	2.808	3.743	4.678
35	0.138	1.355	2.707	4.059	5.41	6.762
40	0.188	1.849	3.694	5.539	7.384	9.23
45	0.216	2.125	4.245	6.366	8.486	10.607
50	0.277	2.733	5.462	8.191	10.92	13.649
+------------------+-------+-------+-------+-------+-------+--------+

Table 6.8: SCRAPE worst-case communication cost in megabytes, up to 50 nodes

Acknowledgments

Firstly, I would like to thank my supervisors Mariarosaria Barbaraci and Dr. Orestis Alpos
for helping me through the difficulties that come with writing a master thesis. I would also
like to thank Professor Christian Cachin for the many helpful inputs from his side and for
giving me the idea to write about distributed randomness in the first place. Furthermore, I
am also truly grateful towards my family and friends, who have supported me throughout my
studies. Lastly, although I cannot put this part into words, I would like to thank my father,
Svajus Joseph Asadauskas, who passed away last year. When I started writing this thesis, I
was in a difficult period of my life, and without the help and kindness of everyone, I cannot
imagine where I would be today.

48

Bibliography

[1] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint Arch., page 86,
2016.

[2] Fredrik H Leinfelt. Racial influences on the likelihood of police searches and search hits: A
longitudinal analysis from an american midwestern city. The Police Journal, 79(3):238–257, 2006.

[3] Nicolas Gailly, Philipp Jovanovic, and Bryan Ford. Drand, distributed randomness beacon. https:
//drand.love/, 2019. Was accessed: 2023-09-21.

[4] Ignacio Cascudo and Bernardo David. ALBATROSS: publicly attestable batched randomness based
on secret sharing. In ASIACRYPT (3), volume 12493 of Lecture Notes in Computer Science, pages
311–341. Springer, 2020.

[5] Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. Bicorn: An optimistically efficient
distributed randomness beacon. In FC (1), volume 13950 of Lecture Notes in Computer Science,
pages 235–251. Springer, 2023.

[6] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser, Ismail
Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In IEEE
Symposium on Security and Privacy, pages 444–460. IEEE Computer Society, 2017.

[7] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series,
consensus system. CoRR, abs/1805.04548, 2018.

[8] Ignacio Cascudo, Bernardo David, Omer Shlomovits, and Denis Varlakov. Mt. random: Multi-tiered
randomness beacons. In ACNS, volume 13906 of Lecture Notes in Computer Science, pages 645–674.
Springer, 2023.

[9] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak. Randpiper -
reconfiguration-friendly random beacons with quadratic communication. In CCS, pages 3502–3524.
ACM, 2021.

[10] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. Homomorphic encryption random beacon.
IACR Cryptol. ePrint Arch., page 1320, 2019.

[11] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl. Hydrand: Efficient
continuous distributed randomness. In SP, pages 73–89. IEEE, 2020.

[12] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. Optrand: Optimistically responsive
reconfigurable distributed randomness. In NDSS. The Internet Society, 2023.

[13] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser, Ismail
Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In IEEE
Symposium on Security and Privacy, pages 444–460. IEEE Computer Society, 2017.

49

https://drand.love/
https://drand.love/

BIBLIOGRAPHY 50

[14] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar R. Weippl.
Randrunner: Distributed randomness from trapdoor vdfs with strong uniqueness. In NDSS. The
Internet Society, 2021.

[15] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt: Scalable distributed
randomness beacon with transparent setup. In SP, pages 2502–2517. IEEE, 2022.

[16] Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness attested by public entities. In
ACNS, volume 10355 of Lecture Notes in Computer Science, pages 537–556. Springer, 2017.

[17] Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias, Kevin Lewi, Ladi
de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino. STROBE: streaming threshold
random beacons. In AFT, volume 282 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023.

[18] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. IACR Cryptol.
ePrint Arch., page 366, 2015.

[19] Kevin Choi, Aathira Manoj, and Joseph Bonneau. Sok: Distributed randomness beacons. In SP,
pages 75–92. IEEE, 2023.

[20] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[21] Prof. Dr. James L. Massey. Applied digital information theory ii, 2008. http://www.isiweb.
ee.ethz.ch/archive/massey_scr/adit2.pdf.

[22] Donald E. Eastlake III and Tony Hansen. US secure hash algorithms (SHA and sha-based HMAC
and HKDF). RFC, 6234:1–127, 2011.

[23] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO, volume 740 of
Lecture Notes in Computer Science, pages 89–105. Springer, 1992.

[24] Chunming Tang, Dingyi Pei, Zhuojun Liu, Zheng-an Yao, and Mingsheng Wang. Perfectly hiding
commitment scheme with two-round from any one-way permutation. IACR Cryptol. ePrint Arch.,
page 34, 2008.

[25] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[26] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer, 1991.

[27] Howard E. Brandt. Review of Protecting Information: From Classical Error Correction to Quantum
Cryptography by susan loepp and william k. wootters. Cryptologia, 33(2):205–207, 2009.

[28] Graydon Hoare. Rust, a language empowering everyone to build reliable and efficient software.
https://www.rust-lang.org/, 2015. Was accessed: 2024-01-03.

[29] Carl Lerche. Tokio, build reliable network applications without compromising speed. https:
//tokio.rs/, 2016. Was accessed: 2024-01-03.

[30] Orestis Alpos, Mariarosaria Barbaraci, Christian Cachin, Noah Schmid, and Michael Senn.
Thetacrypt: A distributed service for threshold cryptography on-demand: Demo abstract. In Pro-
ceedings of the 24th International Middleware Conference Demos, Posters and Doctoral Symposium,
Bologna, Italy, December 11-15, 2023, pages 33–34. ACM, 2023.

http://www.isiweb.ee.ethz.ch/archive/massey_scr/adit2.pdf
http://www.isiweb.ee.ethz.ch/archive/massey_scr/adit2.pdf
https://www.rust-lang.org/
https://tokio.rs/
https://tokio.rs/

BIBLIOGRAPHY 51

[31] Orestis Alpos, Mariarosaria Barbaraci, Christian Cachin, Noah Schmid, and Michael Senn. Github
of thetacrypt - threshold cryptography library in rust. https://github.com/cryptobern/
thetacrypt, 2021. Was accessed: 2024-01-15.

[32] Solomon Hykes. Docker, make better, secure software from the start. https://www.docker.
com/, 2013.

[33] Adam Selipsky and C.J. Moses. Amazon ec2, secure and resizable compute capacity for virtually
any workload. https://aws.amazon.com/ec2/, 2006. Was accessed: 2023-11-06.

[34] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark
Levenson, Mark Vangel, David Banks, Alan Heckert, et al. A statistical test suite for random and
pseudorandom number generators for cryptographic applications, volume 22. National Institute of
Standards & Technology, 2001.

[35] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breiden-
bach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable
value, and consensus instability. In SP, pages 910–927. IEEE, 2020.

[36] Georgia Tourassi Justin L Whitt and Bronson E Messer II. Frontier supercomputer de-
buts as world’s fastest, breaking exascale barrier. https://www.ornl.gov/news/
frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier/,
2022. Was accessed: 2023-11-06.

https://github.com/cryptobern/thetacrypt
https://github.com/cryptobern/thetacrypt
https://www.docker.com/
https://www.docker.com/
https://aws.amazon.com/ec2/
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier/
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier/

	1 Introduction
	1.1 Motivation

	2 Background
	2.1 Cyclic groups
	2.2 Cryptographic assumptions
	2.2.1 Decisional Diffie-Hellman assumption
	2.2.2 Random oracle model

	2.3 Non-interactive zero-knowledge proofs
	2.4 Commits and reveals
	2.4.1 Commit phase
	2.4.2 Reveal phase

	2.5 Two-party coin flip
	2.6 Secret sharing
	2.6.1 Polynomial secret sharing

	2.7 Theoretical lower limit

	3 Design
	3.1 SCRAPE explained
	3.1.1 Phases of SCRAPE
	3.1.1.1 Setup phase
	3.1.1.2 Commit phase
	3.1.1.3 Reveal phase
	3.1.1.4 Recovery phase

	3.1.2 Randomness calculation
	3.1.3 NIZK verification
	3.1.4 Degree verification

	3.2 Changes to SCRAPE
	3.2.1 Adding shares
	3.2.2 Asynchronous SCRAPE

	4 Implementation
	4.1 Thetacrypt

	5 Evaluation
	5.1 Docker
	5.2 Methodology
	5.3 Findings
	5.3.1 Average runtime
	5.3.2 Number of messages
	5.3.3 Communication cost

	5.4 Results
	5.4.1 Average runtime
	5.4.2 Number of messages
	5.4.3 Communication cost
	5.4.4 Summary

	5.5 Randomness test

	6 Conclusion
	6.1 Possible attack on SCRAPE
	6.2 Scarcity of public randomness
	6.3 Future work
	6.3.1 Security

