
Analysing Inter-Blockchain
Communication

Bachelor Thesis

Raphael Markus Jean-Maxim Fehr

from
Bern, Switzerland

Faculty of Science, University of Bern

15.Dezember.2023

Prof. Christian Cachin
David Lehnherr

Cryptology and Data Security Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

Cosmos is an ecosystem that enables blockchains to connect by providing a common inter-
face. This interface has an inter-blockchain communication (IBC) protocol that allows users
to transfer assets across different blockchains. This protocol also enables an atomic swap
of assets from different blockchains. In this Bachelor thesis, we first isolate the theoretical
aspect of IBC in a modular way, and then we analyse the atomic swap, which allows users
to swap their assets with other users.

ii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Merkle Trees . 3
2.2 Commitment Scheme . 4

3 Inter Blockchain Communication 6
3.1 Actors . 6
3.2 Transfer . 8
3.3 IBC . 11

4 Atomic Swap 13
4.1 Atomic Swap . 13

5 Conclusion 19

A Extra material 20

iii

iv

Chapter 1

Introduction

Motivation As children, we often traded cards on the playground. In this activity, we face challenges
of trust and fairness. When someone breaks their promise, we learned the hard way that we could not
always trust the other children, and we also learned that a third party would not always be on our side.
Similar problems exist in the field of blockchain technology, where trustless interactions and secure
exchanges are crucial. This anecdote about trading cards on the playground serves as an analogy for the
challenges we face in the blockchain world today. Just as trading cards as a child taught us not to trust
other children, blockchain users face similar dilemmas when transacting across different chains. There
is also some risk in using a third party, as that party might be corrupt. So not all problems can be solved
with a third party, we need a reliable protocol to ensure fairness and security in these exchanges. Cosmos
addresses this problem by developing an inter blockchain communication which also allows swapping
items between blockchains. This bachelor thesis deals with the Inter Blockchain Communication (IBC)
protocol developed by Cosmos, with the aim of analysing its theoretical aspects and describing it with
modules. [4]

Cosmos Within a blockchain, three core components collaborate to guarantee its proper operation and
security: the network-, consensus-, and application layers, each with distinct responsibilities. The net-
work layer plays a critical role in enabling communication between diverse nodes within the blockchain
network. The consensus layer ensures all nodes on the network are informed of the latest transactions
and updates, facilitating efficient dissemination throughout the system. This plays a crucial role in main-
taining a synchronized and up-to-date blockchain ledger, underpinning its integrity and immutability.
Its primary function is to enable nodes on the network to reach an agreement on the current state of
the system. Through a range of consensus mechanisms, nodes collaboratively validate and confirm
transactional validity and reach a mutual agreement on a singular version of the truth. This agreement
safeguards the blockchain from any tampering or malicious attacks. The application layer serves as the
core of the blockchain system, responsible for the handling and execution of transactions. When transac-
tions are started by users, the application layer is tasked with updating the state of the blockchain based
on them. By collaborating, the networking, consensus, and application layers create a strong and decen-
tralized blockchain ecosystem. The networking layer facilitates the smooth transmission of data, while
the consensus layer establishes trust and mutual understanding among nodes. Working in tandem, the
application layer validates and updates the blockchain’s transactional state. [6]

Tendermint Stack One way to contribute to the Cosmos universe is by using the provided Tendermint
stack. The stack contains three things: the Tendermint Core, the Cosmos SDK, and the IBC protocol.
The Tendermint Core provides a Byzantine Fault Tolerant consensus algorithm. The Cosmos SDK allows
us to build our application framework on top of this consensus algorithm. Therefore, the Cosmos SDK
allows us to create modules for our Blockchains. For example, the Authentication and Bank module,
that create and authenticate new addresses, or the IBC Module which enables communication with other

1

Blockchains. In order for two IBC modules that belong to different chains to communicate with each
other, they need to follow the IBC protocol. Further, if two clients on different Blockchains wish to
exchange assets, they must follow the IBC protocol as well. [18] [26] [27]

Related Work Most academic papers and documentation focus on the practical implementation of
blockchains within the Cosmos system. The topics covered include guidance on setting up blockchains,
the key requirements for a successful implementation, and the strategies for achieving this. The same is
with the documentation from Cosmos, which sets the focus on the implementation part. In this bachelor
work, we will set our focus on the theoretical foundation.

In this work We will set our focus on the theoretical aspect from IBC which allows us to communicate
over the boarder of blockchains and the Atomic Swap, which enables to trade assets on two different
Blockchains. For this, we will first start in the with the preliminaries section, which gives us the tool
that we need for our intent. In Section 3, we will dive deeper into the Cosmos. We will break the
Inter Blockchain Communication down to its modules. With this break down, we intend to analyse the
Atomic swap in Section 4, which allows two users to exchange their asset. We will draw our conclusion
in Section 5.

2

Chapter 2

Preliminaries

To analyse IBC, we need to have concepts of Hash Functions (c.f. Rosulek [23]), Merkle Trees (c.f.
Merkle [20]) and Vector Commitment (Catalano et al.[5] and Rosulek [23]) in mind. We will define
these concepts in the following section.

2.1 Merkle Trees

For future reference we need to formally define what it means to be negligible.

Definition 2.1. A function f : R 7→ R is negligible if, for every polynomial p, we have

lim
λ→∞

p(λ)f(λ) = 0.

Hash Function A cryptographic hash function, denoted as H , where H : {0, 1}∗ 7→ {0, 1}λ maps
a binary string of arbitrary length into a unique representation. Given a bit string x ∈ R as input,
it produces a fixed length binary value h ∈ {0, 1}1 as output. The key property of a cryptographic
hash function is its collision resistance, which means that it should be impossible for any process, even
subject to random errors or malicious actions, to find two different input values x and x′ such that
H(x) = H(x′), meaning that the case that we can find an x that satisfy H(x) = H(x′) is negligible. [4]

Merkle Trees A hash tree or Merkle Tree is a tree in which each “leaf” (node) is labelled with the
cryptographic hash of a data block, and each node that is not a leaf is labelled with the cryptographic
hash of the labels of its child nodes. Figure 2.1 shows a Merkle Tree with the values v1, v2, v3 and v4.
We hash the values for the parent node, we concatenate the child nodes and hash it. When we know the
root, the value of h((hv3)||h(v4)) and h(v2) we can validate that the items v1 with its value is on the first
place without knowing the value of v2, v3 or v4.

3

Figure 2.1. An illustration of a Merkle Tree of the values v1, v2, v3 and v4. The green fields illustrate,
which values are necessary for a commitment for v1.

2.2 Commitment Scheme

A Commitment Scheme allows us to commit to the values in the Mekrle Tree. We follow the paper Vector
Commitments and their Applications by Catalano et al. [5]

Parameter Description
Security Parameter (λ) A value that sets the security parameter.
Message Space (M) The set of all possible values that elements in the vector can as-

sume.
Vector Length (q) The total number of elements which is polynomial.
Public Parameters (pp) These are public parameters used in the system.
Vector (v) A sequence of values or elements from the message space M with

a length n. The notation v[i] means the value at place i from the
vector v.

Auxiliary Information (aux) Additional data required for creating openings.
Index (i) Represents a specific position in the vector, ranging from 1 to n.
Value (y) A specific element from the message space M .

Table 2.1. These are the parameters for the Commitment Scheme

Commitment Scheme A Commitment Scheme consist of the followings four algorithms for the pa-
rameters consider the Table 2.1

• KeyGen(1λ, q) → pp: The key generation algorithm produces public parameters pp.

4

• Com(pp, v) → (C, aux): For input pp and a message vector v ∈ Mn, the commit algorithm
returns a commitment C and auxiliary information aux needed to create openings.

• Open(pp, i, aux) → πi: Given the public parameters pp, an index i ∈ {1, ..., n} and auxiliary
information aux, the opening algorithm outputs an opening πi.

• Ver(pp, C, i, y, πi) → b ∈ {false, true}: Given the public parameters pp, a commitment C, an
index i ∈ [n], a value y ∈ M , and an opening πi, the verification will return either true or false.

In the Commitment Scheme we have the KeyGen algorithm which is used to generate the keys. The Com
creates a commitment which is used to verify the opening. The Open algorithm generate a proof which
can prove that our value is in the commitment. The Ver algorithm which allows us to verify the opening.
A commitment scheme needs to satisfy completeness, soundness, and position binding.

Completeness For any given public parameters pp, commitment C, and auxiliary information aux, the
following holds:

If C = Com(pp, v) and πi = Open(pp, i, aux).

Then the probability that
Ver(pp, C, i, v[i], πi) = false

is negligible in λ.

Soundness Consider any given public parameters pp, commitment C, and for every possible opening
πi and every possible value y not at the position [i] in the committed vector v: The probability that

If Ver(pp, C, i, y, πi) = true

is negligible in λ.

Position Binding For a given set of public parameters pp, commitment C, and auxiliary information
aux, there exists a unique value v[i], meaning a value at place i, for which:

C = Com(pp, v[i]) and πi = Open(pp, i, aux).

The probability that
Ver(pp, C, i, v[i], πi) = false

is negligible in λ. Considering all other values y where v[i] ̸= y, and for each possible opening πi: The
probability that

Ver(pp, C, i, y, πi) = true

is negligible in λ.

5

Chapter 3

Inter Blockchain Communication

In this section, we will describe Inter Blockchain Communication. As described in the introduction,
IBC allows us, to communicate between Blockchains. We focused our work on the Cosmos Developer
Portal[18] and the original Source code on Github [11]. We will first have a look at the actors, as they
play a fundamental role in the Cosmos universe. This will include the Relayer, Light Client and the
Freezing Wallet. We will break these actors down into modules, in the matier of CGR11/[4]. We also
only have an interest in the theoretical concept, therefore we will not dive into the practical part on how
to implement it. Once we understand the actors, we can move on to the transfer protocol. This will use
the modules we defined earlier to illustrate and show how the packet flow and the proof system in IBC
work in the IBC. Finally, we will break down the IBC concept into a module. A more documentation
orientated overview can be found in the Appendix A.1.

3.1 Actors

Relayer In the context of blockchain interoperability, a Relayer serves as a central actor that facilitates
communication between different blockchains. Much like a truck driver transporting goods between
two locations, a Relayer listens for packets that need to be transferred to another blockchain. As an
essential component of the IBC protocol, the Relayer acts as a client responsible for orchestrating the
seamless transfer of data packets between interconnected blockchains. Relayers have access to full nodes
of both the source and destination blockchains, giving them comprehensive knowledge of the entire
blockchain’s data, including all its blocks. A full node is like the blockchain’s watchdog. It runs the
blockchain software, thoroughly checks every transaction, and keeps a complete history. But anyone can
run a full node to bolster the network’s strength. This access enables them to efficiently query and send
messages. Upon detecting events that require an IBC packet transfer, the Relayer delivers the packet then
securely transmitted to the target chain for processing. The role of Relayers in the blockchain ecosystem
is paramount. They play a critical role in ensuring the reliability and security. The Relayers can be
operated by any participant in the network, reinforcing the decentralized nature of the entire blockchain
system. In this paper, we will see the Relayer as a reliable broadcast. We assume that at least one Relayer
is live and trusted. The Relayer makes a commitment to the message it will deliver. It can only accept
a new message if it can prove that it delivered the old message. If there is a pool of Relayers where
only one is trustworthy, the others will be determined after a certain time. The Relayer cannot stop the
process, it can only slow it down because the Relayer knows only the destination of the packet, not what
it delivers and to whom. The message the Relayer delivers can also be encrypted. We can break the
Relayer down to the following, Module 3.1. In this module the Relayer event is triggered by a Relayer
and the Receive event is handled and consumed by the receiving blockchain.

6

Module 3.1 Interface and properties of Relayer
Module

Name:Relayer , instance rl.
Events:

Request: ⟨ rl, Relay | m ⟩: A Relayer broadcasts the Message m to the other Chain.
Indication: ⟨ rl, Receive |m ⟩: A user receives a Message m.

Properties:
Rel1: Reliable delivery: If a correct process p sends a message m to a correct process q,

then q eventually delivers m.
Rel2: No duplication: No message is delivered by a process more than once.
Rel3: No creation: If some process q delivers a message m with sender p, then m was
previously sent to q by process p.

Light Client The Light Client holds the main header information of a full node, but it is compressed
to save space. This information is needed to validate commitment proofs. Light Clients are provided by
Cosmos. A Light Client is an algorithm that allows an actor to interact with a blockchain system. The
client abstraction provides a formalized interface and set of requirements that allow the IBC protocol to
seamlessly integrate with new ledgers running different consensus algorithms. As long as Light Client
algorithms that meet the specified requirements are available, the IBC protocol can be used effectively
with these new ledgers. This flexibility ensures compatibility and adaptability for the integration of
different Blockchains into the IBC ecosystem. [16]
The light client has two main components, there are used to verify commitment. We will set there our
focus, they are also used to detect attacking actions, which means it should detect conflicts and verify
commits across multiple nodes. So we can break the Light Client down to the Module 3.2, with the
Check Event and the properties LC1, which says that it terminates, and LC2, which says that it gives the
correct response.

Module 3.2 Interface and properties of Light Clients
Module

Name:Light Client , instance lc.

Events:
Request: ⟨ lc, Check Proof | πi ⟩: A Client can query the Light Client with a Proof πi, and checks

if the proof is valid.
Indicator: ⟨ lc, Return | πi, b ⟩: Returns a boolean b that indicates whether πi is a valid proof.

Properties:
LC1: Termination: If a correct process invokes an operation, then the operation completes.
LC2: Correctness: If πi is valid b = True, if not b = False.

Trust assumption Only a trusted source can be a Light Client. Hence, we can assume their trustworthi-
ness. It is assumed that no more than two-thirds of the Light Clients can be malicious. However, there is
also the possibility of the trusted source being compromised. Therefore, it is assumed that no more than
two-thirds of the Light Clients can be malicious. Therefore, it is assumed that no more than two-thirds of
the Light Clients are malicious. This means that when querying the Light Clients, we require 2f+1 Light
Clients, where f is the amount of malicious actors. We already have this information. However, when

7

we receive two-thirds of the responses and assume that one-third of them are malicious while one-third
are trustworthy, it becomes difficult to determine which responses are accurate. Therefore, to determine
which responses we can trust, we require at least one additional Light Client. This means that we need
2f + 1 Light Clients.(c.f. Cosmos [25])
We can formally proof this:
Let us consider N = 3f + 1 we take a set M ⊆ N , and a set M2 ⊆ N , where |M1| = 2f + 1 and
|M2| = 2f +1 so that |M1 ∩M2| ≤ f +1 otherwise it would be |M − 1|+ |M2| > 3f +1 = N where
f nodes are Byzantine. We can conclude that |(M1 ∩M2) | ≥ 1.
We can also illustrate this with the following Example.

Example Let us consider that we have ten Light Clients were one-third is malicious, and the rest is
trustful. When we have only one response, we can not determine if it is malicious or not. When we take
six responses of three times yes and three times no, we do not know which side is malicious. But when
we have four times yes and three times no, we now can determine that the answer need to be yes and the
three times no are malicious.

Freezing Wallet The freezing wallet is part of the blockchain. We created a module for this to have
a better abstract look to it. The module has two events. First we have the freeze event. This is used to
freeze an asset. Secondly, we have the unfreeze event, which is used to unfreeze an asset on a wallet on
a blockchain.

Module 3.3 Interface and properties of the freezing Wallet
Module

Name:Freezing Wallet , instance fw.

Events:
Request: ⟨ fw, Freeze | c ⟩: Freeze an Asset.
Request: ⟨ fw, Unfreeze | c, a ⟩: Release an asset c on the address a.

Properties:
FW: Spending: An asset can only be spent when it is not frozen.

3.2 Transfer

To understand the packet flow, we first need to have a look at the channels and the connections. In order
for a blockchain to interact with another blockchain, they need to create channels. This is to ensure
that packets are delivered between certain modules on separate ledgers via this pipeline. A channel is a
pipeline that ensures packets are delivered exactly once between specific modules on separate ledgers.
It has at least one end capable of sending packets and one end capable of receiving packets. A channel
serves as a pathway for packets to travel between a module on one blockchain and a module on another
blockchain. Each channel is associated with a particular link, and a link can have any number of asso-
ciated channels. Channels are payload independent. This means that the modules sending and receiving
IBC packets decide how to construct the packet data to act on the incoming packet data. Use their own
application logic to determine which state transactions to state transactions to apply according to what
data the packet contains. [19]. Now that we understand a channel, we can begin to describe a connection.
The connection abstraction encapsulates two stateful objects (connection ends) on two separate ledgers,
each associated with a Light Client of the other blockchain, which together facilitate cross-blockchain

8

substate verification and packet forwarding through the channels. Connections are initiated by a typical
handshake protocol.

Figure 3.1. An overview for the flow of an packet.

Packet flow from a message to another blockchain For this part also see figure 3.1. In the process
of interchain communication, a user A initiates the transfer by creating a message that needs to be sent
to another blockchain B. This message is then passed to the application, also known as the handler,
which is responsible for processing such messages. The handler takes the message and places it on
the source Blockchain A, indicating the intention to transfer the data. At this stage, first a Relayer
comes into play. At least one Relayer continuously monitors Blockchain A (Doted line) and detects the
presence of the message. Once the Relayer identifies the message, it captures it and encapsulates it in a
Message Receive Packet (MRP). The Relayer then transmits this MRP to the Handler on the destination
blockchain (Chain B). This one checks the validity of the MRP. Upon receipt of the MRP, the handler
on Chain B processes the data contained in the packet, meaning where it checks the authentication and
accuracy of the packets and the commitments in it. After successful processing, the handler issues an
acknowledgement (Ack) to signal that the message has been received and processed. Another or the
same Relayer then actively monitors Chain B (Doted line), looking for new ACKs. When the Relayer

9

detects the Ack, it captures it and includes it in a Message Receive Acknowledgment (MRA). Finally,
this Relayer contributes this MRA back to Blockchain A, completing the interchain communication
process. Through the involvement of Relayers, data packets are reliably and securely transferred between
different blockchains, facilitating seamless interoperability and maintaining the decentralized nature of
the blockchain ecosystem.

Proof System In IBC we use a commitment scheme similar to the scheme we have shown in the
preliminaries. The value which is committed from a user A on the blockchain A is stored in a Merkle
Tree. This allows to create and validate proofs if the value a user A says, is actually stored in the tree.
(see Figure 2.1) Similar to the vector commitment, we have the following function.

• calculateRoot(commitmentState) → commitmentRoot: This creates the root of the Merkle
Tree. This is the commitment and used to verify proofs.

• createProof(state, commitmentPath, value) → πi : The createsProof is used to make a proof
that the value is in the storage (Merkle Tree).

• VerifyProof(root, πi, path) → b ∈false, true}: Is used to verify the validity of the proof.

Where calculateRoot is similarly to Com from the Vector Commitment, the createProof is the Open
and the VerifyProof is the Ver function. The commitment path is the place from the value. We notice that
we don’t have a Key Generator, this will be handled from the blockchain itself. We can see this in the
Figure 3.2.

Figure 3.2. An UML Diagram for the commitment scheme.

Consider Figure 3.3. A correct actor A starts the proof machinery by sending a message m (1) to the
application layer, that is blockchain A. Upon recording m A updates the Merkle Tree (2) and generates
a proof πi. Observe that the l̄ca on blockchain B is assumed to be synchronized with A and thus both
have the same root. Eventually, the Relayer detects (m,πi) and delivers it by using the IBC protocol (3).
The blockchain B then checks the proof with help of the Light Clients (4). The Blockchain B will then
deliver the message if the proof is valid (5).

10

Figure 3.3. An UML Diagram that illustrate the system of the Merkle Tree.

3.3 IBC

In this section, the IBC module will be developed and a description of the module will be provided.

IBC The IBC Module 3.4 has two events. The send and the receive events. These are used to send a
message or to receive a message. This is described in detail in the algorithms in the next part. We have
three Properties that are similar to the reliable broadcast (c.f. Cachin et al. [4]). The IBC Module need
to satisfy the following. Validity, meaning that the process function properly. No duplication, meaning
that every message is delivered once, so that the receiving chain does not receive two and process two
messages. No creation, meaning that the message which is processed is created by a user. Additive, it
has the property correctness, which means that the msg only go through, if πi is a valid proof. We also
need to notice that the packets are sent to Blockchain.

Send and receive a message So there we have Algorithm 1 IBC send and receive in the IBC mod-
ule. We have seen the trust assumption in Section 3.1. Therefore, we will use this again to ensure the
process holds under this assumption. To send a message m to the destination blockchain B, the user A
gives the message to the IBC handler module from his blockchain. This module sets this message in
a chain of messages with need to be delivered by a Relayer. This triggers a Relayer to take this mes-
sage, read the destination address, and deliver this message to the other blockchain where it is processed
and the other user Bob receives the message msg if it had a valid proof πi. Blockchain B receives the
message per a Relayer. The module queries the Light Clients if the packet contains a proof. It will wait
until it has N−f as response and validates the proof. If the proof is valid, the message will be processed.

11

Module 3.4 Interface and properties of IBC
Module

Name: Inter Blockchain Communication , instance ibc.

Events:
Request: ⟨ ibc, Send | msg, B ⟩: A process sends a IBC packet msg to a Blockchain B.
Request: ⟨ ibc, receive | msg, B ⟩: A Blockchain B receives an IBC packet msg.

Properties:
IBC1: Validity: If a correct process p sends a message m, then a Relayer eventually delivers m.
IBC2: No duplication: No message is delivered and processed more than once.
IBC3: No creation: If a process delivers a message m with sender s, then m was
previously created by an prozess a.
IBC4: Correctness: Msg will only delivered if it contains a valid proof.

Algorithm 1 IBC send and receive

Implements:
IBC module, instance ibc .

Uses:
Relayer, instance rel,
Light Client,instance lc

upon event ⟨ ibc, init ⟩
TrueCount = 0
FalseCount = 0

upon event ⟨ send, ibc | msg, B ⟩ do
root = calculateRoot(State)
πi = createProof(State,i , m)
trigger ⟨ relay, Relayer | msg||πi ⟩

upon event ⟨ receive, Relayer | msg||πi ⟩ do
for each Light Client lc
wait until TrueCount = 2f + 1

trigger ⟨ receive, ibc | msg, B ⟩

uppon event ⟨ return, lc | πi, b ⟩
if b then

TrueCount = TrueCount + 1

12

Chapter 4

Atomic Swap

Now we can dive in the Atomic Swap which allows two users to exchange their asset over different
blockchains. We will first have a look at what is an Atomic Swap and what properties it has. Then we
will build the module.

4.1 Atomic Swap

An Atomic Swap is a mechanism for exchanging fungible tokens, a and b, between two parties A and
B on separate blockchain networks. Which satisfies the properties, guarantee of exchange, refundable,
order cancelling and atomicity. We have the following properties from the IBC documentation [9].

• GE: Guarantee of Exchange

• RF: Refundable

• OC: Order Cancellation

• AT: Atomicity

Atomic Swap This Module describes the Atomic Swap. We have three Events and four desire prop-
erties. Guarantee of Exchange: This principle ensures that there is no situation where a user receives
tokens without receiving the promised exchange. In other words, it guarantees that token exchanges are
fair and that users get what they expect in return for their tokens. Refundable: This means that tokens are
refundable under certain circumstances. Tokens can be refunded by freezing them when a timeout occurs
(when a transaction takes too long) or when the user cancels an order. This feature provides users with a
safety net and ensures that they can get their tokens back if necessary. Order Cancellation: This feature
allows users to cancel. In other words, if a user has placed an order to exchange tokens, they have the
flexibility to cancel that order as long as no one has accepted it. This feature adds a level of control and
convenience for the user. Atomicity: Atomicity refers to the property that an exchange of one token for
another is either a complete success or a complete failure. There are no partial exchanges or incomplete
transactions. When an exchange is initiated, it is executed as a single, indivisible unit, ensuring that it
either completes or fails completely.
The Atomic Swap Module 4.1 has three events: start, take and cancel. The start event allows a user on
a blockchain to initiate the atomic swap. This is where they freeze their assets. Then the user creates
the proof for their order. Which shows their commitment, meaning which asset they froze and what they
want. This is delivered by a Relayer and taken to the taker’s blockchain. There, the proof is verified by a
Light Client . A user can then take this order. This user freezes their assets on blockchain B. They send
a packet to the taker blockchain along with a proof, which proofs that the tokens are locked and their
commitment. This happens through a Relayer. Here, the Light Clients will be queried and validates the
proof. If the proof is valid, the assets are transferred from the freezing wallet to the taker’s wallet on

13

the maker’s blockchain. A proof is generated and sent to the taker’s blockchain. A Light Client on the
taker blockchain verifies the proof. The asset will be unfrozen and sent to the maker’s wallet on the taker
blockchain.

Module 4.1 Interface and properties of Atomic Swap (AS)
Module

Name: Atomic Swap , instance as.
Events:

Request: ⟨ Start, as | Asset A, Asset B, Receive Address ⟩: An user starts a swap.
Request: ⟨ Take, as | order, Token B, Receive address ⟩: An user takes a swap .
Request: ⟨ Cancel, as | m ⟩: Cancel the Swap.

Properties:
GE: Guarantee of Exchange: No occurrence of a user receiving tokens without the equivalent promised

exchange.
RF: Refundable: Tokens are refunded by freezing when a timeout occurs, or when an order is cancelled.
OC: Order Cancellation: Orders without takers can be cancelled.
AT: Atomicity: An exchange of one token for another where it is either a total success or a total failure.

14

Flow The flow of the Atomic Swap is illustrated on the Figure 4.1.

Figure 4.1. An UML Diagram of the flow of Atomic Swap.

Start a swap To start a swap between two users, Alice and Bob, who agreed on a side channel to the
trade, Alice starts her order and locks her asset on the maker blockchain. She does this with freezing her
asset on the maker blockchain. She creates a message which contains the amount she offers, the amount
she wants, a proof of her commitment and a destination address of her wallet in the taker blockchain. A
Relayer delivers this message to the taker blockchain, where a Light Client checks the proof. When the
proof is valid. An order is created on the Taker blockchain. A Relayer relays then an acknowledgement
back to the maker blockchain.

15

Algorithm 2 Atomic Swap Start

Implements:
Atomic Swap module, instance as .

Uses:
IBC, instance ibc,
Freezing Wallet, instance fw.

upon event ⟨ as, init ⟩
order = ⊥

upon event ⟨ as, Start | Asset A, Asset B, Receive Address ⟩ do
trigger⟨ fw, Freeze | Asset A ⟩
msg = Asset A || Asset B || Receive address
order = msg
trigger ⟨ send, ibc | msg, B ⟩

Take a Swap To take a swap (c.f Algorithms 2) Bob, takes the order. This locks the order, and the asset
will then be frozen on the taker blockchain. A message is created which contains: A proof of the lock
and a receiving address. This is relayed by an Relayer to the blockchain A. Where it will be checked
through the Light Clients, if it is valid, the amount on the freezing wallet is sent to Bobs address on the
blockchain A. A message with a proof of this transaction is then relayed to the blockchain B. There a
Light Client checks the proof if it is valid it releases the amount on the freezing wallet from Bob to Alice
address on the blockchain B.

Algorithm 3 Atomic Swap Take a Swap

Implements:
Asset Transfer module, instance as .

Uses:
IBC, instance ibc,
Freezing Wallet, instance fw

upon event ⟨ as, Take | order, Asset B ⟩ do
if B ∈ order then

trigger ⟨ fw, Freeze | Asset B ⟩
msg = ACK
trigger ⟨ send, ibc | msg,Maker Chain ⟩

upon event ⟨ ibc, receive | msg,Maker Chain ⟩
if msg = ACK then

trigger⟨ Unfreeze, fw | Token A,ReceivingAdress ⟩
trigger ⟨ send, ibc | msg,Taker Chain ⟩

upon event ⟨ ibc, receive | msg,Taker Chain ⟩
trigger⟨ Unfreeze, fw | Token B,ReceivingAdress ⟩

16

Cancel In Algorithms 4, if a timeout occurs, the cancel action is executed. Note that the atomic swap
either happens completely or not at all. This means that once the asset transfer from the freezing wallet
of blockchain A happens, a cancel is no longer possible. We notice that both parties cancel the swap.
Because the Taker gets his asset first, he can not get scammed. If the Maker asset is still frozen, the swap
can be canceled.

Algorithm 4 Atomic Swap Cancel a Swap

Implements:
Atomic Swap module, instance as .

Uses:
IBC, instance ibc,
Freezing Wallet,instance fw

upon event ⟨ cancel, AS ⟩ do
if Maker asset is in freezing wallet then
trigger ⟨ ibc, send | Abort,Maker Chain ⟩
trigger⟨ fw, Unfreeze | Asset A, MakerAdress ⟩
trigger ⟨ ibc, send | Abort,Taker Chain ⟩
trigger⟨ fw, Unfreeze | Token B,TakerAdress ⟩

Flow Finally, we can illustrate the atomic swap with Figure 4.2. Which shows the flow of the protocol
and how the Vector Commitment interfere with it.

17

Figure 4.2. An UML Diagram that illustrate the commitment scheme in Atomic Swap.

18

Chapter 5

Conclusion

In our analysis of the IBC protocol and the atomic swap, we have broken the scheme into modular
components, laying the foundation for further in-depth research. It is important to note that our study
primarily delves into the theoretical aspects, leaving the practical implementation aspects untouched. The
complexities and challenges that might arise during actual implementation, particularly in dealing with
actors distributed across different blockchains, are beyond the scope of our work. Our analysis contains
a breakdown of key actors within the IBC protocol, including the Light Client, Relayer, and the Freezing
Wallet, which have been distilled into particle modules. We have introduced certain assumptions in our
study, such as the requirement for 2f + 1 of the Light Clients to be correct, and that at least one Relayer
is trustful and alive. While this assumption is more difficult to fulfil, the Reayer assumption is relatively
easy to satisfy. Our use of UML Diagrams has illustrated the concept of vector commitment within
IBC and the Atomic Swap. To advance our understanding of the Freezing Wallet, Relayers, and Light
Clients, further research is important. In our study, we have treated these elements as black boxes. We
relied on assumptions about their behaviour. Similarly, the Commitment Scheme, slated for blockchain
implementation, is contingent upon specific conditions, with trust vested in the blockchain itself as the
bedrock of reliability. A lack of trust in the underlying blockchain infrastructure would undermine the
entire IBC and Atomic Swap. Our modules can serve as a valuable toolkit for analysing additional
aspects of the IBC protocol. Exploring various components of IBC and delving into the feasibility of
implementing auctions within this framework are areas ripe for further investigation. In conclusion, our
work serves as a springboard for deeper exploration, emphasizing the importance of scrutinizing both
theoretical and practical aspects to ensure the robustness and trustworthiness of the IBC protocol in
real-world applications.

19

Appendix A

Extra material

Figure A.1. An overview of the complexity of IBC.

20

Bibliography

[1] N. Asokan, V. Shoup, and M. Waidner, “Asynchronous protocols for optimistic fair exchange,” in
Security and Privacy - 1998 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May
3-6, 1998, Proceedings, pp. 86–99, IEEE Computer Society, 1998.

[2] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of digital signatures,” IEEE J.
Sel. Areas Commun., vol. 18, no. 4, pp. 593–610, 2000.

[3] Binance Academy, “Tendermint explained.” https://academy.binance.com/en/artic
les/tendermint-explained, 2023. Accessed: December 3, 2023.

[4] C. Cachin, R. Guerraoui, and L. E. T. Rodrigues, Introduction to Reliable and Secure Distributed
Programming (2. ed.). Springer, 2011.

[5] D. Catalano and D. Fiore, “Vector commitments and their applications,” in Public-Key Cryptogra-
phy - PKC 2013 - 16th International Conference on Practice and Theory in Public-Key Cryptogra-
phy, Nara, Japan, February 26 - March 1, 2013. Proceedings (K. Kurosawa and G. Hanaoka, eds.),
vol. 7778 of Lecture Notes in Computer Science, pp. 55–72, Springer, 2013.

[6] J. Choi, “Demystifying cosmos: Atomic swaps, ethereum, polkadot, and the path to blockchain
interoperability.” https://medium.com/the-spartan-group/demystifying-cos
mos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-i
nteroperability-d1a2d75c20d6, 2019. Accessed: December 01,2023.

[7] CometBFT, “What is cometbft.” https://docs.cometbft.com/v0.34/introducti
on/what-is-cometbft.html, 2023. Accessed: December 3, 2023.

[8] Cosmos, “Cosmos.” https://www.Cosmos.com/. Accessed: July 3, 2023.

[9] Cosmos, “Cosmos ibc specification - ics-100 atomic swap.” https://github.com/cosmo
s/ibc/tree/main/spec/app/ics-100-atomic-swap. Accessed: July 3, 2023.

[10] Cosmos, “Cosmos Tutorial.” https://tutorials.cosmos.network/hands-on-exe
rcise/5-ibc-adv/2-relayer-intro.html. Accessed: July 3, 2023.

[11] Cosmos, “IBC git Repo.” https://github.com/cosmos/ibc. Accessed: July 3, 2023.

[12] Cosmos, “IBC git Repo ReadMe.” https://github.com/cosmos/ibc/blob/main/sp
ec/core/ics-004-channel-and-packet-semantics/README.md#definitio
ns. Accessed: July 3, 2023.

[13] Cosmos, “Map of Zones.” https://www.mapofzones.com/. Accessed: July 3, 2023.

[14] Cosmos, “Tutorial cosmos.” https://tutorials.cosmos.network/academy/2-c
osmos-concepts/1-architecture.html#the-cosmos-sdk, 2023. Accessed:
December 3, 2023.

21

https://academy.binance.com/en/articles/tendermint-explained
https://academy.binance.com/en/articles/tendermint-explained
https://medium.com/the-spartan-group/demystifying-cosmos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-interoperability-d1a2d75c20d6
https://medium.com/the-spartan-group/demystifying-cosmos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-interoperability-d1a2d75c20d6
https://medium.com/the-spartan-group/demystifying-cosmos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-interoperability-d1a2d75c20d6
https://docs.cometbft.com/v0.34/introduction/what-is-cometbft.html
https://docs.cometbft.com/v0.34/introduction/what-is-cometbft.html
https://www.Cosmos.com/
https://github.com/cosmos/ibc/tree/main/spec/app/ics-100-atomic-swap
https://github.com/cosmos/ibc/tree/main/spec/app/ics-100-atomic-swap
 https://tutorials.cosmos.network/hands-on-exercise/5-ibc-adv/2-relayer-intro.html
 https://tutorials.cosmos.network/hands-on-exercise/5-ibc-adv/2-relayer-intro.html
https://github.com/cosmos/ibc
 https://github.com/cosmos/ibc/blob/main/spec/core/ics-004-channel-and-packet-semantics/README.md#definitions
 https://github.com/cosmos/ibc/blob/main/spec/core/ics-004-channel-and-packet-semantics/README.md#definitions
 https://github.com/cosmos/ibc/blob/main/spec/core/ics-004-channel-and-packet-semantics/README.md#definitions
https://www.mapofzones.com/
https://tutorials.cosmos.network/academy/2-cosmos-concepts/1-architecture.html#the-cosmos-sdk
https://tutorials.cosmos.network/academy/2-cosmos-concepts/1-architecture.html#the-cosmos-sdk

[15] J. Frankenfield, “Merkle tree in blockchain: What it is and how it works.” https://www.inve
stopedia.com/terms/m/merkle-tree.asp. Updated July 26, 2021. Reviewed by Erika
Rasure and fact-checked by Amanda Jackson, Accessed: July 3, 2023.

[16] C. Goes, “The interblockchain communication protocol: An overview,” CoRR,
vol. abs/2006.15918, 2020.

[17] IBC Protocol, “Eli5: What is IBC?.” https://medium.com/the-interchain-foundat
ion/eli5-what-is-ibc-def44d7b5b4c. Published on Nov 15, 2022, Accessed: July 3,
2023.

[18] I. F. (ICF), “Cosmos academy - ibc.” https://tutorials.cosmos.network/academy
/3-ibc/. Accessed: July 3, 2023.

[19] J. KWon and E. Buchman, “Cosmos, a network of distrubuted ledgers.” https://v1.cosmos.
network/resources/whitepaper. Accessed: July 3, 2023.

[20] R. C. Merkle, Secrecy, authentication, and public key systems. Stanford university, 1979.

[21] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and S. Goldfeder, Bitcoin and Cryptocurrency
Technologies - A Comprehensive Introduction. Princeton University Press, 2016.

[22] A. Nitulescu, “Sok: Vector commitments.” https://www.di.ens.fr/˜nitulesc/file
s/vc-sok.pdf. Accessed: December 01,2023.

[23] M. Rosulek, The Joy of Cryptography. yofcryptography.com, 2021.

[24] W. Stallings, Cryptography and network security - principles and practice (3. ed.). Prentice Hall,
2003.

[25] Tendermint, “Tendermint light client specification readme.” https://github.com/tende
rmint/tendermint/blob/master/spec/light-client/README.md. Accessed:
July 3, 2023.

[26] Tendermint Team, “What is tendermint.” https://tendermint.com/, 2023. Accessed:
December 3, 2023.

[27] Tendermint Team, “What is tendermint.” https://docs.tendermint.com/v0.34/intr
oduction/what-is-tendermint.html, 2023. Accessed: December 3, 2023.

22

https://www.investopedia.com/terms/m/merkle-tree.asp
https://www.investopedia.com/terms/m/merkle-tree.asp
https://medium.com/the-interchain-foundation/eli5-what-is-ibc-def44d7b5b4c
https://medium.com/the-interchain-foundation/eli5-what-is-ibc-def44d7b5b4c
https://tutorials.cosmos.network/academy/3-ibc/
https://tutorials.cosmos.network/academy/3-ibc/
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://github.com/tendermint/tendermint/blob/master/spec/light-client/README.md
https://github.com/tendermint/tendermint/blob/master/spec/light-client/README.md
https://tendermint.com/
https://docs.tendermint.com/v0.34/introduction/what-is-tendermint.html
https://docs.tendermint.com/v0.34/introduction/what-is-tendermint.html

Erklärung

Erklärung gemäss Art. 30 RSL Phil.-nat. 18

Ich erkläre hiermit, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen
Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen entnommen wurden, habe
ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemäss Artikel 36 Absatz 1
Buchstabe r des Gesetzes vom 5. September 1996 über die Universität zum Entzug des auf Grund dieser
Arbeit verliehenen Titels berechtigt ist.

Für die Zwecke der Begutachtung und der Überprüfung der Einhaltung der Selbständigkeitserklärung
bzw. der Reglemente betreffend Plagiate erteile ich der Universität Bern das Recht, die dazu erforder-
lichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, insbesondere die schriftliche
Arbeit zu vervielfältigen und dauerhaft in einer Datenbank zu speichern sowie diese zur Überprüfung von
Arbeiten Dritter zu verwenden oder hierzu zur Verfügung zu stellen.

Ort/Datum Unterschrift

23

Bern, 15.12.2023

	Introduction
	Preliminaries
	Merkle Trees
	Commitment Scheme

	Inter Blockchain Communication
	Actors
	Transfer
	IBC

	Atomic Swap
	Atomic Swap

	Conclusion
	Extra material

