b

u

b
UNIVERSITAT
BERN

An extended, modular library of
distributed protocols

Bachelor Thesis

Marcel Haag

from
Bern, Switzerland

Faculty of Science, University of Bern

2. February 2024

Prof. Christian Cachin
Jovana Milojevic
Cryptology and Data Security Group
Institute of Computer Science
University of Bern, Switzerland

Abstract

Distributed programming aims to solve computing problems where different connected soft-
ware and hardware components need to work together to solve some common tasks. This
poses extra difficulties to the traditional centralized algorithms, like how to deal with dis-
connected or Byzantine processes in the system. Byzantine processes work arbitrarily, either
because they are bugged or malicious, therefore interfering with the proper execution of the
algorithm.

In this work, we extended an already existing modular library of distributed algorithms to
deal with the consensus problem in different ways. Consensus refers to the process by which
a group of processes agree on a common value, which was proposed by one of them. First,
we start with hierarchical consensus, improve it with hierarchical uniform consensus, and
end with a way to find consensus in a partially hostile environment with randomized con-
sensus. This will all be done in the high-level programming language DistAlgo, which is
specially optimized to deal with distributed algorithms.

Acknowledgments

I express my gratitude to my supervisor, Jovana Milojevic, for her guidance and assistance
during this project. I am also grateful for the time she took for me, despite her busy sched-
ule. I would also like to thank Professor Christian Cachin, who provided me with all the
information necessary for the implementation of this work. Last but not least, I want to
thank my family and friends for their continuous support.

ii

Contents

(L__Introduction|

2 Background|
2.1 Dastributed Systems|.
[2.2 Distributed Programming Abstractions|,
2.3 DistAlgol.
[2.3.1 Processes and Messages| e
[2.3.2 High-level Queries|
[2.3.3 Configuration| e
[2.3.4 Logging|. e e e e
24 Buldingblocks|

244 Relable Broadcast]

3 Extended Library of Algorithms|
3.1 Architecture Design|.
3.2 Regular Consensus|

[3.4.1 Randomized Binary Consensus|
3.5 Run Algorithm|

iii

10
10
10
11
12
13
14
15
18

Chapter 1

Introduction

Distributed algorithms allow multiple processes to work together in a network. This network can range
from different command shells on a computer to globally distributed servers like the Bitcoin network.
Networks need to tolerate different types of failures. Usual candidates are crashing processes, disconnec-
tion issues, bugged processes and malicious attacks. Coding distributed systems that are robust enough
to tolerate failing processes and keeping the synchronisation between the working processes up is the
main challenge of distributed algorithms.

To create those fault-tolerant systems, we use distributed programming abstractions. Abstractions allow
us to strip down the complexity of code into the basic properties a model needs. Abstract models are
independent services, that can interact with each other and need to fulfill certain properties. We start
from basic abstraction models such as processes and communication links and gradually increase the
complexity, by building them on top of each other. This is not always the most computationally efficient
approach, but the error risk is much greater in monolithic algorithms [1]].

In this thesis, we extend the library of distributed algorithms, developed by Lazic [4], which is im-
plemented using distributed algorithm models with the DistAlgo library [2]]. DistAlgo is a high-level
programming language very close to pseudocode. This characteristic allows the programmer to focus
on the core ideas of algorithms instead of low-level implementation trivialities. Further advantages of
DistAlgo are that it is easy to send messages between processes and receive them. DistAlgo compiles
its code into Python || Thus, most of the code is written in Python, which helps students to learn and
understand the language with ease and try it out themselves. Therefore, the main aim of this thesis is to
provide a complement to the theoretical parts of the distributed algorithm class at the University of Bern
with some concrete code to look at.

To fulfill this aim, the already existing library [4] is extended by the implementation of new consensus
protocols. Consensus refers to the process by which a group of processes agree on a common value,
which was proposed by one of them. This should be done, even when some processes crash and the
communication is asynchronous. The implemented algorithms are: hierarchical consensus, hierarchical
uniform consensus and randomized binary consensus.

In Chapter 2] we first introduce the most basic abstractions and assumptions, which are used throughout
the work and introduce the basics of DistAlgo. Some models, that are necessary to understand the code
are introduced at the end of Chapter[2] In Chapter[3] the implemented algorithms are described. Chapter
M]discusses the working process and gives ideas for further work on the library.

"https://www.python.org/

https://www.python.org/

Chapter 2

Background

This chapter introduces essential distributed programming abstractions. For example the composition
model, processes, communication links and different classes of algorithm abstractions. Later, the Dist-
Algo language is introduced. In the end, we introduce abstractions that are already implemented in the
library [4].

2.1 Distributed Systems

Distributed systems are systems, whose components are located on different connected computers that
seek to achieve some kind of cooperation. They consist of different processes running simultaneously,
where all of them communicate through message exchange. Consequently, we need to consider that
subsets of processes might crash or disconnect, which we call partial failures. This characteristic is what
is used to differentiate between concurrent and distributed systems. Let us quote a famous definition
for distributed systems from Leslie Lamport to highlight the challenges in distributed computing: “A
distributed system is one in which the failure of a computer you did not even know existed can render
your own computer unusable.” [3]].

When partial-failures occur, the hurdle is to ensure, that the functioning processes remain consistent.
Sometimes distributed systems need to be able to tolerate processes that are controlled by malicious ad-
versaries. However, we will not interact with such systems in this thesis.

All of the algorithms in this work are DistAlgo implementations of pseudocode from the book: “Introduction
to Reliable and Secure Distributed Programming”[l1]. Cachin et al. explain how to construct robust sys-
tems, given different problem assumptions, shown later in this chapter.

2.2 Distributed Programming Abstractions

Addressing the recurring challenge of solving identical issues across various devices or operating systems
becomes redundant, underscoring the significance of abstraction in streamlining this process. Therefore
it is paramount to have clear definitions of them, to understand the core components of a distributed
system. They will reoccur throughout this thesis in different versions and forms, which makes them
helpful to understand.

System Model. The underlying physical system is represented by two abstractions: processes and
links. Units that are capable of computation inside of the distributed system are called processes. Links
abstract the physical network used for processes to communicate. Those abstractions are not precise nor
should they, as every process and link can be different depending on the distributed system. Moreover,
the process abstraction will be different, depending on the type of faults they can have. Even the link
abstraction changes on the delivery property they need to fulfill. See for example perfect links in Section

Composition Model. Distributed algorithms are described through the composition model. The model
comes straight from [[1]], which uses pseudocode for the description of the algorithms. The different algo-
rithms are independent services, which can be accessed and be interacted with through events. Possible
events are defined in the Application Programming Interface (API) of every algorithm.

Inside the composition model, a process consists of several layers to build a software stack. The layers
can be imagined as similar to the famous OSI model. Usually, the top of the stack consists of the appli-
cation layer and the bottom is the networking layer. The number of layers can differ, depending on the
requirement of the algorithm. On every layer, there is a module, which can only communicate directly
with the module in the upper and lower layers of the same process. Figure [2.1] shows that the modules
only deal with two possible events: requests and indications.

Request events are used by a module to invoke a service at another module or to signal some kind of
condition to another module. Those events usually come from an upper-layer component and invoke
services in the ones below. An example of this would be when the application layer triggers a request
event to a broadcasting component because it wants to deliver a message to a group of processes.
Indication events are the reverse of the request events. They deliver information usually to an upper layer.
Let us use the broadcast example again. The message from before is delivered by the broadcast module
to the application layer. This happens in all processes the broadcast was delivered to.

Layer n+1

Request Indication
Layer n

Request Indication
Layer n-1

Figure 2.1. The composition model represents how and in which directions the different layers can
communicate with each other.

Abstracting processes. A process is defined as a computational unit inside a distributed system. The
system consists of /V different processes usually named P = {p, g, ..., n} etc. All of them should execute
an instance of the algorithm. ‘Should’ is used here to indicate, that some processes might deviate from the
correct execution of the algorithm. We call such processes failures. Failures exist for different reasons,
like simple crashes or malicious behaviour.

We differentiate between correct and faulty processes. Correct processes are those, that never stop and
follow the algorithm’s specifications. Faulty processes are all those that are not correct.

A different type of failures are Byzantine processes or arbitrary faults. They describe processes that
deviate from the algorithm arbitrarily. It does not matter whether processes are bugged or intentionally
controlled by a malicious adversary. As these types of failures will not be directly addressed in any of
the abstractions of this thesis, it suffices to know that they exist.

Abstracting Communication. Networking components of the distributed system are described by the
link abstraction. We assume a network, where every process is fully connected and capable of commu-
nication with every other process. All messages exchanged over a link are unique. They further contain
enough information for a receiver to recognize the sender of the message. As the link abstraction tries to
abstract real links, messages may get lost during the transition.

Classes of Algorithms. Classes of algorithms exist for the sake of grouping distributed programming
abstractions. Different system assumptions, differentiate them. The different classes from the book [1]]
are:

1. fail-stop algorithms, designed under the assumption that processes can fail by crashing but the
crashes can be reliably detected by all the other processes;

2. fail-silent algorithms, where process crashes can never be reliably detected;

3. fail-noisy algorithms, where processes can fail by crashing and the crashes can be detected, but not
always in an accurate manner (accuracy is only eventual);

4. fail-recovery algorithms, where processes can crash and later recover and still participate in the
algorithm;

5. fail-arbitrary algorithms, where processes can deviate arbitrarily from the protocol specification
and act in malicious, adversarial ways;

6. randomized algorithms, where in addition to the classes presented so far, processes may make
probabilistic choices by using a source of randomness.

In this thesis, we will only look at fail-stop and fail-silent classes of algorithms.

Quorums. In a common system with N processes, a quorum is defined as any set of more than N /2
processes. This guarantees, that every two quorums overlap in at least one process. Quorums play a
pivotal role in the formulation of fault-tolerant algorithms. If Byzantine processes inside the system are
assumed, we need extra precautions, for the scenario, where the overlapping process is Byzantine. For
this, we use a Byzantine quorum, which tolerates f faults. Let us prove that two disjoint Byzantine
quorums overlap in at least one correct process through contradiction.

A Byzantine quorum needs more than NTH processes by definition. Consequently all such quorums
contain more than ¥ correct processes, because
N+ f Fo N-—-f
2 2

But this would mean, that two disjoint Byzantine quorums would have more than /N — f correct processes,
as shown here N_f N_f

L L = N—f

2 2 /
As there are only N — f correct processes and the two quorums are assumed to be disjoint, we have our
contradiction. Therefore the two Byzantine quorums overlap in at least one correct process.
Through some basic math, we can further find out how many faulty processes f are allowed in a fail-
arbitrary model. A Byzantine quorum must consist of correct processes, which are received from at least
one other correct process so that a system can make progress. This condition gives,

N+ f

N — s
=5

which is equivalent to N > 3 f the number of faulty processes allowed in a robust fail-arbitrary model.

2.3 DistAlgo

DistAlgo [2] is a high-level programming language very close to pseudocode. This allows the user to
concentrate on the logic of the algorithm instead of implementation details. Additionally, the language
provides abstractions to send messages between processes and statements to provide some synchronisa-
tion. We use a DistAlgo compiler with Python as the target language. The following section introduces
the basics of DistAlgo according to the language description [2] and how it is implemented in Python.

4

2.3.1 Processes and Messages

Process definition. A DistAlgo process is defined in the following form. A type of process with the
name p is defined as a class p which extends the class process. The method and handler definitions are
in the process_body.

class p extends process:
process_body

— In Python syntax:

class p (process):
process_body

Inside the process_body there are two special methods. The sefup method sets up data in the process
before the process starts. Secondly, the run method, is used to carry out the main flow of a process. In
DistAlgo the special self variable refers to the process itself, which runs the execution.

Process creation. Process creation entails such statements as creating, setting up and starting pro-
cesses. The following statement would create n new processes of type p at the node or group of nodes
node_exp. The number of processes and the host location are optional.

n new p at node_exp
— In Python syntax:

new (p, num = n, at = node_exp)

Sending messages. Sending messages can be done with the following statement. mexp is the type of
the message and pexp is the set of processes, which will receive the message.

send mexp to pexp
— In Python syntax:

send (mexp, to = pexp)

Deliver messages. Messages can only be delivered to processes if they have defined a receive clause.
Such a clause is defined in the following statement, where mexp is the form of the message and pexp
is the set of processes from which the message should come. The from statement is optional. As in
the process definition, the statements inside the body_handler will only be executed, when the message
fulfills the conditions of the receive statement.

receive mexp from pexp:
process_body

— In Python syntax:

def receive(msg = mexp, from_ = pexp):
process_body

Pattern Matching. Itis possible to receive and send matching messages through pattern matching. The
first one defines components inside a message as tuples. Possible matching components are constants
such as ’ack’, variables like n and the _ statement, which matches anything. The following example also
has a from statement, which binds a to the sender.

receive ('ack’, =n, _) from a
— In Python syntax:

def receive(msg = ("ack’, n, _), from_ = a)

Synchronisation. For synchronisation we use the await statement. It is blocking and waits until the
boolean bexp inside returns true.

await bexp
— In Python syntax:

await (bexp)

2.3.2 High-level Queries

There are three High-level queries, which are used to create complex synchronisation conditions.

Comprehension. The comprehension query returns a set of processes, which fulfill one or several
boolean expressions. The following example returns the set of processes, that received a Hello message.

{p: receive ('Hello’) from p}
— In Python syntax:

setof (p, received((’'Hello’,_), from_=p))

Aggregation. There are several possible aggregation queries such as count, sum, min and max. The
following combination extends the comprehension query with an aggregation query, to return the process
with the smallest identifier, that sent Hello.

min {p: receive ("Hello’) from p}
— In Python syntax:

min (setof (p, received((’Hello’,_), from_=p)))

Quantification. Quantification queries have two forms. Firstly, the existential form returns true, if
some members of a set satisfy a boolean expression. The universal quantification query returns true if
each element of a set satisfies the boolean expression. The following expressions are examples of this.

some {p in procs: receive ('Hello’) from p}
each {p in procs: receive ('Hello’) from p}

— In Python syntax:

some (setof (p in procs, has=received((’'Hello’,_), from_=p)))
each (setof (p in procs, has=received((’Hello’,_), from =p)))

2.3.3 Configuration

One can configure several parts of the system, such as the way messages are delivered, like first-in first-
out ordering (FIFO). Another configurable part is the logical clock. Currently, only Lamport’s clock is
available. Only shown in Python syntax here.

configure channel = {fifo, reliable}
configure clock = Lamport

2.3.4 Logging

Last but not least, there is a logging method in DistAlgo. Per default, the method prints logs on runtime
into the console. But one can redirect the logs into a file as well. One can even select printing levels,
such that the printing will only be displayed if the level is equal or higher.

output (expl, ..., expk, level=1)

2.4 Building blocks

In this section, we will introduce certain modules, which have been previously implemented in an earlier
library [4]. The code for these modules is available in the mentioned library. Subsequent algorithms
introduced later in this paper rely on these modules. As a result, we introduce them selectively.

2.4.1 Perfect Links

Perfect links abstract a common sense understanding of what it means to send a message from one pro-
cess to another. The precise specification of the abstraction is given in Module [T} All of the modules
come from the book [[1]]. This common sense understanding is abstracted with two events and three prop-
erties. The request event comes from a modular layer above and requests to send a message to a certain
process. The inverse, indication, delivers a message to an upper layer. The first property, reliable deliv-
ery, ensures the delivery of messages to correct processes if the message was sent by a correct process.
No duplication means, that a message is exactly delivered once to the upper layer in the composition
model by the receiver. The last property is no creation. Its meaning is simple, messages should not
appear, if they were not sent by a correct process.

The perfect link abstraction is actually not the lowest level of abstraction in the book [[1]]. Stubborn links
are a layer below perfect links. As the name implies, they stubbornly repeat the same message over and
over, so that messages do not get lost. The code for the perfect link abstraction is essentially a filter, such
that messages are only delivered once, even though they are sent infinitely. However, it is possible to
code perfect links without the use of stubborn links in the DistAlgo language [4], which is why we can
safely ignore stubborn links for the rest of the thesis.

Module 1 : Interface and properties of perfect point-to-point links

Module:
Name: PerfectPointToPointLinks, instance pl.

Events:
Request: (pl, Send | ¢, m): Requests to send message m to process ¢
Indication: (pl, Deliver | p, m): Delivers message m sent by process p.

Properties:
PL1: Reliable delivery: If a correct process p sends a message m to a correct process ¢, then g
eventually delivers m.
PL2: No duplication: No message is delivered by a process more than once.
PL3: No creation: If some process ¢ delivers a message m with sender p, then m was previously sent
to g by process p.

2.4.2 Perfect Failure Detector

A failure detector abstraction supplies all processes with the information about which processes crashed.
The perfect failure detector detects crashed processes, if we take the fail-stop failure assumption in a
synchronous system. The abstraction is presented in Module 2} The meaning of strong completeness is
that at some point every crashed process will be detected. The perfect failure detector should never label
a correct process as crashed (the strong accuracy property).

The perfect failure detector uses perfect links to ask, which processes are alive with so-called heartbeat
messages. If fail-stop is assumed, the process will only respond if it is alive. Otherwise, it will not
respond. If a process does not respond to the heartbeat message until a timer runs out, the process counts

as detected. Finally, the failure detector will notify all processes of the crash.

Module 2 : Interface and properties of the perfect failure detector

Module:
Name: PerfectFailureDetector, instance P.

Events:
Indication: (P, Crash | p): Detects that process p has crashed.

Properties:
PFD1: Strong completeness: Eventually, every process that crashes is permanently detected by every
correct process.
PFD2: Strong accuracy: If a process p is detected by any process, then p has crashed

2.4.3 Best Effort Broadcast

As the name suggests best effort broadcast is a type of broadcast abstraction. Broadcast abstractions try
to distribute messages to a set of processes. The abstraction is represented in Module [3] It consists of
three properties. The attentive reader recognizes the no duplication and the no creation property from
perfect links. The validity property states, that a correct process, who broadcasts a message, will deliver
the message. If the process crashes, there is no guarantee, that every process will receive the message.
Best effort broadcast is the most basic kind of broadcast. It only consists of sending the message to all
processes via perfect links and delivering the message, if it receives one. This fulfills all the necessary
properties of best effort broadcast, as no duplication and no creation are given through perfect links and
the validity property is fulfilled by the reliable delivery on every perfect link sent.

Module 3 : Interface and properties of best-effort broadcast

Module:
Name: BestEffortBroadcast, instance beb.

Events:
Request: (beb, Broadcast | m): Broadcasts a message m to all processes.
Indication: (beb, Deliver | p, m): Delivers a message m broadcast by process p.

Properties:
BEBI1: Validity: If a correct process broadcasts a message m, then every correct process
eventually delivers m.
BEB2: No duplication: No message is delivered more than once.
BEB3: No creation: If a process delivers a message m with sender s, then m was previously
broadcast by process s.

2.4.4 Reliable Broadcast

The reliable broadcast abstraction aims to broadcast messages, even when the original sender of the
messages crashes. The properties can be seen in Module [d The only difference to best effort broadcast
is the agreement property. It ensures, that a message from a crashed process will be delivered to all

processes. This can only happen if at least one process different from the sender has seen the message.

There are different ways to implement the reliable broadcast abstraction. Lazy reliable broadcast uses a
perfect failure detector and best effort broadcast. If a crashed process is detected, all messages from this
process are re-transmitted via best effort broadcast from every correct process. Eager reliable broadcast
does not need the perfect failure detector. Instead, every process re-transmits every message immediately.

Module 4 : Interface and properties of reliable broadcast

Module:
Name: ReliableBroadcast, instance rb.

Events:
Request: (rb, Broadcast | m): Broadcasts a message m to all processes.
Indication: (rb, Deliver | p, m): Delivers a message m broadcast by process p.

Properties:
RB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.
RB2: No duplication: No message is delivered more than once.
RB3: No creation: If a process delivers a message m with sender s, then m was previously
broadcast by process s.
RB4: Agreement: If a message m is delivered by some correct process, then m is eventually
delivered by every correct process.

Chapter 3

Extended Library of Algorithms

This chapter presents the implementation of new algorithms to the library [4] using DistAlgo. The focus
lies on staying close to the pseudocode of the book [1]] and not on performance and other optimizations.
This way it can be assured, that the modularity and the pedagogical structure of the algorithms are as
close to the book as possible.

3.1 Architecture Design

Like in the earlier master’s thesis [4], this thesis implements abstractions as described in Chapter[2] Ev-
erything is constructed in a modular way, such that complex problems can be simplified into individual
modules using other modules. The building blocks from the library, which are used, can be seen at the
end of Chapter[2]

At the beginning, DistAlgo processes execute their run method. Afterwards, they wait for messages to
be handled. All modules that implement an algorithm are at first represented as a singular DistAlgo
process. With the architecture design from the master thesis [4], modules are stacked upon each other,
according to their dependencies. For example, a perfect failure detector module uses perfect links, which
uses stubborn links. So every node running a perfect failure detector runs those three layers. But they
can only communicate with the layer above and below. Only the lowest layer can communicate with the
other nodes. Therefore the architecture design is very close to the modular design from the abstractions
in the book [[1]].

The inter-module communication is handled with receive and send clauses from DistAlgo described in
Section[2.3] Usually, a send message looks like this:

send(('Send', path, tag, m), to=node_sl)

This is a send message inside a stubborn link. The four elements of the tuple are as follows. First, "Send’
describes the type of event. The path tells the message through which modules it went. By reversing the
path, a message can find out to which module the message needs to go in a new node. The fag is used
when a module has more than one type of message to disseminate. Finally, m stands for the message,
which is sent. More details can be read in the master thesis [4].

3.2 Regular Consensus

The consensus problem consists of proposing a value from every process and agreeing on one of them.
Regular consensus is an abstraction described in Module 5| The module has a propose event, which is
a request from an upper layer. As an Indication, the consensus module returns a decision. In addition,
four properties need to be fulfilled for a regular consensus abstraction. Termination and integrity ensure,
that every process decides exactly once. Validity ascertains, that the consensus primitive does not invent

10

a decision value. Finally, agreement states that no two correct processes should decide differently. Hier-
archical consensus is a version of regular consensus.

Module 5 : Interface and properties of regular consensus

Module:
Name: Consensus, instance c.

Events:
Request: (¢, Propose | v): Proposes value v for consensus.
Indication: (¢, Decide | v): Outputs a decided value v of consensus.

Properties:
C1: Termination: Every correct process eventually decides some value.
C2: Validity: If a process decides v, then v was proposed by some process.
C3: Integrity: No process decides twice.
C4: Agreement: No two correct processes decide differently.

3.2.1 Hierarchical Consensus

Hierarchical consensus uses the best effort broadcast (Module EI) and perfect failure detector (Module @)
abstraction for its implementation of regular consensus, described in Module [5] Clearly, we assume fail-
stop, as we use the perfect failure detector. The algorithm starts by proposing a value for every process. In
the most straightforward case, the highest-ranking process broadcasts its value and decides on it. Then
a new round starts and the second highest ranking process decides on the value of the broadcast and
broadcasts the same value. Rinse and repeat until all processes have been decided. If a process crashes,
its round is ignored. If the highest ranking process crashes without broadcasting, the next highest ranking
correct process decides on a starting value and broadcasts it.

Propose. At first, every correct process proposes a value v and saves it in a variable.

def receive (msg=('Propose', path, v), from_ =p):
self.proposal = v

Starting the decisions. Afterward, the processes wait for an event to happen. Either, that the process
with the highest rank has the same round number as its rank and does not propose FALSE or that the
current round is in a list called detectedranks or the process of the current round has decided on a value.
In the first case, the process decides on its value and broadcasts it to every other process. The other two
cases start a new round.

11

def run () :

await (((self.rnd == self.rank(self.name))
and (self.proposal != None)
and (self.broadcastbool == False))
or (self.rnd in self.detectedranks)
or (self.delivered[self.rnd] == True))
if((self.rnd == self.rank(self.name))
and (self.proposal != None)
and (self.broadcastbool == False)):
self.broadcastbool = True
b = broadcast.Broadcast ('', self.name)
b.args = self.proposal
send (('Broadcast', ['hier_cons'], 'DECIDED', b), to=self.beb)
if path ==[]:
output ("DECIDE : ", self.proposal)
else:

send ((path[l:], '', b), to=self.system[path[0]] [self.name])
if ((self.rnd in self.detectedranks) or (self.delivered[self.rnd] ==
self.rnd += 1

True)) :

The detected ranks list is extended, every time a process crashes.

def receive (msg=('Crash', name_crashed), from =p):
detectedranks.append (self.rank (name_crashed))

Deliver DECIDED messages. In this section of the code, the DECIDED messages are received. The
if condition ascertains, that the decision came from a higher ranking process. The second part of the
if statement and the proposer variable concern themselves with an interesting case. Imagine a system,
where the processes p, g, r ranked in this order exist. Now the process p broadcasts its value, but only
r receives it because p crashed in the middle of the delivery. As g detects p, it starts the second round,
decides on its own value and broadcasts the decision. Thanks to the proposer variable, r takes the value
from ¢ and not from p. This is what we need, to fulfill the agreement property from Module [5] In the
end the delivered list is filled, such that a new round can start.

def receive (msg=(path, 'DECIDED', m), from =p):
r = self.rank (m.sender)
if (r < self.rank(self.name)) and (r > self.proposer):
self.proposal = m.args
self.proposer = r
self.delivered[r] = True

Ranking Subroutine. The rank function is not initially implemented into DistAlgo. Here is a trivial
implementation of it.
def rank (process) :

for i in range (len(self.procs)):

if (process == self.procs[i]):
return i + 1

3.3 Uniform Consensus

The uniform consensus abstraction only deviates in one property from regular consensus. Instead of the
agreement property, uniform consensus has uniform agreement. So no two processes should ever decide
differently instead of no two correct processes. Module [6] describes it precisely.

12

Module 6 : Interface and properties of uniform consensus

Module:
Name: UniformConsensus, instance uc.

Events:
Request: (¢, Propose | v): Proposes value v for consensus.
Indication: (¢, Decide | v): Outputs a decided value v of consensus.

Properties:
UC1: Termination: Every correct process eventually decides some value.
UC2: Validity: If a process decides v, then v was proposed by some process.
UC3: Integrity: No process decides twice.
UC4: Uniform agreement: No two processes decide differently.

3.3.1 Hierarchical Uniform Consensus

Hierarchical uniform consensus uses the perfect failure detector (Module [2)), perfect link (Module [T,
best effort broadcast (Module [3]) and reliable broadcast (Module [)) abstractions. The basic idea is, that
the highest ranking process proposes its value on every other process with a best effort broadcast. Every
process receiving the broadcast acknowledges this with a perfect link message. During the whole time,
the highest ranking process keeps a list of every process that acknowledged its proposal and the detected
ranks. As soon as the union of those two lists equals the set of all processes, the decision is broadcasted
via reliable broadcast. This way, no process that later crashes can decide on a value, unless it is the one
from the reliable broadcast. As in hierarchical consensus, there is a round system. But the round only
ever changes if the highest ranking process crashes.

Propose. The proposal is basic, it saves the proposal in a variable on the process.

def receive (msg=('Propose', path,v), from_=p):
if proposal == None:
self.proposal = v

Initial broadcast. In hierarchical uniform consensus, three different methods wait for a special event
to happen which is not a message. They all await a statement, which needs to become true on the run
method of DistAlgo. Due to this, the run() method gets quite big, which is why we opted to only show
the run() method in sections instead of the whole. The initial best effort broadcast is one of them. It
waits for the case that the round equals the rank of the process and nothing has been decided. Further, it
should not be the case, that no valid proposal (i.e. the None variable) is proposed.

if((self.rnd == self.rank(self.name)) and (self.proposal != None)
and (self.decision == None)):
b = broadcast.Broadcast ('', self.name)
b.args = self.proposal
send (('Broadcast', ['hier uni_cons'], 'PROPOSAL', b), to=self.beb)

Sending ACK messages. If the broadcast from above is received, the receiving process sends an ACK
message over a perfect link, to acknowledge this fact. Moreover, the value of the proposal is saved inside
a python dictionary, a precautionary measure for crashes.

13

def receive (msg=(path, 'PROPOSAL', m), from_=p):
self.proposed[self.rank (m.sender)] = m.args
if (self.rank (m.sender) >= self.rnd):
path.append('hier_uni_cons')
m.msg = "Ack" + str(m.msgid)
m.receiver = m.sender
m.sender = self.name
send(('Send', path, 'ACK', m), to=self.pl)

Receiving ACK messages. The ACK message makes the highest ranking correct process to save the
sender inside the ackranks set. The set of all acknowledged ranks.

def receive (msg=(path, 'ACK', m), from_=p):
self.ackranks.append(self.rank (m.sender))

Crash. In the case of a crash, the crashed process rank is added to the set of the ranks of all crashed
processes.

def receive (msg=('Crash', name_crashed), from =p):
detectedranks.append(self.rank (name_crashed))

Additionally, the round changes, if the current round is inside the detectedranks variable. This is
done inside the run method because it waits for an event instead of a message from another abstraction.
The following method further concerns itself with setting the proposal variable to the highest ranking
proposal, which the process received.
if ((self.rnd in self.detectedranks)):

if (self.proposed[self.rnd] != None):

self.proposal = self.proposed[self.rnd]
self.rnd += 1

Broadcast DECIDED message. As soon as the union of all ackranks and detectedranks equals the set
of all processes, the DECIDED message is broadcasted.

if (set (self.detectedranks) .union (set (self.ackranks)) == set (self.proposed.keys())):
m = broadcast.Broadcast ('', self.name)
m.args = self.proposal
send (('Broadcast', ['hier_ uni_cons'], 'DECIDED', m), to=self.rb)

Deliver DECIDED message. In the end, a value from the highest ranking process is decided on every
process.

def receive (msg=(path, 'DECIDED', m), from =p):
self.decision = m.args

if path == []:
output ("DECIDE : ", self.decision)
else:
send((path[l:], '', m), to=self.system[path[0]] [self.name])

3.4 Randomized Consensus

Randomized consensus needs the same properties to be fulfilled as regular consensus. Nonetheless, they
are completely different, because randomized consensus assumes a fail-silent model, instead of a fail-
stop model. As we cannot detect crashes, we use randomness to make sure that the processes eventually

14

Module 7 : Interface and properties of regular randomized consensus

Module:
Name: RandomizedConsensus, instance rc.

Events:
Request: (¢, Propose | v): Proposes value v for consensus.
Indication: (¢, Decide | v): Outputs a decided value v of consensus.

Properties:
RC1: Probabilistic termination: With probability 1, every correct process eventually decides some value.
RC2: Termination: Every correct process eventually decides some value.
RC3: Validity: If a process decides v, then v was proposed by some process.
RC4: Integrity: No process decides twice.
RCS: Agreement: No two correct processes decide differently.

terminate. The description of the abstraction is in Module

To ensure randomness, randomized consensus algorithms delegate their probabilistic choices to a
common coin abstraction. The precise specifications of the common coin can be seen in Module [§] A
common coin is invoked by triggering a release event at every process. Every process randomly flips a
coin. The value of the coin c is only sent if an output is indicated. The termination property ensures an
output of the coin. The second property hides the coin value until a process releases the coin. The last
two properties specify the probability distribution of the coin.

Module 8 : Interface and properties of a common coin

Module:
Name: CommonCoin, instance coin, with domain 5.

Events:
Request: (coin, Release): Releases the coin.
Indication: (coin, Output | b): Outputs the coin value b € 5.

Properties:
COIN1: Termination: Every correct process eventually outputs a coin value.
COIN2: Unpredictability: Unless at least one correct process has released the coin,
no process has any information about the coin output by a correct process.
COIN3: Matching: With probability at least 9, every correct process outputs the same coin value.
COIN4: No bias: In the event that all correct processes output the same coin value,
the distribution of the coin is uniform over B
(i.e., a matching coin outputs any value in B with probability ﬁ).

3.4.1 Randomized Binary Consensus

In randomized binary consensus, the processes can only decide between the values 0 and 1. The abstrac-
tions used are: best effort broadcast, reliable broadcast and multiple instances of the common coin. As
in the two hierarchical consensus variants, the algorithm works in rounds. Every round has two phases.

15

In the first round, all processes broadcast their proposal. If a process receives more than half of the
proposals from other processes, it saves them as its proposal, if they are all the same. Otherwise it uses
“noMajFound” as its value. At the end of phase 1, phase 2 is started and the new proposal is shared via
best effort broadcast. Phase 2 waits until N — f values from phase 1 have been proposed. It starts a
coin round with the common coin abstraction and releases the coin. In the output of the coin event, the
processes look, whether more than the faulty processes have proposed the same value. Now there are
three things, which could happen. A majority is found and the process sends a DECIDED message with
reliable broadcast. No majority is found, but there exists a value different from “noMajFound”. This
value is taken as its own. If none of this happens, the value from the common coin is taken. In the last
two cases, a new round is started.

Propose. Upon the proposal, the first round and first phase is initialized. The proposal is saved inside
a proposal variable and then shared.

def receive (msg=('Propose', path, v), from_=p):
self.proposal = v
self.rnd = 1
self.phase = 1
b = broadcast.Broadcast ('', self.name)
b.args = (self.rnd, self.proposal)
send (('Broadcast', ['random_bin_cons'], 'PHASE-1', b), to=self.beb)

Delivery in phase 1. Every process has a Python dictionary of all processes called val. As soon as
the phase-1 message is delivered, the proposed value is saved inside the dictionary. In the code from
the section above, one can see that b.args is a tuple. So in b.args[0] the round is saved and in b.args/1]
the proposal. The if condition ensures, that all messages come from the correct round inside the correct
phase.

def receive (msg=(path, 'PHASE-1', b), from =p):
if (self.phase == 1 and b.args[0] == self.rnd):
self.val[b.original_sender] = b.args[1l]

Starting phase 2. Once, more than half of the values inside the val dictionary are filled with an entry,
the second phase starts. If more than half of the values in val are the same, the process takes this value
as its proposal for phase 2. Otherwise, it proposes the value “noMajFound”. Before the start of phase 2,
val is cleared.

if (numValues (self.val) > int (self.numberOfProcs / 2)

and self.decision == None
and self.phase == 1):

majority = majorityCount (self.val)

if majority[0] > int (self.numberOfProcs / 2):
self.proposal = majority[l]

else:
self.proposal = "noMajFound"

self.val.clear ()

for p in self.procs:
self.val[p] = None

self.phase = 2

b = broadcast.Broadcast ('', self.name)

b.args = (self.rnd, self.proposal)

send (('Broadcast', ['random_bin_cons'], 'PHASE-2', b), to=self.beb)

The code here differs a little from the randomized binary consensus described in [1, Algorithm 5.12].
First of all, the methods numValues() and majorityCount are new subroutines. They do mostly the same
things as the pseudocode. The numValues() function returns the number of values inside val different

16

from None. The majorityCount subroutine returns a tuple, with the first element counting the number of
times the majority value is inside val and the second element the majority value itself.

Another original creation is the “noMajFound” tag. In Algorithm 5.12 from [1/], the numValues() func-
tion implicitly counts how many different proposals are inside val. This cannot be done directly in
DistAlgo. The DistAlgo version counts how many values in val are different from L (implemented with
None). In the pseudocode, the val variable is filled with N times the value L at the start. Now in the
pseudocode version from the part above |3.4.1] if no majority has been found, the saved value is L as
well. So the case, where no value has been proposed and the case, where no process found a majority
from the part above would be treated the same in the implementation. To circumvent this problem,
we introduce the tag “noMajFound”.

Another solution for the numValues() method would have been to use a list of tuples, instead of a dictio-
nary for the representation of the val variable. We did not choose this option, because it would differ in
much more ways from the pseudocode.

def numValues (val) :

x = list (val.values())
return len(x) - x.count (None)

def majorityCount (val) :
majCount = 0
majValue = None
for i in set (val.values()):
x = list (val.values())
counter =
if counter > majCount and i != None and i != "noMajFound":
majCount = counter
majValue
return (majCount, majValue)

x.count (i)

i

Delivery in phase 2. A delivery in phase 2 does the same thing as a delivery in phase 1, just with the
phase-2 assertion.
def receive (msg=(path, 'PHASE-2', b), from_=p):

if (self.phase == 2 and b.args[0] == self.rnd):
self.val[b.original_sender] = b.args[1l]

The coinround. As soon as all nonfaulty processes have proposed something in phase 2 of a round, a
coin round is started. The coin round starts a new instance of common coin and requests a release of the
coin. Additionally, the phase is set to 0, so no phase-1 or phase-2 broadcast will be received.
Here is another deviation from the original book [[1]. Due to time and knowledge constraints, it was not
possible to implement the common coin abstraction. A possible implementation is discussed at the end
of the subsection. Instead, a shortcut was taken with best effort broadcast and the random library from
Python.
if (numValues (self.val) >= self.numberOfProcs — self.f
and self.decision == None and self.phase == 2):
self.phase = 0

b = broadcast.Broadcast ('', self.name)
send (('Broadcast', ['random_bin_cons'], 'COINROUND', b), to=self.beb)

Output of the coinround. Every process receives a binary value from the coinround (through a best
effort broadcast). The processes first check whether a majority of more than the number of faulty pro-
cesses proposed the same value in phase 2. If this is the case, the value is decided and will be broadcasted
with a reliable broadcast. Provided that less or equal to the number of faulty processes have proposed
the same value, this value is saved as a proposal for the next round. If only “noMajFound” has been

17

proposed for phase 2, the proposal for the next round will be the random value from the common coin.
If nothing has been decided, a new round starts in phase 1.

def receive (msg=(path, 'COINROUND', c), from_ =p):
majority = majorityCount (self.val)
if majority[0] > self.f:
self.decision = majority|[1]

b = broadcast.Broadcast ('', self.name)
b.args = self.decision
send (('Broadcast', ['random_bin_cons'], 'DECIDED', b), to=self.rb)
else:
if majority[l] != None
self.proposal = majority[1l]
else:
self.proposal = random.randint (0, 1)

self.val.clear ()

for p in self.procs:
self.val[p] = None

self.rnd += 1

self.phase = 1

b = broadcast.Broadcast ('', self.name)
b.args = (self.rnd, self.proposal)
send (('Broadcast', ['random bin_cons'], 'PHASE-1', b), to=self.beb)

Delivering DECIDED message. When a DECIDED message is received, the value from the message
is decided.

def receive (msg=(path, 'DECIDED', m), from_=p):
self.decision = m.args
if path == []:
output ("DECIDE : ", self.decision)
else:
send ((path[l:], '', m), to=self.system[path[0]] [self.name])

A solution for Coinround. The best way to implement the common coin abstraction is a common
coin module running on a separate process from the rest of the consensus processes. It waits until NV — f
processes have released their coin. Then, a random binary output to the consensus processes is sent.
The library [4] provides the ability to run the same modules on different processes at the same time. A
big change to the run and initiator classes of the library would be necessary, to run the common coin
process on another process than the consensus processes, while still being able to communicate with
each other. Due to a lack of understanding of the run and initiator classes, the change was not possible
within the deadline.

3.5 Run Algorithm

To run the algorithms one needs to follow the installation steps of the README file. Python 3.7 is used
because it is the latest version supported by DistAlgo [2]]. To set the parameters of the algorithms one
needs to type into the command line:

<algorithm> <n> <proposal_1> <proposal_2> ... <proposal_n>

Run locally on multiple consoles. Assume hierarchical consensus is run on four consoles. The first
process runs the main method and starts the initialization process. With the —n flag, each console is

18

given a unique name for the inter-process communication. —m tags a new module. The —D argument is
added, so all but the first processes are run as idle. Down below is an example of a locally run version of
hierarchical consensus.

src/run.da hier_cons 4 60 5 13 210
-D src/run.da
-D src/run.da
-D src/run.da

python3 -m da -n
python3 -m da -n
python3 -m da -n
python3 -m da -n

n K .Q T

19

Chapter 4

Conclusion

4.1 Discussion

The goal of this thesis was the extension of the library [4] with implementations from [1]]. The desired
implementations were hierarchical consensus, hierarchical uniform consensus and randomized binary
consensus. The initial goal has been mostly achieved, as the library was indeed extended by those three
new functioning modules. Nonetheless, we found limits to the modular approach of the current imple-
mentation of the library with the common coin abstraction for randomized consensus. Otherwise, the
library was a well-thought-out, but challenging work environment.

The first discussable decision was the implementation of the rank function. It would have been possible
to implement the rank of a process upon initialisation. But due to the fact, that the ranking function is
rarely used, we opted for a simple for loop.

A problem we encountered was by sending perfect links in hierarchical uniform consensus. After receiv-
ing the best effort proposal from the leader, the receiving process should respond with an ACK tagged
message. The problem with this message was, that the message had no content different from the tag.
Another module, which only used tagged messages was the perfect failure detector. Because of this sim-
ilarity, the perfect links filtered out all ACK messages, as HEARTBEAT messages from the perfect failure
detector are sent more often and earlier. To solve the problem, we added content to the ACK messages.
Another problem was caused by the implementation of the numValues() function in randomized consen-
sus. The problem was solved through the introduction of a new variable as mentioned in the respective
paragraph.

The final problem of this thesis was the implementation of the common coin. As already mentioned,
the best possible implementation of the common coin algorithm went completely against the modular
approach for which the library was created. It needs a separate node, which can communicate directly
with the randomized binary consensus module, without using other abstractions in the best case. As
those changes were too big to complete in the time scope of a bachelor thesis, we opted for an ugly quick
fix.

4.2 Future Work

For future work, an implementation of randomized binary consensus, which is closer to the book would
be interesting. It would also be interesting to implement new algorithms from the book. Time and
memory optimizations for the algorithms come to mind for future work. As a challenge, one could
implement the algorithms in a lower-level language like C, to compare the execution speed.

20

Bibliography

[1] C. Cachin, R. Guerraoui, and L. E. T. Rodrigues, Introduction to Reliable and Secure Distributed
Programming (2. ed.). Springer, 2011.

[2] Distalgo, “Distalgo language.” Available at https://github.com/DistAlgo/distalgo.

[3] L. Lamport, “Mail from leslie lamport.” Available at https://lamport.azurewebsites.
net/pubs/distributed-system.txt.

[4] A. Lazic, “The library of distributed protocols,” master’s thesis, University of Bern, 2021. Avail-
able at https://crypto.unibe.ch/archive/theses/2020.msc.aleksandar.
lazic.pdf.

21

https://github.com/DistAlgo/distalgo
https://lamport.azurewebsites.net/pubs/distributed-system.txt
https://lamport.azurewebsites.net/pubs/distributed-system.txt
https://crypto.unibe.ch/archive/theses/2020.msc.aleksandar.lazic.pdf
https://crypto.unibe.ch/archive/theses/2020.msc.aleksandar.lazic.pdf

Erklarung

Erkldrung gemdss Art. 30 RSL Phil.-nat. 18

Ich erklédre hiermit, dass ich diese Arbeit selbststindig verfasst und keine anderen als die angegebenen
Quellen benutzt habe. Alle Stellen, die wortlich oder sinngeméss aus Quellen entnommen wurden, habe
ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemiss Artikel 36 Absatz 1
Buchstabe r des Gesetzes vom 5. September 1996 iiber die Universitiat zum Entzug des auf Grund dieser
Arbeit verliehenen Titels berechtigt ist.

Fiir die Zwecke der Begutachtung und der Uberpriifung der Einhaltung der Selbstindigkeitserklirung
bzw. der Reglemente betreffend Plagiate erteile ich der Universitit Bern das Recht, die dazu erforder-
lichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, insbesondere die schriftliche
Arbeit zu vervielfiltigen und dauerhaft in einer Datenbank zu speichern sowie diese zur Uberpriifung von
Arbeiten Dritter zu verwenden oder hierzu zur Verfiigung zu stellen.

Ort/Datum Unterschrift

22

	Introduction
	Background
	Distributed Systems
	Distributed Programming Abstractions
	DistAlgo
	Processes and Messages
	High-level Queries
	Configuration
	Logging

	Building blocks
	Perfect Links
	Perfect Failure Detector
	Best Effort Broadcast
	Reliable Broadcast

	Extended Library of Algorithms
	Architecture Design
	Regular Consensus
	Hierarchical Consensus

	Uniform Consensus
	Hierarchical Uniform Consensus

	Randomized Consensus
	Randomized Binary Consensus

	Run Algorithm

	Conclusion
	Discussion
	Future Work

