b

u

b
UNIVERSITAT
BERN

Implementing and Evaluating Protocol 113
in BlockSim

Bachelor Thesis

Lawrence Chiang

from
Koniz, Switzerland

Faculty of Science, University of Bern

23. June 2023

Prof. Christian Cachin
Orestis Alpos, Ignacio Amores-Sesar
Cryptology and Data Security Group

Institute of Computer Science
University of Bern, Switzerland



Abstract

A common attack on decentralised exchanges is the so-called sandwich attack. It involves
a malicious miner placing a victim transaction between two of their own transactions in
a block. The attacker frontruns and then backruns the victim, resulting in a profit for the
attacker and worse exchange rates for the victim. Alpos, Amores-Sesar, Cachin, and Yeo
propose a new protocol called 113 to prevent such attacks. In this thesis, we implement a
simplified version of the protocol in BlockSim, a blockchain simulator written in Python.
The simulator is also extended to support sandwich attacks and all changes are shown as
pseudocode. Benchmarks demonstrate that the protocol is highly effective in preventing
sandwich attacks if all participants of the protocol stay honest. Even if they collude, results
show that 99.97% of attacks from October 2022 would have been unprofitable under the
protocol. Attacks from the rest 0.03% are still profitable because the amounts transferred in
these attacks are large. However, 113 also significantly reduces the profits of such attacks.



Acknowledgements

I would like to thank my supervisors Orestis Alpos and Ignacio Amores-Sesar for explain-
ing every part of their protocol whenever anything is not clear to me. The almost weekly
meetings with Orestis made me feel supported during the writing of this thesis and kept me
motivated. I would also like to thank Prof. Christian Cachin for letting me write this thesis
in his research group and for providing valuable feedback.

ii



Contents

(L__Introduction|

2 Background|

2.1 Blockchain| . . ... ... ... ... .....

3  Desig

3.1 Designchoices| . . ... ..............

=]

Implementation|

4.1 Implementation of 113 in BlockSim| . . . . . . ..
|4.2  Partial Seeds Commitments and Permuting| . . . .

W ) O

4.4 Implementing the new incentives| . . . . . .. . ..

[5.1 Benchmarks of protocol with honest leaders| . . . .

[5.2  Benchmarks of the protocol with colluding leaders|

6 Conclusion!

11
12

14
14
15
16
16

18
19
19

22



Chapter 1

Introduction

A rich person wants to buy a lot of ETH with their dollars. They go to the most used decentralised
exchange that executes the transaction. But when the transaction is executed, they received less ETH
than they expected. Little did they know, they have been subjected to a sandwich attack. Such attacks
are a form of Maximal Extractable Value (MEV), which is when miners maximize their gains beyond the
block reward and transaction fees [[17]. MEV has cumulatively cost more than 675 million dollars [11].

There are groups developing solutions to the MEV problem, some by encrypting the transactions or
having a trusted third party bundle the transactions for miners to mine [17]]. These solutions have some
drawbacks as encryption may impact scalability without completely solving the MEV problem [10] and
utilizing a trusted third party diminishes the trustless nature of blockchains. The II3 protocol, proposed
by Alpos, Amores-Sesar, Cachin, and Yeo [2], not only makes sandwich attacks no longer profitable,
but requires few resources and does not require a third party. It can be implemented on all types of
blockchains and the security of the underlying blockchain is preserved.

Before a miner can start mining a new block, they must fill a new block with new transactions.
Miners have the ability to choose which transactions to put in their block and also in what order. How-
ever, this freedom becomes problematic as malicious miners can exploit it to strategically position their
transactions to gain a profit. II3 revokes the miner’s ability to choose the order of the transactions. It
works on the consensus level, namely after a block is mined. During delivery is where the protocol first
comes into play: all transactions of the block are chunked. This is a process where the protocol replaces
each transaction with many copies of the same transaction. Each copy, or chunk, is altered to transact a
fraction of the original transaction value in relation to the amount of chunks. It is made sure that if the
values of all chunks are added up, then the summed values is the same as the original value transacted
by the original transaction. E.g. if 10 chunks are made for each transaction, then the values transacted
on each chunk is one tenth of the original transaction. The protocol then randomly permutes all chunks.
As a result of the chunks being randomly ordered, it is often the case that a frontrunning chunk from
the attacker comes before or after a backrunning chunk from the attacker. When this happens, there is
no victim chunk between these chunks, so there is no profit for the attacker. An hypothesis from Alpos,
Amores-Sesar, Cachin, and Yeo is this leads to lower profits for the attacker. Another hypothesis states
that as the number of chunks increases, the profit for attackers approaches zero. Two plots were taken
from their paper, which can be seen in Figure These plots depict the average profits of attackers with
different behaviours [2]]. The goal of this thesis is to replicate these two plots with data collected from an
extended version of BlockSim and also to verify the two aforementioned hypotheses.

Chapter [2] provides the background of sandwich attacks, the protocol, and BlockSim. Chapter [3]
shows the design choices made for the implementation and outlines the simulation framework that was
used to simulate sandwich attacks. In Chapter[d] the pseudocode of the implementation of I13 is presented
and explained. Chapter [5]showcases the results of various benchmarks which illustrate the performance
of the protocol under normal conditions, as well as the profits obtained by actors not abiding with the
rules of the system. Finally, the thesis ends with a conclusion in Chapter[6]



Chapter 2

Background

2.1 Blockchain

Blockchain is the technology behind cryptocurrencies like Bitcoin and Ethereum. It is a decenteralised,
public ledger which is usually used to keep track of how much tokens each user has. Users of a blockchain
own accounts which are associated with the number of tokens the user has. Users can send an amount of
tokens to other users by broadcasting a transaction on the internet.

The blockchain is maintained by people called miners. These people put transaction data into a list
called a block. In Bitcoin, the list is hashed in a process called mining. Miners compete against each
other and the first person to find a certain hash is said to have successfully mined the block. If this is
the case, the protocol delivers the block to other miners. The block is added to the preexisting chain of
blocks and the mined block is usually accepted by all other miners with time. These blocks then form a
chain, hence the name blockchain. The miner is rewarded with tokens and transaction fees. After a block
has been mined, the miner collects more transactions into a new block to mine and the cycle begins again
[6].

Some blockchains such as Ethereum allow code to be run on the blockchain with a functionality
called smart contracts. Smart contracts, just like users, can own an amount of tokens. Users of the
blockchain can interact with the code. Every interaction with a smart contract changes the state of the
blockchain at every node [19].

2.2 Automated Market Maker (AMM)

Blockchains like Ethereum gave form to Decentralised Exchanges (DEX). DEXes utilise the smart con-
tract functionality of blockchains like Ethereum to run code on the nodes of the network. They let users
exchange one amount of a token for another token without the need of a central authority. An advantage
of using DEXes instead of a centralised exchange is users they do not have to worry about their funds
being stolen by the people running the exchange.

The simplest implementation of a DEX is an Automated Market Maker (AMM). An AMM usually
possesses a huge amount of a token A and another equally huge amount of a token B. Let amountA be
the amount of token A and amountB be the amount of token B the AMM has under its disposal. When
an AMM is initialised, a constant k£ calculated by multiplying amountA and amountB. At all times,
amountA multiplied by amountB must equal k.

If a user wants to swap an amount of token A for token B, the user must send the amount of token
A to the AMM. Upon receiving the token A, the smart contract adds the amount of token A from the
transaction to amountA. As the amountA has increased but amountB has not, the constant k£ has not
been respected. As a result, the smart contract calculates the amount of token B it must send back to the
user so that k is restored. The amount of token B is calculated in the following way:

amountB = amountA/k



The AMM then sends the user the exact amount of token B so that £ is restored. The same principle
is used if the user wants to exchange an amount of token B for token A. As k is fixed, the amount of
token A is inversely proportional to the amount of token B at any given time. As a result, a curve like
Figure [2.Ta] can be plotted to represent states of an AMM. The exchange rate between the tokens is
determined by the state of the AMM at the time of the transaction. [4)]. A vulnerability of an AMM is
big transactions can change the internal state by a lot and malicious actors can take advantage of this.

Figure 2.1. AMM

(b) The three arrows depict the changes of the state of

(a) The curve shows the possible states of the amounts the AMM caused by the three sandwich attack trans-
of tokens under the control of the AMM. The red ar- actions. The two red arrows depict transactions of the
row is the change of state of the AMM because a user attacker and the green arrow is the transaction of the
swapped token A for token B. victim.

[aa) /M

5 5

< Y

8 8

S G

S) S

I= =

3 E TO (Buy)

£ S

< <

T1 (Sell)
Amount of token A Amount of token A

2.3 Sandwich Attacks

A prerequisite for sandwich attacks is a user who wants to exchange a big amount of a token A for a
token B. They broadcast a transaction 7', which is the victim transaction of the sandwich attack. As
transactions of a blockchain are usually public and the code of an AMM can be read by anyone, anyone
can calculate how a given transaction would affect the constant of a given AMM [14]. An attacker, who is
a malicious miner, may see an opportunity for a profit. The attacker adds 7 to their new block alongside
two transactions of their own, 70 and 7'7: T0 in the position before 7" and 7’1 in the position after 7.
Transaction 70, just like 7', exchanges an amount of token A for token B. 7'/ exchanges an amount of
token B for token A. The victim transaction is sandwiched between the two attacker transactions, hence
the name sandwich attack (see Figure top left).

If the block is mined, the AMM processes the transactions sequentially, so 70 is processed before
T, and T is processed before T'1. T0 exchanges token A for token B, so the price of token B goes
up, otherwise the constant k£ of the AMM is violated. This is the frontrunning portion of the attack.
Transaction 7', as stated above, also exchanges token A for token B. Because 7 follows T0, the exchange
rate for T is worse than had there been no 7'0. As for transaction 7’1, the attacker sells token B after the
price of token B has increased because of transactions 70 and T'. Thus the attacker sells token B for a
better exchange rate than before 70 and 7' have executed. This is the backrunning portion of the attack
[12]. The transactions T0, T"and T'I are depicted on the AMM curve in Figure [2.1b



2.4 113 Protocol

For the scope of this thesis, I13 has been simplified to four main components: Permuting, Partial seeds
commitments, Chunking and Incentivising. The following paragraphs will explain each component.

Permuting The main mechanism of the protocol is the random permutation of transactions. The three
transactions in a sandwich attack can be scrambled in six different ways, see Figure[2.2] Only when the
transactions are in the normal order (70, T', T'1) does the attacker gain a profit. If both transactions from
the attacker are switched (711, T', T0) the attacker incurs a loss. In the other four cases, there is no victim
transaction between the attacker transactions to move the state of the AMM. As a result, the attacker nei-
ther gains a profit nor suffers a loss. Because the likelihood of each permutation is the same, the average
profit for an attacker is around zero. This claim is evaluated in Section To achieve the random per-
mutation, randomness is required. Generating random numbers on a blockchain is problematic because
blockchains are by their nature deterministic whereas non-determinism is required for randomness [16].
An off-chain pseudorandom number generator cannot be relied on as the single source of randomness
because its outputs can be predicted or it involves a trusted party. Hence, malicious miners can predict
the next permutation and apply the inverse of the predicted permutation on the transactions. The proto-
col permutes the inversely permuted transactions and the transactions are ordered the way the attacker
wanted. This is the reason a random number generator with a random seed as an input is required.

Figure 2.2. The six permutation possibilities of sandwich attack transactions. The order the attacker
intended is on the top left. It is the only permutation where they get a profit. The worst permutation for
the attacker is bottom left, because they incur a loss. The other permutations are neutral for the attacker.

| TO (AMM to Attacker) | | T (AMM to Victim) | | TO (AMM to Attacker) |

| T (AMM to Victim) | | TO (AMM to Attacker) | | T (Attacker to AMM) |

| T1 (Attacker to AMM) | | T1 (Attacker to AMM) | | T (AMM to Victim) |
Profit No Profit No Profit

| T1 (Attacker to AMM) | | T (AMM to Victim) | | T1 (Attacker to AMM) |

| T (AMM to Victim) | | T (Attacker to AMM) | | TO (AMM to Attacker) |

| TO (AMM to Attacker) | | TO (AMM to Attacker) | | T (AMM to Victim) |
Loss No Profit No Profit

Partial Seeds Commitments If the seed for the permutation of the transactions is solely provided by
the miner of the newest block, then the miner can apply the inverse of the permutation on the transactions
of their block before the block is delivered. On delivery, the protocol permutes the transactions in the
tampered order to the order that the miner wanted and the sandwich attack is executed. Thus more actors
must be involved to provide more randomness in the form of partial seeds. Let n/ be a positive integer
that is the number of actors needed. 113 finds actors in the last n/ miners of the last nl blocks. The nl
miners are the leaders and together they build the leader set. When a new block is mined, the miner of the
block becomes a new leader and the oldest leader is no longer part of the leader set. The protocol requires
all leaders to generate nl partial seeds. Each seed is hashed and the hashes are added to the blockchain as
so-called commitments. The commitment opening phase is the period of time for leaders to reveal their
seeds so the seeds can be used. The leaders are each obligated to reveal a seed with the property that
if the seed is hashed, then the hash is the same as the prior commitment from the leader. This is called
the commitment scheme and is done to prevent the leaders from later changing their seeds to bias the
permutation. If the leader cannot or refuses to do what is required from them, they are penalised. The
revealed partial seeds are merged together using the XOR function to form the final seed, which is what



is used to permute the transactions of the newest block of the chain (see Figure [2.3). The commitment
scheme and the commitment opening phase have not been implemented in this thesis because they do
not alter the results of the benchmarks run in Chapter 5]

Figure 2.3. The top row of boxes is the blockchain with blocks B0 to B5. Connected to the blocks
B0 to B4 are the miners m( to m4. The four miners between the dashed lines are the leaders. The
symbol o denotes the partial seed published by each of the four leaders. The seeds are XORed and used
in permFromRandBits(), a permutation function. The resulting permutation is applied to the transactions
of the new block B5. On the left, miner m0 is not a leader any more and receives their block reward.

} BS
X0

B

: Bl 2 [B3 B4 ;
1 1
1 1
1 1
1 1
1 1
Permutation
o o3 o2 o1
e

~
Block Rewards permFromRandBits()

113 protocol

Chunking The process of chunking is dividing each transaction in a block into many smaller trans-
actions. This is done because the central part of II3 is the utilisation of a permutations and in order to
achieve more possible permutations, all transactions are chunked on delivery. Let m be a positive integer
that is the number of chunks set for the protocol. In this thesis, this number will also be referred to by
chunk size. Transaction T, a transaction from the block, instantiates m number of chunks, all identical
to T except for the amount transacted. Each chunked transaction is treated as an individual transaction
sending a m-th amount of the original amount of ETH in 7. For example if m is 10, a transaction T’
is split into ten distinct transactions 70, T1, ... , T8, T9. The value transacted in each of the chunks
is a tenth of the original transaction 7'. If the total number of transactions is n, then chunking allows
for (n - m)! permutations, which is much bigger than the original n!. A visualisation of chunking and
permuting can be seen in Figure Chunking does not affect normal transactions from one person to
another because the amounts transacted in the chunks add up to full amount transacted in the whole orig-
inal transaction. However, if a person is transacting with an AMM, the permuted chunks change the state
of the AMM by less overall compared to the original unchunked T'. Chunking reduces the probability of
a profitable sandwich attack as we will see in Chapter [5

Incentivising To incentivise all leaders to abide by the rules of the protocol and commit truly random
partial seeds, the block rewards and transaction fees of each block are temporarily held in custody. If
miner M1 mined block B and M1 fails to reveal its seeds for the blocks B1 + nl, M1 loses the block
reward for B1. If M1 is malicious and wants to successfully execute a sandwich attack, they must know
the seeds of all other leaders in the leader set. This is because even if a large coalition of leaders collude,
if one leader stays honest and provides a random seed, then the end seed is also random, by virtue of the
XOR function. To further disincentivise leaders from colluding, the protocol allows leaders to claim the



Figure 2.4. On the left is a visualisation of a block containing a sandwich attack. On the right is the
same block after chunking with the amount of chunks set to 3 and then permuted. The result is a list of
transactions three times as large and randomly permuted. The end state of the transactions of a block
when II3 is used has been reached. For better visualisation some chunks of the random transactions have
been omitted.

| T1 (Attacker to AMM) chunk 2 |

| T (AMM to Victim) chunk 2 |

| T1 (Attacker to AMM) chunk 1 |

| TO (AMM to Attacker) chunk 2 |

| TO (AMM to Attacker) | | TI (Attacker to AMM) chunk 3 |
| T (AMM to Victim) |
chunk &
| T1 (Attacker to AMM) | permute
| T (AMM to Victim) chunk 3 |

| T (AMM to Victim) chunk 1 |

| TO (AMM to Attacker) chunk 1 |

| TO (AMM to Attacker) chunk 3 |

rewards of other leaders if a leader guesses the partial seed of another leader. Here one can see the bigger
nl is, the more secure 113 is, because the chance of a leader defecting is bigger and the block reward is
held for longer. However, a trade off is miners must wait longer to receive their block rewards. Alpos,
Amores-Sesar, Cachin, and Yeo [2]] have shown that the protocol is sound in a game theoretical sense.
To come to such a conclusion, the effect of colluding leaders was analysed. In the paper all sandwich
attacks in October 2022 were analysed and it was determined that 99.97% of sandwich attacks had a
profit of 6.37 ETH or less. The highest recorded profit of a sandwich attack in October 2022 was 109
ETH. For both of these values, plots of the probability of profitable permutations with different amounts
of chunks () have been created. Figure [2.54]is the plot in their paper for 6.37 ETH vast majority case
and Figure for the 109 ETH edge case. The aim for this thesis is to recreate these plots with the
simulator and generate more plots of the profits of leaders that are honest or collude. The results can be
seen in Chapter [5]

2.5 BlockSim

BlockSim [1]] is an open-source blockchain simulator written in Python that is designed for easy extensi-
bility to test new ideas. It functions as a discrete event simulator with events accompanied by timestamps.
In BlockSim, the energy-intensive mining process involving hashing is substituted with a probability dis-
tribution that is modeled after a miner’s likelihood of mining a block at a given time. This is calculated
by comparing the miner’s hash power relative to the available hash power on the network. To simulate
mining, a random number is chosen on the distribution that depicts the time that the node needed to
mine a block. Many networking problems of real blockchain systems have also been abstracted away in
a similar fashion. To simulate propagation time of blocks and transactions, similar probability distribu-
tions have been implemented. As a result of these design choices, simulations that are run on different
computers with different hardware specifications give similar outputs.



Figure 2.5. The probability of profitable permutations with regards to chunk size (m). Both graphs are
from the paper from Alpos, Amores-Sesar, Cachin, and Yeo. It is the goal of this thesis to recreate the
graphs using BlockSim.

(a) Potential profits lost was 6.37 ETH (b) Potential profits lost was 109 ETH

‘ —— k=10
k=8

— k=6

[ —— k=10
k=8

== k=6

e
0
|

©
|

— k=4

e
>

—— k=3
—— k=2
k=1

—_— =3

%

—— k=2

o
<
~

o

o
o
=

Probability of profitable permutation pj.
&

Probability of profitable permutation pj. »

0.0+ =

[
F'S

0 5 10 15 20 25 30 3 40 0 5 10 15 20 25 30 35 40
Number of chunks (m) Number of chunks ()

The simulator can be set to a few different modes like Base, Bitcoin, Ethereum and Appendable
block. If Bitcoin or Ethereum are chosen, different variables of simulated blockchain are set to match
constants the real life counterparts, such as block size and block propagation delay. If one wants to
change these values, one can go to the configuration file of BlockSim, which is the InputsConfig file. In
the file one can set parameters such as the number of miners, also called nodes, and their hash power.
The block interval time, the block propagation delays, the block and transaction sizes, the block rewards,
the transaction fees etc can also be set.

When running BlockSim, it first initialises nodes, which each have their id, hash power and their
own internal blockchain. Each node generates initial block events and their own genesis block for their
internal blockchain. In BlockSim, events are objects and are added in a list called event list. As long
as there are events in the event list and the simulation time has not ended, BlockSim sorts the events
by event time and executes the most recent one. An event can either be a generate_block event or a
receive_block event. If the event is a generate_block event, BlockSim creates transactions for a block
and propagates the block to other nodes. After this is done, a new generate_block event for the miner
is added in the events list. Other nodes receive the block with receive_block events. They each see if
the block is built on the last block of their internal blockchain. If that is the case, the block is added to
the internal blockchain of the miner. If the depth of the received block is higher than the length of the
miner’s internal blockchain, then the miner updates its internal blockchain to match the longer chain.

At the end of the simulation, BlockSim looks for the longest internal blockchain of each node and
calls it the global chain. This global blockchain, alongside the number of blocks mined and the rewards
gained by each miner and other useful information from the simulation are printed in an excel file. What
is printed in the file can also be easily changed to fit one’s needs.



Chapter 3

Design

3.1 Design choices

Python was chosen for the implementation of the simulation of 113 because it is a widely used program-
ming language and it is often used to create pseudocode examples. BlockSim [1]] was chosen because it
is written in Python and is easily extensible.

The mode of the simulator was set to Ethereum which causes BlockSim to build models of real past
Ethereum transactions. The models are sampled to simulate more realistic transactions with regards to
transaction size, gas fees and gas prices. To avoid the lengthy retraining process of the models every
time the simulation is initiated, the models for the Ethereum transactions were saved. Such changes were
made on BlockSim to speed up the development process. For more efficient debugging, the excel output
has been extended so that it contains the transactions of all blocks concatenated. A sheet was added
in the excel to list the profits of the sandwich attacks of all blocks, alongside the average and standard
deviation of the profits. This is done for a speedy analysis of the sandwich attacks.

A conscious effort was made to keep the implementation lean and unbloated so the simulation runs
efficiently. To avoid overhead, BlockSim was extended to contain one sandwich attack per block. An-
other example of prioritizing run speed is the choice between LightTransactions and FullTransactions,
which is the choice of how complex the transaction objects are in BlockSim. The main difference lies
in if all nodes can see the same transactions at any given time. If FullTransactions is enabled instead of
LightTransactions, each node has its own pool of transactions that it is aware of. Each transaction object
must be propagated to all other nodes. In LightTransactions all nodes see the same transactions, namely
the transactions in a list of the LightTransactions object. LightTransactions instead of FullTransactions
was chosen because there was no need for such detail of normal transactions as the main focus of the
project were the sandwich transactions. This choice also makes it makes the simulation faster. A new
variable to increase the amount of chunks after each run was added. The change was made so simulations
testing different chunk sizes can be run back to back.

113 Implementation in BlockSim As described in Section event objects in BlockSim can either
be a generate_block event or a receive_block event. If the event is a generate_block event, then the
generate_block() function of BlockSim is called. II3 is implemented in the function because it, alongside
receive_block(), is the part of BlockSim that most closely resembles a live blockchain system. This is so
that the simplified version of the protocol mimics the real protocol better. A drawback of implementing
in generate_block() is because there is a sandwich attack in each block, when the blockchain forks and
the fork is resolved, a sandwich attack is thrown away.

Sandwich attack simulation In this thesis we simplified sandwich attacks by adding a constraint: the
amount of ETH transacted in each of the sandwich transactions 70, T' and 71 is the same. There are
two ways to identify if a transaction is a sandwich transaction: the ¢d variable of the transaction object
is either 1, 2 or 3 and either the sender or to attribute is set to the string “amm”. To ensure the sandwich



transactions are included in the block, the three transactions are given above average gas fees to ensure
that they are executed before all other transactions. To ensure that all three transactions stay in the same
order, T0 must execute before 7' and 7' must execute before 7'7. Thus the gas fee of T0 is set higher
than T and the gas fee for T is set higher than 7'7. To keep track of the profits of each sandwich attack, a
sandwich object is instantiated each time an attack takes place. These objects each have a profit attribute
that gets updated over the course of the simulation. The sandwich objects are then collected and used for
analysis.

AMM Implementation Whenever a sandwich object is instantiated, an AMM object is also instanti-
ated. The starting amounts of the tokens in the AMM are set to certain amounts that can be configured
in the InputsConfig file. This is done instead of a single persistent AMM object handling all sandwich
attacks. For cleaner data, each sandwich object interacts with an AMM with the same starting state. This
is done so a sandwich attack that has been executed in the past does not affect the profits of another
sandwich attack that is executed in the future. The AMM is modeled after the Uniswap USD/ETH smart
contract, which is one of the most used DEXes in the world [7]. As a result, ETH and USD is the token
pair used. The amounts of ETH and USD are easily settable in the configuration file. Fees for using the
AMM were abstracted away as they are small amounts.

Permuting design Bacher, Bodini, Hwang, and Tsai present the algorithm FYKY which takes a list
as an argument and returns the list with its elements randomly permuted [3]]. In the paper from Alpos,
Amores-Sesar, Cachin, and Yeo and this thesis, the function is renamed to permFromRandBits() and is
used to permute transactions. Note that the paper from Bacher, Bodini, Hwang, and Tsai uses different
indexes for elements of a list compared to this thesis [3]. In the original II3 protocol the miner gives
only a random seed which is fed into a pseudorandom generator to generate a random binary string. The
implementation in this thesis pretends that the seed has already been put into a random number generator
that already outputted a random binary string.

Partial Seeds Commitments design All pseudorandom number generators produce cycles, which oc-
cur when the same sequence of numbers is generated periodically [13]. To avoid small cycles, the im-
plementation used Python secrets, a library that generates cryptographically strong random numbers. An
alternative design for permFromRandBits() was to directly source the random numbers from the secrets
library instead of getting the randomness from partial seeds. However, the idea was scrapped because
partial seeds were needed for the simulation of the biased permutation attack. This is when the worst-
case scenario for the protocol is simulated because it simulates the case where all leaders know each
other’s seeds and are working with each other in order to execute the sandwich attack. They try to find
the best combination of partial seeds to reveal to maximise their profit. The attack involves picking be-
tween the partial seeds of leaders, so each miner must generate its own seeds. An alternative would have
been to write a reveal_seeds() function that internally generates some seeds in the generate_partial _seed()
function for each leader. The internal seeds are then sent to permFromRandBits(). Both implementations
are similar and at the end the option with each leader generating their own seed was chosen because it
most closely resembles the real protocol. The number of leaders nl is easily settable in the InputsConfig
file.

Chunking design The function chunk() is one of the functions implemented in this thesis that takes
a block as a parameter only to cycle through the transactions of the block and send the transactions to
another function of a similar name. The function chunk() takes a block as a parameter and feeds every
transaction of the block in chunkTransaction(). The project could have been designed to work more on
the transaction level, but it was decided to stay on block level so the project is easier to understand as a
whole. The original implementation of chunkTransaction() used the deepcopy() function to recursively
copy the transactions. The implementation was changed to instantiating many new transaction objects

10



because using deepcopy() takes a long time. The amount of chunks is easily settable in the InputsConfig
file.

Implementing the new incentives design The biased permutation attack involves simulating millions
of sandwich attacks and is the part of the simulation that takes the most time. Cython was utilised
to compile Python code to C code to make it run faster [8]. Another measure taken so that this part
of the simulation does not take much time is the avoidance of the deepcopy() function in the simu-
late_sandwich() function. Similarly to how the chunking is designed, new block objects are instantiated
instead of using deepcopy(), which saves a lot of time. The rule allowing leaders to claim the block
rewards of other leaders has been abstracted away.

3.2 Sandwich attack simulation

Algorithm 1 Generating and Executing Sandwich Transactions

1: function generateSandwichTransactions():

2: attacker <— random.choice (NODES)

3: victim <— random.choice ([x for x in NODES if x.id != attacker.id])

4: TO + Transaction(id< 1, sender < “amm”, to < attacker.id, value <— sandwichTransactionValue)
5: T < Transaction(id<— 2, sender < “amm”, to < victim.id, value <— sandwichTransactionValue)

6: T1 < Transaction(id<— 3, sender < attacker.id, to <— “amm”, value < sandwichTransactionValue)
7: return [TO, T, T1]

8: function executeSandwichTransactions(self, block):

9: for tx in block.transactions:

10: if tx.to = “amm” or tx.sender = “amm”:

11: if tx.id =1 or tx.id = 3:

12: self.profit «— self.profit + self.amm.executeTransaction(tx)
13: else:

14: self.amm.executeTransaction(tx)

The algorithm firstly chooses a random attacker node and a random victim node from the list of nodes
objects NODES. It is made sure that the victim is not the same as the attacker (lines [2]and [3).

We model the sandwich transactions the same way as described in Section[2.3]in the background. On
lines[]to[6} three new transaction objects are instantiated: 70, T and T'1. The sandwich Transaction Value
variable holds the amount of ETH transacted in the attacker sandwich transactions as well as the victim
sandwich transaction. In Section [3.1] it is mentioned that all sandwich transactions transact the same
amount of ETH in this thesis. This variable can be found in InputsConfig. Transaction 70 has the id
1 and sends sandwichTransaction Value amount of ETH from the AMM to the attacker. Transaction
T has the ¢d 2 and sends sandwichTransaction Value amount of ETH from the AMM to the victim.
Transaction 7'7 has the id 3 and sends sandwichTransaction Value amount of ETH from the attacker
to the AMM. A list containing the three transaction objects is returned (line (7).

The sandwich transactions generated from generateSandwichTransactions() are processed in exe-
cuteSandwichTransactions(). The latter function can only be called from an instantiated sandwich object
like on line 46| of Algorithm |3} In this example, the function is called by the sandwich object sw which
was instantiated on line [39] of Algorithm [3] Whenever a function is called from an instantiated object
in Python, the object itself is the first parameter of the function [15]. The sw from the line |39 of Al-
gorithm [3|is the self parameter of the function. The other parameter block is a block object containing
normal transactions as well as sandwich transactions. A loop is initialised to go through all the trans-
actions in the block looking for sandwich transactions. Such transactions are recognised by checking if

11



they are either sent to or received by the AMM (lines [9] and [T0). If the id attribute of a transaction is
either 1 or 3, then it belongs to the attacker (line [TT)). This was determined in generateSandwichTrans-
actions() on lines ] and [6] Each sandwich object has been defined to have an AMM object and have a
profit variable. For these two transactions, the state of the AMM object and the profit variable of self are
updated. The AMM of the sandwich object is accessed by self.amm and the transaction is executed on
the AMM with the executeTransaction() function. This function is described in greater detail on line [21]
of Algorithm[2] The return value is added to the self.profit variable (line[I2). Because the AMM object
and profit variable are part of self, the changes to the state of the AMM and the changes in the profit
variable persist even after leaving the context of the executeSandwichTransactions() function. The profit
variable is used by other parts of the simulation for analysis. If a transaction involves the AMM and id
is neither 1 or 3, then 4d must be 2, which is the victim transaction. This transaction is also processed by
executeTransaction() from the AMM but the return value is ignored (line[T4).

3.3 AMM Simulation

Algorithm 2 AMM Simulation
15: function setPair(self, EthSupply, UsdSupply):

16: self.EthSupply < EthSupply

17: self.UsdSupply < UsdSupply

18: self.Constant <— EthSupply * UsdSupply

19: function getEthPrice(self):

20: return (self.Constant / (self.EthSupply - 1)) - self.UsdSupply
21: function executeTransaction(self, tx):

22: usdSupplyBefore < self.UsdSupply

23: if tx.to = “amm™:

24: self.EthSupply < self.EthSupply + tx.value

25: self.UsdSupply < self.Constant / self.EthSupply

26: priceDifference +— usdSupplyBefore - self.UsdSupply
27: if tx.sender = “amm”:

28: self.EthSupply < self.EthSupply - tx.value

29: self.UsdSupply < self.Constant / self.EthSupply

30: priceDifference +— usdSupplyBefore - self.UsdSupply
31: return priceDifference

The function setPair() is called immediately after an AMM object is instantiated. It is called by the
AMM object itself so the first parameter of the function is self. It takes in two numbers EthSupply
and UsdSupply to set the amount of the ETH and the amount of USD under the possession of the AMM
object (line[I5). The two variables are from in the InputsConfig file. The function then multiplies the two
numbers to create the constant, as described in the background. All three numbers are saved as attributes
of the AMM object (line [L6]to[I8).

The function getEthPrice() is used to determine the exchange rate for ETH in USD (line[19). If one
recalls the calculation in Section [2.2]and plugs in EthSupply as amountA and UsdSupply as amountB,
then UsdSupply is the same as Constant divided by EthSupply. To calculate the cost of 1 ETH in
USD, the effect on UsdSupply if 1 ETH is subtracted from EthSupply is calculated. The effect can be
expressed as Constant/(EthSupply — 1). This number is subtracted from the untouched UsdSupply
variable and the difference is returned.

The function executeTransaction() is another function that must be called through an AMM object,
so the first parameter is self. The other parameter ¢z is the transaction which is to be executed on

12



the AMM. The function works by firstly saving the current value of the AMM’s USD supply in the
variable usdSupplyBefore (line[22). The AMM must then determine if it is on the sending or receiving
end of the transaction, so it sees if the to or sender attribute of the transaction is set to string “amm”
(lines 23] and [27)). These attributes were set on lines @ and [6]in Algorithm [I] If the transaction is sent
to the AMM, the AMM adds the value transacted to its ETH pool, which is its EthSupply variable
(line 24). Because EthSupply multiplied by UsdSupply is now not the same as Constant, UsdSupply
must decrease because EthSupply increased. UsdSupply goes down as much as Constant divided by
the new EthSupply value (line[25). To determine how much UsdSupply went down compared to before
line the difference between usdSupplyBefore and UsdSupply is used to determine the change in
price in USD. This value is saved in the priceDifference variable (line 26). Similarly to line 23] if the
sender is the string “amm”, the ETH is removed from the EthSupply (line 28). The UsdSupply must
also change due to the changes in EthSupply, but this time the amount in the variable increases because
ETH was removed from the supply. The priceDifference variable is calculated the same way as line
and in both cases, the variable is returned (line [3T)).

13



Chapter 4

Implementation

4.1 Implementation of I13 in BlockSim

Algorithm 3 Block Creation Event
32: function generate_block(event):

33: block < event.block

34: miner < block.miner

35: if block.previous = miner.last_block().id:

36: block.transactions < block.transactions + generateNormalTransactions()
37: block.transactions < block.transactions + generateSandwichTransactions()
38: chunk(block)

39: sw = Sandwich()

40: leader_blocks <— miner.blockchain[-numberOfLeaders:]

41: block.leaders < [b.miner for b in leader_blocks]

42: partialSeeds <— [leader.generate_partial _seed() for leader in block.leaders]
43: partialSeeds <— sw.reveal _seeds(block, partialSeeds)

44: block.seed < xor(partialSeeds)

45: block.transactions <— permFromRandBits(block.transactions, block.seed)
46: sw.executeSandwichTransactions(block)

47: SANDWICHES.append(sw)

48: generate_next_block(block, miner)

The function generate_block() is the only function listed here as pseudocode that already existed in
BlockSim prior to the implementation. The function takes an event object as a parameter. The block
and the miner of the block are extracted from the event object and saved as variables (line [33] and [34).
The algorithm then checks if the block is built on the last block of the internal blockchain of the miner
(line 35). Normal block transactions without sandwich transactions are generated and added to the block
transactions. The function generateSandwichTransactions() creates the three sandwich transactions and
adds them to the block transactions (lines 36| and [37). See Algorithm [I] for a closer inspection of gen-
erateSandwichTransactions(). Now the first element of II3 comes into play: chunking. The block is
chunked on line [38] To see how this is done, see Algorithm 5] On line 39] a new sandwich object sw
is instantiated. The object has a profit attribute which is set to zero. The sandwich object will be used
on lines [43] 46| and so over the course of generate_block(), the value of the attribute changes. The
leader blocks are determined by looking back in the last nl blocks of the internal blockchain of the miner

14



and determining the miners of the last nl blocks (#0). The variable nl is set in the InputsConfig file.
The miners are added to a list called leaders, which itself is an attribute of the block object (line A1).
Each of the leaders generate partial seeds using the function generate_partial seed() on line 49| in Al-
gorithm [] (line @2). The partial seeds are used as arguments in reveal_seeds(), which is the function
where the biased permutation attack is simulated (line [43). This function is specified in Algorithm [6]
The sandwich object sw is needed to call reveal _seeds() because the function may change the sw.profit
attribute. This is because on line 88| of Algorithm[6] one can see the sw.profit is set to the disincentive
variable from reveal_seeds(). This means the sw.profit variable starts with a negative value because of
the disincentive and the profit of the sandwich attack is added to the sw.profit on line 46| The partial
seeds that are revealed on line[d3]are then XORed into the seed of the block (line[d4)). The seed is used in
permFromRandBits() to permute the chunked transactions (line3)). This function is specified on line[51]
from Algorithm ] To calculate the profit of the sandwich attack, executeSandwichTransactions() from
Algorithm [T is called on line 46| The function adds the profit from the sandwich transactions to the
sw.profit variable. This is the final change for sw.profit because the disincentive for not revealing seeds
has already been subtracted from sw.profit on line 43|in reveal _seeds(). On line [47|the sandwich object
sw that was instantiated on line [39]is appended to the SANDWICHES list of InputConfig. The list col-
lects sandwich objects over many blocks and when the BlockSim simulation is over, the profits of each
sandwich object is extracted and put into an excel file. This is done so the profits of the sandwich attacks
can be analysed. In the line 8] the block is propagated to other miners and the miner starts generating a
new block.

4.2 Partial Seeds Commitments and Permuting

Algorithm 4 Partial Seeds Commitments and Permuting

49: function generate_partial_seed():
50: return secrets.randbits(seedSize)

51: function permFromRandBits(array, randBits):

52: for i in reversed(range(2, len(array)+1)):

53: j < KnuthYao(i, randBits) + 1

54: array[i-1], array[j-1] < array[j-1], array[i-1]
55: return array

56: function KnuthYao(n, randBits):

57: u<+1

58: x<+0

59: while (True):

60: while u < n:

61: u <+ 2*u
62: r < randBits.pop() if len(randBits) > 0 else secrets.randbits(1)
63: X 2*¥X 471
64: d<u-n

65: ifx >=d:

66: return x - d
67: else: u<+d

The function generate_partial_seed() is called on line 42| of Algorithm [3] The variable seedSize is a
positive integer that dictates how many random bits a leader must generate. It is given in the InputsConfig
file. Its size is dependent on the chunk size because the bigger this number is, the more transaction objects
there are and the more random bits are needed to permute them. The generate_partial _seed() function uses
the Python secrets library to generate a number of seedSize size and returns the number.

15



The function permFromRandBits() takes an array and a list of random bits as parameters. The array
is the one that is to be permuted. The function then iterates through the array in reverse, down to the
second element (line [52). Firstly, the index of the last element of the array is taken and fed alongside
the randBits parameter in Knuth'Yao(). This helper function returns a random number between zero and
the index (line [53). The last element of the array is switched with the element with the index of the
random number (line [54). The function then moves on to the index of the second last element and the
same procedure is executed. When the array is iterated through to the second index, the permuted array
is returned (line [55)).

The function KnuthYao() has been extended such that if the provided randBits list does not have a
sufficient amount of bits, then it takes random bits from the Python secrets library (line [62). This is to
make sure the function always finishes executing.

4.3 Chunking

Algorithm 5 Chunking a Block
68: function chunk(block):

69: chunkedTransactions < []

70: for tx in block.transactions:

71: chunkedTransactions.extend(chunkTransaction(tx))
72: block.transactions <— chunkedTransactions

73: function chunkTransaction(tx):

74: chunksOfTx « []
75: for c in range(amountOfChunks):
76: chunk < Transaction(id < tx.id, sender < tx.sender, to < tx.to,
value < tx.value / amountOfChunks, chunkId <+ ¢ )
77: chunksOfTx.append(chunk)
78: return chunksOfTx

The function chunk() takes a block object as a parameter. An empty list named chunked Transactions
is initialised on line[69] On line[70]a loop is initiated to cycle through each transaction in the block. Each
transaction is given as a parameter to chunkTransaction(). The chunkedTransactions list is extended by
the list returned from chunkTransaction() (line . At the end, the transactions of the block is replaced
with chunked Transactions (line[72).

The function chunkTransaction() takes a transaction ¢tz as a parameter. It initialises an empty list
called chunksOfTx where it will store the chunks of ¢z (line[74)). A new transaction object is initialised
for the number of amountOfChunks (lines[75]and[76). The amountOfChunks variable can be set in the
InputsConfig file. All parameters of the new transaction object is copied from ¢z, except for the value,
which is divided by the amount of chunks. A new attribute of the transaction object, chunkld, is utilised
to identify each chunk. Because the transaction id of each chunk is identical to tz and the chunkld
attribute is always distinct, each chunk is uniquely identifiable. The chunks initialised on line [/6|are all
appended to chunksOfTx (line[77). The list chunksOfTz is returned (line[78).

4.4 Implementing the new incentives

The function reveal_seeds() can only be called by an sandwich object, so the first parameter is self. The
second parameter is a block object and the third parameter is a list of partial seeds. The function starts
by initializing a very negative number as the highestProfit variable. The variable serves a placeholder
for later in the function (line [80). The Itertools library then produces all possible combinations of the
seeds in the seeds list and the function loops through all of the subsets (line [81] and [82). The seeds of

16



Algorithm 6 Biased Permutation Attack Simulation

79: function reveal_seeds(self, block, seeds):

80: highestProfit <— -1000000000

81: for L in range(1, len(seeds) + 1):

82: for subset in itertools.combinations(seeds, L):

83: simulatedProfit <— simulate_sandwich(block, xor(subset))

84: disincentive <— (numberOfLeaders - len(subset)) * blockReward * amm.getEthPrice()
85: if simulatedProfit - disincentive > highestProfit:

86: highestProfit <— simulatedProfit - disincentive

87: revealedSeeds <— subset

88: self.profit <— -disincentive

89: return revealedSeeds

90: function simulate_sandwich(block, seed):

91: simulatedBlock < Block()

92: simulatedBlock.transactions < list(block.transactions)

93: simulatedBlock.transactions <— permFromRandBits(simulatedBlock.transactions, seed)
94: sw = Sandwich()

95: sw.executeSandwichTransactions(simulatedBlock)

96: return sw.profit

each subset are XORed together and used in simulate_sandwich(), which is described on line @} The
return value is saved in the simulatedProfit variable (line [83). Part of the incentives system of II3 is
taking custody of block rewards and only returning them if the miner stays honest. The disincentive
variable quantifies the amount of USD forfeited by the coalition of leaders if some of the leaders have
not revealed their seeds. The disincentive is calculated by the current number of colluding leaders times
the number of ETH rewarded per block times the price of ETH (line[84). The blockReward variable used
in the calculation can be found in the InputConfig file. The getEthPrice() function is described on line[I9]
of Algorithm 2| The variable simulatedProfit minus disincentive is the profit of the subset and this
profit is compared to the highestProfit variable. If simulatedProfit minus the disincentive is higher
than highestProfit, then a new combination of seeds has been found that leads to the highest profit has
been found. The highestProfit variable is updated (lines [85] and [86). The subset used to achieve the
highest profit is saved in the revealedSeeds variable (line [87). The self.profit variable is updated with
the negative of disincentive. This is the profit attribute of the sandwich object that called reveal _seeds().
The reason this is done is explained in Algorithm 3] On line[89|the revealedSeeds variable is returned.

The function simulate_sandwich() is solely used in the reveal _seeds() function. It takes a block
and a seed as parameters. On line a new block object called simulatedBlock is instantiated. The
transactions of the original block are copied to the transactions of simulatedBlock (line[02)). The function
List() was used to create a new list object that is not the same as transactions of the block parameter.
These precautions were implemented so the simulation run in simulate_sandwich() does not change the
transactions of the actual block that was given as a parameter. The transactions of simulatedBlock are
then permuted with permFromRandBits() using the seed parameter (line [93). A new sandwich object
is instantiated which calls executeSandwichTransactions(). This is done to calculate the profit of the
transactions in the new order (line 94] and 95). Only the profit of the sandwich attack is of interest
which is why solely the profit of the sandwich object is returned on line [06] Because sw is a simulated
sandwich, it is not added to the SANDWICHES list like on line 7] from Algorithm 3]

17



Chapter 5

Evaluation

In this chapter the extended BlockSim programme is utilised to examine the behaviour of the simplified
version of I13. The two modes of leader behaviour are simulated: honest and colluding. In the first mode,
we simulate the situation where all leaders adhere to the rules of 113 and provide truly random seeds. It
is the expected way the protocol is used. In the other mode, the profits of leaders executing the biased
permutation attack are observed.

Before running the simulation, some parameters of I3, the sandwich attacks and BlockSim itself
had to be configured. Five nodes were initialised, each with the same hash power. A small number was
chosen for the number of nodes because adding many to the system would complicate the system without
any gain in the quality or quantity of the data. In real blockchain systems, it is common for many small
miners to come together in a group to mine in mining pools, so the five nodes can also be seen as five
mining pools of the same size [S]. The number of leaders, nl/, was set to 10. This number was chosen for
easier comparison to the plots from the paper [2]. The amount of ETH and USD under the possession
of the simulated AMM had to be set. The real life counterpart chosen to provide the values was the
Uniswap USD/ETH contract, which was the top DEX ranked by 24 hour trading volume as of early 2023
[7]. During March 2023 there was 71’620 ETH and 133°730°000 USD locked in the AMM. So at that
time 1 ETH was exchanged for 1867.24 USD.

Let sandwich size be the amount of ETH transacted in each of the three sandwich transactions in a
sandwich attack. The sandwich sizes chosen in the evaluation were 100, 472, 1000, 1897, 5000, 10000
ETH. At first, the sandwich sizes chosen were 100, 1000 and 10000 ETH to test small, big and extremely
big sandwich attacks. Let potential profit be defined as the profit of any given sandwich attack had there
been no protocol to diminish the profit. The sandwich sizes 472 and 1897 ETH were chosen because the
potential profits were 6.35 and 109 ETH respectively. These sandwich sizes were chosen because the
profits are close to the values chosen in Figures [2.5]from the paper from Alpos, Amores-Sesar, Cachin,
and Yeo. Note that there is a small difference between 6.35 ETH potential profit simulated in this thesis
and 6.37 ETH used in the paper. After running the experiment, it has been observed that the plots of
1897 ETH and 10000 ETH were similar to each other despite the big difference in size. A value between
these amounts was chosen for further investigation. To this end, the sandwich size 5000 ETH was also
chosen to be part of the experiment.

The chunk sizes chosen to test were 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100 and 200. 5 up to 50
chunks were chosen to see the behaviour of the protocol with small, linear increases in chunk size. 100
and 200 were chosen to see how far the protocol can go if the chunk size is taken to the extreme.

The simulator was ran in both honest and colluding mode with different chunk sizes and with dif-
ferent sandwich sizes. The values listed in the following graphs are the average of the profits from 1000
runs. The error bars are standard deviations values from the 1000 runs. All graphs below are relative to
no protocol for easier comparison.

18



Figure 5.1. The average profit of honest leaders. Even though the error bars are big, it was observed that
the higher the number of chunks, the closer to zero the values become.

0.25
0.2 472 ETH

0.15 10000 ETH

0.1
0.05
5 10 15 20 25 30 35 40 45 50 100 200
-0.05

-0.1

-0.15

Profit in proportion to no protocol
o

-0.2

-0.25 Number of Chunks (m)

5.1 Benchmarks of protocol with honest leaders

Figure depicts the average profits of the attackers if they execute sandwich attacks of size 472 and
10000 ETH and do not collude. The variable that is changed in the x axis is the chunk size. One can
observe that the simulations of both sandwich sizes behave nearly exactly the same in these conditions:
all values are very close to zero. The case without the use of the protocol (m = 0) is omitted to see the
data from 5 chunks on more clearly. The highest profit was achieved by sandwich attacks of size 10000
ETH at 5 chunks, which was less than 1.5% of the potential profit. Upon closer inspection, a trend was
observed where higher chunk sizes correspond to lower average profits. However, since the error bars
are very big, this finding is to be interpreted with caution. In both tests, the average profits with the
protocol from 10 chunks on are nearly zero when compared to the case where 113 was not used. This
is to be expected because the random bits provided to permFromRandBits() were truly random because
no colluding leaders were present to bias the permutation. Because there are around the same amount of
profitable chunks as loss chunks for the attacker, most chunks cancelled each other out, as described in
the “permuting” paragraph in Section [2.4] The error bars are especially big at 5 chunks. However, one
can observe that the size of the error bars decreases as m increases. This is due to the fact that the more
chunks there are, the more frequent the case that an attacker buy chunk comes directly before or after an
attacker sell chunk. When this happens, there is no victim chunk between the attacker chunks, so there is
no profit for the attacker. All in all, the results show that II3 works very well in making sandwich attacks
unprofitable provided the leaders are honest.

5.2 Benchmarks of the protocol with colluding leaders

This simulation presupposes that all leaders trust each other enough to reveal their partial seeds to each
other. The leaders must trust that no leader would defect from the group and steal all the block rewards
for themselves.

In both Figure[5.2aand Figure[5.3a] one can see many colourful lines plotted representing the amount
leaders out of the 10 leaders are working together to execute an attack. In this thesis the line that is com-
pared to is the blue line, which is the case where all 10 leaders are colluding. There are also differences
in what is measured in the plots. The y axis from the theory is the upper bound for a profitable permu-
tation. The simulation results compares the average profit of 1000 runs. With enough sampled data, the

19



results from the simulation are bound to be equal or below the values from the theory. In Figure one
can see that the simulated profits are much lower than in theory. This is to be expected because the line
from the theory is an upper bound. Reasons for the difference could lie in the amounts of tokens in the
AMM or the ratio of the amounts when the sandwich transactions are executed. Another reason could
be the assumption that all three sandwich transactions in a sandwich attack transact the same amounts
does not hold in the paper. The curves in Figure [5.3]are much more similar, even though there is a small
difference between 6.35 and 6.37 ETH. In both graphs, one can see that the 6.35 ETH potential profit
has been reduced to around zero at around 10 chunks. These findings suggest that if I13 had been used in
October 2022, 99.97 percent of attacks would have been reduced to nearly O with 10 chunks, even with
colluding leaders.

Whilst observing Figure [5.4] one can see that the plots of sandwiches of size 100 and 472 ETH are
very close to 0 after 15 chunks, because the potential profits of these small sandwiches are too small
to give up block rewards for. Once the average profit is around zero, it stays at zero for all successive
chunk size increases. The biggest difference between Figure[5.4Jand Figure[5.1]is some sandwich attacks
are still profitable on average, namely sandwich attacks of size 1000, 1897, 5000, 10000 ETH. In there
cases, one can see curves that steeply go down at first but then gradually converge to 0. 15 chunks reduces
1000 ETH attacks by 85 percent and with 200 chunks the 1000 ETH attacks are reduced by more than
99.5 percent. The 10000 ETH attacks are reduced to around a third of the case without a protocol at 15
chunks. These decreases are caused by the increase in amounts of chunks, which increase the amount
of combinations of chunks there are that cancel the movement in the AMM of each other out. One can
see that bigger sandwiches like 10000 and 5000 ETH have similar curves to each other. This is the case
where the sandwich profits to be gained far succeed the maximum disincentive of the protocol, which is
20 ETH. The maximum disincentive is calculated by the amount of ETH lost if all ten leaders collude
and since the block reward is 2 ETH each, the maximum disincentive is 20 ETH. As seen before, the
potential profit lost for 472 ETH is 6.35 ETH, which is less than the disincentive, so the curve is close
to 0. We have also seen that the potential profit for 1897 ETH is 109 ETH, which is much more than
the disincentive, so the curve is close to the plots of much bigger sandwiches. The sandwich size 1000
ETH has the potential profit of 29.13 ETH, which is relatively close to the 20 ETH disincentive. As a
result, the curve on the graph is between the two aforementioned cases of 472 and 1897 ETH. Another
observable trend is, like in Figure[5.1] the error bars decrease the higher the chunk number is. The reason
for this is the same as described in the last section: the higher m is, the higher the chance that attacker
chunks cancel each other out, resulting more profits around zero for the attacker.

Figure 5.2. Comparison between the theory and the simulation results with potential profit = 109 ETH

(b) The sandwich attacks were set to the size 1897
(a) The plots for the potential profit of 109 ETH from ETH because this number gives a potential profit of
the original paper from Alpos, Amores-Sesar, Cachin, 109 ETH like in Figure[5.2a} Solely k = 10 was simu-
and Yeo. Only the blue line is relevant for the compar- lated. One can see that the simulated results are lower
ison as it depicts the case where all leaders collude. than the values provided in the theory.

—A— k=10

0.75

=]
=3

1897 ETH

0.5

e
~
73

o

0.25

o
o

Probability of profitable permutation p.
Profit in proportion to no protocol

0 5 10 15 20 25 30 35 40

o
-
|

0 5 10 15 20 25 30 35 10 ] Number of Chunks (m)
Number of chunks ()

20



Figure 5.3. Comparison between the theory and the simulation results with the potential profit set to
6.37 ETH and 6.35 ETH

(b) For this plot, the sandwiches have the size 472

(a) The plots for the potential profit of 6.37 ETH from ETH because this value gives a potential profit of 6.35

the original paper from Alpos, Amores-Sesar, Cachin, ETH. Solely k = 10 was simulated. One can see that
and Yeo. this graphs is similar to Figure[5.34]
§ —A—= k=10
< 0.8 e 1
E —=— k= ng
® —= k= s
S 0.6 b © 075
E " = 472 ETH
@ | o
g | — k= c
£ \ 7 2
= S
E 04 5%
2 €
Q. [*]
s s
> 5 025
;A;’ 0.2+ £
:
e % a o
0.0 S IR [PV [PV [PV PV W 0 5 10 15 20 25 30 3 40
0 5 10 15 20 25 30 35 40 025 Number of Chunks (m)
Number of chunks (i) e

Figure 5.4. Average profit of colluding leaders. 100, 472, 1000, 1897, 5000, 10000 ETH represent the
different amounts of ETH transacted in each of the three sandwich transactions in a sandwich attack. O
chunks represents no protocol, so the profit at O chunks in proportion to no protocol is always 1. All
values converge to 0. Here one can see 100 and 472 ETH are very close to 0 after 15 chunks. One can
also observe that the values of 1897, 5000 and 10000 ETH are close to each other.

g 075 100 ETH 472 ETH 1000 ETH
o]
el
o
s 1897 ETH 5000 ETH 10000 ETH
(o]
c
o 0.5
e
C
S
=
—
(o]
o
2 025
o
£
=
£
(o]
—
[a

0

0 5 10 15 20 25 30 35 40 45 50 100 200

Number of Chunks (m)
-0.25

21



Chapter 6

Conclusion

In this bachelor thesis, a simplified version of II3 has been implemented in BlockSim. The simulator
has been extended to support sandwich attacks of many different sizes. An AMM has been simulated
as well as the biased permutation attack. Many simulations and benchmarks were run to evaluate the
performance of the protocol under different conditions. The results showed that the protocol solved all
sandwich attacks when the leaders were not colluding and 99.97% of all attacks even if leaders collude.
For the 0.03% of sandwich attacks that are unsolved, I13 reduced the profits by a significant margin.
The comparisons of the simulated results with the plots from the paper from Alpos, Amores-Sesar,
Cachin, and Yeo showed that the simulated results were the same or better than in theory. Implementing
the protocol took less time than building the frame of the project such as sandwich execution, AMM
implementation and benchmark of colluding leaders.

However, there are limitations to inferring results using the simplified version of the protocol. In
this thesis we did not implement the commitment scheme of II3. The fees in AMM were disregarded.
We also did not look at sandwiches where the values transacted in the attacker transactions and victim
transactions are different from each other. All these simplifications may need to be addressed in further
research. If this has been looked into, a next step would be to implement II3 in a real blockchain system.

A future work would be to determine mathematical functions that approximate the curves of the
average profit of colluding leaders. The function would use the sandwich size, the chunk size and the size
of the holdings of the AMM to calculate the average profit of sandwich attacks under these parameters.
Finding this out would help in determining the reason there is an upper bound in Figure[5.4] It can also
be used to help determine the optimal chunk size. A trade-off to consider is the bigger the chunk size, the
longer the function KnuthYao() takes. As some nodes on the Ethereum blockchain must store all chunks,
if the number of chunks is high, then the amount of storage space needed to store the chunks increases.
A solution to this would be to selectively chunk the transactions going to or coming from an AMM and
leaving all other transactions unchunked. The effectiveness of the protocol is not affected and space is
saved.

22



Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Alharby and A. van Moorsel, “Blocksim: An extensible simulation tool for blockchain systems,”
Frontiers Blockchain, vol. 3, p. 28, 2020. https://github.com/maher243/BlockSim.

O. Alpos, I. Amores-Sesar, C. Cachin, and M. Yeo, “Life is good when you do not have a sandwich.”
Unpublished Manuscript, 2023.

A. Bacher, O. Bodini, H. Hwang, and T. Tsai, “Generating random permutations by coin tossing:
Classical algorithms, new analysis, and modern implementation,” ACM Trans. Algorithms, vol. 13,
no. 2, pp. 24:1-24:43, 2017.

M. Bartoletti, J. H. yu Chiang, and A. Lluch-Lafuente, “A theory of automated market makers in
defi,” 2022.

BTC.com, “Pool distribution (calculate by blocks).” https://btc.com/stats/pool. Ac-
cessed: 7. June 2023.

C. Cachin, R. Guerraoui, and L. E. T. Rodrigues, Introduction to Reliable and Secure Distributed
Programming (2. ed.). Springer, 2011.

CoinGecko, “Top decentralized exchanges ranked by 24h trading volume.” https://
www.coingecko.com/en/exchanges/decentralized. Accessed: 3. June 2023.

Cython, “About cython.” https://cython.org/L Accessed: 22. May 2023.

S. D’ Aprano, “secrets — generate secure random numbers for managing secrets.” https://
docs.python.org/3/library/secrets.html. Accessed: 22. May 2023.

Flashbots, “Frp-18: Cryptographic approaches to complete mempool privacy.” https:
//collective.flashbots.net/t/frp-18—-cryptographic—approaches—to-
complete-mempool-privacy/1210. Accessed: 5. June 2023.

Flashbots, “Mev-explore vl.” https://explore.flashbots.netl Accessed: 22. May 2023.

A. Gervais, “Lecture 13.7: Sandwich attacks.”” https://www.youtube.com/watch?v=
Om6Fgf71RKQ. Accessed: 5. June 2023.

D. Johnson and D. M. Ceperley, “Generation of random  numbers.”
https://courses.physics.illinois.edu/phys466/sp2013/1lnotes/
random_numbers.html. Accessed: 5. June 2023.

M. Musharraf, “How to read smart contract data.” https://www.ledger.com/academy/
how-to-read-smart-contract—-data. Accessed: 5. June 2023.

G. S. Panwar, “Self in python class.” https://www.geeksforgeeks.org/self-in-
python—-class/. Accessed: 3. June 2023.

23


https://github.com/maher243/BlockSim
https://btc.com/stats/pool
https://www.coingecko.com/en/exchanges/decentralized
https://www.coingecko.com/en/exchanges/decentralized
https://cython.org/
https://docs.python.org/3/library/secrets.html
https://docs.python.org/3/library/secrets.html
https://collective.flashbots.net/t/frp-18-cryptographic-approaches-to-complete-mempool-privacy/1210
https://collective.flashbots.net/t/frp-18-cryptographic-approaches-to-complete-mempool-privacy/1210
https://collective.flashbots.net/t/frp-18-cryptographic-approaches-to-complete-mempool-privacy/1210
https://explore.flashbots.net
https://www.youtube.com/watch?v=Om6Fqf7lRKQ
https://www.youtube.com/watch?v=Om6Fqf7lRKQ
https://courses.physics.illinois.edu/phys466/sp2013/lnotes/random_numbers.html
https://courses.physics.illinois.edu/phys466/sp2013/lnotes/random_numbers.html
https://www.ledger.com/academy/how-to-read-smart-contract-data
https://www.ledger.com/academy/how-to-read-smart-contract-data
https://www.geeksforgeeks.org/self-in-python-class/
https://www.geeksforgeeks.org/self-in-python-class/

[16] O. Pomerantz, “How to build a random number generator for the blockchain.” https:

//blog.logrocket.com/build-random—number—generator—-blockchain/. Ac-
cessed: 5. June 2023.

[17] C. Smith, J. Cook, and P. Pettinari, “Maximal extractable value (mev).” https://
ethereum.org/en/developers/docs/mev/. Accessed: 3. June 2023.

[18] Uniswap, “Usdc - eth.” https://info.uniswap.org/#/pools/
0x88e6a0c2ddd26feeb64f039a2c41296£cb3£5640. Accessed: 22. May 2023.

[19] P. Wackerow, M. Zoltu, and P. Jadhav, “Introduction to smart contracts.” https://
ethereum.org/en/developers/docs/smart—contracts/. Accessed: 22. May 2023.

24


https://blog.logrocket.com/build-random-number-generator-blockchain/
https://blog.logrocket.com/build-random-number-generator-blockchain/
https://ethereum.org/en/developers/docs/mev/
https://ethereum.org/en/developers/docs/mev/
https://info.uniswap.org/#/pools/0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640
https://info.uniswap.org/#/pools/0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/

Erklarung

Erklirung gemdss Art. 30 RSL Phil.-nat. 18

Ich erklidre hiermit, dass ich diese Arbeit selbststindig verfasst und keine anderen als die angegebenen
Quellen benutzt habe. Alle Stellen, die wortlich oder sinngemiiss aus Quellen entnommen wurden, habe
ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemiss Artikel 36 Absatz 1
Buchstabe r des Gesetzes vom 5. September 1996 iiber die Universitit zum Entzug des auf Grund dieser
Arbeit verliehenen Titels berechtigt ist.

Fiir die Zwecke der Begutachtung und der Uberpriifung der Einhaltung der Selbstindigkeitserklirung
bzw. der Reglemente betreffend Plagiate erteile ich der Universitit Bern das Recht, die dazu erforder-
lichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, insbesondere die schriftliche
Arbeit zu vervielfiltigen und dauerhaft in einer Datenbank zu speichern sowie diese zur Uberpriifung von
Arbeiten Dritter zu verwenden oder hierzu zur Verfiigung zu stellen.

Rom . 23.06.2023 Ltnnct CA;;?

i
Ort/Datum Unterschrift

25




	Introduction
	Background
	Blockchain
	Automated Market Maker (AMM)
	Sandwich Attacks
	3 Protocol
	BlockSim

	Design
	Design choices
	Sandwich attack simulation
	AMM Simulation

	Implementation
	Implementation of 3 in BlockSim
	Partial Seeds Commitments and Permuting
	Chunking
	Implementing the new incentives

	Evaluation
	Benchmarks of protocol with honest leaders
	Benchmarks of the protocol with colluding leaders

	Conclusion

