MASTER N
B
Go Language Support in Hyperledger
Fabric Private Chaincode

Master Thesis

Riccardo Zappoli

Université de Fribourg
Faculté des sciences et de médecine

August 2022

u i

b ,
UNIVERSITAT UNIVERSITE DE UNIVERSITE DE FRIBOURG
NEUCHATEL UNIVERSITAT FREIBURG

Abstract

Smart contracts are a great invention that enables running applications in a distributed way
and enables them to take advantage of distributed ledgers’ capabilities. Since their inception,
the goal of a lot of new systems and frameworks has been to make these smart contracts easier
and easier to write and to use, more and more powerful and with ever-increasing features.
Hyperledger Fabric made the developing process more straightforward, by allowing smart
contracts, here called chaincodes, to be written in well-known programming languages, i.e.,
Java and Go. Hyperledger Fabric Private Chaincode (FPC) went a step further, by allowing
them to treat confidential data within Intel SGX enclaves. Thus, it is in this perspective that
this thesis aims to go another step further in that direction, by allowing FPC chaincodes to be
written in Go, making them as easy to use as with Fabric, and as secure as with FPC.

Our approach is to recreate a Go Chaincode Enclave and to run it inside an Intel SGX enclave
with EGo, a new commercial framework whose purpose is to make Golang applications
confidential by allowing them to run with Intel SGX. This is implemented in a new module
within FPC, where we have translated the FPC Stub Interface to a Go version and took
advantage of an existing mock enclave to make it handle real chaincodes. After evaluating
the project, we found a slightly higher end-to-end latency with our solution compared to the
classic version of FPC, but with a difference not significative enough to outweigh the benefits
of the extension. We show these benefits in a usability evaluation of the extension, where we
run existing Golang chaincodes samples with our solution. While remote attestations and not
supported due to compatibility issues, making the extension an unsafe proof-of-concept at the
moment, we are confident in its ability to ever so simplify Fabric confidential chaincodes in
the future.

Christian Cachin, Cryptology and Data Security Research Group, Institut fiir Informatik,
Universitidt Bern, Supervisor.

Marcus Brandenburger, Zurich Research Laboratory, IBM Research, Co-Supervisor.

Contents

Introduction 7
1.1 Contextand Motivation 7
1.2 Contribution e e e e e e e e 8
1.3 Thesis Structure o e e e e e 8
Background 9
2.1 Distributed Ledgers and Blockchain 9
2.1.1 Hyperledger Fabric 10
2.2 Trusted Execution Environment 12
221 Intel SGX 13
2.2.2 Intel SGX Remote Attestation 14
2.23 Developing withIntel SGX 16
Fabric Private Chaincode 17
3.1 Architecture e e 18
31,1 FPCShim e e e e 19
3.1.2 Cryptographic Keys 20
3.1.3 Enclave Endorsement Validation 21
32 Typical Execution e 21
3.3 LimitationS e 23
Approach 25
41 EGO e 25
42 GoChaincode Enclave 26
4.3 Discussionofthe Approach 28
Implementation 29
5.1 Architecture e e e e 29
5.1 ECCGO. e 30
5.1.2 FPCStublInterface 31
5.1.3 Sequence Diagram L 32
5.2 Current Limitations e e e 34
5.3 Implementation Issues e 34
Evaluation 35
6.1 Performance e e e 35
6.1.1 Parameters e 35
6.1.2 Results e 36
6.2 Usability e e e 40
6.2.1 SmartContract API.o 40

6 CONTENTS

6.2.2 Results e 40
7 Related Work 43

8 Conclusion and Future Work 45

Introduction

This chapter introduces the present work, set out some background, explains why it is needed and how this
thesis contributes to the particular project that is Fabric Private Chaincode. A detailed structure of this
document is present at the end of the chapter.

1.1 Context and Motivation

Secure computation on a blockchain, where both confidentiality and integrity are ensured, seems at first
like a far-fetched idea that could not be implemented in practice. In that regard, the work that IBM’s
and Intel’s researchers have pulled together by developing Fabric Private Chaincode (FPC) [1] is fairly
impressive. How about running smart contracts in a trusted execution environment (TEE)?

Here IBM provides the blockchain environment; Hyperledger Fabric, which uses a form of smart
contracts called chaincodes, while Intel provides the TEE with its Software Guard Extensions (SGX).
When we have started this thesis, FPC was already a fairly advanced project. Its Request for Comments [2]
has enabled it to be accepted for Hyperledger Fabric, and while still in active development, it already
works well as a prototype.

It is in this context that we have been put in touch with the developing team, who suggested us
this project to extend the language support of FPC. Indeed, initially, FPC was only capable of running
non-standard chaincodes written in C++ due to compatibility requirements for SGX at the time it was
developed [2]. But perhaps, a new SGX tooling, released in the meantime, would permit Go written
chaincodes to be executed and could feasibly be incorporated in the project.

There are several reasons to why we would add support for Golang particularly, and they are being
explained in detail later on. It mainly comes down to achieving a native compatibility with most common,
already existing, standard Fabric chaincodes, and removing the requirement of rewriting them in C++.
Also, it goes without saying that such a transition would massively simplify the existing code base, and
make most developers happier!

8 CHAPTER 1. INTRODUCTION

1.2 Contribution

Problem Statement In this thesis, we are aiming (1) to understand the technologies behind FPC, (2) to
add support for Golang chaincodes within FPC, by compiling existing Go written chaincodes and running
them with FPC, and (3) to evaluate such integration, by comparing its performance with classic FPC and
assessing its usability.

On GitHub, we forked the existing FPC project [3] and added the “golang-support” branch, containing
all the contributions of the proposed extension and adding a new module to the project. The new module,
“ecc_go”, is mostly based on existing code and interfaces, and contains the tools for using native Go written
chaincodes mainly with the same commands and interfaces as FPC already does.

A readme containing all the specificities of running such chaincodes in FPC is available directly on
the GitHub page of the module [4]. We do hope that, once reviewed and after a proper pull request, the
proposed extension will be added directly into the main branch of FPC’s source code.

1.3 Thesis Structure

In Chapter 2, we present the necessary background to understand the present work. In particular, we
introduce the Blockchain and Trusted Executions Environments, which are the two main technologies
used in this project. The Chapter 3 dives deeper into Fabric Private Chaincode, we explain its architecture
and discuss existing limitations.

Approach and implementation details to enable Golang support for FPC are presented in Chapter 4 and
Chapter 5 respectively. The approach section focuses on high-level solutions and new SGX tools resolving
the thesis’s problem, while the implementation section focuses on how exactly, and by which means, these
solutions have been integrated to FPC.

In Chapter 6, an evaluation of the implementation is conducted through the axis of performance,
security and usability. It is in this part that the results are presented. Finally, Chapter 7 presents work
related to this project, and Chapter 8 concludes the thesis, highlighting where future work on this
implementation should be conducted.

Background

In this chapter, we discuss the frameworks and technologies that were used in the scope of this project.
First, a brief introduction of what a blockchain is, and then more precisely the one used in this project,
Hyperledger Fabric. Following on, a brief introduction of Trusted Execution Environments, and then more
precisely the one used in this project, Intel SGX, along with more details on the attestation mechanism and
the available development environments.

2.1 Distributed Ledgers and Blockchain

In a distributed architecture, a system that maintains a shared list of immutable records implemented in the
form of a peer-to-peer network is called a distributed ledger [S]. To really be immutable, such system
needs to guarantee both integrity and consistency.

In this context, integrity means that any change of the ledger state cannot change a previous state, i.e.,
that an already written record cannot be deleted or modified. On the other hand, consistency means that
any change of the ledger state cannot be in contradiction with a previous state i.e., that all new records
must stay in a logical sequence with the previous ones. Because of this, consensus algorithms are an
integral part of these systems, ensuring that all records appear in the same order in every copy of the ledger,
so participants in the network — called nodes or peers — can validate transactions [5].

Nowadays, distributed ledgers are most prominently known from their use in cryptocurrencies, but
can also be used to store data or to run computer programs. A distributed ledger can be implemented in
different ways, but the most widely recognised and used is the blockchain [6]. Its name comes from the
consensus protocol used by the nodes; they arrange transactions into blocks, and build a hash chain over
the blocks, a blockchain. Blockchains first appeared with Bitcoin [7] and are largely viewed as a viable
technology for running reliable digital exchanges and powering cryptocurrencies.

Blockchains can be differentiated into public and private ones, or more formally, permissionless and
permissioned ones [8]. In a public, or permissionless, blockchain anyone can participate anonymously.
They often use a native coin for consensus and frequently rely on a proof of work and economic incentives
for members to keep it running, e.g., Bitcoin [7] or Ethereum [9]. Other blockchains prefer a proof of stake
system, where incentives derives from peers’ own interest in a system that runs properly, often by having a
share of the crypto-coins, e.g., Cardano [10] or Algorand [11].

9

10 CHAPTER 2. BACKGROUND

Permissioned blockchains, on the other hand, operate a blockchain among a group of known members
who do have a common aim, but do not entirely trust each other. They could be corporations, universities,
associations, NGOs or governments that exchange payments, goods or information, and with various use
cases. For instance, there is TradeLens [12] which provides a platform for tracking shipping containers
and reducing paperwork in global supply chains, or the KSI Blockchain [13] which has been developed
and is now used by the Estonian government for all its daily operations and public services. And besides,
in contrast with permissionless blockchains, the permissioned setting here allows the use of traditional
Byzantine-Fault Tolerant (BFT) consensus where identities of the participants are known [8].

As stated above, and firstly demonstrated by Ethereum [9], blockchains are also capable of storing
data and running arbitrary, transactions-oriented programs, the so-called smart contracts. A blockchain
will allow for many distributed programs to run concurrently, but the code should always be considered
distrusted, potentially malicious, since it can be deployed by basically everyone. Because of this, on
permissionless blockchains, a fee is often charged to run smart contracts, in order to prevent abuse. After
that, the security of a smart contract execution is derived directly from the blockchain and the underlying
consensus algorithms among nodes, ensuring the integrity and consistency of validated transactions. In
addition, smart contracts also benefit from blockchain’s features; decentralisation, absence of a third party,
etc., which truly makes them trustworthy distributed programs.

A protocol for consensus is needed to order the transactions and to propagate them to all the peers,
where each of them will sequentially trigger the execution of the transactions in the same order, ensuring
consistency. Such a pattern is known as the order-execute architecture, found in many existing blockchain
systems e.g., Ethereum or Algorand, and often needs an additional transaction validation phase e.g., in
Ethereum, that would be when a block has been mined. Although this architecture may seem obvious in
all systems due to the need of atomically ordering the transactions, its requirements, that all nodes must be
on the same page and that all transactions must be deterministic, can sometimes be perceived as inherent
restrictions of the model [8].

2.1.1 Hyperledger Fabric

Hyperledger Fabric is an open-source permissioned blockchain technology that addresses the limitations
evoked previously. It is developed as a framework within the Hyperledger project, under the auspices
of the Linux Foundation. Designed from the beginning for enterprise use, it is now used in hundreds
of prototypes, proofs of concepts, and real distributed ledger systems from various sectors and use
cases [8]. It is developed to serve as a foundation for constructing applications and solutions with a
modular architecture, while aiming for robustness, scalability, and privacy [8].

Still designed as a general-purpose blockchain, its smart contracts, here called chaincodes, are executed
consistently across many peers, which much like other blockchains, gives the appearance of an execution
on a single distributed computer. However, it is one of the few systems that support the execution
of chaincodes that are written in standard programming languages, namely Go [14], Node.js [15] and
Java [16]. According to the authors of the 2018 paper presenting the technology, this makes Fabric the
first distributed operating system for permissioned blockchains [8].

Unlike the previously mentioned order-execute architecture, Fabric’s design uses an execute-order-
validate architecture, where the three steps may run on different entities in the system. Particularly,
when transactions trigger the execution of a chaincode, the result of the execution is “endorsed” by
other peers, thereby vouching for the correctness of the execution. The conditions for this process, i.e.,
the required number of endorsements, which peers are required to issue one, efc., are set in an agreed-
upon endorsement policy, which can be different for every blockchain. This endorsement mechanism
corresponds to a “transaction validation” in other blockchains, which would usually be the final step. Then
in a second step, a consensus protocol is responsible to order the transactions, usually through an ordering
service. Finally, validation occurs when all the peers validate the transactions and append them to their

2.1. DISTRIBUTED LEDGERS AND BLOCKCHAIN 11

local copy of the ledger, which prevents inconsistency due to concurrency.

More importantly, both the support for these standard programming languages and the use of an execute-
order-validate architecture makes Fabric special, in that it can handle non-deterministic transactions.
Indeed, in classic order-execute blockchains, smart contracts have to be written in a specifically designed
programming language, such as Solidity, used by Ethereum, which is intended to eliminate all non-
deterministic operations, among other things. That being said, while Fabric does support non-deterministic
transactions, it really comes down to which endorsement policy has been chosen, as an endorsement policy
requiring all peers to endorse a non-deterministic result might never be satisfied. Therefore, different
solutions to this problem have already been proposed [17] [18].

Chaincodes Like a smart contract, a chaincode handles business logic agreed upon by network members,
for which it then initialises and manages the ledger state through submitted transactions. It must, though,
implement a predefined interface, the methods of which are called in response to these transactions [19].
When a chaincode receives an instantiate or upgrade transaction, the Init () method is called so that
the chaincode can execute any necessary initialisation, including application state initialisation. When a
chaincode receives an invoke transaction, the Invoke () method is called to handle transaction proposals.

Another interface that the chaincode “Shim” API must implement is the ChaincodeStubInter-
face, which is used for various chaincode-related calls, such as getting the arguments of an Invoke ()
transaction with GetArgs (), accessing and updating the ledger with GetState () and PutState ()
respectively, but also submitting chaincode-to-chaincode invocations.

World State The aforementioned Get State () and PutState () operations use key-value pairs, the
former reading a value from a key and the latter writing a key-value pair to the ledger. The ledger being
immutable, these operations are actually just appended to the ledger, and instead of requiring chaincodes
to retrace all the modifications applied on a key each time they use one, Fabric introduces the concept of
world state [20]. The world state is a representation of the ledger, it is a key-value store maintaining the
aggregated state of all valid transactions applied on the ledger.

Within the world state, each chaincode is associated with a unique namespace, separate from other
chaincodes. Therefore, during an execution, a chaincode can only access the key-value pairs of its own
namespace. It is still possible, however, for a chaincode to access another chaincode’s namespace if it
performs a chaincode-to-chaincode invocation [21].

Transaction Flow Figure 2.1 shows a typical invocation of a transaction on a Fabric chaincode, with all
the phases of the execute-order-validate scheme. The transaction flow starts with a request, where the
client sends a transaction proposal to the endorsing peers, specifying the target chaincode and the input
arguments (1). Then, the peer executes the function and creates an endorsement by cryptographically
signing the result of the execution, and sends back to the client the endorsed result as a transaction proposal
response (2). The client then collects enough endorsements to satisfy the endorsement policy, assembles a
transaction and submits it for ordering (3). Afterwards, the ordering service checks if the transaction was
submitted by a client that is allowed to submit transactions to the network. Then, it collects a number of
transactions, assign them to a block and broadcasts the block to all the peers (4). Finally, each peer in the
network validates the execution result and endorsement for itself, marks the transaction as valid or invalid,
and appends it to its copy of the ledger.

12 CHAPTER 2. BACKGROUND

tx=<clientlD, I—I—U

chaincodelD,
txPayload,
[~ timestamp,
clientSig>
o
-
Collect T %
TRANSACTION-ENDORSED - Simulate/Execute t =,
Msgs into a valid M I~ Sign TRANSACTION-ENDORSED | .=
endorsement that d e oa
satisfies 4 w
endorsementPolicy T - 0]
(chaincodelD) B .(__slj. <
e — \3, -
broadcast(endorsement) e 8 .
ey W
= 7_77_7_7_‘:‘_‘:‘_“_—“;:;"' T
-
4 [Verify endorsement, readset
If OK
apply writeset to state
. endorsing endorsing endorsing (committing)
client(C)

peer (EP1) peer(EP2) peer(EP3) peer (CP1)

orderers

Figure 2.1: Hyperledger Fabric Transaction Flow [22]

2.2 Trusted Execution Environment

Trusted computing is a technology for code execution relying on cryptographic signatures and specialised
hardware. The original idea was to achieve privacy and data protection by verifying the authenticity and
integrity of platforms and programs running on secure and temper-proof hardware [23]. To implement this
concept, major IT companies, i.e., Intel, AMD, Microsoft, HP and IBM, formed the Trusted Computing
Group consortium. While its role was to endorse and promoting trusted computing as ways to increase
security, by fighting against malware and “unwanted” hardware modifications, it has also been criticised
for helping enforcing DRMs and making use of free software more difficult [24].

Indeed, in the late 2000s this consortium developed the Trusted Platform Module (TPM), a secure
crypto-processor that brought the concept of trusted computing to most PCs by providing them with a
secure environment. More precisely, the TPM is a cryptographic standard for a tamper-evident hardware
chip with persistent and volatile storage [23]. It enables its system, among other things, to prove both its
hardware and software integrity, to safeguard cryptographic keys within its memory, and to provide a set
of cryptographic utilities e.g., as a random number generator, etc. [25]. Yet ultimately, these modules only
offer some storage and a limited set of APIs for specific trusted computing needs, but they do not provide
any isolated execution environment for applications to run within, which is a major drawback in the regard
of secure computing [26].

Consequently, a new approach to trusted computing has been imagined, allowing arbitrary code to be
executed within a constrained environment that guarantees confidentiality and tamper-resistant execution
of its applications [26]. Combined with a distributed architecture, such method would even enable secure
remote computing; executing software on a distant computer owned and maintained by a distrusted entity,
while still ensuring both confidentiality and integrity of the processed data [23].

This new specialised hardware became the Trusted Execution Environment (TEE), and was first
developed by ARM Ltd. as TrustZone [27], a security extension of its own ARM processors family
specialised for mobile platforms. Since then, the term quickly took place in marketing materials for chip
suppliers and platform providers. In a 2015 paper, wishing to develop a framework for evaluating and

2.2. TRUSTED EXECUTION ENVIRONMENT 13

comparing TEE solutions, Mohamed Sabt er al. [26] offered a clear definition for the concept:

“A Trusted Execution Environment (TEE) is a tamper-resistant processing environment that
runs on a separation kernel. It guarantees the authenticity of the executed code, the integrity
of the runtime states, and the confidentiality of its code, data and runtime states stored on a
persistent memory. In addition, it shall be able to provide remote attestation that proves its
trustworthiness for third parties. The content of TEE is not static; it can be securely updated.
The TEE resists against all software attacks as well as the physical attacks performed on the
main memory of the system. Attacks performed by exploiting backdoor security flaws are not
possible.”

The separation kernel is a fundamental part of a TEE, it is the component that ensures the isolated
execution and it is intended to simulate a distributed system [26]. It allows multiple systems with varying
levels of security to coexist on the same platform. Essentially, it separates the system into partitions and
ensures tight isolation between them, with the notable exception of a carefully managed interface, for
communication between partitions [26].

Another important aspect raised by this definition that is fundamental for TEEs to work is the remote
attestation requirement. Because the TEE would be accessed from a distrusted code base, notably by
an operating system, manufacturers have to provide a way to prove that a specific execution is taking
place within the isolated execution environment, and not in an eventual fake environment simulated by
an intermediate layer. As a result, a unique and concealed private key is permanently stored in the chip,
capable of signing a given input when challenged, and producing an attestation that can be verified with
the manufacturer’s corresponding public key. Remote attestations will be covered more in detail in the
following Section 2.2.2.

In the past years, quite a few TEE technologies have been developed by different chips manufacturers.
As we have already mentioned, ARM developed TrustZone [27], but there is also AMD that developed a
few of them, notably Secure Encrypted Virtualisation (SEV) [28], and Intel developed Software Guard
Extensions (SGX) [29]. These various trusted computing mechanisms work differently from one another,
and one important aspect on which they might differ is the Trusted Computing Base (TCB) they require.

The TCB denotes the minimal set of hardware and software components absolutely critical to ensure a
system’s security [30], which in the context of TEEs, is defining which and how many of the hardware and
software components will be protected. Because of this, as we will see in the next section covering SGX,
the choice of which specific TEE to use for a given trusted application depends on, among other things,
how the developer wants to structure the protected part of its application [31].

2.2.1 Intel SGX

As mentioned above, Intel’s own TEE is known as Intel Software Guard Extensions (SGX), and was
firstly introduced in 2015 with the sixth generation of its Pentium CPUs. The technology is directly
implemented in Intel’s new CPUs, which therefore enables secure remote computation by exploiting this
trusted hardware in a remote machine. More precisely, it is implemented as a set of instruction codes for
the CPU, allowing applications to be executed in a protected region of the memory [32].

Intel SGX differs from previously evoked approaches by the amount of code protected in the TCB; here
it only contains the private data and operating code strictly necessary for a given computation [33], while
other approaches such as TrustZone and SEV will protect the entire system [31]. This way, whatever is
processed inside the TCB remains isolated from the outside environment, including any operating system,
hypervisor, and hardware devices on the system, while still preserving the integrity and confidentiality of
the computation. This makes SGX more targeted at small but highly security-sensitive applications, while
TrustZone and SEV would more be suitable for complex or legacy applications and services [34].

14 CHAPTER 2. BACKGROUND

The protected memory regions that SGX uses are called enclaves, and they enable to load specific
computer programs in which calculations are being conducted while preserving both confidentiality and
integrity. Confidentially is preserved by using encryption, the enclave being stored in an encrypted part of
the memory and the user being expected to communicate with the enclave in an encrypted way. Likewise,
integrity is preserved by using cryptographic authentication, but much like other TEEs, SGX also provides
an attestation mechanism ensuring that the software is indeed operating inside an enclave, and that this
software remains unchanged. The proof is provided as a cryptographic signature, certifying the hash of
everything residing in the enclave: both the application code and any data loaded during its creation [33].

This is useful in the context of secure remote computation, since a distrusted owner of a remote
machine could load any software of its choice into the enclave, the user of the remote service can check the
returned hash against the expected value, thus detecting and preventing execution on any modified software.
We cover more in detail how the remote attestation mechanism operates in Section 2.2.2, however one
factor we can mention right now is that the cryptographic signature used by an enclave to produce an
attestation is certified by Intel as existing only inside this enclave. The proof is provided as a cryptographic
certificate, which implies that for SGX to enable a user to use the machine of a distrusted owner, the user
now has to trust Intel.

As a result, an SGX application that requires confidentiality will extendedly make use of encryption,
since transfer of data between the enclave and the outside environment will inevitably happen. While, on
the other hand, an SGX application that requires integrity will extendedly make use of attestation and
signature verifications, in order to make sure that the computation results were indeed produced inside the
enclave. At the same time, the SGX approach is still compatible with Intel’s traditional software layering,
in which the OS kernel and hypervisor manage the computer’s resources [33].

2.2.2 Intel SGX Remote Attestation

As described above, remote attestation is a mechanism needed to ensure that a secure remote computation
took place inside an enclave. A unique cryptographic key stored in an SGX enabled CPU, which signs
attestations transmitted to any challenger asking for a proof that whatever has been signed with this key
was indeed signed inside the enclave. Then, the user can then compare the generated attestation with the
endorsement certificate provided by Intel, supporting that the attestation key should only be known by the
enclave and is only used for attestations [35].

Currently, Intel SGX offers two remote attestation schemes. The first is an algorithm that Intel offered
when starting developing SGX, it is called Enhanced Privacy Identity (EPID) and is based on the previous
version of Direct Anonymous Attestation (DAA) developed for TPMs [36]. For EPID to work, in addition
to the application enclave and a challenger, it needs a quoting enclave and an attestation verification
service, provided by Intel by the aptly named Intel Attestation Service (IAS) [37].

2.2. TRUSTED EXECUTION ENVIRONMENT 15

Application 4—®— <—|—®—

Enclave Application

1 4
User Platform @ @)

|
| |

| |

| |

| |

: I '
| I

| |

|

Challenger

O—T1 UserData

Quoting Attestation
Enclave ificati
: Verification
- Attestation
Key

Figure 2.2: EPID Attestation Flow [38]

The EPID attestation mechanism, illustrated in Figure 2.2, works as follows: when a challenger asks
the application enclave for an attestation quote, the application returns an attestation then signed by the
quoting enclave, and returned outside the enclave. The challenger then checks the quote with TAS, not
only for the quote being valid but also for the signing key not being revoked. Finally, the IAS returns a
signed attestation result to the challenger, stating if the quote is valid or not.

A second scheme, called Data Centre Attestation Primitives (DCAP), and based on the Elliptic Curve
Digital Signature Algorithm (ECDSA), was later developed by Intel to offer some flexibility [38]. The
purpose of this new certification infrastructure is to allow for non-Intel parties to author their own attestation
without having to rely on the IAS. As a result, entities not connected to the Internet, not willingly to risk
outsourcing trust or to have a single point of verification, or just entities concerned with privacy, could still
use Intel SGX.

For DCAP to work, one must install an Intel provided Provisioning Certification Enclave (PCE), which
acts like a local certification authority for a local quoting enclave. As a result, this quoting enclave can
now generate its own attestation keys using whatever algorithm the user prefers, as long as it provides its
public key to the PCE. This latter can then authenticate the request and issue a certificate identifying both
the quoting enclave and its attestation keys. Because the PCE public key is verified by an Intel certificate,
one just has to know Intel’s public key without being connected to the Internet to verify the full chain of
trust [38].

Hence, when comparing Figure 2.2 and Figure 2.3, we can now see this new PCE component interacting
in the attestation scheme. Instead of having the Quoting Enclave holding the Attestation Key, it now gets
authenticated by the PCE to provide the certificate authenticating the Enclave. Furthermore, we see the
Intel Attestation Service being replaced by the Data Centre Caching Service, which now acts as the “local”
IAS verifying the PCE certificates using its own signatures authenticated by Intel.

16 CHAPTER 2. BACKGROUND

: SGX Application < »| SGX Application < = Relying

; Enclave > : > Party

E A E A
User Platform

E A 4 I \ 4

| Provisioning :

: Certification [»| Quoting Enclave [¢ > CD?]t_a ante_r

: Enclave d A aching Service

Figure 2.3: DCAP Attestation Flow [39]

2.2.3 Developing with Intel SGX

When developing an SGX-enabled application, a programmer has to deal with a number of restrictions
due to the isolated nature of the enclave. Notably, there cannot be any access to system calls, and there
is a limited access to CPU operations. On top of that, there cannot be any interaction with any network
whatsoever, local or not. Therefore, the developer needs to define an interface between the enclave code
and the outside world, taking over every use case where these restrictions have to be circumvented that
way.

To facilitate this, Intel introduced Enclave Definition Language (EDL) files, whose purpose is to define
the interface between the trusted and distrusted parts of an application [40]. While the distrusted functions
must be implemented in the application, the trusted functions are written to the C++ file that will be
used for the enclave [40]. Then, after building an SGX application, it is necessary to sign it. This makes
SGX able to detect eventual modifications made to the enclave file after signing, and therefore block the
application before loading it [40].

To achieve this, Intel provides an open-source SDK for both Linux [41] and Windows [40]. It is
a collection of APIs, libraries, documentation, sample applications, and tools allowing to build and
debug such SGX-enabled applications, in C and C++. Alongside, they also provide a Platform SoftWare
(PSW) [29], containing the drivers, some services, such as the remote attestation handling, and is basically
the platform enabling loading and initialisation of enclaves images.

When finishing to build an enclave application, SGX generates a cryptographic hash of the enclave
called MRENCLAVE. This value identifies the enclave uniquely, as it hashes all and every step of the build
process [42]. One can rely on the MRENCLAVE to be exactly the same as long as the enclave application
is exactly the same. This is particularly useful when it is needed to make sure an SGX application has not
been tampered with, or for verifying its signature at runtime: the SDK will automatically remake every
step of the build process, and compare both MRENCLAVEs.

Since applications developed with the Intel SGX SDK require additional efforts to port to other TEE
platforms, a community of open-source developers began working on the Open Enclave SDK [43]. It is
a hardware-independent library, with the goal of generalising the development of enclave applications
across TEEs from different hardware vendors. Currently, the project, which is partially maintained by
Microsoft, supports Intel SGX as well as a preview support for ARM TrustZone.

Fabric Private Chaincode

This thesis contributes to Fabric Private Chaincode (FPC) [44], a framework built on Hyperledger Fabric
that improves data confidentiality and integrity for chaincodes by running them in Intel SGX enclaves.
Essentially, FPC secures transactional data while it is being used by chaincodes, in transit to and from a
client and while stored on the ledger. As a result, unlike traditional chaincode applications, malicious Fabric
peers can only see encrypted data associated with FPC chaincodes, which relaxes the trust assumption
towards the endorsing peer in terms of confidentiality.

In that regard, FPC adds another privacy mechanism to Fabric, allowing the implementation of
use cases with strong privacy requirements. The project, maintained by a community of open-source
developers mostly from IBM and Intel, is accessible as an extension of Hyperledger Fabric v2.3 on
GitHub [1]. Initially a Hyperledger Labs project, it has now been accepted as an official Hyperledger
Fabric feature [2] and is currently under active development.

FPC works by allowing a chaincode to handle encrypted transaction arguments and states, thereby
concealing sensitive data, even to endorsing peers. Moreover, the framework enables both the client and
other peers to build confidence in a given FPC chaincode, through the successful use of remote attestations.
As a result, clients establish a secure channel with chaincodes, rather than with the peer hosting them,
preserving privacy on both transaction requests and responses. The enclave on the hosting peer ensures
the confidentiality of the data while the chaincode executes it, and encryption is used to protect any data
stored publicly on the ledger.

The purpose of FPC is to address the various situations in which it is desired to execute an application
in a distributed architecture such as a blockchain, but when that application also requires secrecy on top of
the existing integrity measures. Theses use cases may include privacy-preserving analytics on sensitive
data e.g., medical data, exchanges requiring contract confidentiality e.g., intellectual property, secret ballot
voting, or sealed bid auctions [44]. These examples would not be suitable for normal Fabric’s existing
confidentiality features, since it will always require full trust from the endorsing peers. For instance,
it would be unacceptable for a voting system to be called confidential if the government is running an
endorsing peer [44].

Another incentive for FPC is its integrity model, which is based on hardware-enabled remote crypto-
graphic attestation. In regular Fabric, integrity of chaincodes is protected by the endorsing mechanism,
which is specified by an endorsement policy as we have seen in Section 2.1.1. In FPC, due to the strong

17

18 CHAPTER 3. FABRIC PRIVATE CHAINCODE

integrity enforcement of the attestation mechanism, the number of replicated executions can be reduced
which gives more confidence in integrity as the regular Fabric model, with less processing. TEE-based
endorsement and remote attestation provide a new set of endorsement policies, which can minimise the
number of needed, and potentially costly, chaincode executions while still providing adequate guarantees
of integrity for many workloads. There are trade-offs, as is typical for performance, so measurements are
required to determine the best strategy.

3.1 Architecture

FPC is designed in a way that it does not require changes or modifications on Fabric’s core, maintaining
a user experience as close as it could be to normal Fabric. On top of that, a roadmap beyond the first
design aims to enable more uses cases, to obtain some performance benefits and provide a more extensive
programming experience [2]. In fact, this is exactly the goal of this thesis; getting closer to a regular Fabric
chaincode development by adding support for Go written chaincodes, since, for different reasons that will
be explained later on in Section 3.3, the current implementation of FPC requires C++ written chaincodes.

In a nutshell, FPC works just like Fabric, but with an extra FPC layer on top in order to guarantee
confidentiality and integrity. As these adjustments are not necessarily compatible or supported by normal
Fabric, they are encapsulated in “normal” requests and responses messages in a way that they can be
handled natively by peers and clients. Then, whether from the client side or the chaincode side, these
messages are recovered and authenticated by these extra FPC layers on both sides.

Ordering service

Fabric Peer

Chaincode Enclave

Figure 3.1: FPC Architecture Diagram [2]

In Figure 3.1, we can see how each component interact. On the left, we see that FPC introduces
an FPC Client SDK, built on top of the regular Fabric Client SDK, enabling application developers to
interact with an FPC chaincode. In more details, it encrypts and authenticates the transactions completely,

3.1. ARCHITECTURE 19

protecting data from any distrusted peer it may pass through. Then, running inside the peer, we see the
FPC Chaincode Package which is a regular Fabric chaincode containing multiple FPC components.

The main one is the Chaincode Enclave, which resides inside an SGX enclave — represented in the
figure by a blue box — and contains the actual chaincode. The other component is the Enclave Endorsement
Validation (EEV), whose purpose is to complement the peer’s endorsement mechanism by checking that
transactions are signed by registered chaincode enclaves. Finally, there is the Shim, which provides an
interface for the Chaincode Enclave, and will be covered in detail in the following Section 3.1.1.

Alongside the FPC Chaincode Package, there is an additional Fabric chaincode, the Enclave Registry
Chaincode (ERCC) whose role is to store a list of all the existing Chaincode Enclaves on the ledger,
identifying them by their MRENCLAVE. Furthermore, when an enclave is initialised by a user, the ERCC
receives its remote attestation result via a registerEnclave () transaction. Thereby, after verifying
the result, the enclave registry maintains the results on the blockchain in its list as well, in order to make the
attestations results available to all users in the system. This allows peers and clients to check a Chaincode
Enclave’s attestation before performing chaincode transactions or committing state changes.

3.1.1 FPC Shim

The FPC Shim is the interface than handles FPC-specific operations inside the enclave and the FPC
Chaincode Package. The shim implements the normal Fabric chaincode interface and intercepts calls
made by either the client and the FPC chaincode. Its role is, for the client, to be the entry point of the FPC
chaincode while responding like a normal Fabric chaincode, and for the FPC chaincode, to handle all
FPC specific operations in such a way that the chaincode can be written as any other chaincode would be,
without any FPC specificities in mind.

A typical example of the Shim usage would be the handling of a request’s arguments. When a request
is sent to the Chaincode Enclave, the FPC Client encrypts the arguments and encapsulates them into
another request, which is first sent to the FPC chaincode in between. Then, in the FPC chaincode, the
Shim outside the enclave treats the encapsulated request as a data blob, passing it to the Shim inside the
enclave, which then decrypts the data blob and provides the arguments to the Chaincode Enclave.

The final goal is that when a chaincode developer calls the GetArgs () method, the FPC Shim will
serve as the chaincode’s default interface, replacing the arguments of the encapsulating request with the
decrypted arguments intended for the Chaincode Enclave, enabling the developer to write its chaincode
as if it were regular Fabric. The same applies to other functions, such as Get State or PutState; the
shim wraps these methods, respectively decrypt or encrypt the data, then performs the actual operation.

However, since FPC is still in development, it currently only supports a subset of the original API
offered by Fabric, mostly providing the functionalities that are strictly essential to implement a chaincode.
The following methods have been transposed by the FPC shim:

* GetStringArgs () : [Istring

* GetFunctionAndParameters(): string, []string

* GetState(string) : [lbyte

* PutState(string, string): nil

* GetStateByPartialCompositeKey (string): iterator
* DelState(string): nil

Furthermore, because the functions interacting with the world state now handle encrypted values by
default, the following “Public” methods have been added in case a user would specifically want to store or
retrieve unencrypted values:

20 CHAPTER 3. FABRIC PRIVATE CHAINCODE

* GetPublicState(string) : [IByte
e PutPublicState(string, string): nil

* GetPublicStateByPartialCompositeKey (string): iterator

3.1.2 Cryptographic Keys

In FPC, a collection of symmetric and asymmetric cryptographic keys are used to protect the chaincode
state and the messages exchanged with the clients. These keys, listed in Table 3.1, serve different purposes,
mostly depending on which particular component stores them, and to which other components they can be
shared. In this section we elaborate on these keys, grouped by their scope, explaining in detail what they
are for and how they are used.

Table 3.1: Cryptographic Keys

Scope Public Private
Chaincode | Chaincode ek Chaincode_dk
Enclave Enclave_ek Enclave_dk
Signing Enclave_vk Enclave_sk
Requests Request_ek
Responses Response_ek
State State_ek

Chaincode This pair of asymmetric keys is used for communicating with the client. When a Chaincode
Enclave is initialised and registered in ERCC, it will create this pair and store the private key in its
memory while sharing the public key with the enclave registry. They are used for encryption of key
transport messages. These messages are sent alongside encrypted requests and responses, and contains the
corresponding symmetric request or response key (see below).

Enclave This pair of asymmetric keys is not used at the moment. Ultimately, its goal will be to
communicate with other enclaves when FPC would be supporting multiple Chaincode Enclaves running in
parallel.

Signing This pair of asymmetric keys is used for signing a Chaincode Enclave response message. At
initialisation, a Chaincode Enclave will create this pair and store the signing key in its memory while
sharing the verification key with the enclave registry. The response message consists of the input arguments,
the read/write set, the encrypted result itself and the signature, which is verified later on by the enclave
endorsement validation (EEV).

Requests This symmetric key is used for encrypting request payloads, the client generating a fresh one
with each request. When communicating with an FPC chaincode, the client will use the key to encrypt the
request and embeds the cipher text in a transaction proposal. Then, the request key is encrypted using the
chaincode public key and sent alongside the transaction proposal in a key transport message (see above).
That way, the FPC chaincode can decrypt the request key and use it to decrypt the request.

3.2. TYPICAL EXECUTION 21

Responses This symmetric key is used for encrypting response payloads, the client generating a fresh one
with each request. The key is embedded in the key transport message alongside the previously mentioned
request key, and with it encrypted with the chaincode public key (see above). When the Chaincode Enclave
finishes processing the request, it uses this key to encrypt the response and send it back to the client. That
way, the client can decrypt use it to decrypt the response.

State This symmetric key is used for encrypting all data that an FPC chaincode writes to the world state
via PutState () operations. At initialisation, a Chaincode Enclave will create this key and store it in its
memory, without sharing it. This way, the decrypted data from the world state can only be accessed from
inside the enclave.

3.1.3 Enclave Endorsement Validation

As we have seen previously, the FPC Chaincode Package is composed of the actual FPC chaincode
containing the secure chaincode logic, and the Enclave Endorsement Validation (EEV) chaincode, charged
of interacting with the former and with the client for endorsement validation purposes. This is because
interactions with the world state are made encrypted; therefore it was necessary to provide other peers on
the network a way to endorse the executing peer’s result while at the same time preventing them from
revealing them the encrypted data.

For this reason, as an additional layer to a normal Fabric execution, a read/write-set is built and main-
tained by the FPC Shim. This set contains the keys of all GetState () and PutState () operations
that have been made during a given execution, in order to enable other peers to apply these changes to
their local copy of the world state. For Get State () operations, the key and value’s hash are stored in
the set, and for Put State () operations, both the key and the encrypted value are stored in the set.

After the executing peer returns its signed response message, the client asks for other peers to endorse
it. The EEV in these peers is able to authenticate the read/write-set thanks to the verification key they fetch
from the enclave registry (ERCC). Once sure about the provenance of the read/write-set, they can execute
the operations based on the keys and compare the results to the ones they get directly from the world state.

More precisely, if it is a Get State () operation, they compare the hash of the encrypted value. If it
isaPutState () operation, they look that an entry with the corresponding key exists in the world state.
If the results match, the peer thus endorses the result (which is still encrypted) and once enough peers have
endorsed the result, the original FPC client will package the responses in a transaction for the ordering
service.

3.2 Typical Execution

This section follows the typical execution flow of an Invoke () transaction. Here, in the situation
presented by Figure 3.2 situation, the enclave and the chaincode have already been initialised, and the
chaincode is waiting for incoming transactions.

1. The user triggers the transaction when asking for an Invoke () operation on the application of
its choice. In this example, the client wants to call the function £ (args), so the actual call might
look like invoke f arg0 argl etc.

2. The Enclave Registry (ERCC) looks which peer is hosting the corresponding chaincode in one of its
enclaves.

3. Once ERCC has located the chaincode, it retrieves the chaincode’s public key (see Section 3.1.2)
for encrypting the transaction request, and pass the key to the Client.

22

10.
11.

12.

13.

1. “Invoke” f(args)

CHAPTER 3. FABRIC PRIVATE CHAINCODE

6. Decrypt args
7. Execute chaincode logic

8. Encrypt response

9. Create enclave endorsement
10. Return response
Fabric Peer

FPC Chaincode Pkg

4. Encrypt f(args)
5. “Query” invoke(enc_args)

FPC : .

Client SDK =
11. “Invoke” endorse(reponse) Enclave
Endorsement

Application AN | Validation

12. Re-Perform read/write ops

14. Submit to Ordering svc)
13. Validate enclave endorsement

15. Decrypt & return response

Enclave Registry Chaincode I

2. Discover enclave peer
3. Get CCEncKey

Figure 3.2: FPC Transaction Flow [2]

The Client encrypts the requested function and its arguments with the key provided by ERCC.

Once the Client has the encrypted request, it transfers it on to the Chaincode Enclave with a
Query () operation.

The Chaincode Enclave decrypts the final function and arguments with its corresponding private
key.

Then, the Chaincode Enclave uses the Invoke () operation of the actual chaincode, which will
then call its own f (args) function with the decrypted arguments.

Once the chaincode returns its response, the Chaincode Enclave encrypts the response with the
private key provided by the Client with the request (see Section 3.1.2).

Then, the Chaincode Enclave signs the response proposal with its signing key.
Finally, the Chaincode Enclave returns the encrypted and signed response to the Client.

The Client starts the endorsement process with the returned response by using the Invoke ()
operation on the FPC Chaincode Package, which will then call its own endorse (response)
function.

The FPC Chaincode Package, via its Enclave Endorsement Validation (EEV) repeats and controls
all the operations present in the read/write-set provided with the response proposal.

If the operations are valid, the EEV validates the enclave’s endorsement and return an “OK” to the
Client.

3.3. LIMITATIONS 23

14. The Client then submits the validated transactions to the Ordering Service.

15. Finally, the Client decrypts the response using its private key and returns the decrypted response to
the user.

3.3 Limitations

In this section we discuss the current limitations of FPC compared to standard Fabric. We differentiate
between conceptional limitations, and those which are just not yet implemented. In the context of this
thesis, this list helps to highlight the limitations encountered during development. Also, because these
limitations are not covered by FPC, they will not be implemented in this work either.

C/C++ Obviously the first one coming to mind is the requirement to use C/C++ written chaincode.
This is due to Intel SGX’s SDK especially been produced with low-level language development in mind.
This had led to restrictions on functionality simply because a lot of components had to be rewritten, and
development had to prioritise certain areas over others.

Init function At the moment, FPC does not give the possibility to use the Init function of a chaincode.
This is because the Init function is used to initialise the encapsulating FPC chaincode, not the actual
used chaincode. As a workaround, most chaincodes already use a case statement in the Invoke function
looking for a function name in the first argument, and thus may still implement an initialisation function.

Empty responses FPC do not use standard peer . response objects as invocations responses, but
its own format that encapsulates the serialised payload of the peer’s response. However, because such
response is supposed to be encrypted, it does not support response objects that contains nothing, i.e.,
shim. Success (). As a workaround, if a chaincode needs to return such response, it can simply return
a response object containing any string instead, i.e., shim.Success ("OK").

@

Composite keys Composite keys use a non-standard format in FPC, with a simple dot “.” as a separator
instead of the null character \x00. As a workaround, FPC provides a function to convert such keys.
Additionally, it appears that when calling Get StateByCompositeKey, the read values are not added
to the read/write-Set and thus not replayed. This is definitely a security issue and should be corrected in
the future.

Approach

In this chapter, we describe the approach taken on a high level. We look at the goals of the project, the
approach for achieving these goals, as well as the constraints and requirements of the implementation.

In line with what the Intel SGX SDK requires, FPC was designed so that everything interacting with
the enclave must be written in C++. However, FPC is based on the regular Fabric implementation which
is written in Go, thereby the FPC chaincode package contains an interface that uses Cgo [45] present in
both sides of the FPC Shim as we see in Figure 3.1. This interface acts as a bridge between the Chaincode
Enclave and the rest of Fabric, and brings undesirable complexity.

Therefore, the plan of this language extension is (1) to replace theses C++ pieces in the FPC Chaincode
Package with a new Golang FPC Chaincode Package, and (2) to compile and run the whole package
directly in an SGX enclave. At the same time, this extension must allow the use of the same functions and
APIs as before, and limit the changes made in other parts of the project.

In order to achieve this second goal, it is necessary to find a method permitting to execute Go code
inside an SGX enclave. Thus, in Section 4.1, we introduce the EGo [46] SDK, which from the beginning
of this project is the technology intended to be used and integrated in FPC. In Section 4.2, we elaborate
more about this new Golang FPC Chaincode Package, and how it is designed to allow a Golang chaincode
to interface directly with the other modules of FPC without Cgo.

41 EGo

Developed in early 2021 by Edgeless Systems [47], EGo [46] is an open-source SDK that makes the
development of confidential Go written applications easy and convenient. It works by compiling any
Golang application and, with a few instructions, make it ready to be executed within an Intel SGX enclave.

It is based on a previous work called Edgeless RT [48], itself using Open Enclave [49] — that we have
already mentioned in Section 2.2.3 — as the framework interfacing with the enclave. In a nutshell, Edgeless
RT is a runtime for modern programming languages (particularly Go, but also Rust and C++) enabling
them to run inside an enclave. It focuses on packaging the binaries into an enclave container, which is then
handled by Open Enclave for the low-level operations in SGX [50].

Using Edgeless RT was, according to Edgeless Systems, a tedious and non-user-friendly process [51].
Hence, they developed EGo with the idea of making it as simple as possible for existing Golang applications.

25

26 CHAPTER 4. APPROACH

For instance, by changing the way Go handle SYSCALLs to make them compatible with an enclave
environment, or by having the compiler seamlessly handling the non-enclave part of the code, unlike other
implementations of Open Enclave for programming languages such as C++ or Rust [52].

To achieve this, the SDK provides a modified Go compiler, a Go library [53] and some additional
tools. The compiler produces binaries that can run in an SGX enclave when lunched with EGo [51], while
the Go library provides methods that may be required for an enclave running software, such as handling
attestations, directly as Go code. The additional tools, which are run as command-line argument with EGo,
handle various specific tasks described in Table 4.1.

Table 4.1: EGo Tools [54]

Command Description

sign Sign an executable built with ego-go

run Run a signed executable in standalone mode
marblerun Run a signed executable as a MarbleRun Marble
bundle Bundle a signed executable with the current EGo runtime into a single executable
signerid Print the SignerID of a signed executable

uniqueid Print the UniquelD of a signed executable

env Run a command in the EGo environment

install Install drivers and other components

help Help about any command

completion | Generate the autocompletion script for the specified shell

To ease the development process, EGo provides a way to run an enclave application in a simulated
environment. It may be used for debugging, as the code and data are not encrypted during execution, or
simply in the case that a developer working on a confidential application lacks an SGX-enabled machine.
This simulation mode is enabled by using the Open Enclave flag OE_SITMULATION=1 when running an
application with EGo.

Furthermore, developers are able to compile their applications with the EGo compiler and — unless
they require access to SGX-specific functions such as the ones provided for remote attestations — run them
with the regular Go runtime. This may also be used for debugging on another machine, which does not
need to have EGo installed.

For simplicity, EGo works in a way that it takes a program as a whole, and compiles it for an enclave.
Therefore, for an application to communicate with the exterior world, it will need additional features, e.g.,
a TCP connection, preferably using encryption. In one of the few recent works that uses EGo, Porambage
et al. [55] show that while this approach greatly simplifies porting code in an enclave environment, it may
introduce performance issues due to a longer start up time, or during context switches, when the program
jumps in and out of the enclave.

4.2 Go Chaincode Enclave

As a reminder, a running FPC chaincode is composed of the FPC Chaincode Package, which itself contains
the actual Chaincode Enclave, the Shim, and the EEV. In our approach, a new Go Chaincode Enclave
would be created to handle Golang chaincodes, based on the previous FPC Chaincode Enclave. As such,
it will include a new FPC Shim translated in Go and an EEV (see Section 3.1.3). Therefore, chaincodes
would be able to use the same API as they already do. The functionality provided by the Go Chaincode
Enclave interacting with the FPC shim would stay the same, that is:

4.2. GO CHAINCODE ENCLAVE 27

1. Encrypt and decrypt request and responses.

2. Encrypt and decrypt world state values.

3. Provide attestation capabilities.

4. Host the EEV, this component remaining untouched.

5. Dispatch invocations of the Chaincode Enclave and the EEV.

We have seen that EGo is designed in a way that it takes a whole existing application, and compiles it
for a use inside an enclave. Therefore, we will run the whole Go Chaincode Package within EGo, with
the bridge between the enclave and the outside world located where the chaincode already establish an
encrypted communication with the peer and the client.

Fabric Peer

Validation
World =
Chaincode St(;rte E"’
Ledger
FPC
Client SDK

Enclave
S Endorsement
AEEEEIE Validation
Enclave Registry Chaincode

Figure 4.1: FPC Architecture Diagram [2] (Adapted)

In Figure 4.1, we adapted the previous FPC Architecture diagram to show how the new Go Enclave
would look like. The blue section of the graphic, representing the Enclave, has been expanded. The Shim,
where we would make the most of the modifications, is now entirely simplified and included within the
enclave. This way, we can get rid of the Cgo part and lead to a simplification of the FPC Chaincode
Package in the future. For the rest, the Client SDK, the ERCC and the EEV are left untouched.

The objective of this approach is to maintain the main.go as it is, handling both C++ and Golang
implementations, as well accepting normal Fabric chaincodes, without requiring any modification for them
to work with FPC. Thus, the changes made by this thesis are made on the components between these two,
translating existing parts of the Chaincode Enclave to Go, as well as adapting other existing parts.

28 CHAPTER 4. APPROACH

4.3 Discussion of the Approach

For this project to still be compatible with C++ chaincodes, we had to keep the modifications and
disruptions on FPC to a minimum, in order for it to continue to support current C++ chaincodes. The
easiest way to do so, and the path chosen for this project, was to exploit the fact that most components in
FPC are already written in Go and would theoretically permit to compile and run any of its components
into an enclave with EGo.

Thus, the biggest challenge of this approach was to choose which component to put inside the enclave
and which one to leave outside, i.e., to draw the boundary of the trusted computing base. We know it is
necessary to protect at the very least both the Chaincode Enclave and the Shim, since non-encrypted data
would leave the Chaincode Enclave to be handled by the Shim’s wrapper methods. And this is what FPC
already do; include only the Chaincode Enclave and the Shim in the TCB, minimising the quantity of code
entering the enclave and reducing overhead.

Yet, our approach here is different, because we have to follow the design principles of the EGo compiler.
Thus, we place the whole Go Chaincode Package in the TCB, and while this may induce some overhead,
it has massively simplified the project. Moreover, since the bridge between the enclave and the outside
world is where the communication with the peer and the client is already made, we remove the need to
develop a new interface specifically for this purpose, and avoid the performance issues evoked at the end
of Section 4.1.

Implementation

In this chapter, we describe the implementation details to realise the approach as described in Chapter 4.

We first explain how the approach is implemented, presenting a diagram of the new transaction flow
and enumerating the changes required. We then elaborate more on the new modules EEC Go and the FPC
Stub Interface, and we end with the limitations of the implementation.

Fortunately for us, when FPC was developed, a mock enclave [56] was added for testing purposes,
and for convenience, was written in Go. This mock enclave acts like a usual chaincode by replying to the
usual functions calls, but is actually an endpoint returning dummy responses. What this means is that FPC
already included some objects, functions, and types implementation already corresponding to the usual
interface.

For this reason, this mock enclave has been used as the starting point of the implementation of this
thesis’s project, by keeping the functions headers intact but modifying greatly how they operate, as well as
the initialisation process. Indeed, this mock enclave suddenly became responsible of handling the whole
transaction execution process.

Moreover, a new FPC Stub Interface had to be built, based on the previous FPC Shim described in
Section 3.1.1. This new interface, described in more detail in Section 5.1.2, acts as an adapter between
the chaincode and the Fabric Stub by returning proper arguments, or by encrypting/decrypting world
state values. The FPC Stub is a fundamental part in the new Golang implementation, as we will see in
Section 5.1.3 where we will show the full sequence of a transaction request invocation.

5.1 Architecture

FPC’s architecture is already well compartmented, with low coupling and high cohesion. Of all the
modules, the most important for enclave creation and secure chaincode execution are the two modules
ecc and ecc_enclave. The former, written in Go, contains the entry points for the rest of the project to
start the enclave creation process. The latter, as we have already mentioned, is written in C/C++ and called
through Cgo for the actual enclave creation.

This is because FPC wants to be compatible and built on top of Fabric, minimising the changes
required for the implementation of secure computing. By nesting chaincodes, as shown in Figure 3.1,
FPC enables compatibility with the normal chaincode processing of Fabric, while implementing its own

29

30 CHAPTER 5. IMPLEMENTATION

logic underneath. Thus, the goal of our implementation is to replace this architecture with a new Golang
implementation of these nesting chaincodes.

Since the project is already mostly written in Go, to extend the support of Golang is actually to
massively simplify the whole process. Therefore, we have created a new module named ecc_go [4],
which processes all the tasks previously handled by ecc and ecc_enclave. As we have seen in
Chapter 4, the main particularity of this modification is that, while in the previous implementation the two
modules represented the outside and inside part of the enclave; here the entire module will be built inside
an enclave with EGo.

5.1.1 ECCGo

For the same reasons that FPC is built on top of Fabric while minimising modifications, we built the
ecc_go module on top of the ecc module while keeping most of its architecture intact. Thereby, when
executing a Golang chaincode in an enclave, the three following code files are used and executed:

main.go This is the entry point of the module. Its role is to create the Chaincode Enclave (ecc) and
to start it. No changes are required.

ecc/ecc.go This is the Chaincode Enclave. Its role is to represent the front end of a “normal”
chaincode for Fabric, while handling the actual chaincode with FPC’s specific interface. Because we are
not changing FPC’s interface in this project, it is kept intact as well.

Listing 5.1: interface.go [1]

type StubInterface interface {

// Init initializes the chaincode enclave.

// The input and output parameters are serialized protobufs

// triggered by an admin

Init (chaincodeParams, hostParams, attestationParams []byte) (credentials []byte, err
error)

// GetEnclaveId returns the EnclavelId hosted by the peer
GetEnclaveId() (string, error)

// GenerateCCKeys returns a signed CCKeyRegistration Message including
// The output parameters is a serialized protobuf
GenerateCCKeys () (signedCCKeyRegistrationMessage []byte, err error)

// ExportCCKeys exports chaincode secrets to enclave with provided credentials
// The input and output parameters are serialized protobufs
ExportCCKeys (credentials []byte) (signedExportMessage []byte, err error)

// ImportCCKeys imports chaincode secrets
// The output parameters is a serialized protobuf
ImportCCKeys () (signedCCKeyRegistrationMessage []byte, err error)

// ChaincodeInvoke invokes fpc chaincode inside enclave

// chaincodeRequestMessage and chaincodeResponseMessage are serialized protobuf

ChaincodeInvoke (stub shim.ChaincodeStubInterface, chaincodeRequestMessage []byte) (
chaincodeResponseMessage []byte, err error)

5.1. ARCHITECTURE 31

Chaincode/enclave/go_enclave.go This is the actual Go Enclave, and it is where the link
between ecc and the actual chaincode is made. Its interface is defined by interface. go, which as
shown in Listing 5.1, is an extension of regular Fabric’s interface intended for FPC’s use of cryptographic
keys. This implementation is based on the previous mock_enclave. go of the previous ECC module.
Indeed, the mock enclave was created for testing purposes in the previous build, so it already contained
the logic and a lot of reusable code for the wrapping of a chaincode. As a result, most of the modifications
were made so that instead of handling a fake chaincode, it could be handling a real one, while keeping the
interface intact for ECC, notably:

* Generate, store and return the necessary asymmetric and symmetric cryptographic keys (see Sec-
tion 3.1.2) need to run the enclave during the init sequence.

* Retrieve, unmarshall and decrypt the input parameters such as the request message instead of using
a dummy request.

» Store an empty fpcKvSet, which encapsulates the read/write-set of the chaincode instead of
creating a dummy one.

* Create a wrapper of the chaincode stub interface that will handle some special operations (see
Section 5.1.2).

* Invoke the actual chaincode and passing it the wrapper.

* Retrieve, encrypt, marshal and return the chaincode’s response instead of returning a dummy one.

5.1.2 FPC Stub Interface

As we have previously discussed in Section 3.1.1, a Fabric chaincode is expecting a regular Fabric
ChaincodeStubInterface. Therefore, while calling the Invoke function, we had to create a
wrapper of ChaincodeStubInterface in order to handle special FPC operations. The wrapper
takes as arguments ECC’s stub, the request input arguments, the previously created fpcKvSet and the
stateKey required for encryption on the ledger. For most of its numerous functions, the FPC stub
interface wraps a simple call on the same inherited functions of the chaincode stub. But the remaining
ones had to be modified, either to handle FPC operations, or because they had to change their output. Here
is a list of these modified functions:

* GetArgs () : This method overrides the inherited st ub .GetArgs () by returning the arguments
intended for the actual chaincode, because the inherited method would return the arguments intended
for the whole Go Chaincode Package.

* GetStringArgs (): This method calls the FPC Stub own GetArgs (), but returns the argu-
ments as strings and not as bytes.

¢ GetFunctionAndParameters (): This method calls the FPC Stub own GetArgs (), but
returns the first argument aside as a function name string and the remaining as a string array.

* GetState (): This method calls the FPC Stub own GetPublicState () and decrypts the
returned value using the st ateKey before returning it.

e PutState (): This method encrypts the provided value with the st ateKey and calls the FPC
Stub own Put PublicState () with the provided key and the encrypted value.

* GetPublicState (): This method wraps the inherited stub.GetState () method while
adding the requested key and hashed value to the read-set.

32 CHAPTER 5. IMPLEMENTATION

e PutPublicState (): This method wraps the inherited stub.PutState () method while
adding the returned key and encrypted value to the write-set.

e GetStateByPartialCompositeKey (): This method calls the FPC Stub own Get Public
StateByPartialCompositeKey (), providing it with a composite (partial) key, and decrypts
the returned values using the st ateKey before returning them.

* GetPublicStateByPartialCompositeKey (): This method wraps the inherited stub.
GetStateByPartialCompositeKey () method while adding the requested keys — but not
the hashed values (see Section 3.3) — to the read-set.

* CreateCompositeKey (): This method wraps the inherited stub.CreateComposite
Key (), but returns a transformed key to make it compatible with FPC’s format (see Section 3.3).

5.1.3 Sequence Diagram

In Figure 5.1, we see a chaincode invocation flow that uses the chaincode API to retrieve and store data by
using the functions we explained in the previous section. The diagram shows, in detail, the used functions
with their arguments, called by each of the components during an invoke request. The components whose
name is in a round box, on a red background, are the one developed for this work, while the components
whose name is in a squared box, on a white background, are the ones left untouched.

The transaction starts with the Chaincode Enclave transmitting the encrypted request to the new Go
Enclave, which authenticates the request and decrypts it using the keys included in the key transport
message and the chaincode decryption key (see Section 3.1.2). Then, it creates a new instance of the FPC
Stub Interface with the following parameters: first there is a pointer to the regular Fabric Stub Interface,
for redirecting method calls to, with the decrypted arguments of the actual chaincode, specifically for
GetArgs () (see Section 3.1.1). Then, there is a pointer to the read/write-set, for appending reads and
writes keys to it, and the state key for the actual encryption (see Section 3.1.3). Finally, the Go Enclave
calls the invoke method of the chaincode passing it a pointer of the newly created FPC Stub Interface.

Afterwards, the diagram shows three examples of calls that the chaincode makes to the Stub Interface.
First, it calls GetArgs (), so the FPC Stub Interface returns the decrypted arguments it received earlier
from the Go Enclave. Then, when the chaincode calls GetState () and PutState (), we notice that
the stub uses two new methods: GetPublicState () and PutPublicState (). These methods,
which can be called by either the stub itself or the chaincode for reading or writing non-encrypted values
in the world state, are here called internally. They wrap around the regular Fabric Stub Interface’s
GetState () and PutState (), which we received a pointer to earlier. Thus, when the chaincode calls
GetState () orPutState (), the FPC Stub Interface redirect the call to the Chaincode Stub Interface,
while using its own wrapping methods for handling decryption and encryption, respectively.

The final steps of this invoke request are reached when the chaincode terminate its execution and
returns a chaincode response to the Go Enclave. There, the Go Enclave constructs a response object
compatible with FPC’s interface, and then encrypts and encapsulates the chaincode’s response in it. Finally,
it signs the response with its signature key (see Section 3.1.2), serialises it and sends the bytes back to
the ECC which ends this execution. It should be noted that the need to serialise requests and responses
is a requirement that is a remnant of the C++ implementation. Here we left it as it is, since we are not
modifying FPC’s operations, but in an exclusive Golang implementation, one could just exchange Golang
structures.

5.1. ARCHITECTURE

33

ECC Go Enclave ' Chaincode FpcStublnterface ' CcStublnterface
fwoke(EncRequest)
] Getsi gned Proposal
L-_C
Decrypt Message and Request
P
New(Stub, Args, &KvSet, StateKey)
&FpcStub e
o peSwb 1
[nvoke(&FpcStub)
d GetArgs()
Args M
GetState(Key)
GetPublicState(Key)
GetState(Key)
,,,,, EncValuve M

DecValue

Enrypted Response Bytes

PutState(Key, Value)

L4

State(Key, EncValue

PutPublicState(Key,EncValue)

e)

CC Response

Constrcut Response

pa—_—

Encrypt Response

P
Sign / Serialise Response

<777\

Figure 5.1: Sequence Diagram of an Invoke Request

fffffff l

34 CHAPTER 5. IMPLEMENTATION

5.2 Current Limitations

Since this extended language support is built on top of the existing FPC, and because FPC is itself built on
top of Fabric, some of its pre-existing limitations will inevitably be inherited by this work.

Attestation This implementation does not support attestations for the moment. At the moment of writing,
FPC uses EPID-based attestations but EGo only supports DCAP-based attestations. This is because Open
Enclave, on which EGo is based, only supports DCAP [52]. Therefore, supporting attestations would
require deeply modifying core parts of FPC, and while it would be essential for FPC to fully support Go
written chaincodes, it would require an amount of work which is beyond the scope of this thesis. Thus,
while the current state is enough for this work to be valid as a proof of concept, it should never be used in
production until DCAP is fully implemented, as verifying attestations is a core part of TEE-based software.
Not using them would imply severe security issues.

5.3 Implementation Issues

This section covers the various issues we faced during the implementation of this thesis project.

EGo Version When using Golang chaincodes it is required to use EGo at two distinct moments; firstly,
when compiling and signing a chaincode to make it ready for execution, and secondly when actually
executing the chaincode. Particularly in this project, the developers need to be extra careful that they use
the same EGo version when building FPC the chaincode, and during runtime. Otherwise, this may lead to
issues, where an error message will recommend to resign again the binary file, but will not give a specific
error of the version mismatch.

Empty Responses Many existing chaincodes sometimes return a simple Shim.Success () object
without any payload. This is unfortunately not handled by FPC, it outputs an error to the user stating that
the decryption failed because the response must be longer than 28 characters, but the response provided is
28 characters long. This is easily tackled by returning any string inside the payload, instead of nothing,
which will then be encrypted and decrypted normally as it moves through the response process.

SGX Hardware Mode At one moment during development, the test network Make file was modified
to add an option to run the network in the background for benchmarking purposes. Inadvertently, this
modification changed how the file handled environment variables, and notably, was not transmitting the
content of the variable SGX_DEVICE_PATH to the docker containers anymore. This variable contained
the path to the SGX driver, so each time one would try to run the project in hardware mode, the driver was
not to be found, and made it seem like there was a problem with the drivers installation.

Evaluation

When extending the language support of FPC to Go, we wanted to simplify the project by enabling the use
of native Fabric compliant chaincodes, but without a significant drop in performance that would render
this extension unusable. In that regard, a comparison of the performance has been conducted between our
Golang support and existing FPC C++ chaincodes. Furthermore, an evaluation regarding the usability of
the language extension has been conducted.

6.1 Performance

This section covers the performance evaluation of the project. For this purpose, we have ported the Auction
chaincode [57] from the FPC samples as closely as possible to Golang, and we are using it as our baseline.
This Auction Chaincode implements a basic auction system, with an init () method to initialise an
auction house, with create (), open (), close () and eval () methods to manage an auction, and
with a submit () method to submit a bid.

The evaluation is being conducted on a HP Elitebook x360 1040 G6 laptop, running on an Intel Core
17-8565U CPU and 16 GB of memory, operating on Ubuntu 20.04 and the 5.15.0-43-generic
kernel. The project is forked from FPC’s latest commit at the moment of writing, 2977029 (...) [58]
committed on July S‘h, which uses Fabric 2.3.3 [59]. For the hardware mode, we use SGX drivers
version 2.11.0 [60] and EGo version v1.0.0 [61]. The test network provided by FPC — consisting of two
organisations with one peer each plus an ordering node — will be the base network for the evaluation. No
modifications have been made to the test network.

6.1.1 Parameters

This evaluation is being conducted by measuring the end-to-end latency of the whole process executed by
the Simple CLI Client. The purpose of this macro evaluation is to experience the measurements from a
client perspective. Also, it is the easiest to implement since it only implies to build measurements on top
of the CLI commands and to run each of the chaincodes and compile the differences.

In this evaluation, we assume the results of the Golang extension to present a similar latency as the
baseline. We do not expect to find significantly different results.

35

36 CHAPTER 6. EVALUATION

The measurement is effectuated with the aforementioned Auction Chaincode. To ensure accuracy in
the results, the 9 following commands have been executed 500 times in a freshly restarted test network,
successively for both the regular and Golang version of FPC, and in both the simulation and hardware
SGX modes.

* init peer0.orgl.example.com

e invoke init ("House" + i) (Where i is the execution round number)
* invoke create ("Auction")

e invoke submit ("Auction", "John", 100)

e invoke submit ("Auction", "Jane", 200)

* query submit ("Auction", "John", 400)

* query submit ("Auction", "Danny", 100)

* invoke close ("Auction")

e invoke eval ("Auction")

As we have seen earlier, FPC does not support the standard Init () method inside a secure chaincode.
Therefore it is important to understand that the first command only initialise the Go Chaincode Package
as a whole, and does not forward the method call to the Chaincode inside the package. On the contrary,
the subsequent commands use Invoke () on the Go Chaincode Package, which forward the call to the
Chaincode Enclave. Hence, the second command ultimately calls Invoke (init, args([]) instead
of Init (args[]) on the Chaincode Enclave.

6.1.2 Results

w
N

Version

E Classic
E Golang

Latency (in seconds)
N
o

(1]

Hardware Simulation
SGX Mode

Figure 6.1: Results for Init () function

6.1. PERFORMANCE 37

The first immediate observation after running the experiment is that the client always seems to wait for
at least two seconds before outputting the results. This delay, however, does not occur if the transaction
outputs an error. This is due to the client default configuration for the event handler, that waits for an
answer from the ordering service before outputting any result [62], and due to the ordering service default
configuration making it wait 2 seconds because of the Bat chTimeout in the configuration file [63].

In Figure 6.1, we show the results for the Init () operation to initialise chaincode. We can see that
latency results from the Golang version look more dispersed and with a slightly superior median for the
latency than results from the Classic version. This is even more remarkable for hardware mode.

This is an interesting result, since in the Golang version, the enclave creation already happens when
starting the docker containers, as opposed to the Classic version where the enclave is created when the
Init () command is made. This means that, despite lacking the enclave creation, the Golang version
still takes more time, which is a surprising result. More precisely, the end-to-end latency of the Golang
version is 13.81% (in software mode) to 20.17% (in hardware mode) higher than the classic version, when
removing the 2 seconds baseline from the equation.

2.14
—
(7)
©
c
3 .
g 212 Version
c E Classic
& E Golang
c
2
@
—12.10

2.08

Hardware Simulation
SGX Mode

Figure 6.2: Results for Invoke () function

In Figure 6.2 we show the results for all the Invoke () operations on the chaincode. We notice that
the results are almost identical for all versions, with as expected, a slightly higher median for the hardware
mode in both versions, which is a good sign for the viability of our project.

However, we do notice than the Golang results present a higher latency that the C++ version, especially
in hardware mode. This could be due to the complexity of using EGo, as opposed as the native SGX SDK,
closer to the system. It could also be due to the way we implemented our language extension, which when
refactored and integrated more deeply into FPC might achieve a better performance, as opposed as the
current implementation that acts more like an add-on.

It is important to note, however, that these results only show the big picture, which is all the Invoke ()
operations combined. When plotting graphs for some specific Invoke () calls that were made with the
Auction chaincode, we discovered some interesting results. Two of them will be discussed below, while
all the remaining results graphs are in the Appendix at the end of this document, and all the data files with
all the results values are available on GitHub [64].

38 CHAPTER 6. EVALUATION

2.14
—
7
©
S
§ 212 Version
c EH Classic
& E Golang
c
2
©
-1 210

2.08

Hardware Simulation
SGX Mode

Figure 6.3: Results for Invoke (init) function

In Figure 6.3 we show the results for all the Invoke (init) operations on the chaincode. It is
important to note at this point that the chaincode is already initialised, and this function is just creating the
Auction House by doing two basic Put State () operations, as we can see in Listing 6.1. Therefore, it
is interesting to note that of all the Invoke () calls made in the evaluation — where the Golang version
performs slightly less than the regular version — this is the only one where it actually performs better.

Listing 6.1: initAuctionHouse () in auction.go [57]

func (t *Auction) initAuctionHouse (stub shim.ChaincodeStubInterface, auctionHouseName
string) string {
stub.PutState (AUCTION_HOUSE_NAME_KEY, []byte (auctionHouseName))
stub.PutState (INITIALIZED_KEY, []lbyte{Ox1})
return "OK"

Interestingly, this could also be due to the proximity to the system that the C++ language has compared
to Go. That, the more complicated a function is, the more it tends to perform better on a close-to-system
language. Alternatively, it could be that our “translation” of the chaincode may not be as optimised as it
should be, or that we may have introduced new code that raises unforeseen performance issues, except
on this particular straightforward method. Finally, it could be that the compiler itself is producing less
optimised code.

6.1. PERFORMANCE 39

2.14
—
[7)
©
S
é 212 Version
c E Classic
& E Golang
c
2
©
—12.10

2.08

Hardware Simulation
SGX Mode

Figure 6.4: Results for Invoke (eval) function

On the other hand, in Figure 6.4 we show the results for all the Invoke (eval) operations on the
chaincode, where it seems that the opposite is happening. The set out some context, the Invoke (eval)
is the most computationally demanding method of the chaincode, because it is the one that gets all the
submissions and computes the winner.

Therefore, it is interesting to note that the difference in latency between these two versions is higher
than for all Invoke () calls combined in Figure 8.2. This could confirm the assumption described above
that, the more complicated a function is, the more it tends to perform better on a close-to-system language.

2.14
i
k]
5
§ 212 Version
é E Classic
> E Golang
c
]
©
- 210

2.08

Hardware Simulation
SGX Mode

Figure 6.5: Results for Query () function

40 CHAPTER 6. EVALUATION

Finally, in Figure 6.5 we show the results for all the Query ("submit") operations on the chaincode.
They are different from Invoke () operations in that Query () operations are just executing calls on
the chaincode without validating them through the ordering service. Nevertheless, we observe that there is
no significant latency difference for these two operations.

6.2 Usability

One of the most important aspects of the project is to enable the use of Go written Fabric chaincodes to be
used directly in FPC, albeit without attestation at the moment. This section covers the evaluation of the
derived usability of the project.

The evaluation consists of executing each Fabric publicly available Golang chaincode samples [65]
with our implementation. Due to FPC limitations evoked in (see Section 3.3), notably the inability to use
Fabric’s standard Init () function, they might, however, need some modifications. Therefore we will
look if it were possible to adapt them with minimum changes. If not, we will note that they cannot be
ported easily, thus reducing the usability of the project.

6.2.1 Smart Contract API

Due to some limitations on running complex chaincodes using the initial init/invoke method, Fabric
developed a Smart Contract API for Go, Node.js and Java chaincodes that enables the use and the
invocation of custom-defined functions [66]. Unfortunately, FPC does not handle this method at the
moment. That means that most chaincodes who use this API could not be compatible with the extension
since they will not be defined around a central invoke function.

This greatly diminishes the ability to just get any Golang chaincode to work from scratch with FPC.
However, it would not be too complicated to make them compatible with minimal modifications by writing
this specific invoke function and pointing to the other with it. While it will change the chaincode and does
change the calls being made for the different invocation of this chaincode, it will still be way less tedious
as a task than rewriting the entire thing.

For this reason, the following evaluation focuses on chaincodes that were not written using the Smart
Contract API, or chaincodes for which an older version has been found on GitHub, before being upgraded
to use the Smart Contract API.

6.2.2 Results

For each of all the chaincodes in the Hyperledger Fabric samples [65], we have attempted to answer the
following questions:

1. Is it usable without modifications?

2. If not, would it be usable by making superficial changes?

3. If not, would it be usable by making changes less substantial than rewriting everything?
Simple Asset CC This is a basic chaincode that interacts with the ledger using GetState () and
PutState () operations. The latest version of this chaincode does not use the Smart Contract API,
making it straight away (1) usable without modifications! It does have, however, an existing Init ()

function, but this function is not required for the proper functioning of the chaincode, since another
identical function, set (), is accessible directly with the Invoke () pivot function.

6.2. USABILITY 41

AB Store This is a basic chaincode that allows to transfer integer data from entity A to entity B. An older
version of this chaincode, not using the API, has been found [67]. The chaincode is (1) not usable without
modifications; it relies on an Init () function and return empty responses, which are both incompatible
with FPC. However, it is (2) fully usable by making superficial changes: we had to make the public
Init () function a private one and include it in the Invoke () pivot function, and make the empty
returns throughout the chaincode return [Jbyte ("OK") instead.

FabCar This slightly more complex chaincode interacts with the ledger to manipulate “Car” objects,
stored as byte-encoded JSONs. An older version of this chaincode, not using the API, has been found [68].
The chaincode is (1) not usable without modifications; it does not rely on an Init () function, but returns
empty responses, which is incompatible with FPC. It is (2) mostly usable by making superficial changes
when replacing empty returns by []byte ("OK"), except for the queryAllCars () function. This
one method relies on Get StateByRange () of the Shim API, which has not been implemented in FPC
at the moment. However, we are not considering the logic of the chaincode as being negatively impacted,
as it is still possible to make individual queries with the function queryCar ().

Marbles This complex chaincode interacts with the ledger to manipulate “Marble” objects, stored as
byte-encoded JSONSs, and is designed to interact with state database implementations supporting rich
queries. The chaincode is (1) not usable without modifications. It is (2) somewhat usable by making
superficial changes when replacing empty returns by [Jbyte ("OK"), and fixing the i f condition in line
193. When creating a marble object, a condition checks if a marble with the same name already exists with
aGetState () operation. If this Get State () returns an error, which it does when trying to decrypt
an entry that does not exist in the world state, the whole chaincode then returns an error. The easy fix is
to comment line 194, since a failing Get State () would return an error anyway with or without this
condition. With these fixes, initMarble (), readMarble (), delete (), transferMarble ()
and transferMarblesBasedOnColor () are functioning. Unfortunately, the chaincode is (3) not
fully usable by making changes less substantial than rewriting everything. The functions () queryMar—
blesByOwner (), queryMarbles (),getHistoryForMarble (), getMarblesByRange (),
getMarblesByRangeWithPagination () and queryMarblesWithPagination () arerely-
ing on API calls not implemented yet by the FPC Shim, and would have to be extensively modified to
achieve the same features without those calls.

Related Work

In this section, we present works related in one way or another to our thesis project; whether it is a work
on the topic of secure blockchain computation, a work built around EGo, or both.

TZA4Fabric Because FPC is built around SGX, it is essentially only compatible with computers having
an Intel CPU. For this reason, Miiller et al. developed TZ4Fabric [69], a project inspired by FPC for
executing chaincodes in ARM TrustZone. It is aimed at devices such as phones, nano-computers and [oT
devices, which typically have an ARM architecture. Its architecture is similar to that of FPC, but uses
OpenEnclave’s preview for compatibility with TrustZone [69]. Its main limitation compared to FPC is that
TrustZone does not support remote attestation natively, and while workarounds are possible, it enables a
potential attacker to interfere with the chaincode before an execution [69]. Furthermore, all its chaincodes
reside in the same secure space with no isolation guarantees among the chaincodes, which is something
instead provided by FPC as a result of the ability to run multiple SGX enclaves on the same processor [69].

Corda SGX Update Corda is a permissioned distributed ledger developed by R3 and aimed at businesses,
mostly from the financial sector [70], and is capable of executing Kotlin and Java smart contracts [71].
Transactions between members are private in Corda, but their validation, here called “resolution”, have
to be public for validation purposes [72]. Therefore, Corda adopted SGX to protect these resolutions,
by encrypting the identity of the entities involved in transactions and revealing them only inside an
enclave [72]. Moreover, Corda protects its smart contract executions as well by hosting an entire Java
Virtual Machine (JVM) inside an enclave. This definitely induces more overhead and could lead to security
issues due to the large TCB; however, R3 argues that by using Java, a managed language that eliminates
native code exploits such as those found in C/C++ would alleviate these issues [72].

Rust-SGX While EGo is a framework meant to support Go code in SGX, other similar projects have been
developed for supporting other languages, such as Rust-SGX [73] by Wang et al.. This SDK introduces
a Foreign Function Interface (FFI) to Intel SGX SDK for supporting Rust code, and aims at enhancing
security by eliminating memory corruption vulnerabilities inherent to traditional programming languages
such as C/C++ [73]. Rust-SGX enables developers to use it as a replacement of the Intel SGX SDK to build
applications on, making it distinct from EGo which is more a ready-to-use solution for quickly converting

43

44 CHAPTER 7. RELATED WORK

entire existing programs to run inside enclaves. The team behind Rust-SGX has also demonstrated a
slower end-to-end latency in their benchmark [73], which is in line with our findings.

MarbleRun As a complement to EGo, Edgeless Systems developed MarbleRun [74], a framework for
creating distributed confidential computing apps. By building confidential applications with EGo and
distributing them with Kubernetes on an SGX compatible cluster, MarbleRun is then able to manage the
whole distributed architecture [75]. Following instructions from a manifest written by the user, MarbleRun
can, replace failing nodes, set up encrypted connection between services or verifying their integrity,
etc. [75]. It is one of the first works to use EGo in a production setting.

Conclusion and Future Work

It is worth noting that, despite initial doubts on the actual feasibility of the extension, notably due to the
fact that EGo was in a pre-release form and in active development when starting this thesis, everything
seems to be working fine and smoothly. In our evaluation in Chapter 6, we have shown that the extension
does not present an end-to-end latency significantly higher than the existing C++ implementation, which
is promising for our project.

In addition, we have shown that most of the existing Golang chaincodes are compatible with the exten-
sion with minimal modifications. The more complex chaincodes would require additional modifications to
FPC on order to be compatible with the API calls they use. Yet, FPC is still undergoing active development
and make them compatible with the Golang extension would thus be beyond the scope of this thesis.

The biggest caveat of this implementation would be that attestations were never used, due to the
inability of FPC to handle DCAP attestations. However, we do not believe that this fundamentally breaks
the trust that we have in the extension to work in a production environment in a near future, as we do know
that EGo is more than capable to handle attestations properly, and would be a matter of a few lines of code
to add as soon as FPC is capable to handle such attestation. In terms of future work, this is definitely the
most important aspect to focus from now on.

Another further development that would be great to implement in order to further integrate FPC with
Fabric would be the compatibility of the Smart Contract API and the ability to run all commands through
this interface. This requires many more modifications to existing code, as it implies to change the client,
the SDK and the interfaces between the Go FPC Chaincode and the SDK.

However, we believe that the support for Golang could soon be seen as a better way to handle secure
chaincodes in FPC for the main release. Then, the Smart Contract API could be implemented if the whole
project is refactored to handle it, while removing some unnecessary components that were only required
to be compatible with C++ chaincodes and thus simplifying the project.

This last point being, in our opinion, what this extension would aim to achieve as its final goal. What is
the point of FPC being compatible with C++ chaincodes, if this method, used nowhere else, was developed
solely because of compatibility issues with SGX? We could remove this compatibility that would soon
turn out to be unnecessary, as well as the support for EPID attestations, and then simplify the API and
interfaces for a further integration of EGo and Golang chaincodes.

On step ahead, the next logical step would be to handle Node.js and Java chaincodes, as these two are

45

46 CHAPTER 8. CONCLUSION AND FUTURE WORK

the other main languages used by Fabric. This would be obviously a bit trickier than Golang, as it will
definitely imply new technologies for running inside enclaves as well as some shim or interface between
the two worlds.

Also thinking ahead, EGo is now compatible only with Intel SGX, but it is based on OpenEnclave, an
SDK whose purpose is to provide a unified interface for multiple TEE independently of the manufacturer.
It would be reasonable to think that EGo moves towards achieving such compatibility and, when it does, it
would be great to see FPC moving towards a broader range of compatible hardware as well.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

Bibliography

Hyperledger Foundation, Hyperledger Fabric Private Chaincode, Jul. 5, 2022. [Online]. Available:
https://github.com/hyperledger/fabric-private-chaincode.

Hyperledger Foundation, Hyperledger Fabric RFCs Process, Dec. 29, 2021. [Online]. Available:
https://github.com/hyperledger/fabric-rfcs/blob/main/text/0000-
fabric-private-chaincode-1.0.md.

R. Zappoli, Golang-support - Fabric Private Chaincode, Oct. 28,2021. [Online]. Available: https:
//github.com/ricc—-zappoli/fabric—-private-chaincode/tree/golang-—
support.

R. Zappoli, Ecc_go at golang-support - Fabric Private Chaincode, Aug. 5,2022. [Online]. Available:
https://github.com/ricc—zappoli/ fabric-private—-chaincode/tree/
golang-support/ecc_go.

L.-D. Ibanez, E. Simperl, F. Gandon, and H. Story, “Redecentralizing the Web with Distributed
Ledgers,” IEEE Intelligent Systems, vol. 32, no. 1, pp. 92-95, Jan. 2017, ISSN: 1941-1294. DOTI:
10.1109/MIS.2017.18.

M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business & Information Systems
Engineering, vol. 59, no. 3, pp. 183-187, Jun. 1, 2017, 1SSN: 1867-0202. D0O1: 10.1007/s12599~-
017-0467-3.

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Mar. 24, 2009. [Online]. Available:
http://bitcoin.org/bitcoin.pdf.

E. Androulaki, A. Barger, V. Bortnikov, et al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proceedings of the Thirteenth EuroSys Conference, Association
for Computing Machinery, Apr. 23, 2018, pp. 1-15, ISBN: 978-1-4503-5584-1. DOI1: 10.1145/
3190508.3190538.

V. Buterin, “Ethereum: A Next-Generation Smart Contract and Decentralized Application Plat-
form,” vol. 3, no. 37, pp. 2—1, Dec. 2014. [Online]. Available: https://ethereum.org/
669c9e2e2027310b6b3cdcebelc52962 / Ethereum__Whitepaper_ —_Buterin_
2014 .pdf.

Cardano Foundation, Documentation for the Cardano ecosystem, Aug. 5, 2022. [Online]. Available:
https://docs.cardano.org/.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling Byzantine
Agreements for Cryptocurrencies,” in Proceedings of the 26th Symposium on Operating Systems
Principles, Association for Computing Machinery, pp. 51-68, 1SBN: 978-1-4503-5085-3. DOI:
10.1145/3132747.3132757.

T. Jensen, J. Hedman, and S. Henningsson, “How TradeLens Delivers Business Value With
Blockchain Technology,” MIS Quarterly Executive, vol. 18, no. 4, pp. 221-243, Dec. 3, 2019,
ISSN: 15401960. DOI: 10.17705/2msge . 00018.

47

https://github.com/hyperledger/fabric-private-chaincode
https://github.com/hyperledger/fabric-rfcs/blob/main/text/0000-fabric-private-chaincode-1.0.md
https://github.com/hyperledger/fabric-rfcs/blob/main/text/0000-fabric-private-chaincode-1.0.md
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support/ecc_go
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support/ecc_go
https://doi.org/10.1109/MIS.2017.18
https://doi.org/10.1007/s12599-017-0467-3
https://doi.org/10.1007/s12599-017-0467-3
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://docs.cardano.org/
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.17705/2msqe.00018

48

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

BIBLIOGRAPHY

M. Priit, “Estonia — the Digital Republic Secured by Blockchain,” PwC, 2019, p. 12. [Online].
Available: https://www.pwc.com/gx/en/services/legal /tech/assets/
estonia-the-digital-republic-secured-by-blockchain.pdf.

Hyperledger Foundation, Hyperledger Fabric Client SDK for Go, Jul. 20, 2022. [Online]. Available:
https://github.com/hyperledger/fabric-sdk-go.

Hyperledger Foundation, Hyperledger Fabric Client SDK for Node.js, Aug. 10, 2022. [Online].
Available: https://github.com/hyperledger/fabric-sdk—-node.

Hyperledger Foundation, Hyperledger Fabric SDK for Java, Jul. 18, 2022. [Online]. Available:
https://github.com/hyperledger/fabric-sdk-java.

C. Cachin, S. Schubert, and M. Vukolic, “Non-Determinism in Byzantine Fault-Tolerant Replication,”
in 20th International Conference on Principles of Distributed Systems (OPODIS 2016), P. Fatourou,
E. Jiménez, and F. Pedone, Eds., vol. 70, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dec.
2016, 24:1-24:16, 1SBN: 978-3-95977-031-6. DOI: 10.4230/LIPIcs.OPODIS.2016.24.

S. Zhang, E. Zhou, B. Pi, J. Sun, K. Yamashita, and Y. Nomura, “A Solution for the Risk of
Non-deterministic Transactions in Hyperledger Fabric,” in 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), May 2019, pp. 253-261. DO1: 10.1109/BLOC.2019.
8751453.

Hyperledger Foundation, Chaincode for Developers, Sep. 18, 2018. [Online]. Available: https:
//hyperledger-fabric.readthedocs.io/en/release—1.3/chaincodedade.
html.

Hyperledger Foundation, Ledger, Apr. 27, 2018. [Online]. Available: https://hyperledger—
fabric.readthedocs.io/en/release-1.3/ledger/ledger.html.

Hyperledger Foundation, Chaincode namespace, Feb. 11, 2021. [Online]. Available: https :
//hyperledger—fabric.readthedocs.io/en/release-2.2/developapps/
chaincodenamespace.html.

Hyperledger Foundation, Transaction Flow, Nov. 4, 2021. [Online]. Available: https : / /
hyperledger-fabric.readthedocs.io/en/latest/txflow.html.

C. Mitchell, Trusted Computing. IET Digital Library, Dec. 2005, ISBN: 978-0-86341-525-8. DOI:
10.1049/PBPCOOGE.

R. Anderson, “Cryptography and competition policy: Issues with ’trusted computing’,” in Pro-
ceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, As-
sociation for Computing Machinery, Jul. 13, 2003, pp. 3—10, 1SBN: 978-1-58113-708-8. DOI:
10.1145/872035.872036.

R. N. Akram, K. Markantonakis, and K. Mayes, “An Introduction to the Trusted Platform Module
and Mobile Trusted Module,” in Secure Smart Embedded Devices, Platforms and Applications, K.
Markantonakis and K. Mayes, Eds., Springer, Sep. 13, 2013, pp. 71-93, 1SBN: 978-1-4614-7915-4.
DOI: 10.1007/978-1-4614-7915-4_4.

M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution Environment: What It is, and
What It is Not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, Aug. 2015, pp. 57-64. DOI:
10.1109/Trustcom.2015.357.

ARM Limited, ARM Security Technology - Building a Secure System using TrustZone Technol-
ogy, Apr. 2009. [Online]. Available: https ://documentation-service.arm. com/
static/5£212796500e883ab8e74531.

https://www.pwc.com/gx/en/services/legal/tech/assets/estonia-the-digital-republic-secured-by-blockchain.pdf
https://www.pwc.com/gx/en/services/legal/tech/assets/estonia-the-digital-republic-secured-by-blockchain.pdf
https://github.com/hyperledger/fabric-sdk-go
https://github.com/hyperledger/fabric-sdk-node
https://github.com/hyperledger/fabric-sdk-java
https://doi.org/10.4230/LIPIcs.OPODIS.2016.24
https://doi.org/10.1109/BLOC.2019.8751453
https://doi.org/10.1109/BLOC.2019.8751453
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/chaincodenamespace.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/chaincodenamespace.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/chaincodenamespace.html
https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
https://doi.org/10.1049/PBPC006E
https://doi.org/10.1145/872035.872036
https://doi.org/10.1007/978-1-4614-7915-4_4
https://doi.org/10.1109/Trustcom.2015.357
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://documentation-service.arm.com/static/5f212796500e883ab8e74531

BIBLIOGRAPHY 49

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

Advanced Micro Devices, Inc., AMD SEV-SNP: Strengthening VM Isolation with Integrity Protec-
tion and More, Jan. 2020. [Online]. Available: https://www.amd.com/system/files/
TechDocs / SEV — SNP - strengthening — vim— isolation - with - integrity -
protection—-and-more.pdf.

01.org - Intel Open Source, Intel Software Guard Extensions SDK for Linux, Mar. 1, 2017. [Online].
Available: https://01.0org/intel-software-guard-extensions.

“Trusted Computer System Evaluation Criteria,” in The ‘Orange Book’ Series, US Department of
Defense, 1985, pp. 1-129, 1SBN: 978-1-349-12020-8. DOI1: 10.1007/978-1-349-12020~-
8_1.

Fortanix, Why we chose Intel SGX to power Runtime Encryption, Oct. 25, 2018. [Online]. Available:
https://fortanix .medium. com/why—-we—-chose—intel -sgx—-to—-power—
runtime—encryption-d0a89522d864.

S. Cetola, Trusted Execution Environments: A Technical Overview of Intel SGX, Arm TrustZone,
and RISC-V PMP, Feb. 1, 2021. [Online]. Available: https://www.youtube.com/watch?
v=MREwcSoQuz4.

V. Costan and S. Devadas, “Intel SGX Explained,” 086, Jan. 31, 2016. [Online]. Available: https:
//eprint.iacr.org/2016/086.

S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A comparison study of intel SGX and AMD memory
encryption technology,” in Proceedings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy, Association for Computing Machinery, Jun. 2,
2018, pp. 1-8, ISBN: 978-1-4503-6500-0. DO1: 10.1145/3214292.3214301.

I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for CPU based attesta-
tion and sealing,” Proceedings of the 2nd international workshop on hardware and architectural
support for security and privacy, vol. 13, no. 7, Aug. 14, 2013. [Online]. Available: https :
//www.intel.co.uk/content/www/uk/en/developer/articles/technical/
innovative-technology-for-cpu-based-attestation—-and-sealing.html.

SSLab - Georgia Institute of Technology, Attestation - SGX 101, Jul. 13, 2019. [Online]. Available:
https://sgx10l.gitbook.i0/sgx101/sgx—bootstrap/attestation.

Intel Corporation, Attestation Services for Intel Software Guard Extensions, 2021. [Online]. Avail-
able: https ://www. intel . com/ content /www/us/en/developer/tools/
software—-guard-extensions/attestation-services.html.

V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting Third Party Attestation for Intel®
SGX with Intel® Data Center Attestation Primitives,” Apr. 19, 2019. [Online]. Available: https:
//www.intel .com/content /dam/develop/external /us/en/documents/
intel-sgx-support-for-third-party-attestation-801017.pdf.

M. U. Sardar, R. Faqeh, and C. Fetzer, “Formal Foundations for Intel SGX Data Center Attestation
Primitives,” in Formal Methods and Software Engineering, S.-W. Lin, Z. Hou, and B. Mahony, Eds.,
Springer International Publishing, Dec. 19, 2020, pp. 268-283, ISBN: 978-3-030-63406-3. DOTI:
10.1007/978-3-030-63406-3_16.

Intel Corporation, Getting Started with Intel Software Guard Extensions SDK for Microsoft Windows
OS, Jun. 21, 2017. [Online]. Available: https://www.intel.com/content /www/us/
en/developer/articles/guide/getting—-started-with-sgx—-sdk-for—
windows.html.

Intel Corporation, Intel Software Guard Extensions for Linux OS, Aug. 10, 2022. [Online]. Available:
https://github.com/intel/linux—-sgx.

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://01.org/intel-software-guard-extensions
https://doi.org/10.1007/978-1-349-12020-8_1
https://doi.org/10.1007/978-1-349-12020-8_1
https://fortanix.medium.com/why-we-chose-intel-sgx-to-power-runtime-encryption-d0a89522d864
https://fortanix.medium.com/why-we-chose-intel-sgx-to-power-runtime-encryption-d0a89522d864
https://www.youtube.com/watch?v=MREwcSo0uz4
https://www.youtube.com/watch?v=MREwcSo0uz4
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3214292.3214301
https://www.intel.co.uk/content/www/uk/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.intel.co.uk/content/www/uk/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.intel.co.uk/content/www/uk/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/attestation
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://doi.org/10.1007/978-3-030-63406-3_16
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-sgx-sdk-for-windows.html
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-sgx-sdk-for-windows.html
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-sgx-sdk-for-windows.html
https://github.com/intel/linux-sgx

50

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

BIBLIOGRAPHY

Intel Corporation, Introduction to Intel SGX Sealing, Apr. 5, 2016. [Online]. Available: https:
//www.intel.com/content /www/us/en/developer/articles/technical/
introduction-to-intel-sgx-sealing.html.

Open Enclave, Open Enclave SDK - Product Page, Apr. 2, 2021. [Online]. Available: https:
//openenclave.io/sdk/.

M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, “Blockchain and Trusted Computing:
Problems, Pitfalls, and a Solution for Hyperledger Fabric,” May 22, 2018. arXiv: 1805. 08541
[cs]. [Online]. Available: http://arxiv.org/abs/1805.08541.

Google, Cgo command - Go Packages, Aug. 2, 2022. [Online]. Available: https://pkg.go.
dev/cmd/cgo.

Edgeless Systems, EGo, Aug. 14, 2022. [Online]. Available: https : / / github . com/
edgelesssys/ego.

Edgeless Systems, EGo - Product Page, Apr. 28, 2022. [Online]. Available: https: //www.
edgeless.systems/products/ego/.

Edgeless Systems, Edgeless RT, Jul. 22, 2022. [Online]. Available: https://github. com/
edgelesssys/edgelessrt.

Open Enclave, Open Enclave SDK, Aug. 5, 2022. [Online]. Available: https://github.com/
openenclave/openenclave.

M. Eckert, EGo & Marblerun, Mar. 19, 2021. [Online]. Available: https://www.youtube.
com/watch?v=e_7qluOpCqw.

Edgeless Systems, How we built EGo, Jun. 25, 2021. [Online]. Available: https://blog.
edgeless.systems/how-we-built-ego-c02220360503.

F. Schuster. “EGo: Effortlessly build confidential apps in Go.” (Feb. 21, 2021), [Online].
Available: https : / /blog . edgeless . systems /ego—-effortlessly-build-
confidential-apps—-in-go-dc2bl460elbf.

Edgeless Systems, Ego module - Go Packages, Jul. 19, 2022. [Online]. Available: https://pkg.
go.dev/github.com/edgelesssys/ego.

Edgeless Systems, EGo - Documentation, Jul. 19, 2022. [Online]. Available: https://docs.
edgeless.systems/ego.

P. Porambage, Y. Siriwardana, R. Sedar, et al., “INtelligent Security and Pervaslve tRust for
5G and Beyond,” INSPIRE-5Gplus Consortium, WP3, T3.3, Mar. 3, 2022. [Online]. Available:
https://www. inspire-5gplus.eu/wp—-content /uploads/2022/03/1i5-
d3.3_5g_security_new_breed_of_ enablers_vl.0.pdf.

Hyperledger, Mock_enclave.go at a97702902bb6a97475fe4d2170e34569755f03a5 - Hyper-
ledger Fabric Private Chaincode, Aug. 4, 2022. [Online]. Available: https : / /
github . com / hyperledger / fabric - private - chaincode / blob /
a97702902bb6a97475fe4d2170e34569755f03a5 / ecc / chaincode / enclave /
mock_enclave.go.

R. Zappoli, Chaincode at golang-support - Fabric Private Chaincode, Dec. 3, 2021. [Online].
Available: https://github.com/ricc-zappoli/fabric-private-chaincode/
tree/golang-support/samples/chaincode.

Hyperledger Foundation, Hyperledger Fabric Private Chaincode at
a97702902bb6a97475fe4d2170e34569755f03a5, Jul. 5, 2022. [Online]. Available: https :
/ / github . com / hyperledger / fabric - private — chaincode / tree /
a97702902bb6a97475fe4d2170e34569755£03a5.

https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://openenclave.io/sdk/
https://openenclave.io/sdk/
https://arxiv.org/abs/1805.08541
https://arxiv.org/abs/1805.08541
http://arxiv.org/abs/1805.08541
https://pkg.go.dev/cmd/cgo
https://pkg.go.dev/cmd/cgo
https://github.com/edgelesssys/ego
https://github.com/edgelesssys/ego
https://www.edgeless.systems/products/ego/
https://www.edgeless.systems/products/ego/
https://github.com/edgelesssys/edgelessrt
https://github.com/edgelesssys/edgelessrt
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://www.youtube.com/watch?v=e_7q1uOpCqw
https://www.youtube.com/watch?v=e_7q1uOpCqw
https://blog.edgeless.systems/how-we-built-ego-c02220360503
https://blog.edgeless.systems/how-we-built-ego-c02220360503
https://blog.edgeless.systems/ego-effortlessly-build-confidential-apps-in-go-dc2b1460e1bf
https://blog.edgeless.systems/ego-effortlessly-build-confidential-apps-in-go-dc2b1460e1bf
https://pkg.go.dev/github.com/edgelesssys/ego
https://pkg.go.dev/github.com/edgelesssys/ego
https://docs.edgeless.systems/ego
https://docs.edgeless.systems/ego
https://www.inspire-5gplus.eu/wp-content/uploads/2022/03/i5-d3.3_5g_security_new_breed_of_enablers_v1.0.pdf
https://www.inspire-5gplus.eu/wp-content/uploads/2022/03/i5-d3.3_5g_security_new_breed_of_enablers_v1.0.pdf
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/ecc/chaincode/enclave/mock_enclave.go
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/ecc/chaincode/enclave/mock_enclave.go
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/ecc/chaincode/enclave/mock_enclave.go
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/ecc/chaincode/enclave/mock_enclave.go
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support/samples/chaincode
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support/samples/chaincode
https://github.com/hyperledger/fabric-private-chaincode/tree/a97702902bb6a97475fe4d2170e34569755f03a5
https://github.com/hyperledger/fabric-private-chaincode/tree/a97702902bb6a97475fe4d2170e34569755f03a5
https://github.com/hyperledger/fabric-private-chaincode/tree/a97702902bb6a97475fe4d2170e34569755f03a5

BIBLIOGRAPHY 51

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(71]

[72]

Hyperledger Foundation, Release v2.3.3 - Hyperledger Fabric, Sep. 8, 2021. [Online]. Available:
https://github.com/hyperledger/fabric/releases/tag/v2.3.3.

Intel Corporation, Release version 2.11 - Intel SGX driver, Sep. 2, 2020. [Online]. Available:
https://github.com/intel /linux—-sgx—-driver /releases/tag/sgx_
driver_2.11.

Edgeless Systems, Release v1.0.0 - EGo, Jul. 19, 2022. [Online]. Available: https://github.
com/edgelesssys/ego/releases/tag/v1.0.0.

Riki95. “Why do I take more than 2 seconds to just do a transaction?” Stack Overflow. (Jul. 8,
2019), [Online]. Available: https://stackoverflow.com/q/56936560.

Hyperledger Foundation, Configtx.yaml at a97702902bb6a97475fe4d2170e34569755f03a5 -
Hyperledger Fabric Private Chaincode, Dec. 28, 2020. [Online]. Available: https :
/ / github . com / hyperledger / fabric — private — chaincode / blob /
a97702902bb6a97475fe4d2170e34569755£03a5 / integration / config /
configtx.yaml#L286.

R. Zappoli, Simple-cli-go at golang-support - Fabric Private Chaincode, Aug. 5, 2022. [Online].
Available: https://github.com/ricc—-zappoli/fabric-private-chaincode/
tree/golang-support/samples/application/simple-cli-go.

Hyperledger Foundation, Hyperledger Fabric Samples, May 9, 2022. [Online]. Avail-
able: https : / / github . com / hyperledger / fabric - samples / tree /
d3a61e1d4£f8f685a4bb3ea71259591365£33f51d/chaincode.

Hyperledger Foundation, Fabric Contract APIs and Application APIs, Feb. 8, 2022. [Online].
Available: https://hyperledger-fabric.readthedocs.io/en/latest/sdk_
chaincode.html.

Hyperledger Foundation, Abstore.go at 5e5d2c8e01728dadl5bl1fd83126ald29b961bel
Hyperledger Fabric Samples, Aug. 23, 2019. [Online]. Available: https
/ / github . com / hyperledger / fabric - samples / blob /
5e5d2c8e01728dadl5b11£fd83126a1d29b961bel / chaincode / abstore / go /

abstore.go.

Hyperledger Foundation, Fabcar.go at c4d8bb74cfeffe263c772ela2edbadaea07146f4 - Hyperledger
Fabric Samples, Sep. 24, 2019. [Online]. Available: https://github.com/hyperledger/
fabric — samples / blob / c4d8bb74cfeffe263c772ela2edbadacal7146f4 /
chaincode/fabcar/go/fabcar.go.

C. Miiller, M. Brandenburger, C. Cachin, P. Felber, C. Goéttel, and V. Schiavoni, “TZ4Fabric:
Executing Smart Contracts with ARM TrustZone,” 2020 International Symposium on Reliable
Distributed Systems (SRDS), pp. 31-40, Sep. 2020. DO1: 10.1109/SRDS51746.2020.00011.

J. Kelly, “Nine of world’s biggest banks join to form blockchain partnership,” ReutersBanks,
Sep. 15, 2015. [Online]. Available: https://www.reuters.com/article/us—-banks-
blockchain-idUSKCNORF24M20150915.

R3 LLC, Smart contracts - R3 Documentation, Apr. 7, 2020. [Online]. Available: https://
docs .r3.com/en/platform/corda/4 .8 /open—-source/key—-concepts—
contracts.html.

R3 (R3CEV LLC), Corda and SGX: A privacy update, Jun. 22, 2017. [Online]. Available: https:
//www.corda.net/blog/corda-and-sgx—a-privacy—update/.

https://github.com/hyperledger/fabric/releases/tag/v2.3.3
https://github.com/intel/linux-sgx-driver/releases/tag/sgx_driver_2.11
https://github.com/intel/linux-sgx-driver/releases/tag/sgx_driver_2.11
https://github.com/edgelesssys/ego/releases/tag/v1.0.0
https://github.com/edgelesssys/ego/releases/tag/v1.0.0
https://stackoverflow.com/q/56936560
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/integration/config/configtx.yaml#L286
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/integration/config/configtx.yaml#L286
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/integration/config/configtx.yaml#L286
https://github.com/hyperledger/fabric-private-chaincode/blob/a97702902bb6a97475fe4d2170e34569755f03a5/integration/config/configtx.yaml#L286
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support/samples/application/simple-cli-go
https://github.com/ricc-zappoli/fabric-private-chaincode/tree/golang-support/samples/application/simple-cli-go
https://github.com/hyperledger/fabric-samples/tree/d3a61e1d4f8f685a4bb3ea71259591365f33f51d/chaincode
https://github.com/hyperledger/fabric-samples/tree/d3a61e1d4f8f685a4bb3ea71259591365f33f51d/chaincode
https://hyperledger-fabric.readthedocs.io/en/latest/sdk_chaincode.html
https://hyperledger-fabric.readthedocs.io/en/latest/sdk_chaincode.html
https://github.com/hyperledger/fabric-samples/blob/5e5d2c8e01728dad15b11fd83126a1d29b961be1/chaincode/abstore/go/abstore.go
https://github.com/hyperledger/fabric-samples/blob/5e5d2c8e01728dad15b11fd83126a1d29b961be1/chaincode/abstore/go/abstore.go
https://github.com/hyperledger/fabric-samples/blob/5e5d2c8e01728dad15b11fd83126a1d29b961be1/chaincode/abstore/go/abstore.go
https://github.com/hyperledger/fabric-samples/blob/5e5d2c8e01728dad15b11fd83126a1d29b961be1/chaincode/abstore/go/abstore.go
https://github.com/hyperledger/fabric-samples/blob/c4d8bb74cfeffe263c772e1a2edba4aea07146f4/chaincode/fabcar/go/fabcar.go
https://github.com/hyperledger/fabric-samples/blob/c4d8bb74cfeffe263c772e1a2edba4aea07146f4/chaincode/fabcar/go/fabcar.go
https://github.com/hyperledger/fabric-samples/blob/c4d8bb74cfeffe263c772e1a2edba4aea07146f4/chaincode/fabcar/go/fabcar.go
https://doi.org/10.1109/SRDS51746.2020.00011
https://www.reuters.com/article/us-banks-blockchain-idUSKCN0RF24M20150915
https://www.reuters.com/article/us-banks-blockchain-idUSKCN0RF24M20150915
https://docs.r3.com/en/platform/corda/4.8/open-source/key-concepts-contracts.html
https://docs.r3.com/en/platform/corda/4.8/open-source/key-concepts-contracts.html
https://docs.r3.com/en/platform/corda/4.8/open-source/key-concepts-contracts.html
https://www.corda.net/blog/corda-and-sgx-a-privacy-update/
https://www.corda.net/blog/corda-and-sgx-a-privacy-update/

52 BIBLIOGRAPHY

[73] H. Wang, P. Wang, Y. Ding, et al., “Towards Memory Safe Enclave Programming with Rust-SGX,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
Association for Computing Machinery, Nov. 6, 2019, pp. 2333-2350, 1SBN: 978-1-4503-6747-9.
DOI: 10.1145/3319535.3354241.

[74] Edgeless Systems, MarbleRun - Product Page, Oct. 19, 2021. [Online]. Available: https://
docs.edgeless.systems/marblerun/#/.

[75] Edgeless Systems, MarbleRun - Documentation, Jun. 2, 2022. [Online]. Available: https://
www.edgeless.systems/products/marblerun/.

https://doi.org/10.1145/3319535.3354241
https://docs.edgeless.systems/marblerun/#/
https://docs.edgeless.systems/marblerun/#/
https://www.edgeless.systems/products/marblerun/
https://www.edgeless.systems/products/marblerun/

Appendix

Latency (in seconds)
N w
[oe} N

NG
IS
|

214+

Latency (in seconds)

2.08-

Hardware Simulation

SGX Mode

Figure 8.1: Results for all Init () calls

N

i

)
)

N

=

o
|

Hardware Simulation

SGX Mode

Figure 8.2: Results for all Invoke () calls

53

Version

‘ Classic
' Golang

Version

- Classic
‘ Golang

54

Latency (in seconds)

Latency (in seconds)

APPENDIX
2.14
212 Version
- Classic
I - Golang
2.10
2.08 -
Hardware Simuiation
SGX Mode
Figure 8.3: Results for Invoke ("init") calls
2.14
212 Version
- Classic
- Golang
2.10
2.08
Hardware Simuiation
SGX Mode

Figure 8.4: Results for Invoke ("create") calls

APPENDIX 55

Latency (in seconds)

Latency (in seconds)

2.14
212 Version
- Classic
I - Golang
2.10

2.08 -
Hardware Simuiation
SGX Mode
Figure 8.5: Results for all Invoke ("submit") calls
2.14
212 Version
- Classic
- Golang
2.10
2.08
Hardware Simuiation
SGX Mode

Figure 8.6: Results for Query ("submit", "Auction", "John") calls

56

Latency (in seconds)

Latency (in seconds)

APPENDIX
2.14
212 Version
- Classic
- Golang
2.10
2.08 -
Hardware Simuiation
SGX Mode
Figure 8.7: Results for Invoke ("submit", "Auction", "Jane") calls
2.14
212 Version
- Classic
- Golang
2.10
2.08
Hardware Simuiation
SGX Mode

Figure 8.8: Results for all Query ("submit") calls

APPENDIX 57

Latency (in seconds)

Latency (in seconds)

2.14
212 Version
- Classic
- Golang
2.10
2.08 -
Hardware Simuiation
SGX Mode
Figure 8.9: Results for Query ("submit", "Auction", "John") calls
2.14
212 Version
- Classic
l - Golang
2.10
2.08
Hardware Simuiation
SGX Mode

Figure 8.10: Results for Query ("submit", "Auction", "Danny") calls

58

Latency (in seconds)

Latency (in seconds)

APPENDIX
2.14
212 Version
l . - Classic
. . - Golang
2.10
2.08 -
Hardware Simuiation
SGX Mode
Figure 8.11: Results for Invoke ("close") calls
2.14
212 Version
l - Classic
- Golang
2.10
2.08
Hardware Simuiation
SGX Mode

Figure 8.12: Results for Invoke ("eval™") calls

	1 Introduction
	1.1 Context and Motivation
	1.2 Contribution
	1.3 Thesis Structure

	2 Background
	2.1 Distributed Ledgers and Blockchain
	2.1.1 Hyperledger Fabric

	2.2 Trusted Execution Environment
	2.2.1 Intel SGX
	2.2.2 Intel SGX Remote Attestation
	2.2.3 Developing with Intel SGX

	3 Fabric Private Chaincode
	3.1 Architecture
	3.1.1 FPC Shim
	3.1.2 Cryptographic Keys
	3.1.3 Enclave Endorsement Validation

	3.2 Typical Execution
	3.3 Limitations

	4 Approach
	4.1 EGo
	4.2 Go Chaincode Enclave
	4.3 Discussion of the Approach

	5 Implementation
	5.1 Architecture
	5.1.1 ECC Go
	5.1.2 FPC Stub Interface
	5.1.3 Sequence Diagram

	5.2 Current Limitations
	5.3 Implementation Issues

	6 Evaluation
	6.1 Performance
	6.1.1 Parameters
	6.1.2 Results

	6.2 Usability
	6.2.1 Smart Contract API
	6.2.2 Results

	7 Related Work
	8 Conclusion and Future Work

