
Concurrent distributed storage protocols
Using secret sharing to create a byzantine regular register

Master Thesis

Marco Tobia Cacciatore

Faculty of Science
at the University of Bern

February 2023

Prof. Dr. Christian Cachin
David Lehnherr

Cryptology and Data Security Research Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

In a (t+ 1, N) secret sharing scheme, a secret is divided into N shares and shared among N sharehold-
ers, such that any t+ 1 or more shareholders can reconstruct the secret, but any less cannot gain any
information about the secret. We show that a standard (t+ 1, N) secret sharing scheme works only
in a N > 3f + 1 model and needs to be adapted to work in N > 3f , because in a N > 3f model, a
process may safely wait for 2f + 1 responses out of which f may be faulty and thus is missing one
share to have the minimum of f + 2 shares to verify a reconstructed secret. In order to solve this, we
introduce the approach of the distributed additional share, where we create N +1 shares from the secret
and secret share the (N + 1)st share. With this method, we preserve information-theoretical security
and require only N > 3f . We also define the cloud-of-clouds model, where cloud storage services
are combined, in a modular way with clear properties, formally prove them and implement a safe and
regular register using our technique. Finally, we compare our algorithms to two existing systems.

1

Acknowledgements

I thank David Lehnherr for all the help, critical thinking, and support. I would also like to thank Prof.
Dr. Christian Cachin for the insights, for pointing the thesis in the right direction, and for giving me the
chance to work on this project. In addition, I thank the whole Cryptology and Data Security Research
Group as well as the other students in the office for interesting coffee breaks and discussions.

2

Contents

1 Introduction 4

2 Related work 6
2.1 Shamir’s secret sharing . 6

2.1.1 Shamir’s secret sharing in a byzantine model . 7
2.1.2 Verifiable secret sharing . 8

2.2 Conditional vs. unconditional security . 8
2.3 Concurrency in registers . 9
2.4 Existing systems . 11

2.4.1 Belisarius . 11
2.4.2 DepSky . 11

3 Byzantine register as a service 13
3.1 Model . 13
3.2 Motivation . 14
3.3 Distributed additional share . 15
3.4 Modules . 16

3.4.1 Secret sharing module . 16
3.4.2 Communication between clients and servers . 17
3.4.3 Registers . 20

3.5 Algorithm . 22
3.5.1 Safe Register . 23
3.5.2 Regular Register . 27

3.6 Byzantine identification . 31
3.6.1 Marking cheaters without their knowledge . 31

4 Analysis 32
4.1 Proofs . 32

4.1.1 APIs . 32
4.1.2 Registers . 33
4.1.3 Complexity . 34
4.1.4 Unconditional security . 35

4.2 Comparison to other systems . 35
4.2.1 Belisarius . 36
4.2.2 DepSky . 36

5 Conclusion 41

3

1
Introduction

A (t+ 1, N)-secret sharing scheme is a method for distributing a secret among N participants such that any t+ 1
of these participants can combine their shares to reconstruct the secret. Any group of participants with a lower
cardinality will not gain any information about the secret. Secret sharing is often used in applications where security
and confidentiality are of the utmost importance, such as encryption or decryption keys, missile launch codes, or
updates for DNS root servers. In a byzantine setting, where an adversary may control up to f participants, it is
ensured, that these adversaries cannot gain any information about the secret, as long as t ≥ f (c.f. Shamir [Sha79]).
To prevent adversaries from providing forged shares that would result in the reconstruction of an incorrect secret, the
shares are often digitally signed before being distributed. However, according to Padilha and Pedone [PP11], this
can be complex and introduce a significant overhead for large secrets and many participants. Harn and Lin [HL09]
proposed to take more than t+ 1 shares, reconstruct all combinations, and if a majority of the reconstructed secrets
are the same, it can be concluded with high probability, that the reconstructed secret is correct. Padilha and Pedone
[PP11] used this method to obfuscate parameters of operations in a state-machine-replication system (SMR). Their
system is a key-value storage system that allows byzantine faults and provides confidentiality through secret sharing.

Cloud-of-clouds. Companies like Amazon, Microsoft, Dropbox, or Google offer cloud storage services, i.e. Ama-
zon S3, OneDrive, Dropbox, and Google Drive, that are very popular to store everyday pictures, personal files, or
when used by companies, work files. Since the stored data is outside of the customer’s premises, the customers have
concerns about integrity, availability, and confidentiality (c.f. Rocha and Correia [RC11] and Alliance [Clo13]). In
their Service Agreements or Terms of Service, those companies allow themselves to either directly scan your content
or, only in case of a suspicion of illegal activities, access data without notifying the customer [Ama22] [Mic22]
[Dro22] [Goo22]. This means that they have full access to all the stored data and thus can read, modify and delete
stored data, all without an automatic notification to the customer. The Cloud-of-clouds approach combines several
cloud storage systems to tolerate faults and improve certain properties. By storing data throughout different cloud
storage services, integrity and availability are guaranteed, but confidentiality is usually achieved with encryption.
Since a perfectly secret encryption scheme needs a key space as large as the plaintext contents, the key space would
need to be as big as the files themselves, which would be unusable in practice (c.f. Katz and Lindell [KL14]).

There are a number of different systems and frameworks that have been proposed to implement byzantine fault-
tolerant storage systems in a cloud-of-clouds model or similar architectures. Some notable examples include systems
like AVID [CT05], Belisarius [PP11], Charon [MOC+21], DepSky [BCQ+13], HAIL [BJO08], ICStore [CHV10],
NCCloud [CHLT14], and RACS [APW10]. While the models in NCCloud and RACS assume that some servers
may crash, the models in AVID, ICStore, Charon, HAIL, DepSky, and Belisarius additionally assume the existence
of an adversary and provide a form of fault tolerance against attacks. To provide redundancy, Belisarius uses secret
sharing, while all other mentioned systems use some form of erasure coding.
In this thesis, we present secret-shared registers using the method of Harn and Lin [HL09]. According to Harn and
Lin [HL09] in order verifiably reconstruct a secret-shared value, f + 2 correct shares are required. This means that

4

CHAPTER 1. INTRODUCTION 5

during a read operation, a process must wait for 2f + 2 responses, as up to f shares may be from an adversary and
thus be faulty. In a wait-free implementation, a read operation may wait for up to N − f responses, because up to f
responses may be from byzantine servers, which might not respond. However, if the model requires N > 3f , this
can present a problem, since when N = 3f + 1, then N − f = 2f + 1, but 2f + 2 shares are needed. To address
this issue, we have developed a method that allows for 2f + 2 shares to be obtained from 2f + 1 responses. Using
this method, we have created a safe and a regular register that provide integrity, availability, and confidentiality in a
cloud-of-clouds model. In addition to developing a secret-shared register, we have also formalized the API to cloud
services and defined the properties of the connection and behavior of the servers. This general formalization of APIs
makes it easy to implement further algorithms that utilize any type of client-server model and allows for properties
of those algorithms to be easily proven because the underlying connection and server behavior are well-defined.
Any specific aspects that need to be adapted can be done by adjusting existing properties or adding new ones. For
example, if an algorithm only supports conditional security, the unconditional encryption property, which provides
unconditional security for communication between clients and servers, can be adapted to use conditional security
instead. Furthermore, we have evaluated our registers against two other storage systems that provide confidentiality
in the cloud-of-clouds environment.

Thesis organization. We will explain the topics that are necessary to the rest of the paper in the related work
chapter. In chapter 3, we define our model, introduce our secret sharing scheme, the modules we need for the
modular construction, and provide pseudo-code of our solutions. In the fourth chapter, we prove that our algorithms
meet properties and compare them to existing systems. Finally, we summarize our findings in the conclusion
chapter.

2
Related work

In this chapter, we explain previous research that is necessary for our thesis. We outline how the secret sharing
scheme of Shamir [Sha79] works in detail, how Harn and Lin [HL09] can detect and identify faulty shares with
unconditional security, and how detection and identification of faulty shares can be done with conditional security.
After which we show the definition of conditional and unconditional security as defined by Diffie and Hellmann
[DH76]. Then we summarize what registers are and how they work as in Cachin et al. [CGR11], Lamport [Lam86]
and Herley and Shavit [HS08]. Finally, we introduce two byzantine fault-tolerant storage systems developed by
Padilha and Pedone [PP11] and Bessani et al. [BCQ+13].

2.1 Shamir’s secret sharing
Shamir’s secret sharing (c.f. Shamir [Sha79]) is based on polynomial interpolation. A polynomial of degree t is of
the form f(x) = a0+a1x+ ...+atx

t. The parameter a0 is chosen to be the secret and a1 to at are chosen randomly
from a finite field Fp,which is defined by a prime number p, that is higher than the number of generated shares and
every parameter ai, thus the secret is s = a0 = f(0). Next, for each participant, x-values are chosen randomly from
Fp or xi = i for each participant Pi and the coordinates (x, f(x) mod p) are given out as shares. The modulo is
used to enforce the y-value to be within Fp and thus any later reconstruction that would lead to a f(0) value outside
of Fp cannot be assumed as an invalid solution and thus it is inhibited that some information about the secret or the
shares can be gained with t or less shares. Only the degree t and the field Fp need to be known for the polynomial
f(x) as well as the secret f(0) to be reconstructed with any t+ 1 shares. Since there are t+ 1 unknown parameters
a0, ..., at, at least t+ 1 shares (xi, f(xi)) are needed, such that there exists an equation f(xi) = a0xi + ...+ atxi

for each unknown. If there were less than t+ 1 shares, there would exist an underdetermined equation system with
infinitely many solutions. To be exact, all values in Fp would be viable parameters for the secret a0, for the equation
system to hold. With exactly t+ 1 shares, there exists a system of equations with the same amount of unknowns
and equations and thus has a single solution for f(x), with f(0) = a0 = s. If more than t + 1 shares are taken,
an overdetermined equation system exists, with also a single solution for f(x), since every further share than the
(t+ 1)st stems from the same polynomial and hence is a linear combination of the other equations.
A further approach to reconstruct the secret is the Lagrange interpolation, where for each share (xi, yi) a basis
polynomial bi is created that, such that the basis polynomial bi is one for its share xi and zero for each other share:
bi(xi) = 1 ∧ ∀xj ̸= xi : bi(xj) = 0. The polynomial f is then the linear combination of the basis polynomials bi
and their corresponding y values yi as in (2.1). Hence, f(xi) = yi · bi holds for each share, since all bj = 0, j ̸= i.
The Lagrange interpolation will return the polynomial f ′(x) that satisfies all used shares and assuming at least t+ 1
shares have been used, the degree of the polynomial will be t and f ′(x) = f(x). Checking if a further share (xj ,yj)
belongs to the same set of shares follows immediately. First, f(x) is reconstructed with at least t+ 1 shares, no

6

CHAPTER 2. RELATED WORK 7

matter the method, and then it can be checked whether yj = f(xj) holds.

f ′(x) =

t∑
i=0

yi · li(x) mod p , where li(x) =
∏

0≤m≤k,m ̸=i

x− xm

xi − xm
(2.1)

Since the secret is at x = 0, x can be eliminated in the formula and the formula is simplified to:

f ′(0) =

t∑
i=0

yi ·
t∏

m=0,m ̸=i

−xm

xi − xm
mod p

2.1.1 Shamir’s secret sharing in a byzantine model
In a byzantine model, participants can behave arbitrarily and send faulty shares that do not belong to the same
polynomial as the correct ones. When using at least one faulty share for the reconstruction of the polynomial f(x),
the reconstructed polynomial f ′(x) will differ from f(x) and thus s′ = f ′(0) ̸= f(0) = s. According to Harn
and Lin [HL09], when more than t + 1 shares are used for reconstruction and there is at least one faulty share,
the resulting polynomial has a higher degree than t. However, Ghodosi [Gho11] has shown that this is not always
the case and only holds with high probability. We will show his wise cheating attack in section 3.2. In short, if
the faulty shares are the sum of the original polynomial f(x) and another polynomial g(x) ̸= 0 and g(xi) = 0 for
all xi of the correct shares, then the reconstructed polynomial will be h(x) = f(x) + g(x) ̸= f(x), due to the
homomorphic property of Shamir’s secret sharing. Importantly, the inverse of Harn and Lin’s [HL09] discovery is
also true. Meaning that, when more than t+ 1 shares are used and the degree of the reconstructed polynomial is t,
then all used shares are correct with high probability [Har13]. Since a polynomial is defined with t+ 1 shares and
for every x value, there exists exactly one corresponding y value y = f(x), the degree of a polynomial with more
than t+ 1 shares can only be t if all further shares than the (t+ 1)st share are a linear combination the other ones,
i.e. all shares were created with the same polynomial and are correct. Hence, the detection of faulty shares can be
done by using more than t+ 1 shares and checking the degree of the resulting polynomial as can be seen in figure
2.1.3 of example 2.1.

Example 2.1. Assuming the secret is s = 0 and there is one faulty participant P3. First, a polynomial of degree t is
created with random coefficient a1 = 1, i.e. the polynomial is f(x) = a0 + a1x = x. Next, the shares (xi, f(xi))
are transmitted to the participants Pi for xi in the range [1, N], with N > 3. Note that instead of xi being picked
randomly, the index of the participants is used for illustration purposes. Further, it is assumed that for reconstruction,
the shares (1,1), (2,2), (3,1) are received as illustrated in figure 2.1.1. The presence of faulty shares can be checked
by recreating and comparing the three functions f ′

0(x), f
′
1(x) and f ′

2(x) generated by two shares each and observing
that they are different as in figure 2.1.2. Alternatively, a function f1(x) can be recreated with all three shares and
it is seen that the degree is 2 instead of 1 as shown in figure 2.1.2. When a fourth share (4,4) is received, as in
figure 2.1.3, and more than t+ 1 correct shares are available, four functions f0(x), f1(x), f2(x) and f3(x) can be
recreated and it is observed that only f0(x) has degree 1 and thus the secret, f0(0) = 0 = s, is verified.

0 1 2 3 4
0

1

2

3

4

x

y

Figure 2.1.1:
t+ 1 correct shares

0 1 2 3 4
0

1

2

3

4

f ′
0(x) = x

f ′
1(x) = 1

f ′
2(x) = −x+ 4

f1(x) = −x2 + 4x− 2

x

y

Figure 2.1.2:
reconstructed functions

0 1 2 3 4
0

1

2

3

4

f0(x) = x

f1(x) = −x2 + 4x− 2

f2(x) = x2 − 4x+ 4

f3(x) = 2x2 − 11x+ 16

x

y

Figure 2.1.3: reconstructed
functions with t+ 2 correct shares

CHAPTER 2. RELATED WORK 8

When allowing byzantine behavior in a permissioned setting, where all participants are known and need to be
authenticated, identification of byzantine actors and the revocation of their permissions is important. The process of
identifying byzantine participants is also called cheater identification. Harn and Lin [HL09] differentiate between
cheater/byzantine detection and cheater/byzantine identification, where the detection shows the presence of at least
one byzantine share in a set of shares and the identification reveals the byzantine share. In verifiable secret sharing
protocols, where each share can be verified individually, the byzantine identification is done by verifying each
received share, which we will explain in section 2.1.2. Harn and Lin [HL09] proposed an algorithm for byzantine
detection where they reconstruct the polynomial fall from all received shares and if the degree of fall is not t, then
there are byzantine shares. Their proposed algorithm for byzantine identification reconstructs all possible secrets
from any subset of shares with size t + 1 and defines the secret that occurs the most often as the correct secret.
Next, they take any t shares from any reconstruction of the correct secret and one share sj , that was not used in any
reconstruction of the correct secret. If the resulting secret does not match the correct secret, then sj is byzantine.

2.1.2 Verifiable secret sharing
Another way of solving the problem of byzantine shares is verifiable secret sharing (VSS) (c.f. Katz and Lindell
[KL14]). We explain verifiable secret sharing using Feldman’s method [Fel87]. When a client C starts a write, first
a0, ..., at, including a0, are picked uniformly random from Fp to define the polynomial f(x) =

∑t
j=0 aj · xj . Then,

xi are randomly chosen from Fp for each server Pi and securely each Pi is sent their share (xi, f(xi)). Next C
broadcasts the masked secret c := H(a0)⊕ s and A0 = ga0 , ..., At = gat , for a publicly known prime g, with H
being a one-way hash function in Fp. Finally, a share can easily be verified to be correct by the following formula:

gf(xi) =

t∏
j=0

(Aj)
xj
i (2.2)

=

t∏
j=0

(gaj)x
j
i

gf(xi) = g
∑t

j=0(aj)·xj
i

=⇒ f(xi) =

t∑
j=0

aj · xj
i

When a client D now reads, each share is checked with (2.2), all faulty shares are discarded and f(0) = a0
is reconstructed as in the Shamir’s Secret Sharing. Finally, a0 is hashed and the secret is reconstructed with
s = c⊕H(a0). With VSS, anyone with access to a share and the publicly known information can verify a share
and when all shares that are used for the reconstruction are verified, the reconstructed secret must be correct [KL14].
The security of VSS is twofold. First, it is assumed, that the discrete-logarithm problem is hard and secondly, that
the hash function H provides the properties explained in definition 2.2.

Definition 2.1 (Discrete-Logarithm Problem). In a cyclic group G = {gi|i = 0, ..., p− 1}, where p is a prime, the
discrete logarithm problem is defined as computing i, such that gi = y for a randomly chosen y. It is assumed, that
this is hard for groups with |p| = 2048, i.e. p is in the order of 22048.

Definition 2.2 (One-way hash function). A one-way hash function H : {0, 1}∗ → {0, 1}k converts a variably
sized bit-string into a fixed-sized output that provides collision resistance, pseudo-randomness and two types of
pre-image resistance. Collision resistance guarantees computational infeasibility for finding distinct m and m′,
with H(m) = H(m′). Pseudo-randomness guarantees that the output of H appears to be statistically random, i.e.
given a hash h = H(m) and random bytes of the same length, the probability of categorizing them correctly is 1

2 .
The 1st pre-image resistance guarantees computational infeasibility for a given hash h to find a message m, that
satisfies H(m) = h. The 2nd pre-image resistance, guarantees computational infeasibility for a given message m
to find m′, where H(m) = H(m′).

2.2 Conditional vs. unconditional security
The most prevalent security notion is perfect secrecy, which was defined by Shannon [Sha49]. It states that a system
is perfectly secret if the probability of a ciphertext representing various messages is identical before an adversary

CHAPTER 2. RELATED WORK 9

receives the ciphertext and after. Katz and Lindell [KL14] make the example that an adversary A might know that the
encrypted message represents either ”don’t attack” or ”attack tomorrow” and knows their probability. If A intercepts
the ciphertext and its probability representing ”don’t attack” or ”attack tomorrow” does not change, then the system
is called perfectly secret. Such a system might be implemented with a one-time pad (OTP), where a message is
encrypted with a key only once. The OTP, sometimes called Vernam’s cipher, uses the bit-wise exclusive or (⊕)
operator, which results in a 1, if the input bits are different and 0 if the input bits are equal, i.e. 0⊕ 0 = 0, 0⊕ 1 = 1,
1⊕ 0 = 1, 1⊕ 1 = 0. In this cipher, a key k is chosen uniformly random from a bit-space with cardinality equal to
2n, when n is the length of the message, and for encryption, as well as the decryption, the exclusive or operator
is applied to the message or ciphertext and the key: Encrypt(k ∈ {0, 1}n,m ∈ {0, 1}n) = (k ⊕m) ∈ {0, 1}n;
Decrypt(k ∈ {0, 1}n, c ∈ {0, 1}n) = (k ⊕ c) ∈ {0, 1}n, with m being the message and c being the ciphertext. The
decryption recovers the message because the exclusive or operator is symmetric and associative, a bit exclusively
or-ed with itself results in 0 and 0 exclusively or-ed with any bit b results in b. Hence, Decrypt(k, Encrypt(k,
m))=k ⊕ (k ⊕m) = (k ⊕ k)⊕m = 0⊕m = m for any k,m ∈ {0, 1}n.
Finally, the OTP is perfectly secret, because if the key k is unknown to A, for each of the probable messages, there
exists one key (ki = mi ⊕ c), which would result in an intercepted ciphertext. For example, the probable messages
are 011 and 101, and A intercepts the ciphertext 111. Then the key 100 could have been used for the message 011
(100⊕ 011 = 111) or the key 010 could have been used for the message 101 (010⊕ 101 = 111) and both of those
keys are equally likely since the key is chosen uniformly random over {0, 1}3. Also, assuming the message was 011
and the key is unknown, all eight possibilities for the ciphertext are equally probable with probability 1/8.
Diffie and Hellman [DH76] introduced two categories of security in cryptographic systems: conditional and uncondi-
tional security. They defined a conditionally secure system as a system, that is secure due to the computational cost of
reversing the cryptographic functions, but that would succumb to an adversary with unlimited computational power.
They defined unconditional security as a system that can resist any adversary, no matter how much computational
power is used. An instance of an unconditionally secure system is a system with perfect secrecy since if a reveal of a
ciphertext does not change the probability of it representing a specific message, the ciphertext alone does not contain
any information and thus no cryptoanalytic attack can reveal any information about the message even under an
attack with unlimited computational power. In this thesis, we focus only on conditional and unconditional security
to have two security notions that are distinguishable by design.

Definition 2.3 (Conditional security [DH76]). A system is called conditionally secure, if it is secure, due to the
computational cost of cryptoanalysis, but would succumb to an attack with unlimited computational power.

Example 2.2 (Conditional Security). A hash function provides conditional security for the pre-image resistance.
Assuming H is a hash function as in definition 2.2 and the digest length, i.e. length of the output hash, is 512 bits.
Then the pre-image resistance (find m such that H(m) = h, for a given hash h) is conditionally secure. There
are 2512 different hashes possible and thus in the worst case 2512 ≈ 10154 messages need to be tried out, until a
message m′ has been found, such that H(m′) = h. There are some optimizations to bring it down to 2500 ≈ 10150

messages, which is still infeasible to compute within a reasonable time. Assuming every person on earth (≈ 8
billion people) work together and each person has a device, that has 10 billion cores, that each can compute 10
billion hashes per second, then it would take ≈ 10150

8·109·1010·1010 seconds ≈ 10120 seconds ≈ 10113 years to compute
all 2500 hashes. Thus, at least in the near future, the pre-image resistance is guaranteed and conditionally secure.
Since it’s theoretically possible (or with unlimited computational power) to find such a m′, a hash function is not
unconditionally secure.

Definition 2.4 (Unconditional security [DH76]). A system is called unconditionally secure, if it can resist any
cryptoanalytic attack, no matter how much computation is allowed.

An example for an unconditionally secure algorithm is algorithm 3.2 (Theorem 4.7), which we will explain and
prove in chapter 3.

2.3 Concurrency in registers
In distributed systems, processes often need to store and share data using read and write operations. To facilitate
this, Cachin et al. [CGR11] use the concept of a register, which is an abstraction that allows processes to store and
consistently retrieve data. The register abstraction is inspired by the functionality of registers in multiprocessor
machines at the hardware level, but it can also be applied to other objects with similar functionality, such as disk
drives accessed over a storage area network or collaborative editing files. Essentially, a register is a data storage

CHAPTER 2. RELATED WORK 10

mechanism that allows processes to store and retrieve values using the write and read operations. Registers are
characterized by the number of readers and writers, where a (m, n)-register is a register with m writers and n
readers. Usually, the values are either N , as in the number of processes, or 1, such that a (1, 1)-register is a
single-writer-single-reader register (SWSR), a (1, N)-register is a single-writer-multi-reader register (SWMR) and a
(N,N)-register is a multi-writer-multi-reader register (MWMR). One issue that can arise when using registers is the
concurrency problem, which can occur when an operation is concurrent with another operation. In a single-writer-
multi-reader register (SWMR), this can only occur, if a read is concurrent to a write and can lead to confusion about
the correct value to return, as demonstrated in the following example:

Example 2.3. Assume that there are four processes {p, q, r, s} as in figure 2.3.1 in a byzantine setting with process
r being byzantine and q being slow. These processes each store a value and a naive protocol ties the processes
together to form a naive approach to a wait-free register. A system is called wait-free if no operation requires
responses from more than N − f processes (c.f. Cachin et al. [CGR11]). If a client R now reads the stored value,
while another process W writes a new value, there might occur a concurrency problem. In the example in figure
2.3.1, R received the old value from s, the new value from p, and a faulty value from r. Since the protocol is
wait-free, it should be able to return a value with responses from three out of four processes. Though R can not
decide which value is correct, since all three options are equally likely and only occur f times.

Figure 2.3.1: Concurrency problem for f = 1

To address the issue highlighted in example 2.3 and figure 2.3.1, there are several approaches that specify what a
read of register should return, if the read is concurrent to one or more writes. In each case, a read operation that is
not concurrent to a write operation returns the last value written (c.f. Lamport [Lam86] and Herlihy and Shavit
[HS08]).

• Safe Register. A safe register guarantees for a read that is concurrent to a write, that the value will be in the
domain of possible values. Thus the read value might not be a value that has ever been written.

• Regular Register. A regular register guarantees for a read that is concurrent to a write, that the value will
either be the last written value or a value concurrently written. This means that a read value will be a value
that has been written, but two reads that are concurrent with the same write but not concurrent with each other
are allowed to read the value out of order. For example, the value v0 is stored. Then a write starts with value
v1. Concurrent to this write a read starts which returns v1. After this read, but still concurrent to the write, a
second read occurs which may return v0.

• Atomic Register. In an atomic register reads and writes behave as if they occur in some definite order. For
example, if a read returns a value v and a subsequent read returns a value w, then the write of w does not
precede the write of v.

CHAPTER 2. RELATED WORK 11

2.4 Existing systems
As mentioned in the introduction, many systems have been developed, that provide some form of data storage in the
cloud-of-clouds model and this section outlines Belisarius by Padilha and Pedone [PP11] and DepSky by Bessani
et al. [BCQ+13]. Both of these systems are byzantine fault-tolerant (BFT) and while DepSky uses a model very
similar to ours, which we explain in section 3.1, Belisarius uses the same approach (secret sharing) as we do in
section 3.3 to provide confidentiality and redundancy.

2.4.1 Belisarius
Belisarius is a state-machine replication system (SMR) developed by Padilha and Pedone [PP11], which aims to
provide confidentiality for the parameters of operations in a N > 3f + 1 client-server setting. The operations that
Belisarius provides are read(key), write(key, value), add(key, value) and cmp(key, value), where read returns the
value stored at the provided key, write stores a new value, add adds a provided value to the current value at key
and cmp compares a value to the stored value. The system consists of three main components as shown in figure
2.4.1: the client-side confidentiality handler, the communication protocol, and the server-side data handler. The
client-side confidentiality handler is responsible for taking requests for operations, secret sharing the parameters of
operations, and forwarding the data to the communication protocol to be sent to the servers. It uses the secret sharing
scheme developed by Harn and Lin [HL09], which requires f + 2 correct shares and participants to reconstruct the
secret, and thus Belisarius requires N > 3f + 1 and not N > 3f from the model. The communication protocol
implements a byzantine fault-tolerant total order broadcast using a BFT consensus, which ensures that the order of
operations is maintained between clients and servers. The server-side data handler stores and retrieves the shares,
and in the case of the add operation, it utilizes the additive homomorphicity of Shamir’s secret sharing. This means
that the addition of two or more shares from different secrets results in the addition of those secrets.

Figure 2.4.1: Overview of Belisarius (Figure by Padilha and Pedone [PP11])

2.4.2 DepSky
DepSky by Bessani et al. [BCQ+13] are two BFT storage systems that use several cloud-storage servers to provide
availability (DepSky-A) and additionally confidentiality (DepSky-CA). They use the cloud-of-clouds model in a
byzantine N > 3f setting, where the servers are assumed to be passive storage replicas and do not execute custom
code. DepSky-CA which supports confidentiality encrypts the data using symmetric encryption and stores it using
erasure coding. The encryption key is then secret-shared so that each server stores a share of the key along with
their erasure-coded block as shown in figure 2.4.2. In addition, DepSky-CA stores a signed metadata file per file
it writes, containing the version number or timestamp as well as the digest of the file. When a write operation is
performed, the system first requests the metadata file to determine the new timestamp, then creates and signs the
new metadata file. It finally writes the file and then the metadata file, such that if the metadata file is read, the
file itself is guaranteed to already exist on the server. For a read operation, the system first requests the metadata
file from the servers to determine the correct timestamp and file digest and then requests the files. By using the
digest, the system can discard any faulty responses and by using the timestamp, it can ignore correct but uninformed
responses. A server is called informed if the client has received the corresponding acknowledgement from the
server and a server is called uninformed if the client did not receive the corresponding acknowledgement from

CHAPTER 2. RELATED WORK 12

the server. The system continues to read until f + 1 correct and informed responses have been received, and then
reconstructs the encrypted file from the received blocks. Finally, it decrypts the file using the received shares of the
encryption key. Since the signature on the metadata file is assumed to be unforgeable, and the write operation waits
for N − f acknowledgements, the system supports regularity and forms a regular register as proven by Bessani et al.
[BCQ+13].

Figure 2.4.2: The combination of symmetric encryption, secret sharing and erasure codes in DepSky-CA (Figure by
Bessani et al. [BCQ+13])

3
Byzantine register as a service

In this chapter, we outline the key components of our cloud-of-clouds model, including the function and abilities
of clients and servers, as well as the assumptions of the model. We then present the problem we aim to solve and
introduce our proposed solution. We explain our modular and event-based pseudo-code framework, for which we
provide several modules and formulate their properties. Using these modules and the framework, we implement our
solution and demonstrate how it addresses our problem. Lastly, we discuss the identification of faulty shares and the
impossibility of marking the byzantine servers in O(1) without their knowledge.

3.1 Model
Our model consists of several cloud storage services (servers) that can be accessed by clients via APIs, which are
supplied by the cloud storage services. Even though the cloud storage services themselves might be comprised
of several servers, the APIs abstract them to one server. In our asynchronous model in which we have clients
{C1, C2, ...Ck} and servers {P1, ..., PN}, the clients are running our protocol and may read, while one of them
is also authorized to write. The servers store values and do not communicate with each other. There is no known
bound on processing times and message delays. We assume that we have N > 3f servers, and up to f of these
servers may crash or be controlled by an adversary, who can make them act arbitrarily. These servers are referred to
as faulty or byzantine, while the remaining servers are called correct and are assumed to have their own register that
clients can access remotely through read and, if permitted, write operations. The clients are connected to each server
through a reliable, authenticated, asynchronous channel that provides message integrity but does not guarantee
ordering. As usual in such models, it is assumed, that the adversary is not able to forge or decrypt messages from
and to servers he does not control. We assume that access control is provided by the servers with an unconditionally
secure system and that the servers are so-called passive storage replicas as in Bessani et al. [BCQ+13], meaning
that the servers are code-less and no custom code may be executed and only timestamp checks for write consistency
are implemented, such that a slow connection does not overwrite newer data. We will provide the assumed code
running on the servers to prove certain properties.

13

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 14

Figure 3.1.1: The model with N = 4 and f = 1 and one client

3.2 Motivation
In this thesis, we adapt Harn and Lin’s [HL09] secret sharing scheme to a wait-free byzantine register. We use the
same definition of a wait-free register as in Cachin et al. [CGR11], i.e. no operation should wait for responses from
more than N − f processes. To create this register, we first discuss the detailed working of the read and write
operations and deduce the properties that follow from this. For a non-concurrent read operation to return a verified
value, f + 2 correct shares are needed, such that there are more than f combinations of f + 1 shares and thus
more than f equal secrets are reconstructed. In the worst case, 2f + 2 shares from the same timestamp are needed,
assuming f servers return faulty shares, if there is an index for write operations and old values from slow servers are
filtered out. An operation can wait for up to N − f responses to be wait-free, which, in a N > 3f setting, results in
2f + 1 responses.

Example 3.1. To show that Shamir’s secret sharing as described in Harn and Lin [HL09] does not always work
in a N > 3f setting with byzantine servers, we set a scenario of two clients W and R, of which W has writing
privileges, and p, q, r and s as servers out of which the server r crashes after the write operation. We specifically do
not assume any ordering on the links between the client and the servers as per our model. The client W starts a
write with shares of value v1 and gets acknowledgments of servers p, q and r, after which r crashes. In this case,
it does not matter for future read operations, whether s crashes or is byzantine and provides faulty shares. When
client R now reads, it will receive the shares of v1 from p and q and the initial share of ⊥ from s. Since it now only
has f + 1 shares of the same value, it only knows, that the three shares are not from the same secret. Specifically,
that the shares from p, q, and r do not form a polynomial of degree f as in example 2.1. Thus it has to wait for s to
give its share, which it never will. See Figure 3.2.1.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 15

Figure 3.2.1: Problem illustration

A common solution is the Read-your-Write mechanism (c.f. Wada et al. [WFZ+11]), where the writer writes a
value, immediately reads it, and repeats this, until the read value matches the written value, which does not work in
our case. In example 3.1 the Read-your-Write would succeed, because p,q, and r are able to send back their share
and W can reconstruct v1. So the Read-your-Write will succeed, W will indicate the WriteReturn, but R would not
be able to reconstruct v1 after the crash of r. Adding one more correct server would solve this problem since in a
N > 3f + 1 system a wait-free process can wait for 2f + 2 responses and thus a reader has 2f + 2 shares out of
which f + 2 are correct and hence a reconstructed secret can be verified. Thus a secret sharing register with Harn
and Lin’s [HL09] cheater detection and identification does not directly work in a N > 3f protocol and needs some
modification.

Wise cheating attack. Ghodosi [Gho11] proposed a wise cheating attack on Harn and Lin’s [HL09] secret sharing
scheme, where an adversary creates a second polynomial g(x) with the same degree and where g(xi) = 0 for all i
of correct servers Pi. The byzantine servers then return the sum of their share from f(xi) and g(xi). Due to the
homomorphicity of Shamir’s secret sharing, not only the byzantine shares but also the correct shares are shares of a
polynomial h(x) = f(x) + g(x). When trying to reconstruct the polynomial from a set of shares that include such
a faulty share, the resulting polynomial will be h(x) and the reconstructed secret h(0) = s′ ̸= s = f(0). In other
words, a reader will not be able to detect faulty shares and faulty secrets. We address this problem by randomizing
xi and treating (xi, f(xi)) as a share, such that an adversary will have no knowledge about the xi of correct servers.
The probability of a successful wise cheating attack hence is low because the byzantine servers need to correctly
guess the randomized xi-value, which is unlikely given the large size of the field Fp and the xi being randomly
generated for each write. Additionally this is a blind attack for the servers, i.e. the servers are not informed, whether
the attack was successful or not, and the readers are able to identify faulty shares, as we discuss in section 3.6. As a
result, the wise cheating attack is infeasible with randomized and hidden xi and we do not consider it in the proofs
outlined in section 4.1. Even if a successful attack were to occur, it would only result in a faulty reconstructed secret
being passed as verified, without compromising the unconditional security of the secret sharing scheme, as the
byzantine servers do not gain any information.

To summarize, we want an unconditionally secure algorithm, that returns verified secrets, is wait-free, and works
in a N > 3f setting. Since N > 3f , the N − f responses from the wait-freeness are at least 2f + 1 and verified
secrets require 2f +2 shares. Hence, we need to develop a new secret sharing scheme, that has 2f +2 shares within
2f + 1 responses.

3.3 Distributed additional share
We want our register to work in a N > 3f setting. To solve the problem of needing 2f + 2 shares in 2f + 1
responses, we propose to create an additional share sN+1 of the secret, secret-share it and give each server Pi their

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 16

share si as well as their share of the additional share sN+1i . In a reconstruction with 2f + 1 responses, a client
first reconstructs all possible additional shares, of which at least one is correct, since at least f + 1 shares of the
additional share are correct. Hence there are at least f + 1 correct si and at least one correct sN+1j . Following
from that there are at least f + 2 correct si and thus the secret can be reconstructed.
In our (t + 1, N) secret sharing scheme, a client C first picks a polynomial f(x) of degree t, such that f(x) =
a0 + a1x + ... + atx

t, in which the secret s = a0 and the coefficients a1, ..., at are picked randomly from a
finite field Fp. C then computes s1 = f(x1), ..., sN+1 = f(xN+1), with xi picked uniquely random from Fp.
Next, C picks a different polynomial g(u) of the same degree t, such that g(u) = b0 + b1u + ... + btu

t, where
b0 = sN+1 and the coefficients b1, ..., bt are picked uniquely random from a finite field Gq. Finally, C computes
r1 = g(u1), ..., rN = g(ut) with ui picked uniquely random from Gq and sends (xi, si, xN+1, ui, ri) to each
server Pi secretly. For simplicity, we will assume that the value xN+1 is publicly known and will therefore omit its
transmission in our description of the algorithm because each server receives the same xN+1 value. To reconstruct
the secret s, a client B requests the shares (xi, si, ui, ri) from each server Pi. B first reconstructs all possibilities
for sN+1 with t+ 1 ri shares. Next for each combination of t+ 1 si shares and one sN+1j share, it reconstructs a
f ′(x) polynomial until it finds one with a degree of t. By Harn and Lin [HL09], the f ′(x), that has degree t is equal
to f(x) and hence B will calculate the secret s = f ′(0) = f(0).

3.4 Modules
To create modular algorithms, we work with modules as in Cachin et al. [CGR11]. The modules abstract algorithms
as an event-based system, such that a module or algorithm can invoke a service of another module by requesting the
corresponding event. A module can also deliver information to another module by indicating an event, which might
trigger an execution of some code at a listener. Thus modules can collaborate through requests and indications.
Each module is given a name, events, and properties. The properties guarantee the behavior of the module between
requests and indications. The events may be in the form of ⟨ xx, event | arguments,... ⟩, where xx uniquely defines
the instance of a module, the event corresponds to a service, that the module exposes and optionally, the event might
have arguments that are parameters of the service. We will explain how to implement modules in section 3.5. A
full treatment of the modules is beyond the scope of this thesis and further details can be consulted in Cachin et al.
[CGR11].

3.4.1 Secret sharing module
We first declare the secret sharing module that has three properties: Termination, Correctness, and Validity.
Specifically, it is able to generate shares for a secret m, reconstruct a list of possible secrets from a set of shares, and
verify a secret from a set of shares and a list of possible secrets. This module works as trivially expected, such as
a secret is verified if at least f + 2 correct shares have been used in the reconstruction. If less than f + 2 shares
have been used in the reconstruction, the verify operation will return the special value ⊥. Also, all operations will
eventually complete. Hence, these properties ensure the reliability and security of the secret sharing module.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 17

Module 3.1 Interface and properties of a secret sharing module (SS)
Module

Name: SecretSharing, instance ss.

Events:
Request: ⟨ ss, GenerateShares | t, m ⟩: Invokes a generation operation to create t shares from the message m
Request: ⟨ ss, Reconstruct | t, {s0, ..., si} ⟩: Invokes an reconstruction operation with shares {s0, ...si} and
threshold t.
Request: ⟨ ss, Verify | t, {s0, ..., si}, {m0, ...,mi} ⟩: Invokes a verification operation.
Indication: ⟨ ss, DeliverShares | {s0, ..., si} ⟩: Completes a generation operation and returns the generated
shares {s0, ..., si}.
Indication: ⟨ ss, Reconstructed | {m0, ...,mi} ⟩: Completes a reconstruction operation and returns all
possible secrets {m0, ...,mi}.
Indication: ⟨ ss, Verified |m ⟩: Completes a verification operation and returns the verified secret m.

Properties:
SS1: Termination: If a correct process invokes an operation, then the operation eventually completes.

SS2: Correctness: If a correct process invokes a GenerateShares operation of message m and threshold t
and the operation completes with shares s. Then the Reconstruct operation with any set s′ containing at least
t+ 2 shares of s will complete and returns secrets m′ = {m1, ...,mi}. Then a Verify operation with t, s′ and
m′ will complete with mj = m. If the Reconstruct operation is requested with a set s∗ containing t+ 1
shares of s, then it will complete with m∗ = {m∗

1, ...,m
∗
j} and m ∈ m∗.

SS3: Validity: If a correct process invokes a Reconstruct operation and the operation returns secrets
m1, ..., mi and a Verify operation with the same parameters and those secrets completes, then it returns
exactly one secret mj , that has been used in a GenerateShares operation. If a correct process invokes a Verify
operation and the operation returns ⊥, then no secret could be verified.

3.4.2 Communication between clients and servers
We want our system to work in a cloud-of-clouds model, where a client can request a read or write operation on
a server. To fully define a communication channel between a client and a server, we need a few modules, which
enable us to do so. We expect the cloud service providers to expose APIs (application programming interfaces)
that clients can use to request a server to do an operation. In a real system, where an application calls an API, the
underlying library of the programming language calls system libraries, which in turn talk to the hardware of the
machine. Next, this hardware connects over the internet to the corresponding device, where the system libraries
forward the message to the corresponding server program, which handles the request. Usually, the server program
then sends back a response in the same way. To model this already simplified process, we create an abstract module,
called API, that handles the calls to the system library, the connection to the server, and replies with the server
message to simulate the behavior of the above-mentioned library of the programming language. We will also need
to model the hardware links to justify the choice of properties of the API.
As a communication base, we need a Point-to-Point communication, for which we will be using the AuthPerfect-
PointToPointLinks from Cachin et al. [CGR11] which provides us a reliable and authenticated link in module 3.2.
Next, we develop an unconditionally secure message transfer with module 3.3. Then we split the processes into
Clients and Servers and model the client and server behavior in module 3.4, which allows us to later model the
round-trip feature of the API as in figure 3.4.1, in which a message from a client gets delivered to a server, which in
turn sends back a message to the client. Finally, we can model the API behavior, which combines the properties of
the ClientServerLink module, contains the round-trip feature, and provides the client an interface as in figure 3.4.1.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 18

Figure 3.4.1: The schema of the API module

Module 3.2 Interface and properties of authenticated perfect point-to-point links (c.f. Cachin et al. [CGR11]) (AL)
Module

Name: AuthPerfectPointToPointLinks, instance al.

Events:
Request: ⟨ al, Send | q, m ⟩: Requests to send a message m to process q.
Indication: ⟨ al, Deliver | p, m ⟩: Delivers message m sent by process p

Properties:
AL1: Reliable Delivery: If a correct process sends a message m to a correct process q, then q eventually
delivers m.

AL2: No Duplication: No message is delivered by a correct process more than once.

AL3: Authenticity: If some correct process q delivers a message m with sender p and process p is correct,
then m was previously sent to q by p.

Since our register should provide unconditional security, we need the communication over the links to provide a form
of secrecy that resists any adversary, even with unlimited computational power. Hence, we add the unconditional
encryption property, which prohibits an adversary with unlimited computational power to obtain any information
about the sent message in transit.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 19

Module 3.3 Interface and properties of encrypted perfect point-to-point links (EL)
Module

Name: EncryptedPerfectPointToPointLinks, instance el.

Events:
Request: ⟨ el, Send | q, m ⟩: Requests to send a message m to process q.
Indication: ⟨ el, Deliver | p, m ⟩: Delivers message m sent by process p

Properties:
EL1-EL3: Same as AL1-AL3.

EL4: Unconditional Encryption: If some correct process p send a message m to a correct process q,
then no adversary even with unlimited computational power can derive any information about m.

Even though no further properties can be developed from the encrypted point-to-point links from module 3.3, we split
the message into an identification id, a command command, and a message m. With this splitting of the message,
we can now contextually bind messages together with id and we use the COMMAND to model HTTP methods or
endpoints at the server. For example, a client might want to send a GET request to google.com/search?q=Link with
the search term ”Link”, which can be modeled as ⟨ cs, Send | google, id, GETSEARCH, ”Link” ⟩. The identification
is a general mechanism, that allows several use cases, such as session cookies for web requests or timestamps for
ordering purposes.

Module 3.4 Interface and properties of Client-Server (CS)
Module

Name: ClientServerLink, instance cs, with
Clients C = {C1, C2, ...}, Servers S = {S1, S2, ..., SN} and Processes P = C ∪ S

Events:
Request: ⟨ cs, Send | q, id, command, m ⟩: Requests to send a message m with identification id and
command to process q.
Indication: ⟨ cs, Deliver | p, id′, command′, m′ ⟩: Internally delivers a message m with identification id
and command command′ sent by process p.

Properties:
CS1-CS4 Same as EL1-EL4

Finally, we can build our API module, which provides an interface for the client to call an API on the server and
receive a reply with the response from the server. This module is no longer just a link, but will internally use a link
for the communication between clients and servers. The properties API1-API4 are the same properties as in the
client-server module 3.4, but slightly adapted, since the API uses Request and Reply, instead of Send and Deliver to
emphasize that a server cannot Request or Reply. This module should be implemented by both, clients and servers.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 20

Module 3.5 Interface and properties of Application Programming Interface (API)
Module

Name: Application Programming Interface, instance API, with
Clients C = {C1, C2, ...}, Servers S = {S1, S2, ..., SN} and Processes P = C ∪ S

Events:
Request: ⟨ API, Request | q, id, command, m ⟩: Requests destination process q to do command with id
message m. //only Clients C
Indication: ⟨ API, Reply | p, id′, command′ m′ ⟩: Source process p replies command′, id′ and message m′.
//only Clients C

Properties:
API1: Reliable Requests: If some process p requests with destination process q and q is correct, then p
eventually replies with source process q.

API2: No Duplication: No request with correct destination process q is replied more than once.

API3: Authenticity: If some process p replies command with source process q and q is correct, then q sent
command to p.

API4: Unconditional Encryption: If some process p replies with a message m′ and source process
q to a request with message m and destination process q and q is correct, then no adversary even with
unlimited computational power can derive any information about m or m′.

API5: Client-Server Separation: If some process p requests with destination process q or p replies with
source process q, then p is a client and q is a server.

With module 3.5, we have modeled the usual API behavior as in figure 3.4.1, where an application can invoke a
request to the API on the client side and eventually gets indicated a reply. Module 3.5 does not enforce the usage
of the client-server module 3.4 as a link between the client and server, but for illustration purposes, we used the
client-server as the link.

3.4.3 Registers
We base our register on the modules from Cachin et al. [CGR11] and use the module 4.1 (1, N) Byzantine Regular
Register in the book from Cachin et al. [CGR11]. But we adapt their validity property to allow multiple concurrent
writes to a read as in Herlihy and Shavit. [HS08]. A regular register typically has two properties: termination, which
ensures that every operation eventually completes, and validity, which ensures that a read will only return the last
written value or one of the values concurrently written. Our byzantine version of a regular register maintains the
validity property, but has a weaker version of the termination property. Specifically, the byzantine regular register
has the finite write termination property, meaning that termination is only guaranteed for a finite number of writes.
We explain the reasoning in section 3.5.2.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 21

Module 3.6 Interface and properties of a byzantine safe register (BSR)
Module

Name: (1, N)-ByzantineSafeRegister, instance bsr, with writer w.

Events:
Request: ⟨ bsr, Read ⟩: Invokes a read operation on the register.
Request: ⟨ bsr, Write | v ⟩: Invokes a write operation with value v on the register.

Executed only by process w.
Indication: ⟨ bsr, ReadReturn | v ⟩: Completes a read operation on the register with return value v.
Indication: ⟨ bsr, WriteReturn ⟩: Completes a write operation on the register.

Occurs only at process w.

Properties:
BSR1: Termination: Every operation eventually completes.

BSR2: Validity: A read that is not concurrent with a write returns the last value written. A read that is
concurrent with one or more writes returns a value in the domain.

Module 3.7 Interface and properties of a byzantine regular register (BRR)
Module

Name: (1, N)-ByzantineRegularRegister, instance brr, with writer w.

Events:
Request: ⟨ brr, Read ⟩: Invokes a read operation on the register.
Request: ⟨ brr, Write | v ⟩: Invokes a write operation with value v on the register.

Executed only by process w.
Indication: ⟨ brr, ReadReturn | v ⟩: Completes a read operation on the register with return value v.
Indication: ⟨ brr, WriteReturn ⟩: Completes a write operation on the register.

Occurs only at process w.

Properties:
BRR1: Finite Write Termination: Every write operation eventually completes and either every read
operation eventually completes or the writer invokes infinitely many write operations

BRR2: Validity: A read that is not concurrent with a write returns the last value written; a read that is
concurrent with one or more writes returns the last value written or one of the values concurrently written.

The registers in modules 3.6 and 3.7 trigger requests to the API in module 3.5, which uses the client-server link in
module 3.4 to facilitate communication between clients and servers as in figure 3.4.2. In this implementation of a
register, the clients are responsible for the execution flow and providing the functionality, while the servers simply
offer remote access to their local storage to the clients. Figure 3.4.3 illustrates which modules are implemented
by the servers and which by the clients, and it is noted that both the client and server code for the API module are
required to fulfill its properties and cannot be provided by one alone.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 22

Figure 3.4.2: Event flow across modules

Figure 3.4.3: Roles of clients and servers

3.5 Algorithm
In this section of the thesis, we present the pseudo code for different algorithms in an event-based form that allows
the algorithms to implement the corresponding modules from section 3.4. There are two types of events: Request
and Indication, which are the same as in the modules in section 3.4. As explained that section, any module can
invoke requests to an other module, which might invoke indications back to the invoker module. The structure of
an event is ⟨ xx, event | arguments, ... ⟩, where xx is the instance of a module, event is the name of the event and
optionally arguments may be provided as parameters of the event. The events request and indication can be invoked
with the statement trigger event. If any indication has been invoked at an instance of a module, a corresponding flag
is set behind the scenes and with the statement event indication, the status of the flag corresponding to indication
can be checked. If this flag is set, event indication resets the flag and returns TRUE, otherwise, it returns FALSE.
The statement upon condition do forms an event listener, where condition is repeatedly executed and if condition
resolves to TRUE, the code inside the event listener is executed. The condition is automatically executed if no other
code is executed. The statement wait for condition repeatedly executes condition until it resolves to TRUE as with
upon. Conversely, if condition resolves to FALSE, condition will immediately be executed again and thus wait for
hinders upon from executing its own condition as well as any other code from being executed, except the setting
of the flags of indications. Hence, with trigger ⟨ xx, requestX | args ⟩ immediately followed by wait for event
⟨ xx, indicationX | args’ ⟩, events can be used as if they were functions, such that properties of these functions
can be formulated in modules and local variables do not need to be stored globally. However, if a request does not
guarantee termination, the invoker as well can not guarantee termination, since ⟨ xx, indicationX | args’ ⟩ might
never get invoked. The special event ⟨ xx, Init ⟩ is assumed to be invoked without arguments at the instantiation of
the algorithm. To simplify pattern matching in event listeners, we allow arguments within an upon event statement
to be in SMALLCAPS to indicate that the parameter has to match the value of the variable in small capitals while
arguments in cursive are passed as a variable, i.e. upon event ⟨ xx, name | variable, VAL ⟩ do is equivalent to upon
event ⟨ xx, name | variable, value ⟩, such that value=val do.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 23

We implement two versions of our additional share approach, the first algorithm (algorithm 3.2) highlights the
scheme described in section 3.3 alongside implementing a safe register in a N > 4f setting, by waiting for N − f
responses for the read and write. The second algorithm (algorithm 3.4) combines the first algorithm with the
double-write approach to make a regular register in a N > 3f model. The double write is used to guarantee the
validity property of the byzantine regular register in module 3.7. We will be discussing the double-write algorithm
in more detail in section 3.5.2. Before we can present the algorithms that use our approach with the additional share,
we present implementations of the API used that describe which commands are available and how they work.

3.5.1 Safe Register
The API algorithm 3.1 implements two commands, READ and WRITE, where the READ command returns the
stored value as a READRETURN command and the WRITE command with message m stores m in the local storage.
We implemented a simple timestamp check to ensure that only newer data gets stored. Any other command will be
returned with UNKNOWNCOMMAND to ensure that all commands are replied to. The algorithm we explained in
section 3.3 works in a N > 4f model and implements the byzantine safe register as in module 3.6 and can be split
into a read- and a write part. N > 4f is required, since the overlap of two N − f responses from a write and a read
may only contain 1 correct and informed response if N > 3f . In N > 3f , the write waits for N − f = 2f + 1
acknowledgments and the reader waits for N − f = 2f + 1 responses. Following from that, the 2f + 1 responses
for the read may contain f byzantine responses and f responses from correct, but uninformed servers and thus only
one response from a correct and informed server and no reconstruction of the secret is possible even if the read is
not concurrent to a write. Hence N > 4f is required In the write part, the writer first generates N + 1 shares si for
a message m. Next, it splits the additional (N + 1)st share into N shares sN+1i and writes the tuple (si, sN+1i) to
each server Pi. When a client invokes a read operation, it first reads the stored values from N − f servers. Then, to
deter byzantine servers from providing old shares, the responses consisting of the timestamp, share, and additional
share, are filtered for the maximal timestamp with lengths more than f and split into shares and additional shares.
Next, the possible secrets are reconstructed and verified. When a secret is verified, the process completes the read
operation and returns the secret. If no secret could be verified it returns a default value, indicating that there exists a
concurrent write.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 24

Algorithm 3.1 Safe Register API

Implements:
ApplicationProgrammingInterface, instance rapi, with writer w.

Uses:
ClientServerLink, instance cs

//Server only
upon event ⟨ rapi, Init ⟩ do

storage := ⊥
ts := 0

//Client only
upon event ⟨ rapi, Request | q, id, command, m ⟩ do

trigger ⟨ cs, Send | q, id, command, m ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, WRITE, m ⟩ do

wts := id //identification is used as the write timestamp
if wts > ts then

ts := wts
storage := m
trigger ⟨ cs, Send | p, wts, ACK ⟩

else
trigger ⟨ cs, Send | p, wts, NACK ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, READ, m ⟩ do

trigger ⟨ cs, Send | p, id, READRETURN, (ts, storage) ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, command, m ⟩ such that command /∈ {WRITE, READ} do

trigger ⟨ cs, Send | p, id, UNKNOWNCOMMAND ⟩

//Client only
upon event ⟨ cs, Deliver | q, id, command, m ⟩ do

trigger ⟨ rapi, Reply | q, id, command, m ⟩

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 25

Algorithm 3.2 Secret-Shared Safe Register (Part 1: Write)

Implements:
(1, N)-ByzantineSafeRegister, instance sssr, writer w.

Uses:
SecretSharing, instance ss.
ApplicationProgrammingInterface, instance rapi.

upon event ⟨ sssr, Init ⟩ do
Ω := {S1, ..., SN}
N := |Ω|
f := |Ω|−1

3

additionalShareFlagw := FALSE

additionalShareFlagr := TRUE

newShares := ∅
newAdditionalShares := ∅
shares := ∅
additionalShares := ∅
responses := ∅
acklist := [⊥]N

readlist := [⊥]N

wts := 0
rts := 0

//Writer w only
upon event ⟨ sssr, Write |m ⟩ do

additionalShareFlagw := FALSE

trigger ⟨ ss, GenerateShares | N + 1, m ⟩

//Writer w only
upon event ⟨ ss, DeliverShares | generatedShares ⟩ do

if not additionalShareFlagw then
additionalShareFlagw := TRUE

newShares := generatedShares
trigger ⟨ ss, GenerateShares | N , newShares[N + 1]y ⟩

else
additionalShareFlagw := FALSE

newAdditionalShares := generatedShares
wts := wts+1
forall q ∈ Ω do

trigger ⟨ rapi, Request | q, wts, WRITE, [newShares[q], newAdditionalShares[q]] ⟩

//Writer w only
upon event ⟨ rapi, Reply | q, WTS, ACK ⟩ do

acklist[q] := WRITEACK

if |acklist| = N − f then
acklist := [⊥]N

trigger⟨ sssr, WriteReturn ⟩

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 26

Algorithm 3.2 Secret-Shared Safe Register (Part 2: Read)

upon event⟨ sssr, Read ⟩ do
rts := rts +1
shares := ∅
additionalShares := ∅
additionalShareFlagr := TRUE

forall q ∈ Ω do
trigger⟨ rapi, Request | q, rts, READ ⟩

upon event⟨ rapi, Reply | q, RTS, READRETURN, (ts, [share, additionalShare]) ⟩ do
responses[q] := (ts, share, additionalShare)
if |responses| = N − f then

R := split responses into sets with common timestamps
Q := set with maximal timestamp of sets in R with length > f
shares := Qshares

additionalShares := QadditionalShares

additionalShareFlagr := TRUE

trigger ⟨ ss, Reconstruct | f , additionalShares ⟩

upon event ⟨ ss, Reconstructed | secrets ⟩ do
if additionalShareFlagr then

additionalShareFlagr := FALSE

shares[N + 1] := secrets // secrets is the list of possible additional shares
trigger ⟨ ss, Reconstruct | f , shares ⟩

else
additionalShareFlagr := TRUE

trigger ⟨ ss, Verify | f , shares, secrets) ⟩

upon event ⟨ ss, Verified | secret ⟩ do
if secret =⊥ then

trigger⟨ sssr, ReadReturn | default ⟩ // default is in the domain of possible secrets
else

trigger⟨ sssr, ReadReturn | secret ⟩

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 27

3.5.2 Regular Register
Since algorithm 3.2 only guarantees to return some value within the domain for a read operation that is concurrent
with a write operation, we need to adapt it to support regularity. The following algorithm 3.4 implements a regular
register, as an atomic register can be constructed from a regular register (c.f. [CGR11]). Abraham et al. [ACKM06]
proposed the double-write byzantine quorum to implement a regular register in a N > 3f setting without the
need for digital signatures, which is suitable for our model. However, as we are using secret sharing to enable
confidentiality and each server receives different data, we must adapt the double-write byzantine quorum to work
with our algorithm.
To perform a write using the double-write algorithm, the data is first written to a storage called PREWRITE on
the servers. The algorithm then waits for acknowledgments from N − f servers before writing the same data to a
storage called WRITE. This ensures that the data in WRITE is only overwritten when at least N − f servers have the
new data in their PREWRITE storage. Our algorithm as well as the double-write byzantine quorum work exactly the
same for writing. However, we need to adapt the read, because we need to intersect in a set greater than f correct
and informed responses, while Abraham et al. only require one.
Since at least f +2 shares are required to verifiably return a secret and we achieve it with f +1 responses, returning
a value, that has never been written is not possible and we only need to make sure that values that have been written
before the last non-concurrently written value are not returned. For example if three values (a0, a1, a2) have been
written and concurrently to the write of a2 a read occurs, the read should not return a0 or older values. Since some
slow but correct servers might still have shares of a0 or older, the byzantine servers might provide their shares of a0
and thus the reader has shares from more than f servers and can reconstruct and return a0, which opposes regularity.
Thus algorithm 3.4 reads until two sets Q and R can be created, such that |Q| > f and |R| > 2f . Q contains at
least f + 1 responses to verifiably reconstruct the secret and has a common timestamp. R contains Q and shares
with a lower timestamp than the ones in Q. R contains at least one correct share of a write, that is either concurrent
to the read or the last written value because the write waited for N − f responses and thus up to f might have old
values and f might be faulty and hence the size of R is chosen to be |R| > 2f . Since R must only have timestamps
that are equal or lower than the ones in Q and the set Q is used for a verified reconstruction and only verified secrets
are returned, the algorithm will not return values that oppose regularity. Note here, that R is a subset of the readlist
and thus contains PREWRITE and WRITE data, while Q contains pairs of timestamps, shares, and additional shares.
Hence Q contains data, that is directly used in the reconstruction and R ensures regularity. We will prove regularity
in section 4.1.2. Since we now have two types of storages PREWRITE and WRITE, we need to slightly adapt the
API in algorithm 3.3 to allow the command PREWRITE. The READ command returns both storages together.

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 28

Algorithm 3.3 Regular Register API

Implements:
ApplicationProgrammingInterface, instance dwapi, with writer w.

Uses:
ClientServerLink, instance cs

//Server only
upon event ⟨ dwapi, Init ⟩ do

PreWriteStorage := ⊥
WriteStorage := ⊥
pts := 0
ts := 0

//Client only
upon event ⟨ dwapi, Request | q, id, Command, m ⟩ do

trigger ⟨ cs, Send | q, id, Command, m ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, PREWRITE, m ⟩ do

wts := id //identification is used as the write timestamp
if wts = pts then

pts := wts
PreWriteStorage := m
trigger ⟨ cs, Send | p, wts, PREACK ⟩

else
trigger ⟨ cs, Send | p, wts, PRENACK ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, WRITE, m ⟩ do

wts := id //identification is used as the write timestamp
if wts = ts then

ts := wts
WriteStorage := m
trigger ⟨ cs, Send | p, wts, ACK ⟩

else
trigger ⟨ cs, Send | p, wts, NACK ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, READ, m ⟩ do

trigger ⟨ cs, Send | p, id, READRETURN, [{pts, PreWriteStorage}, {ts, WriteStorage}] ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, Command, m ⟩ such that Command/∈{PREWRITE, WRITE. READ} do

trigger ⟨ cs, Send | p, id, UNKNOWNCOMMAND ⟩

//Client only
upon event ⟨ cs, Deliver | q, id, RESPONSECOMMAND, m ⟩ do

trigger ⟨ dwapi, Reply | q, id, RESPONSECOMMAND, m ⟩

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 29

Algorithm 3.4 Secret-Shared Regular Register (Part 1: Write)

Implements:
(1,N)-ByzantineRegularRegister, instance ssrr, writer w.

Uses:
SecretSharing, instance ss.
ApplicationProgrammingInterface, instance dwapi.

upon event ⟨ ssrr, Init ⟩ do
Ω := {S1, ..., SN}
N := |Ω|
f := |Ω|−1

3

(pts, pval, pAddVal) := (0, ∅, ∅)
(ts, val, AddVal) := (0, ∅, ∅)
(wts, wval, wAddVal) := (0, ∅, ∅)
preacklist := [⊥]N

acklist := [⊥]N

rid := 0
readlist := ∅
additionalShareFlagw := FALSE

//Writer w only
upon event ⟨ ssrr, Write |m ⟩ do

additionalShareFlagw := FALSE

trigger ⟨ ss, GenerateShares | N + 1, m ⟩

//Writer w only
upon event ⟨ ss, DeliverShares | generatedShares ⟩ do

if not additionalShareFlagw then
additionalShareFlagw := TRUE

wval := generatedShares
trigger ⟨ ss, GenerateShares | N , wval[N + 1]y ⟩

else
additionalShareFlagw := FALSE

wAddVal := generatedShares
wts := wts+1
preacklist := [⊥]N

acklist := [⊥]N

forall q ∈ Ω do
trigger ⟨ dwapi, Request | q, wts, PREWRITE, [wval[q], wAddVal[q]] ⟩

//Writer w only
upon event ⟨ dwapi, Reply | q, WTS, PREACK ⟩ do

preacklist[q] := PREACK

if |preacklist| = N − f then
preacklist := [⊥]N

forall q ∈ Ω do
trigger ⟨ dwapi, Request | q, wts, WRITE, [wval[q], wAddVal[q]] ⟩

//Writer w only
upon event ⟨ dwapi, Reply | q, WTS, ACK ⟩ do

acklist[q] := ACK

if |acklist| = N − f then
acklist := [⊥]N

trigger ⟨ ssrr, WriteReturn ⟩

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 30

Algorithm 3.4 Secret-Shared Regular Register (Part 2: Read)

upon event⟨ ssrr, Read ⟩ do
rid := rid + 1
readlist := [⊥]N

forall q in Ω do
trigger⟨ dwapi, Request | q, rid, READ ⟩

upon event⟨ dwapi, Reply | q, RID, READRETURN, [{pts’, pval’,pAddVal’},{ts’, val’, AddVal’}] ⟩ do
if pts’ = ts’ + 1 ∨ (pts’, pval’, pAddVal’) = (ts’, val’, AddVal’) then

readlist[q] := (pts’, pval’, pAddVal’, ts’, val’, AddVal’)
if exists Q := [(ts’, val’, AddVal’)]i, with |Q| = i > f ∧ exists R ⊆ readlist with |R| > 2f such that

authenticAndMax(Q, R, readlist) := TRUE ∧m =Verify(Reconstruct(Q)) ̸=⊥ then
readlist := [⊥]N

trigger⟨ ssrr, ReadReturn | m ⟩
else

trigger⟨ dwapi, Request | q, rid READ ⟩

function authenticAndMax(Q, R, readlist)
for k ∈ Q do

if k not in PREWRITE or WRITE of R then
return FALSE

if there are two or more different ts in Q then
return FALSE

ts := the common timestamp in Q
for (pts’, pval’, paddVal’, ts’, val’, addVal’) ∈ R do

if pts’ > ts ∨ ts’ > ts then
return FALSE

return TRUE

function Reconstruct(Q)
(rts, rshares, raddval) := Q
trigger ⟨ ss, Reconstruct | f , raddval ⟩
{m0, ...,mi} := wait for event ⟨ ss, Reconstructed | {m0, ...,mi} ⟩
rshares[N + 1] := {m0, ...,mi}
trigger ⟨ ss, Reconstruct | f , rshares ⟩
{m0, ...,mi} := wait for event ⟨ ss, Reconstructed | {m0, ...,mi} ⟩
return (rshares, {m0, ...,mi})

function Verify(shares, {m0, ...,mi})
trigger ⟨ ss, Verify | f , shares, {m0, ...,mi} ⟩
m := wait for event ⟨ ss, Verified | m ⟩
return m

CHAPTER 3. BYZANTINE REGISTER AS A SERVICE 31

3.6 Byzantine identification
Assuming algorithm 3.4 returned a verified secret, we have the list of shares sv = {sv1 , ..., svt+2

}, used in the
reconstruction of the verified secret and the list of all shares s = {s1, ..., sN+1} we received. Then we reconstruct fk
with (sv1 , ..., svt+1

, sk) for all sk that are in s but not in sv and if the degree of fk is t, then sk is correct, otherwise
sk is byzantine. Finally, the reader revokes the permissions of all servers, that provided a faulty share. Since shares
with wrong timestamps or xN+1 are ignored, slow servers will be ignored and will never be deemed byzantine. Note
here, that the byzantine identification has a computational complexity of O(N), compared to O(N !) in Harn and
Lin’s [HL09] cheater identification, because we have already verified the secret. This only works in a setting, where
the writer trusts the readers, otherwise the readers notify the writer about a byzantine Pi and the writer revokes Pi’s
permission after receiving some quorum of notifications.

3.6.1 Marking cheaters without their knowledge
Assuming we have a setting where the writer can only communicate to the readers through storing values in the
servers and the writer has identified some of the byzantine servers, it might want to mark them to the readers, while
the byzantine servers do not know that some of them have been marked. The intuitive approach is that the writer
provides the byzantine servers forged shares, but then the readers will see the mark only after reconstruction and
running the byzantine identification. We will show, that marking servers, such that readers can check the mark
in O(1), i.e. in a way that the readers will not include marked shares in the reconstruction, is impossible. Since

algorithm 3.4 provides unconditional security, utilizing security through obscurity (e.g. siy mod 10 = 0
implies−−−−→

mark) is unreasonable. Since the writer has only identified some byzantine servers and there are byzantine servers,
that have not been identified, i.e. servers that are controlled by an adversary A, but always provided the correct
share, writing an old index or xN+1 is not feasible, since A sees different indices or xN+1. Thus a mark is needed,
that can only be reconstructed with more than f shares and a check can only be done minimally in O(N). Following
from that, marking a server, while A cannot check the mark, but readers can check it in O(1) is impossible.

4
Analysis

In the following chapter, we present our results. First, we provide formal proofs that our algorithms, listed below,
satisfy the properties outlined in the modules. We then compare our algorithms to two existing systems in the
literature, in order to discuss the advantages and limitations of our proposed solutions.

• Algorithm 3.1: Safe register API

• Algorithm 3.2: Safe register

• Algorithm 3.3: Regular register API

• Algorithm 3.4: Regular register

4.1 Proofs
In this section, we prove that the algorithms in section 3.5 implement the modules from section 3.4 and the
corresponding properties hold, as well as analyze the computational complexities of the operations of our registers.
First, we prove that our APIs implement the API from the modules. Next, we analyze the computational complexities
of the read and write operations of the safe register algorithm. We omit to analyze the computational complexity
of the regular register algorithm because it only provides finite write termination and thus can have an infinite
complexity for infinitely many writes. The computational complexity of a non-concurrent read of the regular register
is equal to the complexity of a read in the safe register since both algorithms use the method of the additional share.
We then prove our registers fulfill the properties of a safe and a regular register respectively. Finally, we prove that
the registers provide unconditional security.

4.1.1 APIs
Theorem 4.1. Algorithm 3.1 implements module 3.5 Application Programming Interface

Proof. We prove that algorithm 3.1 implements the API from the module by proving each property:
Reliable requests: Requests with the commands WRITE and READ both eventually reply, due to the reliable
delivery property of ClientServerLink. Any other command will be caught on the server side and will be answered
with UNKNOWNCOMMAND. Thus, all requests to correct servers will eventually be replied to.
No duplication: The client will forward all received ResponseCommands and a correct server will only send one
response per request and hence no request will be replied to more than once.
Authenticity: A client only replies if a command has been delivered.
Unconditional encryption: The unconditional encryption is inherited from CS4: Unconditional Encryption.
Client-server separation: Since servers and clients running algorithm 3.1 listen to different events, correct clients
listen to requests and send replies and connect via ClientServerLink to servers to forward messages.

32

CHAPTER 4. ANALYSIS 33

Theorem 4.2. Algorithm 3.3 implements module 3.5 Application Programming Interface

Proof. The proof follows immediately from the proof of theorem 4.1.

4.1.2 Registers
To prove that algorithm 3.4 implements a regular register, we first show that algorithm 3.2 implements a safe register,
since both algorithms share their approach. Next, to help us prove the regular register, we first prove that algorithm
3.4 does not support termination, which helps us to finally prove that it implements a regular register.

Theorem 4.3. Let N > 4f , then algorithm 3.2 implements a (1, N)-ByzantineSafeRegister as in module 3.6

Proof. We prove that algorithm 3.2 implements a (1, N)-ByzantineSafeRegister by proving each property:
Termination: Algorithm 3.2 has two operations, read and write. It relies on the termination property of the secret
sharing module and the API module provides termination with the reliable delivery property. In the ss.DeliverShares
and ss.Reconstructed events, the events cs.Send and ss.GenerateShares are alternately triggered because of the
additionalShareFlags and thus ss.DeliverShares will be invoked exactly twice. Furthermore, the cs.Deliver events
that occur in the write and read operations will eventually be invoked N − f times and thus eventually trigger the
ssrr.WriteReturn and ss.Reconstruct events respectively, since all correct servers will respond to cs.Send. Hence all
operations in algorithm 3.2 eventually terminate.
Validity: Assuming a write operation with timestamp ts terminated and thus N − f servers are informed, while
f are assumed to be correct but uninformed. When a following read operation is requested, it waits for N − f
responses. Out of these responses, up to f responses are from uninformed servers and f are faulty. Thus if N > 4f ,
out of N − f > 3f responses, f are faulty, f are correct but uninformed and more than f are correct and informed.
Since correct servers only provide timestamps that are equal to or lower than ts, the set R cannot contain sets with
cardinality greater than f and common timestamps larger than ts. Hence, the set Q contains more than f correct
and informed shares. Then, the algorithm reconstructs and verifies the secret from the shares and additional shares
and returns the correct secret, according to the correctness property of the secret sharing module. If the set Q is
empty or contains shares from a timestamp lower than ts, less than f + 1 correct and informed responses have been
received and it is concluded that there is a write concurrent to the read. This is because the previously assumed f +1
correct and informed servers did not provide the same timestamp and hence a write must be happening concurrently.
Since in a safe register, a read that is concurrent to a write may return anything in the domain, it is allowed to return
preceding values. The same applies if the reconstruction failed, i.e. the secret in the ss.Verified event is ⊥, and the
algorithm returns the default value from the domain. Thus, algorithm 3.2 implements a byzantine safe register.

Lemma 4.1. Let N > 3f , then algorithm 3.4 does not support termination.

Proof. We assume that the writer w starts a new write operation as soon as the previous write operation has been
completed. In cs.Deliver of the read, first, the timestamps are checked for valid values, then if sets Q and R exist
with the requirements, the read operation completes. Otherwise, the server is requested for the stored values again
with cs.Send. The requirements of a set Q existing are that Q is created from exclusively the PREWRITE or WRITE
values of R, has a common timestamp higher or equal to all timestamps in R and a secret can be reconstructed and
verified from the values in Q. Assuming that because of the continuous writes, the reader did not receive more than
f shares from the same timestamp, because every server might have shares from different writes, such a set Q is
never found and the read operation continuously requests shares from the servers. Thus for infinitely many writes,
algorithm 3.4 does not guarantee termination.

Theorem 4.4. Let N > 3f , then algorithm 3.4 implements a (1, N)-ByzantineRegularRegister as in module 3.7.

Proof. We prove that algorithm 3.4 implements a (1, N)-ByzantineRegularRegister by proving each property:
Finite write termination: Similar to the termination proof of theorem 4.3 we inherit the termination properties
of the modules, use the additionalShareFlags, and can rely on N − f responses. As we have shown in the proof
of lemma 4.1, algorithm 3.4 does not support termination for infinitely many writes and we need to prove that the
read operation concurrent to finitely many write operations terminates. Since algorithm 3.4 only guarantees finite
write termination, we assume that a last write with timestamp ts exists after which no more write operations will be
requested. When this write operation has completed, N − f servers will have the values from ts stored. We need
to show that the sets Q and R exist and thus a valid secret will be returned. Eventually, readlist will contain at
least 2f + 1 responses from correct servers, out of which at least f + 1 are informed since the write waited for

CHAPTER 4. ANALYSIS 34

N − f ≥ 2f + 1 = (f + 1) correct +f faulty responses. Thus, a set Q with f + 1 responses from correct and
informed servers exists. The set R can be created with Q and the rest of the correct responses from readlist or
from responses from faulty servers with a timestamp ts or lower. Since Q has at least f + 1 correct and informed
responses and such an R exists, a verified value can be returned, and algorithm 3.4 will terminate.
Validity: To return a value, a secret must be reconstructable and verifiable from a set Q, which can only be a value
that has been written by the writer, since its length has to be strictly greater than f . Next, the reconstructed and
verified secret cannot be from a write that preceded the last written value (ts, v) not concurrent to the read. This is
because up to f shares might have a lower timestamp ts′ < ts, but then no set R with length > 2f can be created
with timestamps ts′ or lower, since R includes at least 1 correct and informed response. If Q contains at least f + 1
correct and informed shares from the PREWRITE or WRITE storage of readlist, then a set R with length 2f + 1
exists with Q and f correct and uninformed shares, such that authenticAndMax with this Q, R and readlist will
return TRUE and a secret can be verified. Otherwise, the values are read again and according to the finite write
termination, the set Q will eventually contain f + 1 correct and informed responses. Thus algorithm 3.4 can only
return the last written value or a value concurrently written.

4.1.3 Complexity
Theorem 4.5. The computational complexity of a write in algorithm 3.2 is O(N2).

Proof. The creation of f(x) and g(u) are both dependent on the degree t = f since f − 1 random coefficients need
to be picked [2· O(f − 1)]. Then N + 1 xi-values and N ui-values need to be picked randomly and evaluated for
f(x) and g(u), which is dependent on the degree f [O((N + 1) · f) +O(N · f)]. Finally, the writer sends the data
to each of the N servers [O(N)]. Since the size of Fp is dependent on p, i.e. the size of stored data, and not of the
number of servers, picking a random number from Fp is done independently of N , i.e. in constant time O(1), when
analyzing the computational complexity in terms of servers N . Thus, the computational complexity in terms of the
number of servers of a write in algorithm 3.2 is:

2 ·O(f − 1) +O [(N + 1) · f] +O(N · f) +O(N)

≡ O(2 · (f − 1) + (N + 1) · f +N · f +N)

≡ O(2 · (N
3

− 1) + (N + 1) · N
3

+N · N
3

+N)

≡ O(2 ·N +N ·N +N ·N +N)

≡ O(2N + 2N2 +N)

≡ O(N2)

Theorem 4.6. The computational complexity of a read in algorithm 3.2 is O(N !2).

Proof. In the worst case, there are only f + 1 correct shares and f + 1 correct additional shares. Thus we have(
2f+1
f+1

)
possibilities of gi(u), of which only one is correct and

(
2f+1
f+1

)
possibilities of finding the correct shares,

assuming we have found the correct additional share. This gives us
(
2f+1
f+1

)
·
(
2f+1
f+1

)
=

(
2f+1
f+1

)2
= (2f+1)!2

(f+1)!2f !2 total
combinations to go through. Thus the complexity of the read is O(f !2) ≡ O(N !2).

To improve the complexity of the read, we use the fact, that sN+1 = f(xN+1) < p, for the prime p that spans
Fp. We can modify the prime q, that spans Gq, such that q > cp, for any c ≥ 1. We define gbyz(u) to be
a random variable that represents the reconstructed polynomial of the additional share with at least one faulty
share (gbyz(0) ̸= g(0) = f(xN+1)). We know that gbyz(0) has a uniform distribution over Gq since even having
knowledge of up to f shares makes all possible values, i.e. Gq, equally likely (c.f. Shamir [Sha79]). Thus
P(gbyz(0) < p) = 1

c . The probability that there are j or less gbyzi(0) that are within Fp, out of all reconstructed
additional shares gbyzi(0) with at least one faulty share, is the sum of the Bernoulli trials up to j:

P(|{gbyzi(0) < p}| ≤ j) =

j∑
k=0

(
m

k

)(
1

c

)k

·
(
1− 1

c

)m−k

CHAPTER 4. ANALYSIS 35

with m being the total amount of gbyz(0). Since there are up to
(
2f+1
f+1

)
− 1 possible values for gbyz , we choose c to

be c ≥
(
2f+1
f+1

)
, such that we have a low probability, that there are more one faulty reconstructed additional share

within Fp. Now the complexity changes. We still have
(
2f+1
f+1

)
combinations for the additional share, but we can

validate them individually and, with a high probability, be left with only two possibilities. One correct and one
faulty additional share. Next, we need to combine each of them with the other shares of which there are

(
2f+1
f+1

)
combinations. Thus the probabilistic worst-case complexity is N ! :(

2f + 1

f + 1

)
+ 2 ·

(
2f + 1

f + 1

)
= 3 · (2f + 1)!

(f + 1)!f !
≈ f ! ≈ N !

4.1.4 Unconditional security
To prove that this protocol is unconditionally secure, we assume the existence of an adversary A with unlimited
computational power, but without access to correct servers. First, we formulate the proof of Shamir Secret Sharing
being unconditionally secure in our notation and then we will prove that algorithm 3.4 is also unconditionally secure.
We annotate a share s as (sx, sy), where sx and sy are the coordinates and an indexed share si to be constructed of
the coordinates (six , siy), where a subscripted x or y will always be the coordinate of the share and not an index.

Lemma 4.2. Shamir’s Secret Sharing is unconditionally secure

Proof. We formulate Shamir’s proof in our notation (c.f. Shamir [Sha79]).
We assume to have a secret sharing protocol according to Shamir [Sha79] with a polynomial f(x) of degree t within
a field Fp for a prime p and an adversary A has access to t shares (s1x ,s1y), ..., (stx , sty). Since A cannot directly
recreate a polynomial of degree t, but only of t− 1, it needs to brute-force a share st+1 by trying all values within
Fp to get (st+11 , ..., st+1p). Because A cannot verify the correctness of the reconstructed secret with only t + 1
shares, as discussed in section 2.1.1, A needs a further share st+2 to get t+ 2 shares. But for each reconstructed
polynomial fi(x) with s1, ..., st and st+1i , for i = 1, ..., p, a further polynomial fij can be constructed with the
previous shares and any share (st+2jx

, st+2jy
), with st+2jy

= fi(st+2jx
), such that fij = fi will have a degree of t.

Since the share st+1i can be chosen randomly over Fp, the reconstructed secret si = fi(0) is distributed uniformly
over Fp and thus A cannot gain any information about the real secret from t or fewer shares.

Theorem 4.7. Algorithm 3.2 is unconditionally secure

Proof. We assume that there is a protocol running according to Section 3.3 with a polynomial f(x) of degree t
within a field Fp for the main shares (six , siy) and there is a polynomial g(u) of degree t within a field Gq for
a prime q ≥ p for the additional shares (sN+1ix , sN+1iy). An adversary A has control over t shares (s1x ,s1y),
..., (stx , sty) and t additional shares (sN+11x

, sN+11y
), ...,(sN+1tx , sN+1ty). For the additional share, A only

knows, that g(0) < p and has no further information, as we proved theorem 4.2. Thus A can either brute-force a
further additional share (sN+1t+1x

, sN+1t+1y
) to reconstruct the polynomial g to get the additional share or A can

brute-force a further main share (sN+1i+1x
, sN+1i+1y

) to reconstruct the polynomial f , but for both brute-forces A
would need to brute force an even further share, as discussed in the proof of theorem 4.2. Thus algorithm 3.2 is
unconditionally secure.

Theorem 4.8. Algorithm 3.4 is unconditionally secure.

Proof. The proof follows immediately from the proof of theorem 4.7.

4.2 Comparison to other systems
In this section, we compare the performance and functionality of our proposed safe (algorithm 3.2) and regular (algo-
rithm 3.4) registers to two existing byzantine fault-tolerant storage systems, Belisarius and DepSky. The comparison
between our registers and Belisarius is kept minimal due to the significant differences in their functionality and
model. Belisarius operates as an SMR system and requires communication between servers, whereas our algorithms
function as registers and operate in a cloud-of-clouds model without any need for server-server communication.
On the other hand, the comparison with DepSky is more in-depth, as both our registers and DepSky have a similar
cloud-of-clouds architecture.

CHAPTER 4. ANALYSIS 36

We first analyze the similarities and differences between the models and assumptions of each system. Next, we
provide an implementation of the confidentiality version (DepSky-CA) of DepSky in our event-based form for a
more detailed comparison. We are not able to do the same with Belisarius, because Padilha and Pedone [PP11]
do not provide pseudo-code. Additionally, we analyze the trade-offs and advantages of each system in terms of
storage space, read and write complexity, message complexity, and security guarantees to evaluate the advantages
and limitations of our proposed algorithms in comparison to these established systems.

4.2.1 Belisarius
Comparing Belisarius and algorithm 3.4 is difficult, as they differ significantly in terms of functionality and model.
Belisarius is an SMR system that requires server-to-server communication due to a consensus protocol, while
algorithm 3.4 is a regular register that operates without communication between servers. Despite these differences,
a comparison is still valuable due to the shared client-server architecture and similar data storage method.
When analyzing the models, both of them work in a server-client environment and assume an adversary with
unlimited computational power. While Belisarius works in a near-optimal N > 3f +1 byzantine setting, we achieve
the optimal N > 3f for algorithm 3.4. Since Belisarius implements an SMR it expects the servers to be able to
execute code including communication with other servers for the total order broadcast, which makes it impossible
for Belisarius to work in a cloud-of-clouds model without adaptation. On the other hand, Belisarius can easily be
reduced to a regular register by only using read and write for a key. The operations compare and add are not needed
to implement a regular register. Thus, Belisarius provides more functionality than algorithm 3.4.
Algorithm 3.4 achieves the stricter N > 3f requirement by storing an additional share, which increases the amount
of storage space required. In the worst case scenario for algorithm 3.2, where our optimization is used, it requires
disk space in the order of N !, since the additional share is in Gq and q is in the order of N ! bigger than p. Even
when not using the optimization, we require twice as much disk space because of the additional share. Algorithm
3.4 requires double the space compared to algorithm 3.2 since it stores a PREWRITE as well as a WRITE. Hence
our algorithms require significantly more disk space than Belisarius. Both Belisarius and our algorithms provide
unconditional security through secret sharing and assuming our optimization is used, both have a read complexity
of O(N !). However, Belisarius implements an atomic register with the consensus protocol of the communication
protocol, while our algorithm implements a safe register for algorithm 3.2 and a regular register for 3.4. This
comes at the cost of increased message complexity, as Belisarius requires O(N2) messages to be sent (c.f. Castro
and Loskov [CL02]), whereas algorithm 3.2 has a message complexity of 2 · (N − f) = O(N) for a write and
non-concurrent read, and the message complexity of algorithm 3.4 is 3 · (N − f) = O(N).
In conclusion, Belisarius requires less disk space, has a lower computational complexity, and offers more function-
ality. But the model of algorithm 3.4 is less restrictive with N > 3f , not requiring server code execution and no
inter-server communication. Thus algorithm 3.4 works in a cloud-of-clouds setting, which removes the need for
custom servers, reduces operational cost, and only requires the development of a client program. Also, the message
complexity of algorithm 3.4 is lower, because it does not need a consensus protocol.

4.2.2 DepSky
The model used in DepSky is similar to ours by representing the cloud-of-clouds approach and requiring N > 3f .
Their cloud-of-clouds approach is more restrictive and does not allow a timestamp check for writes. Since
Bessani et al. [BCQ+13] provide pseudo-code, we will transform their pseudo-code to our event-based form,
after implementing corresponding the API with the metadata and the file storage similar to algorithm 3.3. The
DepSky-CA API in algorithm 4.1 implements four commands, WRITEMETA, READMETA, WRITE and READ,
with which the metadata file, consisting of a timestamp, digest, and signature, as well as the stored file can be
written and read. The implementations of the API commands in algorithm 4.1 are kept as simple as possible by
exclusively storing and retrieving the corresponding values.
DepSky allows the usage of several data units, which we could implement with several instances of algorithm 3.4,
that do not share the same storage on the servers. Hence, our implementation of DepSky in algorithm 4.2 will not
use data units or can be assumed to use a fixed data unit. Additionally, DepSky assumes that pending requests can
be canceled, which our model of APIs can not support, because of the reliable requests property. Our algorithms
solve the canceling of requests by only listening to events with the corresponding id field. For example with every
operation, our client creates a locally unique identification (wts or rts) that is sent with every request and the client
only listens to events with the corresponding identification, thus a cancellation is not necessary, since old events are
ignored. DepSky-CA uses the methods queryMetadata and cloudi.get for communication to the servers, which we

CHAPTER 4. ANALYSIS 37

do not implement as functions because we desire an event-based form and thus implement them directly into the
write and read.

Algorithm 4.1 DepSky-CA API

Implements:
ApplicationProgrammingInterface, instance dsapi, with writer w.

Uses:
ClientServerLink, instance cs

//Server only
upon event ⟨ dwapi, Init ⟩ do

(ts, digest, signature) := (0,⊥,⊥)
storage := ∅ // contains block of file and share of encryption key

//Client only
upon event ⟨ dsapi, Request | q, id, command, m ⟩ do

trigger ⟨ cs, Send | q, id, command, m ⟩

//Server only
upon event ⟨ cs, Deliver | p, ts, WRITEMETA, (ts, digest’, signature’ ⟩ do

(ts, digest, signature) := (ts’, digest’, signature’)
trigger ⟨ cs, Send | p, ts, METAACK ⟩

//Server only
upon event ⟨ cs, Deliver | p, ver, WRITE, (e, s) ⟩ do

storage[ver] := (e, s)
trigger ⟨ cs, Send | p, ver, ACK ⟩

//Server only
upon event ⟨ cs, Deliver | p, READMETA ⟩ do

trigger ⟨ cs, Send | p, METARETURN, (ts, digest, signature) ⟩

//Server only
upon event ⟨ cs, Deliver | p, ver, READ ⟩ do

trigger ⟨ cs, Send | p, ver, READRETURN, (storage[ver].e, storage[ver].s) ⟩

//Server only
upon event ⟨ cs, Deliver | p, id, command, m ⟩ such that Command /∈ {WRITEMETA, WRITE, READMETA, READ} do

trigger ⟨ cs, Send | p, id, UNKNOWNCOMMAND ⟩

//Client only
upon event ⟨ cs, Deliver | q, id, command, m ⟩ do

trigger ⟨ dwapi, Reply | q, id, command, m ⟩

CHAPTER 4. ANALYSIS 38

Algorithm 4.2 DepSky-CA Algorithm (Part 1: Write)

Implements:
(1,N)-ByzantineRegularRegister, instance dsrr, writer w.

Uses:
ApplicationProgrammingInterface, instance dsapi.

upon event ⟨ dsrr, Init ⟩ do
Ω := {S1, ..., SN}
N := |Ω|
f := |Ω|−1

3

(max ver, new ver, max id) := (0, 0, 0)
Kdu

rw := create signing key
(h, acklist, m, d) := (∅, ∅, ∅, ∅)

//Writer w only
upon event ⟨ dsrr, Write | value ⟩ do

if max ver = 0 then
m := ∅
forall q ∈ Ω do

trigger ⟨ dsapi, Request | q, READMETA ⟩
else

write(value)

//Writer w only
upon event ⟨ dsapi, Reply | q, METARETURN, (ts, digest, signature) ⟩ do

if verify(ts, digest, signature) = TRUE then
m[q] := (ts, digest, signature)

if |m| = N − f then
max ver := max(m.ts)
write(value)

//Writer w only
function write(value)

new ver := max ver+1
k := generateSecretKey()
e := encrypt(value, k)
s := generateShares(k, N , f + 1)
v := encode(e, N , f + 1)
forall q ∈ Ω do

d[q].e := v[q])
d[q].s := s[q]
h[q] := hash(d[q])
trigger ⟨ dsapi, Request | q, new ver, WRITE, (d[q].e, d[q].s) ⟩

//Writer w only
upon event ⟨ dsapi, Reply | q, NEW VER, ACK ⟩ do

acklist[q] := ACK

if |acklist|= N − f then
acklist := [⊥]N

new meta := (new ver, h)
new meta signed := sign(new meta, Kdu

rw)
forall q ∈ Ω do

trigger ⟨ dsapi, Request | q, new ver, WRITEMETA, new meta signed ⟩

//Writer w only
upon event ⟨ dsapi, Reply | q, NEW VER, METAACK ⟩ do

acklist[q] := ACK

if |acklist|= N − f then
acklist := [⊥]N

max ver := new meta
trigger ⟨ dsrr, WriteReturn ⟩

CHAPTER 4. ANALYSIS 39

Algorithm 4.2 DepSky-CA Algorithm (Part 2: Read)

upon event ⟨ dsrr, Read ⟩ do
m := ∅
forall q ∈ Ω do

trigger ⟨ dsapi, Request | q, READMETA ⟩

upon event ⟨ dsapi, Reply | q, METARETURN, (ts, digest, signature) ⟩ do
if verifySignature(ts, digest, signature) = TRUE then

m[q] := (ts, digest, signature)
if |m| = N − f then

max id := max(m.ts)
d := ∅
forall q ∈ Ω do

trigger ⟨ dsapi, Request | q, max id, READ ⟩

upon event ⟨ dsapi, Reply | q, MAX ID, READRETURN, (tmpq.e, tmpq.s) ⟩ do
htmpq := hash((tmpq.e, tmpq.s))
if htmpq := m[max id].digest then

d[q] := (tmpq.e, tmpq.s)
else

d[q] := ERROR
if (|{i : d[i] ̸=⊥ ∧d[i] ̸= ERROR}| > f) ∨ (|{i : d[i] ̸=⊥}| > N − f) then

if (|{i : d[i] ̸=⊥ ∧d[i] ̸= ERROR}| > f) then
e := decode(d.e, N , f + 1)
k := combineShares(d.s, N , f + 1)
value := decrypt(e, k)
trigger ⟨ dsapi, ReadReturn | value ⟩

else
d := ∅
forall q ∈ Ω do

trigger ⟨ dsapi, Request | q, max id, READ ⟩

CHAPTER 4. ANALYSIS 40

The DepSky API (Algorithm 4.1) and our APIs (Algorithms 3.1 and 3.3) differ in one detail. DepSky assumes
that servers only store and retrieve data, while our APIs assume that servers will not overwrite stored data with
older data from a slow connection with a timestamp check. Both DepSky and Algorithm 3.4 implement a regular
register and wait for f + 1 correct and informed responses, and both only support finite write termination. However,
DepSky-CA verifies each response individually with a digest, while Algorithm 3.4 requires f + 1 responses to start
the verification of the responses, due to the properties of our secret sharing scheme.
Algorithm 3.4 uses a two-step process to ensure the validity of the read operation. It first creates two sets, one called
Q which is used for the reconstruction of the secret and one called R which is used to determine if the servers in
Q are informed or not. If the algorithm is able to verify the secret using the shares in Q, it will return the secret.
However, if the algorithm is unable to verify the secret using Q, it will query the server, for which all responses
are checked, again for the currently stored value. In contrast, DepSky uses a different approach. It waits for more
than f correct responses or responses from N − f servers in the second if condition in the READRETURN event. If
it receives more than f correct and informed responses, it returns the value. If this is not the case but it receives
N − f responses, it will query all servers again for their currently stored value. This means that algorithm 3.4 will
repeatedly query fast servers until it receives enough responses, while DepSky will wait for N − f responses before
querying the servers again. Algorithm 3.4 could be optimized to not unnecessarily request fast servers repeatedly by
adapting the second if condition in its READRETURN by splitting the condition into two steps. First, the existence
of the set R can be checked and if it does not exist, nothing will be done. If it exists, the remaining conditions are
checked and if those are not met, all servers are queried again.
It should be noted that Bessani et al. [BCQ+13] do not mention whether DepSky-CA is conditionally or uncondi-
tionally secure. The security of the algorithm lies in four places. The file is encrypted and hashed, the metadata
including the hash and timestamp is signed and the encryption key is secret-shared. The encryption, the signature as
well as the secret sharing can be made unconditionally secure, but the hash cannot be made unconditionally secure.
Thus, an adversary with unlimited computational power could provide a faulty block with the same hash as the
correct one and thus prevent the reader from reconstructing the file. Hence, DepSky-CA is only conditionally secure.
The computational complexity of a write operation in DepSky-CA is O(N2), which includes N − f verifications of
the metadata signatures [O(N)], the generation of N shares [O(N2)] and the erasure-coding for N blocks [O(N2)].
All other operations, such as encrypting one file or signing one metadata file, do not depend on the number of servers
N . In contrast, the read operation in DepSky-CA has a computational complexity of O(N2), which includes N − f
verifications of signatures [O(N)], taking the maximum of N − f responses [O(N)], N − f hashes [O(N)], the
erasure-decoding of N blocks [O(N2)], and the reconstruction of the encryption key from N − f shares [O(N2)].
Furthermore, the space complexity of DepSky-CA grows with the number of writes, since each version is stored
separately, which could be formulated as a versioning feature from a user’s perspective, but is not a feature usually
required in distributed storage. While algorithm 3.4 is restricted to one file but could be easily adapted to support
multiple files.
In conclusion, DepSky is designed for a real-world application with the data units and versioning of files, while
algorithm 3.4 focuses on the theoretical aspect of a regular register. DepSky-CA has a lower computational
complexity but sacrifices security as it only provides conditional security. Given that the computational complexity
of both algorithm 3.4 and DepSky-CA is analyzed depending on the number of servers, N , it would be noteworthy
to quantitatively compare their complexity differences. This is of particular interest since DepSky was designed and
tested with four servers (N = 4) in mind and therefore, there might only be a small increase in computational cost
in exchange for added security through an unconditionally secure system. However, an experimental analysis falls
outside of the scope of this thesis.

5
Conclusion

This thesis presents the development of an approach for creating a verifiable secret sharing scheme with unconditional
security in a cloud-of-clouds model with N > 3f , which is optimal for the byzantine setting. Previous schemes
either do not support unconditional security or require N > 3f + 1. Our approach secret-shares an additional share
to have 2f + 2 shares for the verified reconstruction with only 2f + 1 participants, thus relaxing the N > 3f + 1
requirement down to N > 3f . Hence, the problem statement from section 3.2 and example 3.1 can now be solved
in a N > 3f model. Client R receives 3 = 2f + 1 responses, out of which f + 1 are correct and reconstructs the
additional share, resulting in f +2 correct shares and R can return v1. Figure 5.1.1 adapts figure 3.2.1 from example
3.1, such that the additional share is stored as well, and demonstrates that the correct value v1 can now be returned.

Figure 5.1.1: The additional share scheme

In order to utilize the cloud-of-clouds model, we modeled the behavior of a cloud service API in a modular way with
powerful properties. This modular structure serves as a foundation for future research in the cloud-of-clouds model
and can easily be relaxed to conditional security, if future research does not have such high security requirements.
We also successfully created a safe and regular register from our approach as well as their corresponding APIs,
that can be used in further algorithms. We provided thorough proofs of the code complexity, safety and regularity
of the registers and unconditional security of our algorithms. To improve the functionality of our SWMR regular
register, it could be transformed into MWMR regular register, such that all clients are allowed to write. Advancing

41

CHAPTER 5. CONCLUSION 42

the functionality even further, it could be developed into an MWMR atomic register, as Cachin et al. [CGR11]
have shown how a (1, N)-regular register can be first transformed into a (1, 1)-atomic register, then into a (1, N)-
atomic register and finally into a (N,N)-atomic register. We also discussed the identification of byzantine servers
and the impossibility of marking them without their knowledge with our requirements in a (1, N) register in the
cloud-of-clouds model.
An algorithm, that is unconditionally secure, is future-proof since it is mathematically shown, that no matter how
fast computers may become, the algorithm will never be compromise, as long as the assumptions hold. It does not
matter, what will get invented or developed, it is theoretically safe to be used forever. Our algorithms can easily
detect byzantine servers with a low computational overhead, and depending on the permission system used, their
permissions can be revoked. As we have shown, marking the byzantine servers, such that they can not notice it is
infeasible.

Bibliography

[ACKM06] ABRAHAM, Ittai ; CHOCKLER, Gregory V. ; KEIDAR, Idit ; MALKHI, Dahlia: Byzantine disk paxos:
optimal resilience with byzantine shared memory. In: Distributed Comput. 18 (2006), Nr. 5, 387–408.
http://dx.doi.org/10.1007/s00446-005-0151-6. – DOI 10.1007/s00446–005–0151–
6

[Ama22] AMAZON: AWS Service Terms. 2022. – https://aws.amazon.com/service-terms/
[Accessed: Oct. 2022]

[APW10] ABU-LIBDEH, Hussam ; PRINCEHOUSE, Lonnie ; WEATHERSPOON, Hakim: RACS: a case for
cloud storage diversity. In: HELLERSTEIN, Joseph M. (Hrsg.) ; CHAUDHURI, Surajit (Hrsg.) ;
ROSENBLUM, Mendel (Hrsg.): Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
2010, Indianapolis, Indiana, USA, June 10-11, 2010, ACM, 2010, 229–240

[BCQ+13] BESSANI, Alysson N. ; CORREIA, Miguel ; QUARESMA, Bruno ; ANDRÉ, Fernando ; SOUSA, Paulo:
DepSky: Dependable and Secure Storage in a Cloud-of-Clouds. In: ACM Trans. Storage 9 (2013), Nr.
4, 12. http://dx.doi.org/10.1145/2535929. – DOI 10.1145/2535929

[BJO08] BOWERS, Kevin D. ; JUELS, Ari ; OPREA, Alina: HAIL: A High-Availability and Integrity Layer for
Cloud Storage. In: IACR Cryptol. ePrint Arch. (2008), 489. http://eprint.iacr.org/2008/
489

[CGR11] CACHIN, Christian ; GUERRAOUI, Rachid ; RODRIGUES, Luı́s E. T.: Introduction to Reliable
and Secure Distributed Programming (2. ed.). Springer, 2011 https://doi.org/10.1007/
978-3-642-15260-3. – ISBN 978–3–642–15259–7

[CHLT14] CHEN, Henry C. H. ; HU, Yuchong ; LEE, Patrick P. C. ; TANG, Yang: NCCloud: A Network-Coding-
Based Storage System in a Cloud-of-Clouds. In: IEEE Trans. Computers 63 (2014), Nr. 1, 31–44.
http://dx.doi.org/10.1109/TC.2013.167. – DOI 10.1109/TC.2013.167

[CHV10] CACHIN, Christian ; HAAS, Robert ; VUKOLIC, Marko: Dependable storage in the intercloud / IBM
research. 2010 (3783). – Research Report

[CL02] CASTRO, Miguel ; LISKOV, Barbara: Practical byzantine fault tolerance and proactive recovery.
In: ACM Trans. Comput. Syst. 20 (2002), Nr. 4, 398–461. http://dx.doi.org/10.1145/
571637.571640. – DOI 10.1145/571637.571640

[Clo13] CLOUD SECURITY ALLIANCE: The Notorious Nine Cloud Computing Top Threats in 2013. 2013

[CT05] CACHIN, Christian ; TESSARO, Stefano: Asynchronous Verifiable Information Dispersal. In: FRAIG-
NIAUD, Pierre (Hrsg.): Distributed Computing, 19th International Conference, DISC 2005, Cracow,
Poland, September 26-29, 2005, Proceedings Bd. 3724, Springer, 2005 (Lecture Notes in Computer
Science), 503–504

[DH76] DIFFIE, Whitfield ; HELLMAN, Martin E.: New directions in cryptography. In: IEEE Trans. Inf.
Theory 22 (1976), Nr. 6, 644–654. http://dx.doi.org/10.1109/TIT.1976.1055638. –
DOI 10.1109/TIT.1976.1055638

[Dro22] DROPBOX: Privacy Policy - Dropbox. 2022. – https://www.dropbox.com/privacy [Ac-
cessed: Oct. 2022]

43

http://dx.doi.org/10.1007/s00446-005-0151-6
https://aws.amazon.com/service-terms/
http://dx.doi.org/10.1145/2535929
http://eprint.iacr.org/2008/489
http://eprint.iacr.org/2008/489
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
http://dx.doi.org/10.1109/TC.2013.167
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1109/TIT.1976.1055638
https://www.dropbox.com/privacy

BIBLIOGRAPHY 44

[Fel87] FELDMAN, Paul: A Practical Scheme for Non-interactive Verifiable Secret Sharing. In: 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987,
IEEE Computer Society, 1987, 427–437

[Gho11] GHODOSI, Hossein: Comments on Harn-Lin’s cheating detection scheme. In: Des. Codes Cryptogr.
60 (2011), Nr. 1, 63–66. http://dx.doi.org/10.1007/s10623-010-9416-6. – DOI
10.1007/s10623–010–9416–6

[Goo22] GOOGLE: Google Terms of Service - Privacy & Terms - Google. 2022. – https://policies.
google.com/terms?hl=en#toc-permission/ [Accessed: Oct. 2022]

[Har13] HARN, Lein: The Generalization of Harn-Lin’s Scheme on Cheater Detection and Identification. 2013

[HL09] HARN, Lein ; LIN, Changlu: Detection and identification of cheaters in (t , n) secret sharing
scheme. In: Des. Codes Cryptogr. 52 (2009), Nr. 1, 15–24. http://dx.doi.org/10.1007/
s10623-008-9265-8. – DOI 10.1007/s10623–008–9265–8

[HS08] HERLIHY, Maurice ; SHAVIT, Nir: The art of multiprocessor programming. Morgan Kaufmann, 2008.
– ISBN 978–0–12–370591–4

[KL14] KATZ, Jonathan ; LINDELL, Yehuda: Introduction to Modern Cryptography, Second Edition. CRC
Press, 2014. – ISBN 9781466570269

[Lam86] LAMPORT, Leslie: On Interprocess Communication. Part I: Basic Formalism. In: Distributed
Comput. 1 (1986), Nr. 2, 77–85. http://dx.doi.org/10.1007/BF01786227. – DOI
10.1007/BF01786227

[Mic22] MICROSOFT: Microsoft Services Agreement. 2022. – https://www.microsoft.com/en/
servicesagreement/ [Accessed: Oct. 2022]

[MOC+21] MENDES, Ricardo ; OLIVEIRA, Tiago ; COGO, Vinicius V. ; NEVES, Nuno ; BESSANI, Alysson:
Charon: A Secure Cloud-of-Clouds System for Storing and Sharing Big Data. In: IEEE Trans. Cloud
Comput. 9 (2021), Nr. 4, 1349–1361. http://dx.doi.org/10.1109/TCC.2019.2916856.
– DOI 10.1109/TCC.2019.2916856

[PP11] PADILHA, Ricardo ; PEDONE, Fernando: Belisarius: BFT Storage with Confidentiality. In: Proceedings
of The Tenth IEEE International Symposium on Networking Computing and Applications, NCA 2011,
August 25-27, 2011, Cambridge, Massachusetts, USA, IEEE Computer Society, 2011, 9–16

[RC11] ROCHA, Francisco ; CORREIA, Miguel: Lucy in the sky without diamonds: Stealing confidential data
in the cloud. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2011, S. 129–134

[Sha49] SHANNON, Claude E.: Communication theory of secrecy systems. In: Bell Syst. Tech. J. 28 (1949), Nr.
4, 656–715. http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x. – DOI
10.1002/j.1538–7305.1949.tb00928.x

[Sha79] SHAMIR, Adi: How to Share a Secret. In: Commun. ACM 22 (1979), Nr. 11, 612–613. http:
//dx.doi.org/10.1145/359168.359176. – DOI 10.1145/359168.359176

[WFZ+11] WADA, Hiroshi ; FEKETE, Alan D. ; ZHAO, Liang ; LEE, Kevin ; LIU, Anna: Data Consistency
Properties and the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspective. In: Fifth
Biennial Conference on Innovative Data Systems Research, CIDR 2011, Asilomar, CA, USA, January
9-12, 2011, Online Proceedings, www.cidrdb.org, 2011, 134–143

http://dx.doi.org/10.1007/s10623-010-9416-6
https://policies.google.com/terms?hl=en#toc-permission/
https://policies.google.com/terms?hl=en#toc-permission/
http://dx.doi.org/10.1007/s10623-008-9265-8
http://dx.doi.org/10.1007/s10623-008-9265-8
http://dx.doi.org/10.1007/BF01786227
https://www.microsoft.com/en/servicesagreement/
https://www.microsoft.com/en/servicesagreement/
http://dx.doi.org/10.1109/TCC.2019.2916856
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176

List of Figures

2.1.1 - 2.1.3 Secret sharing in a byzantine model . 7
2.3.1 Concurrency problem for f = 1 . 10
2.4.1 Overview of Belisarius (Figure by Padilha and Pedone [PP11]) 11
2.4.2 The combination of symmetric encryption, secret sharing and erasure codes in DepSky-CA (Figure

by Bessani et al. [BCQ+13]) . 12

3.1.1 The model with N = 4 and f = 1 and one client . 14
3.2.1 Problem illustration . 15
3.4.1 The schema of the API module . 18
3.4.2 Event flow across modules . 22
3.4.3 Roles of clients and servers . 22

5.1.1 The additional share scheme . 41

45

List of Modules

3.1 Secret Sharing Module . 17
3.2 Authenticated Link Module . 18
3.3 Encrypted Link Module . 19
3.4 Client-Server Module . 19
3.5 API Module . 20
3.6 Byzantine Safe Register Module . 21
3.7 Byzantine Regular Register Module . 21

46

List of Algorithms

3.1 Safe Register API . 24
3.2 Secret-Shared Safe Register . 25
3.3 Regular Register API . 28
3.4 Secret-Shared Regular Register . 29
4.1 DepSky-CA API . 37
4.2 DepSky-CA Algorithm . 38

47

	1 Introduction
	2 Related work
	2.1 Shamir's secret sharing
	2.1.1 Shamir's secret sharing in a byzantine model
	2.1.2 Verifiable secret sharing

	2.2 Conditional vs. unconditional security
	2.3 Concurrency in registers
	2.4 Existing systems
	2.4.1 Belisarius
	2.4.2 DepSky

	3 Byzantine register as a service
	3.1 Model
	3.2 Motivation
	3.3 Distributed additional share
	3.4 Modules
	3.4.1 Secret sharing module
	3.4.2 Communication between clients and servers
	3.4.3 Registers

	3.5 Algorithm
	3.5.1 Safe Register
	3.5.2 Regular Register

	3.6 Byzantine identification
	3.6.1 Marking cheaters without their knowledge

	4 Analysis
	4.1 Proofs
	4.1.1 APIs
	4.1.2 Registers
	4.1.3 Complexity
	4.1.4 Unconditional security

	4.2 Comparison to other systems
	4.2.1 Belisarius
	4.2.2 DepSky

	5 Conclusion

