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Abstract

This master thesis investigates the Balance Attack, an attack technique aimed at exploiting the
forkable nature of blockchains, with a specific focus on the Avalanche consensus protocol. The
research explores the theoretical aspects of the attack, highlighting former groundwork and the
original paper on the Balance Attack, analyzing its potential implications for network integrity
and security. Additionally, it provides an in-depth exploration of the Avalanche consensus pro-
tocol, a robust and decentralized consensus algorithm designed for blockchain networks. The
protocol’s key concepts, mechanisms, and algorithms are introduced and explained, shedding
light on its inner workings. Furthermore, the Avalanche blockchain, which is built upon the
Avalanche consensus protocol, is examined, highlighting its unique features and characteris-
tics. While attempts were made to implement the attack in a practical setting, challenges related
to blocking network traffic hindered the full realization of the implementation. Nonetheless, the
studied methods are presented and thoroughly examined in this thesis.
Through a comprehensive analysis of the attack’s technical aspects and limitations, this research
contributes to the understanding and advancement of secure blockchain systems. The findings
highlight the importance of robust security measures and offer insights into future research di-
rections for defending against such attacks.

"Through this research, we seek to inspire
Implementing measures that will never tire.

A more secure, resilient blockchain we shall see,
Fostering trust and a thriving crypto decree."

Keywords: Avalanche, Balance Attack, Blockchain, Bitcoin, Ethereum
Prof. Dr. Christian Cachin, Cryptology and Data Security (CRYPTO), Institute of Computer
Science, University Bern, Supervisor
Ignacio Amores-Sesar, Cryptology and Data Security (CRYPTO), Institute of Computer Sci-
ence, University Bern, Assistant
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Chapter 1
Introduction
Blockchains, cryptocurrencies, decentralized finances: These are subjects that captured signifi-
cant attention in recent years. The concept of distributed ledger technology was first introduced
in 2008 with the advent of Bitcoin by Satoshi Nakamoto [Nak08]. This groundbreaking inno-
vation paved the way for the development of numerous blockchain and consensus protocols,
each offering distinct approaches to consensus mechanisms and transaction verification. As the
blockchain ecosystem continues to evolve, it is crucial to explore and understand the diverse
landscape of blockchain technologies, their underlying principles, and their impact on various
industries. The hype surrounding new blockchain technology has driven over 1 trillion US dol-
lars of investment into cryptocurrencies, profoundly transforming the landscape of performing
transactions.1 As the DLT is a rather young field of research, there are still many (un)explored
vulnerabilities that have already led to attacks and scams with millions of dollars in damage.

In 2017, Natoli and Gramoli [NG17] introduced a novel attack scheme known as the Bal-
ance Attack. This attack leverages the inherent forkable nature of blockchains to either facilitate
double-spending attacks or indefinitely fork the entire network. The core principle behind this at-
tack is to partition the network into two distinct subgroups and prevent communication between
them. The original paper demonstrates the execution of the Balance Attack on the Ethereum
network, albeit requiring a communication blockade of at least 4 minutes to achieve success.
Consequently, the attack was deemed highly improbable in real-world scenarios, given the sig-
nificant challenge of sustaining such a prolonged communication lockdown.

Another Top-20 blockchain in terms of market capitalization is Avalanche which advertises
with a "very fast transaction verification and commitment time". With an average time to finality
until a transaction can be considered committed of under one second2 it is many times faster
than, for example, Ethereum (4 minutes) or Bitcoin (around 1 hour). Following the security
analysis by Amores-Sesar, Cachin, and Tedeschi [ACT22], the hypothesis arose about whether
the Balance Attack was feasible on the Avalanche network.

Based on the research papers "The Balance Attack or Why Forkable Blockchains are Ill-
Suited for Consortium" and "When is Spring coming? A Security Analysis of Avalanche Con-
sensus" this master thesis report will handle the following RESEARCH QUESTION:

Is the Balance Attack, as described by Natoli and Gramoli, feasible and viable on the
Avalanche network?

1https://coinmarketcap.com/ - July 21, 2023.
2https://avascan.info - July 21, 2023.
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Chapter 2
Strategy
Initially, this thesis addresses the fundamental questions regarding the underlying principles
and methodologies. Additionally, upcoming limitations and mitigations are discussed, as well
as potential opportunities that arise during the setup and execution phase.

2.1 Motivation
As previously discussed in Chapter 1, the cryptocurrency market and its related technolo-
gies have attracted significant investments. Consequently, the potential financial gains
from a successful attack on blockchain systems can be substantial, with losses reaching
millions of dollars. This situation is particularly concerning due to the relative novelty of
blockchain technology, which means that vulnerabilities and potential "backdoors" are
still being discovered and addressed.
The primary motivation behind this master thesis is to provide a comprehensive the-
oretical analysis of the Balance Attack within the Avalanche network. Although the
successful execution of the Balance Attack may not be feasible in practice, exploring its
theoretical aspects is valuable in understanding potential vulnerabilities and improving
the overall security of blockchain systems. By highlighting the importance of imple-
menting robust security measures and precautions, this research aims to foster a more
secure and resilient blockchain ecosystem.

2.2 Methodology
The initial step involves a thorough review of published papers and scientific works on
the Balance Attack, allowing for a deep understanding of its requirements and implica-
tions. Additionally, the implementation of the Avalanche consensus protocol is studied
to gain insights into the inner workings of this blockchain system.
To evaluate the potential effects of the Balance Attack on the Avalanche network, a lo-
cal instance is set up. The rationale behind the chosen setup is provided, along with a
description of important commands to initiate the network. Through this local instance
running on a virtual machine, various performance studies and investigations are con-
ducted to explore the hypothetical impact of the Balance Attack.

2
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The analysis focuses on assessing the possible consequences and the potential vulnera-
bilities that could arise in the Avalanche network. The evaluation considers factors such
as the number of malicious nodes in the network and the presence of faulty transactions.
By gathering and interpreting the results of these analyses, the study aims to provide
insights into the overall security and resilience of the Avalanche network in the face of
potential attacks.
Despite the inability to execute the Balance Attack, this master thesis aims to contribute
to the understanding of its theoretical implications on the Avalanche network. It provides
a comprehensive evaluation of the potential risks and vulnerabilities, thereby identifying
opportunities for enhancing the security measures and strengthening the resilience of the
Avalanche protocol.

2.3 Limitations, Mitigations, and Opportunities
The Limitations, Mitigations, and Opportunities Section provides an analysis of the con-
straints, potential remedies, and avenues for future research within the context of the
conducted study. It delves into the encountered limitations, proposes potential mitiga-
tions to address these limitations, and highlights the opportunities that emerge from the
findings. By exploring the limitations, considering strategies to mitigate them, and iden-
tifying areas for further exploration, a comprehensive assessment of the research scope
and potential implications is presented.

2.3.1 Limitations
Whereas having full control over the Avalanche network, including the source code,
which would provide extensive customization capabilities, it may not be feasible
within the scope of this study due to resource and expertise limitations. Further-
more, the goal is to create an emulation environment that closely resembles the actual
Avalanche network, achieving complete accuracy can be challenging. Variations in
network conditions, node behaviors, and external factors may introduce deviations
from the real-world network. To maintain a realistic representation, the source code
should remain as close as possible to the original implementation. This limitation
restricts the level of modifications that can be made, except for implementing adver-
sary and malicious nodes.
The Kollaps tool faced permission problems that rendered it unusable in the specific
circumstances of this research. This limitation prevented the utilization of Kollaps
for network emulation and required alternative approaches to be explored.

2.3.2 Mitigations
Despite the limitations, other tools and techniques can be explored to compensate
for the challenges faced. Alternative network emulation tools or custom implemen-
tations can be considered to achieve the desired level of control and accuracy over

3
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the Avalanche network.
To mitigate the limitations related to source code modifications, careful design of
test scenarios and configurations can be employed. By focusing on creating realistic
conditions within the constraints of the original code, meaningful insights can still
be obtained regarding the behavior and security of the Avalanche network.

2.3.3 Opportunities
The limitations encountered provide opportunities for future research and develop-
ment. Exploring and improving network emulation tools, like Kollaps, to address
permission problems and enhance customizability can enable more comprehensive
experiments and evaluations of blockchain network behaviors.
Despite the limitations, the study conducted using the available resources and tools
still provides valuable insights into the security and resilience of the Avalanche net-
work. The findings contribute to the understanding of potential vulnerabilities and
the development of robust countermeasures in real-world blockchain deployments.

4



Chapter 3
Preliminaries
A thorough exploration of the fundamental concepts that form the backbone of blockchains and
consensus protocols is presented. It commences with an overview of blockchains, emphasizing
their decentralized nature and robust security measures.
The focus then shifts to the Avalanche blockchain, which boasts a distinctive architecture and
innovative consensus protocols inspired by gossip algorithms. The chapter delves into the in-
tricacies of the Avalanche transaction validation framework, which employs a partially ordered
model to enhance efficiency and scalability.
Furthermore, this chapter delves into the exploration of the Balance Attack, a cunning strategy
that takes advantage of the forkable characteristics present in widely recognized blockchains like
Bitcoin and Ethereum. Through an in-depth analysis of the Proof-of-Concept project conducted
by Natoli and Gramoli, the chapter sheds light on the vulnerabilities that the Balance Attack
exposes.
By examining these critical subjects, readers shall gain valuable insights into the intricate dy-
namics among blockchains, consensus mechanisms, and potential security risks.

3.1 Blockchain - Distributed Ledger Technology
The blockchain, a type of Distributed Ledger Technology (DLT), enables multiple users
to collectively maintain a synchronized and shared database. A defining feature of this
technology is its decentralized nature, eliminating the need for a central authority to
verify transactions and other data recorded on the blockchain. Instead, participants in
the network collaboratively validate and maintain the integrity of the system.
Overall, blockchain technology provides a secure and transparent platform for recording
and verifying transactions. Its decentralized and immutable nature makes it particularly
suitable for applications requiring trust, transparency, and resilience to censorship or
unauthorized changes.

3.1.1 Key Components
Subsequently, an overview of the structural components of a blockchain is presented
along with brief explanations of their significance. These components form the foun-
dation of blockchain technology and are essential to its decentralized and secure na-
ture.

5
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Distributed Ledger
The distributed ledger is the fundamental database of a blockchain. Each network
node maintains a complete and synchronized copy of the ledger, ensuring its accuracy
and consistency. With its transparency and immutability, the ledger enables public
visibility and provides a guarantee of data integrity.

Blocks
Transaction and data within a blockchain are organized into blocks. Each block is
assigned a unique identifier called a hash, which helps maintain data integrity and
security. What makes the structure intriguing is the linkage between blocks. By con-
taining a reference to the previous block, a tree-like structure is effectively formed,
allowing for a chronological order of transactions, thereby ensuring total order, and
guaranteeing the consistency and immutability of the blockchain.
In most blockchains, like BitCoin or Ethereum, nodes agree upon a main chain within
the tree, however, this must not be the case for all blockchains, as it was the case for
Avalanche (Section 3.2).

Consensus Mechanism (Section 3.1.2)
In an untrustworthy environment, a consensus mechanism is employed to achieve
agreement among all nodes. Consensus algorithms such as Proof-of-Work or Proof-
of-Stake are utilized to validate the next block in the blockchain. These algorithms
ensure that nodes agree on the state of the blockchain and maintain its integrity.

Cryptography
Cryptographic algorithms like hash functions, digital signatures, and encryption tech-
niques are employed to ensure integrity, authenticity, and tamper resistance in block-
chain technology.

Peer-to-Peer Network
Blockchains are commonly established on a peer-to-peer network, where all nodes
possess equal rights and responsibilities.

3.1.2 Consensus and Consensus Mechanism [CGR11]
In an environment fraught with uncertainty and distrust, the deployment of a robust
consensus mechanism stands as a critical foundation for agreeing upon a common
value among the distributed nodes. Embracing sophisticated consensus algorithms
like Proof-of-Work or Proof-of-Stake, the validation of subsequent blocks within the
blockchain becomes a well-defined process. These meticulously designed algorithms
promote agreement among nodes, ensuring a consensus on the blockchain’s state and
safeguarding its integrity.

6
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Proof-of-Work Consensus Protocol

The most common and widely adopted consensus protocols in blockchain net-
works are Proof-of-Work-based (PoW) ones. During the validation process par-
ticipants, also known as miners, compete to solve complex mathematical puzzles,
hash functions, in order to validate the next block - thus adding new blocks to the
blockchain. The miners invest resources in solving these mathematical complex
puzzles, and the first to find the solution is rewarded with newly minted cryp-
tocurrency tokens. PoW is renowned for its security and resilience against ma-
licious attacks, as altering a block’s content would require an immense amount
of computational power. However, this consensus protocol requires a significant
amount of computational power, hence sparking concerns regarding its environ-
mental impact due to its energy-intensive nature.1 As blockchain technology
continues to evolve, alternative consensus mechanisms, like Proof-of-Stake, are
being explored to address these challenges.

Proof-of-Stake Consensus Protocol

Proof-of-Stake-based (PoS-based) consensus protocols are utilized in blockchain
networks as an alternative to Proof-of-Work. Participants of the blockchain net-
work can "stake" a number of cryptocurrency tokens they hold as collateral in
order to become a block validator. These can then create new blocks and validate
transactions based on their stake, with higher stakes resulting in a greater chance
of being chosen. Therefore, PoS eliminates the need for resource-intensive min-
ing activities and instead relies on a more efficient and environmentally friendly
approach. Nevertheless, concerns persist regarding centralization and the poten-
tial for malicious actors with substantial stakes to launch attacks, making them
crucial factors to consider during the design and implementation of PoS-based
blockchain systems.
The aforementioned Avalanche blockchain deploys the Snow consensus proto-
col. These types of consensus protocols implement a kind of PoS approach, as
the owners of validator nodes need to stake their tokens. However, they are not
built upon the traditional PoS approach as they rely on gossip algorithms to agree
upon a common state.

3.1.3 Security and Trust
The remarkable potential of blockchain in transforming data integrity and trust has
sparked significant attention toward its robust security features.
Immutability represents a prominent aspect of blockchain, ensuring that once data is
recorded on the blockchain, it becomes unalterable. Each block in the chain contains
a unique identifier, generated by a cryptographic hash function. This identifier relies
on the data within the block as well as the hash of the preceding block. Therefore,

1see https://www.coindesk.com/policy/2022/04/21/sweden-eu-discussed-bitcoin-proof-of-work-ban-report/.
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any tampering with the data would lead to a mismatch in the hash, immediately alert-
ing the network to the manipulation attempt.
Moreover, blockchains use further advanced cryptographic mechanisms to ensure
the confidentiality, integrity, and authenticity of data. For instance, the utilization of
pulbic-key cryptography provides security for transactions and ensures the verifica-
tion of participants’ identities.
Additionally, the decentralized nature of blockchain, with its distributed network of
nodes, enhances security by eliminating single points of failure and reducing the sus-
ceptibility to attacks.
Collectively, these security features render the blockchain an inherently robust and
tamper-resistant technology. These attributes instill confidence and trust in a wide
array of applications, spanning from financial transactions to supply chain manage-
ment and beyond.

3.1.4 Scalability
Scalability and performance pose significant challenges for blockchain systems as
the user base and transaction volumes are steadily increasing.
The primary obstacle is the inherent trade-off between decentralization, security, and
scalability - the so-called "Blockchain-Trilemma".2 In traditional blockchains like
Bitcoin, the obligation for each node to validate and store every transaction leads
to limited throughput capacity, causing congestion, increased transaction processing
times, and diminished system performance.
To overcome these challenges, a multitude of scaling solutions have emerged:

• Layer 2 protocols, such as the "Lightning Network" [PD16] facilitate off-chain
transactions, alleviating the load on the primary blockchain. However, protocols
of this nature compromise decentralization and security to enhance speed and
users may be required to use multiple accounts therefore needing to stake more
money in order to be able to take part in the validation process.

• Sharding [WSNH19] divides the blockchain into smaller partitions, or shards,
to process transactions in parallel. This approach introduces complexity to the
system, necessitating a meticulous implementation of an appropriate sharded
database architecture. Otherwise, flawed implementations can readily result in
performance degradation and data loss.

• Innovative consensus algorithms, such as Directed Acyclic Graphs (utilized in
Avalanche) and Byzantine Fault Tolerance (BFT), bolster scalability while up-
holding stringent security measures.

As blockchain technology continues to evolve, tackling scalability, security, and per-
formance concerns remains a vital area of focus in order to fully unlock the potential
of blockchain across diverse sectors, including finance, supply chain management,
and decentralized applications.

2first introduced in 2014 by Ethereum co-founder Vitalik Buterin - https://coinmarketcap.com/

alexandria/glossary/blockchain-trilemma.
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3.2 Avalanche3

Avalanche distinguishes itself from other blockchain protocols, such as Bitcoin or Ether-
eum, by offering exceptional scalability and a favorable ratio of throughput to energy
consumption. As of July 21, 2023, its AVAX token is ranked 17th in terms of market
capitalization worldwide, with a value of over 4.5 billion US dollars.4
The underlying consensus protocol of Avalanche belongs to the Snow family, which
achieves consensus through iterative random sampling of staked validator nodes within
the network. This unique approach enables a remarkably short block creation time of
less than 1 second and a potential throughput of up to 4′500 transactions per second.
As of July 21, 2023, the current block creation time is approx. 2 seconds with a daily
transaction throughput of 2 million transactions.5 Furthermore, Avalanche adopts a di-
rected acyclic graph (DAG)6 structure instead of a traditional chain, enabling parallel
processing and significantly boosting the potential throughput. This innovative approach
addresses key challenges in traditional blockchains, such as scalability and throughput,
while maintaining robust security guarantees and decentralized principles.
To establish consensus, Avalanche adopts a Proof-of-Stake (PoS) mechanism, where
individuals can become validators by staking a minimum of 2′000 AVAX tokens (equiv-
alent to approximately 28′000 US dollars). The Primary Network currently boasts over
1′200 active validators, as of the latest available data.7

3.2.1 Architecture
Avalanche is built up of three separate blockchains: Exchange Chain (X-Chain),
Platform Chain (P-Chain), and Contract Chain (C-Chain). These are validated
and secured by the Primary Network, which is the overlaying network containing all
members.
The C-Chain handles the creation and execution of EVM Contracts and other Smart
Contracts and also functions as an enabler for using NFTs, DApps, and the use of
other tokens, like the ERC20 Ethereum token, in the Avalanche network. As this
blockchain is an instance of the EVM it additionally enables the use of the Solidity
programming language, native to Ethereum.
The P-Chain is used to coordinate validators and controls the creation, deletion, and
maintenance of platform primitives, like subnets, which are separate and distinct
blockchain networks operating within the larger Avalanche platform containing their
own set of validators, consensus rules, and state.
Both the Contract and Platform Chain are implementing the Snowman consensus
protocol which is different from the Avalanche consensus protocol as it provides to-
tal order. The process of the Snowman consensus protocol is not explained further

3retrieved from https://docs.avax.network/.
4https://coinmarketcap.com/.
5https://avascan.info/ - July 21, 2023.
6This specific choice has been deprecated in the Avalanche version v1.10.0 on April 4, 2023.
7see Footnote 5.
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in this master thesis.
The X-Chain administers the creation and trade of digital assets and governs all trans-
actions according to a set of predefined rules. It is an instance of the Avalanche
Virtual Machine (AVM) hence implementing the Avalanche consensus protocol (Sec-
tion 3.2.2).

3.2.2 Consensus Protocol [TYS+19]
In order to achieve transaction validation and consensus on a common state of the
blockchain, Avalanche employs the Snow consensus protocol, which is inspired by
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Figure 3.1
Transaction Verification in Avalanche

gossip algorithms. Unlike tra-
ditional blockchains that often
provide a total order of trans-
actions, this consensus protocol
in Avalanche only partially or-
ders transactions. However, the
causality of transactions is still
maintained. When a node, such
as node 𝑢 in this example, ob-
serves a new transaction 𝑇 , it
sends queries to a set of k nodes
asking if they also know about
transaction 𝑇 (Red arrows in Fig-
ure 3.1). Each node responds with

its "Virtuous Frontier" (VF(𝑖)), which is a randomly selected set of non-conflicting
leaf nodes that the node is aware of. Upon receiving the response, node U checks
if transaction 𝑇 is included in the VF.
For simplicity reasons, 𝑇 ∈ VF(𝑖) ∨
∃𝑑 ∈ desc(𝑇 )8 ∶ 𝑑 ∈ VF(𝑖) is con-
sidered to be a value of 1 and 𝑇 ∉
VF(𝑖) ∧ ∄𝑑 ∈ desc(𝑇 ) ∶ 𝑑 ∈ VF(𝑖)
as 0. If the number of successful re-
sponses exceeds a predefined thresh-
old value 𝛼, the counter corresponding
to that transaction is set to 1. Addi-
tionally, the counters of its ancestors
are incremented by 1. For example,
when 𝑐𝑡𝑟𝐴 is increased, 𝑐𝑡𝑟𝐵 is also
increased. If the check is unsuccess-
ful, meaning ∑

𝑖(𝑇 ∈ VF(𝑖)) < 𝛼, the
counter is reset to 0. Once the counter

𝐴
𝑐𝑡𝑟𝐴 = 2

𝐵
𝑐𝑡𝑟𝐵 = 4

𝐶
𝑐𝑡𝑟𝐶 = 1

𝐷
𝑐𝑡𝑟𝐷 = 0

Figure 3.2
DAG in an Avalanche Network

exceeds the threshold value 𝛽1, and 𝑇 is the only transaction in its conflict set (high-
8desc(T) contains each descendant of T
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lighted in light red in Figure 3.2), 𝑇 is committed. This applies to transactions 𝐴
and 𝐵 in the diagram. Otherwise, if 𝑇 is part of any conflict set (e.g., nodes 𝐶 or
𝐷), it is confirmed once its counter exceeds the threshold value of 𝛽2. It is important
to note that only one transaction can be committed from a conflict set. Therefore,
if transaction 𝐶 is committed, transaction 𝐷 can never be. Conflict sets can also
overlap, while the rule of allowing only one committed transaction per conflict set
still applies. Transactions that are not part of a conflict set with a previously com-
mitted transaction can be re-polled at any time, provided that no new transaction or
no-op transaction is present. The process of re-polling is triggered when the primary
voting process fails to achieve a strong consensus on a particular transaction set. It
allows the network to continuously try to reach a definitive consensus on conflicting
transactions by gathering new votes regarding these specific transactions that were
in conflict.
A detailed pseudo-code implementation of the algorithm can be found in Appendix A.

3.3 The Balance Attack [NG17]
Due to miners working concurrently on creating the next block, different nodes can con-
tain varying states of the blockchain. A fork occurs when nodes fail to reach a consensus
on the common state of the blockchain. In order to resolve such divergences and estab-
lish a unified blockchain state, several algorithms have been introduced. This chapter
introduces two of these algorithms (Appendix B).

1. Nakamoto’s approach (Bitcoin) (Appendix B, Algorithm B.1)
In Bitcoin, the selection of the longest branch as the continuation of the blockchain
results in the discarding of numerous blocks that do not belong to that specific
branch. This approach, however, leads to significant wastage of blocks and conse-
quently results in noteworthy energy inefficiency.

2. GHOST protocol (Ethereum) (Appendix B, Algorithm B.2)
Nodes in pre-PoS Ethereum (before September 2022) utilized a modified version of
the GHOST protocol to consistently choose the root of the heaviest subtree, ensur-
ing the construction of a unified branch. This approach mitigates wastefulness by
increasing the likelihood of selecting the common ancestor when sibling blocks are
present. In contrast to the algorithm employed in the Bitcoin network, Ethereum’s
approach is less wasteful.

In Figure 3.4 the difference in choice is depicted. Nakamoto’s consensus protocol would
decide upon the grey branch, discarding the heavier left tree, whereas the GHOST protocol
chooses the blue branch to be the continuation of the main chain.

In 2017, Natoli and Gramoli introduced the Balance Attack concept, utilizing the
Ethereum network and its variant of the GHOST algorithm as an example to exploit the
vulnerabilities of a forkable blockchain. The underlying idea involves manipulating and
delaying the communication between two (or more) subgroups of nodes. The subgroups
are chosen to have similar mining power so that the block generation time is approx. equal

11
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between these. Despite blocking communication between the subgroups, the adversary
retains the ability to interact with all nodes across the subgroups. Consequently, the
adversary can broadcast one transaction, i.e. sending money to himself (𝑇1), to one
subgroup and another transaction, i.e. buying something (𝑇2) with the same funds, to the
other subgroup, therefore performing a double spend. Depending on which consensus
protocol (Bitcoin or GHOST) is used the Balance Attack is performed differently:

3.3.1 Exploiting Forkable Blockchain with Nakamoto Consensus
Given the block generation time of Bitcoin of approx. 10 minutes, the occurrence
of forks is rather infrequent, hence in Figure 3.3 possible forks within the different
subchains can be disregarded. After disabling communication and broadcasting both
transactions to their respective subgroups, the adversary is helping one group that
received the preferred transaction, in this example subgroup SG1, in mining. For a
block to be considered committed, it must be at least six blocks deep within its chain.

CHAINSUBGROUP SG1

ADVERSARY
is helping subgroup 1 with mining

SUBGROUP SG2

⋮

Point Xof Attack
Communication disabled

Cut-Off Point
Communication enabled

longer
⇒ confirmed

shorter
⇒ discarded

T1
T2

𝑡

Figure 3.3: Balance Attack Scheme (BITCOIN)
The adversary blocks the communication be-
tween 2 subgroups of equal hash power. By
introducing conflicting transactions to the sub-
groups, a fork is created intentionally. The adver-
sary influences the decision-making of the fork-
resolving algorithm by assisting one subgroup in

mining its respective branch. Once both conflict-
ing transactions can be considered committed the
communication is restored and the longer branch,
which benefited from the adversary’s mining as-
sistance, is recognized as the continuation of the
chain.
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Therefore, the communication between both subgroups needs to be delayed for a
minimum of two hours to ensure the commitment of both blocks containing the re-
spective transactions (𝑇1 and 𝑇2).Having more hash power, as the adversary supports SG1, that subchain will even-
tually become longer than the chain of SG2. Once transactions 𝑇1 and 𝑇2 are con-
sidered committed within their respective chains, the adversary can inform the third
party involved in transaction 𝑇2 that the transaction has been successfully validated
and executed. However, upon reenabling communication between both subgroups,
the consensus protocol will select the longer chain of SG1 as the continuation of the
main chain. As a result, the chain of SG2, along with transaction 𝑇2, is discarded.
Therefore, the adversary gains the benefit of the transaction without having to pay
for it in the end.

3.3.2 Exploiting Forkable Blockchain with GHOST Consensus
In Ethereum, the block generation time is significantly shorter compared to Bitcoin,
typically ranging from 10 to 20 seconds. As a result, the occurrence of forks is
much more common. As previously mentioned the Bitcoin approach to resolving
forks becomes energy-inefficient when multiple forks occur. Therefore, Ethereum
implemented a variant of the GHOST protocol [SZ15] that considers the number of
descendants as a criterion for selecting the next block in the chain. This means that
newly mined blocks influence the probability of their ancestors being chosen.
Similar to the Balance Attack in a Bitcoin network, the adversary assists one sub-
group with mining to make the particular subtree "heavier", thereby influencing the
consensus protocol to choose the preferred block to be the next one in the chain.
However, another more intricate and impactful approach to performing the Balance
Attack exists, resulting in the fork being unable to resolve [BKT+19]:
After broadcasting the transactions and disabling communication, the adversary ac-
quires a copy of both subtrees and starts mining locally on two separate chains: one
for subgroup SG1 and one for subgroup SG2. However, these newly mined blocks
are not released yet. With both subgroups having an equal amount of hash power,
each subtree grows at an equal pace, resulting in both roots of the respective subtrees
being approximately equally weighted. Shortly before enabling communication, the
adversary makes sure that both subtrees have the same number of blocks. If there is
a difference in weight, the adversary releases additional blocks from its own "inven-
tory" to balance the subtrees. For instance, in Figure 3.4, the block containing 𝑇2 has
one fewer descendant than the block with 𝑇1. In this case, the adversary would re-
lease a pre-mined descendant of the block with 𝑇2 (Red areas) to equalize the weights
of the subtrees before enabling communication. With communication enabled, the
consensus protocol attempts to select one branch of the fork. However, since both
subtrees have equal weight, the protocol cannot reach a decision, resulting in the per-
sistence of the fork. The adversary ensures that the weight of both subtrees remains
equal by releasing additional blocks whenever there is a discrepancy. This prevents
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the fork from being resolved, as well as successfully performing a double-spending
attack as both 𝑇1 and 𝑇2 are eventually committed.

CHAINSUBGROUP SG1

ADVERSARY
is mining locally on a local copy
of the blockchain

SUBGROUP SG2

⋮

⋮ ⋮

T1 T2

Point Xof Attack
Communication disabled

Cut-Off Point
Communication enabled

𝑡

Figure 3.4: Balance Attack Scheme (ETHEREUM/GHOST)
Similar to the previous example, the creation of a
fork is deliberately forced. However, in this case,
the adversary obtains copies of both forks and
continues local mining without releasing blocks.
Before reenabling communication, the adversary
ensures that both forks are equally weighted. If
the weights are unequal, pre-mined blocks are re-

leased to equalize the subtrees. By strategically
releasing blocks, the fork can persist indefinitely.
The highlighted sections in blue and gray demon-
strate the difference in chain-continuation selec-
tion. Nakamoto’s algorithm favors the gray chain
as the continuation of the main chain, while the
GHOST protocol selects the blue chain.

Additionally, in contrast to Bitcoin, there is no need for prolonged communication
blocking. In Ethereum, for a transaction to be deemed committed, the block contain-
ing it only requires a minimum of 11 descendants. With the shorter block generation
time in Ethereum, a transaction can typically be considered committed after approx-
imately 4 minutes.
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Chapter 4
Setup of the Avalanche Network
To execute the Balance Attack on the Avalanche network, a local instance is established on
a university server. The developers offer two primary methods for creating such an instance.
However, it is important to note the limitations associated with each approach. In the subsequent
sections, these limitations will be highlighted, and a step-by-step demonstration of creating a
local instance will be provided.

4.1 Setup Options
Performing a successful Balance Attack on a blockchain network necessitates a degree
of control over the network. Specifically, the adversary must be able to manipulate the
communication flow among all nodes to partition the network into distinct subgroups.
However, it is crucial that the implementation closely resembles the real network to en-
sure that the findings and conclusions apply to practical scenarios.

4.1.1 Avalanche-CLI1

Avalanche offers a command line tool specifically designed for facilitating the setup
of subnets in order to support testing and development activities. This tool provides
developers with a convenient way to configure and deploy subnets, enabling them
to experiment, evaluate, and refine their applications in the Avalanche ecosystem.
However, it is important to note that this approach is limited to simulating an honest
version of the Avalanche network. The configuration options available in the pro-
vided config file allow for small setup changes to the nodes, but they do not enable
the creation of malicious nodes, which is a key aspect of this work. Additionally,
the number of nodes in a local network is capped at 5, which restricts the scalability
and diversity of the network. To increase the number of nodes and incorporate val-
idators, the subnet must be deployed on the Mainnet or the Fuji network, providing
a more extensive and realistic environment for testing and experimentation. As a
result, this technique was deemed unsuitable for implementing the Balance Attack.
However, it proved to be a valuable resource for gaining insights into the workings of
the Avalanche network and understanding the interconnectedness of its components.

1https://github.com/ava-labs/avalanche-cli.
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More detailed information on Avalanche-CLI can be accessed at https://docs.
avax.network/subnets/create-a-local-subnet and in Appendix C.

4.1.2 AvalancheGo2

For setting up a local Avalanche test network the source code is provided on GitHub.
The version used in testing is v1.7.4 as problems occurred with later versions in that
referenced Git repositories were not (publicly) available.3
Nevertheless, AvalancheGo provides a high scale of customizability, as well as the
ability to alter the behavior of nodes and introduction of malicious nodes into the
network. Furthermore, all information about the network, like transaction status, is
publicly accessible and can hence be requested by any adversary.

4.2 Setup Commands - AvalancheGo
The coordination of the network in the local Avalanche instance involves the execution of
lengthy curl-commands for initializing nodes, users, and transactions. To streamline this
process, Python scripts were employed. These scripts, originally developed by Enrico
Tedeschi, during the work on "When is Spring coming? A Security Analysis of Avalanche
Consensus" [ACT22], were further modified and adapted for the purposes of this master
thesis. The upcoming paragraphs provide a detailed explanation of how these scripts can
be utilized to establish a local Avalanche network instance.
First some changes in the .gitconfig must be made in order to run the Go source code:

[url "git@github.com:"]

insteadOf = git://github.com/

insteadOf = https://github.com/

or a Git environment variable must be set:
>> export GIT_TERMINAL_PROMPT=1

OR
>> export GOPRIVATE=github.com/{organization}/*

Initiating Nodes
>> python3 main.py -r [n]

Creates n nodes - default 5 - on 127.0.0.1 starting with port 9650. It is possible
to add nodes after initialization. Due to limitations in the number of ports it is
not possible to create a network with more than 50 nodes.

2https://github.com/ava-labs/avalanchego.
3in particular avalanchego-operator for github.com/ava-labs/avalanche-network-runner@v1.0.6.
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Add Nodes
>> python3 main.py -a [n]

Initializes n (default 1) nodes and adds them to the topology.

Add Users to Nodes
>> python3 main.py -c usr c k [n]

When creating users a particular node can be specified on which the users should
be added. Otherwise, the algorithm cycles over all available nodes and creates k
users.

Create X-Chain Address for each User
>> python3 main.py -c adr u

Must be executed for each user in order to be able to execute transactions (not yet
automated).

Add Validator to Node / Make User a Validator
>> python3 main.py -p v [u, n]

Makes user u, or the algorithm chooses a random user - usually the first one
added - of node n, a validator with a corresponding P-address. This validator is
also initiated with a predefined number of tokens. If no argument is given the
algorithm will add a validator for each active node.
!user6 must be a validator as it is used to airdrop funds to all users in the network!

"Airdrop" Funds
>> python3 main.py -p r [x]

OR
>> python3 main.py -c add u [a]

The first command airdrops x tokens to each X-Chain address. The second adds
a tokens to user u. For both commands the default amount of tokens airdropped
is 100’000’000.
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Delete Users
>> python3 main.py -d [n] [u]

OR
>> python3 main.py -c usr d k [n]

Users can be deleted individually by specifying the node (n) and the user (u). If
the operation -d is called without arguments duplicated users are deleted. Other-
wise, a similar call as creating users can be made and k users are deleted either
from one specified node n or cycling over all users.

Visualization of the network’s state
Network Overview

In order to get a printout overview of the
current state of the network there are two
commands:
>> python3 main.py -c lst

OR
>> python3 main.py -c info

The first one prints out all active nodes
and their corresponding users. The sec-
ond operation gives a more detailed view
of the network, displaying the total num-
ber of nodes and users, how many to-
kens are in circulation, and which user
has the most and the fewest amount of
tokens (Figure 4.1). Figure 4.1: Output of "-c info"

User Overview

>> python3 main.py -v wlt

This command displays the individ-
ual information of each user, like X-
Chain address and token balances.
A user with a P-Chain address is a
validator of their node. Figure 4.2: Output of "-v wlt"
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Transaction Overview
In order to get the list of all known transac-
tions and their statuses the following com-
mand can be used:
>> python3 main.py -v t [v]

By changing the optional argument [v] to
1 or 2 additional information for exam-
ple transaction id or time of execution can
be displayed as well.whitewhitewhitewhite
The status of each transaction can be either
ACCEPTED, PENDING, or UNKNOWN. Figure 4.3: Output of "-v t 0"

Handling of Transactions
Single Transaction

>> python3 main.py -s a r s [m]

By specifying the amount (a), a receiver (r), a sender (s), and a possible
message (m) a simple transaction can be specified and is performed by the
avalanche network. A fee of 1’000’000 AVAX is deducted from the sender’s
token balance. If the sender does not have enough AVAX tokens in its wallet
the transaction is rejected and the algorithm will try again to carry out the
transaction at a later point in time.

Automatic Generation of Transactions
It is also possible to define an interval in which several transactions are carried
out automatically by choosing two random users and performing a transaction
between these parties. As the balance of the sender is checked before the
amount sent is specified it is ensured that enough tokens are present.
>> python3 main.py -i [s] [n] [c]

The argument s (∈ ℤ) defines the length of each time interval in seconds,
n the number of transactions created within each time interval, and c can be
defined to be TRUE such that these transactions can be conflicting with each
other. If nothing is specified, the algorithm will create one non-conflicting
transaction every 60 seconds.
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Chapter 5
Proof-of-Concept
Next, an in-depth analysis of the technical aspects of the Balance Attack on Avalanche is pro-
vided. Additionally, various methods of blocking or delaying communication will be explored,
along with an examination of their respective advantages and disadvantages.

5.1 Strategy to Perform the Balance Attack on Avalanche
In order to break the Avalanche consensus protocol, the idea by Natoli and Gramoli
[NG17] is taken up and continued. As in the original strategy the communication be-
tween two subgroups is blocked/delayed, however, as Avalanche is using a PoS consensus
scheme, these groups are not divided based on equal hashing power but the sheer number
of validators. Furthermore, malicious validators are used to impact the decision-making
of the network.
Similar to the Balance Attack description in Section 3.3, the adversary blocks the com-
munication between two subgroups (SG1 and SG2) that have an equal number of valida-
tor nodes. Options to block communication between nodes are discussed in Section 5.2.
However, the adversary or a group of malicious validators that are associated with the
attacker can communicate across both subgroups without hindrance. After disabling
communication, each subgroup is sent a conflicting transaction, 𝑇1 and 𝑇2, generated
by the adversary. For reasons of consistency, in this example, 𝑇1 is broadcasted to sub-
group SG1 and 𝑇2 to subgroup SG2, respectively. During the sampling process, nodes of
both subgroups can also sample the adversary. In order to not leak any information of
the other transaction a malicious node responds according to the following pseudocode
(Algorithm 5.1). This algorithm overwrites the honest response behavior of a node, de-
scribed in lines 51-54 in Appendix A. Furthermore, the following assumptions are made:

1. A malicious validator  can determine the subgroup a request comes from
2. All malicious validators know both transactions 𝑇1 and 𝑇2

3. The malicious validators can behave honestly until the attack starts/the conflicting
transactions have been released

4. During the attack, malicious nodes do not initiate samplings of the network
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Algorithm 5.1 Respond Generation of malicious validator 
1: upon receiving message [QUERY, 𝑇 ] from party 𝑣 do:
2: if 𝑣 ∈ SG1 then: //  can determine the subgroup 𝑣 belongs to
3: ∗ ←  ∪ 𝑇1
4: else:
5: ∗ ←  ∪ 𝑇2
6: send message [VOTE, , 𝑇 ,∗] to party 𝑣

In short, depending on which subgroup is requesting the VF of a faulty validator the
respective transaction - 𝑇1 for SG1 and 𝑇2 for SG2 - will be part of it to support the
decision-making. Notably, the "Virtuous Frontier" of malicious nodes is not updated
during the attack to simplify the implementation.
Eventually, both transactions are committed in their respective subgroups hence break-
ing the consensus protocol as 𝑇1 and 𝑇2 are accepted although they are part of the same
conflict set and a successful double-spending attack is performed.

5.2 Blocking/Delaying Communication between Nodes
A vital requirement for executing a successful Balance Attack is the immensely sig-
nificant topic of blocking or delaying communications between nodes. Introduced and
explored are three distinct possible methods to block or delay communication between
Avalanche nodes. By delving into these techniques, valuable insights are gained into the
intricacies of impeding network communication effectively. Furthermore, this section
evaluates the practicality and limitations of each method, providing valuable insights
into their viability and implications.

5.2.1 Kollaps1 - Decentralized Container Based Network Emulator
[GNS+20]

The innovative tool Kollaps enables the emulation and simulation of complex net-
work environments by leveraging containerization technology. Hence, it becomes
possible to create and manage decentralized network topologies, facilitating the eval-
uation and analysis of network behavior under predefined configurations. By pro-
viding a decentralized and scalable network emulation solution, it can be useful to
examine the Balance Attack under different circumstances.
In the following paragraphs, the inner workings of Kollaps are explored, including
detailed setup steps and a comprehensive assessment of its potential use cases within
the context of this master thesis.

1https://github.com/miguelammatos/Kollaps.
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Architecture

The architecture of Kollaps is designed to provide a decentralized and container-
based network emulation environment. It consists of multiple components work-
ing together to simulate network conditions and behaviors. At its core, Kollaps
makes use of containerization technology, such as Docker or Kubernetes, to en-
capsulate network nodes within isolated environments. These nodes can repre-
sent different entities, such as hosts, routers, or switches, and their interactions
are orchestrated through a distributed control plane. The control plane enables
the management and coordination of network behaviors, such as latency, packet
loss, and bandwidth limitations. By distributing the emulation across multiple
containers, Kollaps achieves scalability and flexibility, allowing users to create
complex network topologies and replicate real-world scenarios. Furthermore,
dynamic events like node joining and leaving can be incorporated into the emu-
lation, enabling realistic network simulations and expanded research possibilities.
However, these modifications must be defined during the setup process as they
are precomputed offline. Additionally, Kollaps provides a convenient built-in
dashboard feature that allows users to monitor and observe the status of services,
track ongoing traffic, and stay informed about dynamic events occurring within
the network emulation environment.

Setup and Deployment Steps

Kollaps can be easily installed by cloning the respective project from GitHub2 by
for example using the following command:
>> git clone --branch master --depth 1 --recurse-submodules

https://github.com/miguelammatos/Kollaps.git

The execution of this command guarantees the cloning of all necessary submod-
ules. Also included in the project, an example topology is provided in order to
ensure that the installation of Kollaps was successful and allows users to verify
the proper functioning of the tool.
By defining node configurations and customizing the network behavior a topol-
ogy can be designed to accommodate the deployment of AvalancheGO nodes.
This enables the simulation of realistic network scenarios, including the imple-
mentation of the Balance Attack by selectively blocking communication between
distinct subgroups of nodes through dynamic events.
Further details for setting up and deploying Kollaps can be found on the project’s
GitHub page (https://github.com/miguelammatos/Kollaps).

2https://github.com/miguelammatos/Kollaps.
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Conclusion

In conclusion, the exploration of the Kollaps - Decentralized Container Based
Network Emulator has revealed its suitability as a tool for network emulation in
cases requiring customizability and scalability. The ability to simulate dynamic
events and observe network behavior through the built-in dashboard offers valu-
able insights for evaluating complex network scenarios.
However, despite the potential benefits, the deployment of Kollaps in combi-
nation with AvalancheGO was hindered by permission issues, limiting the fea-
sibility of utilizing this specific combination for the intended purposes of this
master thesis. Nonetheless, the evaluation of Kollaps underscores its potential as
a powerful tool for network emulation in various other research and development
contexts.

5.2.2 Uncomplicated Firewall3

The subsequent introduction of the Uncomplicated Firewall (UFW) and its integra-
tion with IP Tables aims to equip readers with a foundational understanding of UFW
and IP Tables by introducing some of the most commonly used command-line oper-
ations to configure firewall rules.

UFW and IP Tables

UFW, a user-friendly command-line tool, offers simplified management of fire-
wall rules in Linux systems. By leveraging the power of IP Tables, UFW enables
users to control incoming and outgoing network traffic effectively.
IP Tables, on the other hand, is a powerful command-line utility in Linux systems
that allows for fine-grained control over network packet filtering and network ad-
dress translation.

Commands to Manage IP Tables

Essential for the use in VMs:

>> sudo ufw allow ssh

OR
>> sudo ufw allow 22

If the tool is used on a Virtual Machine - as was done in this master thesis
- the firewall must allow the ssh connection otherwise the communication is
blocked and the connection disabled.

3https://www.linode.com/docs/guides/configure-firewall-with-ufw/.
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Enable/Disable Firewall:

>> sudo ufw enable|disable

Set Default Rules for IP Tables:

>> sudo ufw default allow|deny|reject incoming|outgoing

Sets the default response for incoming and outgoing connections is a critical
step in firewall configuration. It is important to note that using the "deny" or
"reject" rules without proper consideration can potentially lock the user out of
the associated Linode. Therefore, it is crucial to ensure that essential services
such as SSH, TCP, and UDP connections have been appropriately configured
to be allowed before enabling the firewall. Taking these precautions helps
prevent unintended access restrictions and ensures the continued accessibility
of necessary services.

Add Entry to IP Tables:

>> sudo ufw allow from 127.0.0.1 to any port 9650

In addition to permitting or denying communication to specific ports, UFW
offers support for more advanced configurations involving pairs of IP ad-
dresses or subnets, and a IP address, subnet, or port. In the provided example,
any message originating from the IP address 127.0.0.1 and received at port
9650 is allowed.

Display All Rules:

>> sudo ufw status [verbose/numbered]

This instruction shows a list of all rules established in UFW, regardless of
whether it is active or not.

Delete Rule:

>> sudo ufw delete [rule-id]

Executing this instruction allows the targeted removal of a specific rule from
the UFW configurations. The rule can be either identified with its rule ID,
obtainable from the UFW status block, or its respective service name, such
as "allow 80" for all HTTP traffic, as an example.
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Logging:

>> sudo ufw logging on low|medium|high

Advantages and Disadvantages

UFW and IP Tables offer several advantages for firewall management. These
include robust firewall capabilities that provide a strong defense against unau-
thorized access and security threats. The customizable rule configuration allows
for precise control over network traffic based on various criteria. With a user-
friendly interface, UFW simplifies the configuration and management of firewall
rules, making it accessible to users with limited networking expertise. Being in-
tegrated into Linux systems ensures compatibility and seamless integration with
existing infrastructure. Additionally, UFW and IP Tables provide logging and
monitoring capabilities for effective network traffic analysis and troubleshoot-
ing.
An inherent limitation, particularly relevant to this master thesis, is the fact that
nodes deployed by AvalancheGO are assigned different ports on the same IP ad-
dress. UFW, however, does not provide the flexibility to fine-tune communication
between two specific ports. Compounding the issue, the UFW documentation ex-
plicitly states that any IP Table rule specified does not apply to Docker containers.
Consequently, employing UFW to block communication between Avalanche
nodes becomes impractical, as it lacks the capability to block communication
between two specific ports within a Docker container.

Digression: Avalanche Network across Multiple Virtual Machines

Given that UFW is unable to block Port-to-Port communication, an alternative
approach was pursued, involving the deployment of the Avalanche
network across multiple VMs. Each subgroup would be represented by a sep-
arate VM, allowing for fine-grained control over the communication between
them. Tools like UFW can then be used to adjust and modify the communica-
tion between the VMs, as it falls within the scope of such tools. This approach
offers greater flexibility in managing and blocking specific communication paths
between subgroups.
However, during the setup process, it was discovered that AvalancheGO lacks
the inherent capability to be set up across multiple virtual machines without sig-
nificant code adjustments. This means that without further modifications, it is
not feasible to establish separate subgroups represented by different VMs within
AvalancheGO. Such adjustments would require substantial code changes that fall
outside the scope of this thesis. Therefore, the focus remains on exploring alter-
native methods and techniques within the existing framework of AvalancheGO
to achieve the desired network behavior for the Balance Attack simulation.
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5.2.3 Altering the Avalanche Source-Code4

Shifting the focus onto potential code adjustments that can be made to manipulate
the communication between Avalanche nodes, aiming to introduce delays or block-
ages. By meticulously exploring these modifications, valuable insights into network
communication intricacies within the Avalanche protocol are unveiled.

Benchlist-Manager

The benchlist manager in the Avalanche blockchain plays a crucial role in main-
taining network connectivity among validator nodes. The implementation details
of this manager can be found in the AvalancheGO source code, specifically in the
"snow/networking/benchlist" directory. Each node in the Avalanche network is
equipped with a benchlist manager, responsible for managing a dynamic list of
peers. This benchlist serves as a penalty for non-responsive nodes, optimizing
network performance and upholding the integrity of the consensus protocol.
When a node fails to respond in time to ten consecutive network sampling re-
quests generated by another node, it is added to the benchlist of the requesting
node. For the next 15 minutes, the nodes on the benchlist are excluded from the
sampling process. After this period, the node is removed from the benchlist and
can participate in subsequent network samplings.
This mechanism can also serve as a passive aid for the Balance Attack. As un-
responsive nodes are added to the benchlist, a situation arises where a majority
of nodes belonging to the opposing subgroup are placed on this list. Since the
sampling process excludes the "blacklisted" nodes, it significantly speeds up the
overall process by drastically reducing the probability of sampling a node from
the other subgroup. Consequently, the presence of the benchlist enhances the ef-
ficiency of the Balance Attack.
The benchlist feature serves as a powerful tool to generate message-blocking be-
havior within the network. By listing neighboring nodes on a node’s benchlist,
their communication can be effectively blocked during any sampling process.
This allows for the simulation of a network split, which is essential for executing
the Balance Attack. To achieve this, static variables can be used to represent the
two required subgroups. By adding the nodes from the static variables to their
respective node’s benchlists, nodes from one subgroup are disregarded from the
sampling process of the other one. Once the attack is successfully performed, all
benchlists can be cleared, restoring the initial state of the network.

4https://github.com/ava-labs/avalanchego.

26

https://github.com/ava-labs/avalanchego


5.2. BLOCK/DELAY COMMUNICATION CHAPTER 5. PROOF-OF-CONCEPT

Docker Generation5

Docker generation is a powerful tool that allows for the creation and deployment
of lightweight and isolated containers. These containers encapsulate applica-
tions, libraries, and dependencies, providing a consistent and reproducible envi-
ronment. One significant advantage of Docker is its ability to alter network be-
havior within the container. By configuring network settings and implementing
specific network policies, developers can control and manipulate communication
patterns between containers and the outside world. This flexibility enables fine-
grained control over network behavior, facilitating various testing scenarios and
enabling the exploration of different network configurations.
AvalancheGo uses Docker to deploy and manage a local Avalanche network.
Within the AvalancheGO ecosystem, Docker is utilized to package the neces-
sary components and dependencies of the Avalanche node into a containerized
environment. This containerization allows for easy deployment, scalability, and
reproducibility of the Avalanche nodes across different environments.
Inspired by the concept introduced in Section 5.2.2, the Docker container’s in-
herent modifiability of network communication behavior can be leveraged to par-
tition the Avalanche network into two distinct subgroups. However, given the
available level of expertise, the set time frame, and the inherent complexity of the
AvalancheGo Docker generation, it was not feasible to modify Docker’s behav-
ior in a manner that would meet the requirements for altering the communication
behavior as outlined in this master’s thesis.

5https://docs.docker.com/.
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Chapter 6
Related Work
The related work chapter of this thesis explores various research papers and studies that are
closely related to the topic of blockchain security analysis, with a specific focus on the semi-
nal paper by Natoli and Gramoli titled "The Balance Attack or Why Forkable Blockchains are
Ill-Suited for Consortium" [NG17]. This influential paper investigates the vulnerabilities and
limitations of forkable blockchains in the context of consortium-based settings. Additionally,
the chapter discusses the research conducted by Bagaria et al. in their paper "Deconstructing
the Blockchain to Approach Physical Limits" [BKT+19], which offers a comprehensive analysis
of the physical limitations and challenges faced by blockchain technology.
By examining these and other relevant works, this chapter aims to provide a comprehensive
overview of the existing research landscape and its implications for the security and resilience
of blockchain systems.

The Balance Attack. In 2016/2017, Christopher Natoli and Vincent Gramoli, researchers
from the University of Sydney, introduced and executed a novel attack called the Balance Attack.
This attack exploits the inherent forkable nature of blockchains, aiming to disrupt the consensus
protocol and compromise the integrity of the blockchain.
During their research, Natoli and Gramoli conducted an in-depth analysis of the Balance At-
tack on an Ethereum testnet of the R3 consortium. The adversary in the Balance Attack can
strategically split the network into two subgroups, each with equal hash power. This allows the
adversary to execute different tactics, such as issuing conflicting transactions to each subgroup
or selectively issuing a specific transaction to only one subgroup. The attacker in the Balance
Attack can manipulate the fork-resolving algorithms implemented in blockchains by actively
mining on their preferred subtree. By doing so, they aim to increase the likelihood that one sub-
tree, which does not contain the eventually committed dummy transaction, outweighs another
subtree.
Therefore an attacker can issue a transaction in one subgroup and utilize their mining power to
support the creation of new blocks in another subgroup. This strategic manipulation allows them
to exploit the consensus mechanism and potentially execute double spending, compromising the
integrity and security of the blockchain.
Natoli and Gramoli’s research findings revealed that in order to achieve a high success rate for
performing a Balance Attack on Ethereum, an individual machine would need to block commu-
nication for approximately 20 minutes. However, in the case of a consortium possessing one-
third of the total mining power, the required communication blockage time reduces to around 4
minutes, while still maintaining a success rate of 94%.
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Indefinite Fork. In their work on introducing Prism, a new blockchain, Bagaria et al. [BKT+19]
made a significant contribution by formulating a precise method for sustaining a fork indefinitely
during a Balance Attack. When initiating a fork in the network, such as by issuing two conflict-
ing transactions, the adversary strategically divides its hashing power to mine on both subtree
branches simultaneously. To ensure an equal weight distribution between the subtrees, before
communication is enabled, the adversary selectively releases blocks from its local storage if an
imbalance is detected. Once communication is re-established, the adversary employs a strat-
egy to maintain the forked state of the blockchain by addressing any imbalances present in the
subtrees.
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Chapter 7
Conclusion and Future Work
This study sheds light on the Balance Attack on the Avalanche network and presents avenues for
future work in enhancing the security and resilience of blockchain systems.

7.1 Conclusion
This master thesis focused on the execution of the Balance Attack on the Avalanche net-
work. The study extensively explores the theoretical aspects of the attack, offering
valuable insights into potential vulnerabilities and implications for blockchain systems.
These findings contribute to a deeper understanding of security risks and vulnerabilities
in blockchain systems, with a particular focus on the Avalanche network. However, it
was determined that the actual execution of the Balance Attack was not feasible within
the constraints of the research, despite the comprehensive analysis.
One of the key challenges encountered was the difficulty in setting up a reliable and effec-
tive system for blocking communication within the Avalanche network. Such a system
is crucial for simulating the required network split and executing the Balance Attack.
Complications and limitations arose in implementing a robust communication-blocking
mechanism, hindering the practical execution of the attack.
Nonetheless, the identification of these limitations and challenges surrounding communi-
cation-blocking is a significant contribution to the field. By recognizing and highlighting
these obstacles, further research and development can be directed toward finding suitable
solutions to overcome them.
In conclusion, while the practical execution of the Balance Attack was not feasible due
to complications with setting up a communication blocking system, the theoretical un-
derstanding gained and the identification of limitations contribute to the advancement of
knowledge in blockchain security. The findings of this research provide a stepping stone
for future studies aiming to enhance the security and resilience of blockchain networks,
including the Avalanche network.

7.2 Recommendations for Further Research
Although the execution of the Balance Attack was not achieved, this master thesis serves
as a comprehensive exploration of the attack’s theoretical aspects. It lays the groundwork
for further research and encourages the development of more robust security measures
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in blockchain networks. Additionally, the identification of limitations to communication
blocking provides a foundation for future investigations to address these challenges and
devise effective countermeasures.

Practical Balance Attack on the Avalanche Blockchain

Exploring additional, unexplored ideas for blocking communication or finding work-
arounds to make the existing approaches feasible would be beneficial in achieving the
goal of splitting the network into subgroups and executing the Balance Attack. By
pursuing these avenues, the following questions can be addressed:

• What is the minimum duration of communication blocking needed to achieve a
reasonable chance of successfully executing a Balance Attack?

• What are the potential implications and consequences if the adversary does not
respond to any network sampling requests during the execution of a Balance
Attack?

• How does the presence of multiple adversaries affect the success rate and speed
of executing a Balance Attack?

Enhancing Communication Blocking Mechanisms

In the realm of research, it is valuable to investigate alternative approaches for es-
tablishing a robust communication-blocking system. This exploration is not limited
to distributed systems like blockchains but extends to other domains as well. By
developing such systems, researchers can gain insights that facilitate the analysis of
security-related topics. Furthermore, it is important to explore techniques that can
delay or disrupt communication between nodes. Simulating network splits and as-
sessing the resulting impact on consensus protocols and potential vulnerabilities can
enhance our understanding of distributed systems and contribute to their security
analysis.

Expanding the Adversarial Model

Further enhance the existing adversary model by incorporating more sophisticated
Byzantine behaviors, such as strategic node selection or adaptive attack strategies.
This extension will enable a comprehensive investigation into the impact of different
types of Byzantine nodes on the resilience and security of the Avalanche consensus
protocol. By exploring the behavior and characteristics of these advanced adver-
saries, a deeper understanding can be gained regarding the vulnerabilities and po-
tential countermeasures necessary to strengthen the overall security of the network.
The analysis of these complex Byzantine behaviors will provide valuable insights
into the design and implementation of more robust and resilient consensus protocols
for distributed systems like Avalanche.
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Appendix A
Avalanche Consensus Protocol
Based on the algorithms found in the paper "When is Spring Coming?" [ACT22].

Algorithm A.1 Avalanche Main Loop (party 𝑢), state
Global parameters and state

1:  // set of parties
2: maxPoll ∈ ℕ // maximum number of concurrent polls, default value 4
3: 𝑘 ∈ ℕ // number of parties queried in each poll, default value 20
4: 𝛼 ∈ {⌈𝑘+1

2
⌉,… , 𝑘} // majority threshold for queries, default value 15

5: 𝛽1 ∈ ℕ // threshold for early acceptance, default value 15
6: 𝛽2 ∈ ℕ, 𝛽2 > 𝛽1 // threshold for acceptance, default value 150
7:  ← ∅ // set of known transactions
8:  ⊂  ← ∅ // set of queried transactions
9:  ⊂  ← ∅ // set of repollable transactions

10:  ⊂  ← ∅ // set of no-op transaction to be queried
11:  ⊂  ← ∅ // set of transactions in the virtuous frontier
12: conPoll ∈ ℕ ← 0 // number of concurrent polls performed
13: conflictSet : HashMap[ → 2 ] // conflict set
14:  : HashMap[ →  ] // set of sampled parties to be queried with a transaction
15: votes : HashMap[ × → {FALSE, TRUE}] // variable to store the replies of queries
16: d : HashMap[ → ℕ] // confidence value of a transaction
17: pref : HashMap[2 →  ] // preferred transaction in the conflict set
18: last : HashMap[2 →  ] // preferred transaction in the last query
19: cnt : HashMap[2 → ℕ] // counter for acceptance of the conflict set
20: accepted : HashMap[ → {FALSE, TRUE}] // indicator that a transaction is accepted
21: timer : HashMap[ → {timers}] // timer for the query of transaction
22: ack : HashMap[ ×  → ℕ] // number of votes on 𝑇 reporting that 𝑇 ′ is not preferred
23:  : HashMap[ × → 2 ] // ancestors of positively reported transactions
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Algorithm A.2 Avalanche Main Loop (party 𝑢), part 1
24: upon broadcast(𝑡𝑥) do:
25: if 𝑉 (𝑡𝑥) then:
26: 𝑇 ← (𝑡𝑥, ) // up to a maximum number of parents
27:  ←  ∪ {𝑇 }
28: accepted[𝑇 ] ← FALSE
29: updateDAG(𝑇 )
30: gossip message [BROADCAST, 𝑇 ]

31: upon hearing message [BROADCAST, 𝑇 ] do:
32: if 𝑇 ∉  then:
33:  ←  ∪ {𝑇 }
34: accepted[𝑇 ] ← FALSE

35: upon conPoll < maxPoll do:
36: conPoll ← conPoll + 1
37: if  ≠ ∅ then: // prefer no-op transaction
38: 𝑇 ← least recent transaction in 
39: else if  ∖ ≠ ∅ then: // take any not yet queried transaction
40: 𝑇 ←R  ∖
41: 𝑑[𝑇 ] ← 0
42: else: // all transaction queried already, take one of them
43: updateRepollable()
44: 𝑇 ←R 
45: [𝑇 ] ← sample(∖{𝑢}, 𝑘) // sample 𝑘 parties randomly according to state
46: send message [QUERY, 𝑇 ] to all parties 𝑣 ∈ [𝑇 ]
47:  ←  ∪ {(⊥,∖{𝑇 })} // create a no-op transaction
48: start timer[𝑇 ] // duration Δquery
49:  ←  ∪ {𝑇 }
50: updateDAG(𝑇 )
51: upon receiving message [QUERY, 𝑇 ] from party 𝑣 do:
52: if 𝑇 ∉  then: // party 𝑢 sees 𝑇 for the first time
53: updateDAG(𝑇 )
54: send message [VOTE, 𝑢, 𝑇 , ] to party 𝑣

55: upon receiving message [VOTE, 𝑣, 𝑇 , ′] from party 𝑣 ∈ [𝑇 ] do:
56: votes[𝑇 , 𝑣] ←  ′ //  ′ is the vote
57: for 𝑇 ′ ∈ votes[𝑡, 𝑣] do: // build the ancestors of the reported transaction
58: [𝑇 , 𝑣] ← [𝑇 , 𝑣] ∪ ancestors(𝑇 ′)
59: for 𝑇 ′ ∈ [𝑇 , 𝑣] do: // count the number of parties that reported 𝑇 ′

60: if ack[𝑇 , 𝑇 ′] = ⊥ do:
61: ack[𝑇 , 𝑇 ′] ← 1
62: else:
63: ack[𝑇 , 𝑇 ′] ← ack[𝑇 , 𝑇 ′] + 1
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Algorithm A.3 Avalanche Main Loop (party 𝑢), part 2
64: upon ∃𝑇 ∈  such that ∣ {votes[𝑇 , 𝑣]} ∣= 𝑘 do: // every queried party has replied
65: stop timer[𝑇 ]
66: votes[𝑇 , ∗] = ⊥ // remove all entries in votes for 𝑇
67: for 𝑇 ′ ∈  do:
68: if ack[𝑇 , 𝑇 ′] ≥ 𝛼 then:
69: 𝑑[𝑇 ′] ← 𝑑[𝑇 ′] + 1
70: if 𝑑[𝑇 ′] > 𝑑[pref[conflictSet[𝑇 ′]]] then:
71: pref[conflictSet[𝑇 ′]] ← 𝑇 ′

72: if 𝑇 ′ ≠ last[conflictSet[𝑇 ′]] then:
73: last[conflictSet[𝑇 ′]] ← 𝑇 ′

74: cnt[conflictSet[𝑇 ′]] ← 1
75: else:
76: cnt[conflictSet[𝑇 ′]] ← cnt[conflictSet[𝑇 ′]] + 1
77: else:
78: cnt[conflictSet[𝑇 ′]] ← 0
79: ack[𝑇 , ∗] = ⊥ // remove all entries in ack for 𝑇
80: [𝑇 , ∗] ← ⊥ // remove all entries in  for 𝑇

81: upon ∃𝑇 ∈  such that isAccepted(𝑇 ) ∧ ¬accepted[𝑇 ] do:
82: (𝑡𝑥, parents ← 𝑇 )
83: if 𝑉 (𝑡𝑥) then:
84: accepted[𝑇 ] ← TRUE
85: deliver 𝑡𝑥

86: upon timeout from timer[𝑇 ] do: // not enough votes on 𝑇 received
87:  ← ∖{𝑇 }
88: votes[𝑇 , ∗] ← ⊥ // remove all entries in votes of 𝑇
89: [𝑇 ] ← [] // 𝑢 will not consider more votes from this query
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Algorithm A.4 Avalanche , auxiliary functions
90: function updateDAG(𝑇 ):
91:  ← set of non-conflicting leaves in the DAG
92: conflictSet[𝑇 ] ← ∅
93: for 𝑇 ′ ∈  such that 𝑇 ′ ≠ 𝑇 and 𝑇 ′ has common input with 𝑇 do:
94: conflictSet[𝑇 ] ← conflictSet[𝑇 ] ∪ {𝑇 ′}
95: conflictSet[𝑇 ′] ← conflictSet[𝑇 ′] ∪ {𝑇 }
96: if conflictSet[𝑇 ] = ∅ then: // 𝑇 is non-conflicting
97: pref[conflictSet[𝑇 ]] ← 𝑇
98: last[conflictSet[𝑇 ]] ← 𝑇
99: cnt[conflictSet[𝑇 ]] ← 0

100: conflictSet[𝑇 ] ← conflictSet[𝑇 ] ∪ {𝑇 }

101: function getParents(𝑇 ):
102: (𝑡𝑥, parents ← 𝑇 )
103: return parents // set of parents stored in 𝑇

104: function preferred(𝑇 ):
105: return (𝑇 ?

= pref[conflictSet[𝑇 ]])
106: function stronglyPreferred(𝑇 ):
107: return (⋀𝑇 ′∈ancestors(𝑇 ) preferred(𝑇 ′))

108: function acceptable(𝑇 ):
109: return (∣ conflictSet[𝑇 ] ∣= 1 ∧ cnt[conflictSet[𝑇 ]] ≥ 𝛽1)

∧
⋀

𝑇 ′∈parents(𝑇 ) acceptable(𝑇 ′) ∨ cnt[conflictSet[𝑇 ]] ≥ 𝛽2

110: function isRejected(𝑇 ):
111: return (∃𝑇 ′ ∈  such that ∀𝑇 ′ ∈ conflictSet[𝑇 ]∖{𝑇 } ∶ acceptable(𝑇 ′))
112: function updateRepollable():
113:  ← ∅
114: for 𝑇 ∈  do:
115: if acceptable(𝑇 ) ∨

⋀

𝑇 ′∈parents(𝑇 )(stronglyPreferred(𝑇 ′)
∧ ¬isRejected(𝑇 ′)) then:

116:  ←  ∪ {𝑇 }
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Appendix B
Consensus Protocols for Resolving Forks
Based on the algorithms 1, 2 and 3 from the paper "The Balance Attack or Why Forkable
Blockchains are Ill-Suited for Consortium" [NG17].

Algorithm B.1 Nakamoto’s consensus protocol at node 𝑝𝑖
𝑙𝑖 = ⟨𝐵𝑖, 𝑃𝑖⟩ DAG representation of the blockchain at node 𝑝𝑖 with blocks 𝐵𝑖and pointers 𝑃𝑖

1: get-main-branch()𝑖: // select the longest branch in forked blockchain
2: 𝑏 ← genesis-block(𝐵𝑖) // start search from root of blockchain
3: while b.hasChildren do: // search while block has children
4: block ← argmax𝑐∈children(b){depth(𝑐)} // choose block with deepest branch
5: 𝐵 ← 𝐵 ∪ {block} // update vertices of main branch
6: 𝑃 ← 𝑃 ∪ {⟨block, 𝑏⟩} // update edges of main branch
7: 𝑏 ← block // update to next block
8: return ⟨𝐵, 𝑃 ⟩ // returning the updated main branch

9: depth(b): // depth of longest branch rooted in b
10: if b.hasNoChildren then return 1 // stop at leaves
11: else return 1 + max𝑐∈children(𝑏)depth(𝑐) // recursive algorithm for all children

Algorithm B.2 GHOST consensus protocol at node 𝑝𝑖
𝑙𝑖 = ⟨𝐵𝑖, 𝑃𝑖⟩ DAG representation of the blockchain at node 𝑝𝑖 with blocks 𝐵𝑖and pointers 𝑃𝑖

1: get-main-branch()𝑖: // select the longest branch in forked blockchain
2: 𝑏 ← genesis-block(𝐵𝑖) // start search from root of blockchain
3: while b.hasChildren do: // search while block has children
4: block ← argmax𝑐∈children(b){num-desc(𝑐)} // choose block with heaviest tree
5: 𝐵 ← 𝐵 ∪ {block} // update vertices of main branch
6: 𝑃 ← 𝑃 ∪ {⟨block, 𝑏⟩} // update edges of main branch
7: 𝑏 ← block // update to next block
8: return ⟨𝐵, 𝑃 ⟩ // returning the updated main branch

9: num-desc(b): // number of descendants of b
10: if b.hasNoChildren then return 1 // stop at leaves
11: else return 1 + ∑

𝑐∈children(𝑏)num-desc(𝑐) // recursive algorithm for all children
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Appendix C
Avalanche-CLI Setup Commands

C.1 Introduction
The following appendix provides a reference guide for essential setup commands that
can be utilized with the Avalanche-CLI (see Section 4.1.1) - a powerful command line
interface tool designed for interacting with Avalanche). It should serves as a handy re-
source, presenting the most important commands to facilitate efficient utilization of the
Avalanche-CLI tool.
For further information and a comprehensive exploration of Avalanche-CLI the author
refers to the documentation1.

C.2 Commands
The following section provides an overview of essential commands available in the Avalanche-
CLI. This collection of commands covers various functionalities, including network
management, account operations, contract deployment, and more. Each command is
accompanied by a description, syntax, and usage examples, empowering users to navi-
gate and harness the capabilities of Avalanche-CLI efficiently.

Command: Subnet Create
Function:
A new genesis file is created, and an interactive wizard is launched to configure and
set up a new Avalanche subnet. Additionally, the utilization of predefined VM bina-
ries, like Ethereum Virtual Machine Subnets, is supported.
Syntax:

avalanche subnet create [subnetName] [flags]

1https://docs.avax.network/subnets/reference-cli-commands.
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Flags2:

--custom use a custom VM template

--evm use the SubnetEVM as a base template

-f, --force overwrite the existing configuration

--genesis string file path of genesis to use

-h, --help help for create

Usage Example:
avalanche subnet create testnet1 --evm -f

Command: Subnet Delete
Function:
Deletes an existing subnet configuration.
Syntax:

avalanche subnet delete [subnetName]

Command: Subnet Deploy
Function:
This command deploys the subnet configuration locally, on the Fuji Testnet, or
the Mainnet. Note that a subnet can only be deployed once per network, and
redeployment requires calling avalanche network clean.
Syntax:

avalanche subnet deploy [subnetName] [flags]

Flags3:

-f, --fuji testnet deploy to fuji (alias to testnet)

-h, --help help for deploy

-l, --local deploy to local network

-m, --mainnet deploy to mainnet

Usage Example:
avalanche subnet deploy testnet1 --local

2The flags listed are options for this command and do not cover all possibilities.
3see Footnote 2.
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Command: Subnet AddValidator
Function:
Whitelists a primary network validator that can validate the associated subnet. It
should be noted that this command is applicable exclusively when the subnet is
deployed on either the Fuji Testnet or the Mainnet.
Syntax:

avalanche subnet addValidator [subnetName] [flags]

Flags4:

--fuji fuji join on fuji (alias for 'testnet')

-h, --help help for addValidator

--mainnet mainnet join on mainnet

--staking-period duration how long this validator will stake

--start-time string UTC start time when this validator

starts validating

Usage Example:
avalanche subnet addValidator testnet1 --staking-period 100

Command: Subnet Configure
Function:
Enables the modification of configuration files for both the subnet itself and for
each individual chain within the subnet.
Syntax:

avalanche subnet configure [subnetName] [flags]

Flags5:

--chain-config string path to chain configuration

-h, --help help for configure

--subnet-config string path to the subnet configuration

Usage Example:

avalanche subnet configure testnet1 --subnet-config ./testnet1.config

4The flags listed are options for this command and do not cover all possibilities.
5see Footnote 4.
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Command: Network Clean
Function:
This command is designed to gracefully shut down all subnets and delete their
respective states. It is recommended to utilize this command whenever there is a
need to redeploy a new subnet with a revised configuration.
Syntax:

avalanche network clean [flags]

Flags:

--hard Also clean downloaded avalanchego

and plugin binaries

-h, --help help for clean

Usage Example:
avalanche network clean --hard

Command: Network Start
Function:
This command initiates a local, multi-node Avalanche network on the current
machine. However, it will fail if the local network subnet is already set up and
running.
Syntax:

avalanche network start [flags]

Flags:

--avalanchego-version string use this version of avalanchego

(default "latest")

-h, --help help for start

--snapshot-name string name of snapshot to use to start the

network from

Usage Example:
avalanche network start --avalanchego-version v1.17.12
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Command: Network Status
Function:
This command displays the status of a local Avalanche network, including whether
it is currently running, along with essential statistics about the network.
Syntax:

avalanche network status

Usage Example:
avalanche network status

Command: Network Stop
Function:
This command allows for the graceful termination of all deployed subnets, ensur-
ing that their states are safely preserved. If the snapshot flag is provided, the state
is saved in the specified file. Alternatively, if the snapshot flag is not provided,
the state is saved to the default snapshot.
Syntax:

avalanche network stop [flags]

Flags:

-h, --help help for stop

--snapshot-name string name of snapshot to use to start the

network from

Usage Example:
avalanche network stop --snapshot-name "snapshot-12345"
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