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Abstract

Permissionless blockchains have attracted substantial interest from the both research and
practitioner communities because of their openness, transparency, and decentralization.
There are various applications utilizing permissionless blockchains in different fields, rang-
ing from simple financial payments to decentralized finance (DeFi) applications (e.g., lend-
ing, trading, and asset management), gaming platforms, and decentralized autonomous or-
ganization (DAO). However, the growth of DeFi has raised a number of privacy problems,
as DeFi applications often reveal financial positions and users’ balances in plain text. There-
fore, blockchain privacy solutions are becoming increasingly vital. In particular, add-on
privacy services on existing non-private blockchains are becoming de facto solution for pri-
vacy for many blockchain users. One prominent example of add-on solutions is Tornado
Cash. Tornado Cash allows blockchain users to effectively hide the on-chain linkage be-
tween the source and the destination addresses, hence, allow them to securely obfuscate
their transaction graphs. However, Tornado Cash has one major drawback. The cost of in-
teracting with Tornado cash contract is still very expensive for standard users, due the use
of computationally expensive cryptographic machineries.
In this work, we investigate two different approaches for reducing the cost of using an on-
chain mixer. In our first approach, we keep the number of operations in a deposit transaction
constant by introducing a RSA accumulator. In the second approach we will introduce
Merkle Pyramid Builder, a method to batch deposit transactions and therefore reducing the
overall cost of a mixer. We include a formal specification of our two systems, as well as
a discussion of privacy and security. Furthermore, we implemented and evaluated our two
systems.
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Chapter 1

Introduction

Popular permissionless blockchains, such as Bitcoin, provide only pseudonymity, not anonymity. Every
transaction reveals the amount transferred, the time, the transaction fees and the user’s addresses. As
a result, multiple works have aimed to deanonymize clients [18], cluster addresses [28] and develop
privacy solutions to protect client’s privacy [17]. While privacy-preserving blockchains are capable of
protecting their users’ privacy, retrofitting a blockchain with privacy has been proven to be difficult and
is still a work in progress. There are two available privacy solutions. The first option is to utilise private-
by-design blockchains that hide transactions data from monitoring parties. As a second option, there are
add-on privacy solutions that attempt to provide privacy for customers of current blockchains that do not
protect privacy.
Inspired by the design of Zerocash [13], on-chain zero-knowledge-proof (ZKP) mixers are one of the
most popular add-on privacy solutions, in which users deposit a fixed amount of coins into a pool, and
withdraw these coins into a new address. A decentralized mixer should not be able to identify the link
between deposit and withdrawal addresses. Zero-knowledge-proof-based mixers are decentralized ap-
plications (dApps) that run on a blockchain with smart contracts. For instance, Tornado Cash [5] is one
of the most active ZKP-based mixers. Tornado Cash has thus far processed 2, 547, 731 ETH worth of
transactions for 27, 631 users. However, a known problem with Tornado Cash is the high gas cost of
depositing. Concretely, the cost of depostiting, up to August 22’1, is approximately 1.1m gas which
currently corresponds to about 130$ but was also about 600$.
The focus of this thesis is to design new methods that help reduce the overall cost related to the mixer of
Tornado Cash. Our work consists of two primary approaches. The first approach uses a RSA accumula-
tor [15]. We attempt to replace the O(log n) updating cost of the Merkle tree (where n is the number of
leaves) with theO(1) updating cost of the RSA accumulator. This allows us to reduce the number of op-
erations in a deposit transaction, which leads to a reduction in gas costs as well. In our second approach,
we introduce a more efficient way of updating the Merkle tree in this setting. Instead of updating the
entire Merkle tree after every single deposit, we batch the deposits together. This results in a decrease in
the average number of times the Merkle tree is utilized, hence reducing costs. Depending on the amount
of deposits we batch together, we can have up to eight times less costs for depositing than Tornado Cash.

Our contributions can be summarized as follows.

• Inspired by Zerocoin [36], we formalize and present a practical RSA accumulator-based mixer,
which breaks the linkability between deposited and withdrawn coins of a client on a smart contract
enabled blockchain and we provide a security and privacy discussion of the proposed system.

• We formulate and present our developed method Merkle Pyramid Builder, which makes the method
used by Tornado Cash more cost effective and we also provide a security and privacy discussion
of the proposed system.

1US Government bans Tornado Cash [6]
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• We implement our two approaches and show that the systems can be deployed and operated effi-
ciently on a permissionless blockchain.

• We find that the RSA accumulator approach allows unlimited deposits. However, the cost of a
withdrawal transaction is too high and because of that not suitable for the blockchain environment.

• We observe that by using Merkle Pyramid Builder Method, we can reduce the deposit cost from
two to eight times, depending on the batching size.

• We present a method how to lower the cost even more using verifiable computation, but we leave
the implementation to future exploration.

Thesis Organization. Chapter 2 outlines the necessary background before introducing our two ap-
proaches in the following two chapters. In chapter 3, the RSA accumulator mixer is described. We begin
by introducing further theoretical fundamentals and continue then displaying the algorithm and engaging
in a discussion. The chapter will conclude with practical outcomes and suggestions for additional cost
reduction. In chapter 4, similar to the preceding chapter, we present further theoretical basics. Then, we
introduce the algorithm of the Merkle Pyramid Builder. We will show the outcomes of the benchmarks
of our implementation after a discussion. At the end of the chapter, we will provide an approach that
might cut expenses even more. In chapter 5 we will provide a conclusion and some additional remarks.
Lastly, an appendix A with additional information and code snippets is included.
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Chapter 2

Background

2.1 Background on Smart Contract Blockchains and On-Chain Mixers

Ethereum Blockchain. The Ethereum blockchain functions as a distributed virtual machine that sup-
ports decentralized applications. The ability of Ethereum to execute extremely expressive languages
enables developers to design smart contracts. Nick Szabo [38] first introduced the concept of smart con-
tracts in 1994. Ethereum keeps track of the state of each account, including externally-owned accounts
(EoA) that are managed by a private key and contract accounts that are owned by the contract’s code. The
state changes of the virtual machine are determined by EoA transactions.The purpose of a transaction
is either to transfer Ether or to initiate the execution of smart contract code. The expenses associated
with performing functions are given in gas units. In Ethereum, the sender of a transaction pays for the
execution of any contract actions caused by that transaction.
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Figure 2.1. Concept of a mixer. {d1, . . . , dn} and {w1, . . . , wm} represent a pool of depositors and
a pool of withdrawers, accordingly. An arrow indicates the transfer of coins, whereas a dotted arrow
indicates the transfer of notes. When an user u deposits coins into pool P (i), u obtains a note from P (ii);
to withdraw, u provides this note to P (iii) and receives the coins once P verifies the note (iv). A user can
control many addresses. An address can be used several times to deposit or withdraw funds.

On-Chain Mixers. On-chain mixers are one of the most often used add-on privacy solutions. A user can
initiate transactions and deposit funds to the mixer. In addition, the user needs to provide a fresh account
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address to which the funds will be transferred to. This is an anonymous address, and only the user should
know who it belongs to. The user is able to withdraw funds at a later time. However, it is advisable to
wait as long as possible, since anonymity may be guaranteed more securely in this manner. In the mean
time other users can deposit funds into the mixer. If a user wishes to withdraw his funds, he must prove
to the mixer that he already deposited funds. The purpose of a mixer is to mix the coins of various users
to break the link between the old and the new address. Figure 2.1 illustrates how a mixer works. For a
more thorough background on blockchain mixers, we refer the interested reader to [41].
The anonymity of the mixer improves as more users utilize it. Using zero-knowledge proofs, such as
zk-SNARK, on-chain mixers attempt to ensure unlinkability of the addresses. Tornado Cash [5] is one
of the most popular mixers in use today.

2.2 Cryptographic Primitives

Notation. We refer 1λ as the security parameter and negl(λ) as the negligible function in λ. We define the
pair of public and secret key as (pk, sk). In addition, we suppose that pk can be computed from sk using
the deterministic function EXTRACTPK(sk) = pk. The concatenation of two string k and r is denoted by
k||r. With Z≥a we define a set of integers, which are greater or equal to a, i.e., the {a, a + 1, . . . }. Let
PPT be probabilistic polynomial time. We define an instance of statements, i.e., a boolean expression as
st[a, b, c . . . ] where a, b, c, . . . have fixed public values. To denote private inputs in the statement we use
shaded areas like st[a, b, c; i, j, k ].
Collision resistant hash function. We denote H to be a family of collision resistant hash functions, if

for any PPT A given h
$←− H , the probability that A learns x, x′, such that h(x) = h(x′) is negligible.

The cryptographic hash function h is referred to as the fixed function h : {0, 1}∗ → {0, 1}λ.
Non-interactive Zero-Knowledge Proofs (NIZK). Zero Knowledge Proof (ZKP) is a cryptographic
primitive that enables a prover to convince a verifier of the validity of certain assertions without exposing
the verifier with any valuable information. Several ZKPs need several interactions between the prover
and the verifier. NIZK is, on the other hand, one of the variants of ZKP in which there is no need for
interaction between verifier and prover. As shown in [19], NIZK can be realized if there is a shared
common reference string between verifer and prover. Adapting the definition from [22, 23], we define
NIZK as follows.

Definition 2.2.1 (NIZK). A non-interactive zero-knowledge proof (NIZK) system consists of three algo-
rithms (NIZK.SETUP, NIZK.PROVE, NIZK.VERIFY) relative to a hard relation R defining the lan-
guage LR := {st | ∃w : (st, w) ∈ R} where st is that statement and w is a witness, such that:

• params ←NIZK.SETUP(1λ) takes as input the security parameter, and outputs the common ref-
erence string params containing (ek, vk).

• π ←NIZK.PROVE(params, st, w) takes as input the reference string params, any (st, w) ∈ R and
outputs a proof π that (st, w) ∈ R.

• 0/1 ←NIZK.VERIFY(params, st, π) takes as input the reference string params, a statement st,
and a proof π and outputs 1 if the proof π verifies that s ∈ LR, otherwise, returns 0.

A zero-knowledge proof π for the relation

R : {(a, b, c, . . . ; x, y, z . . . ) : f(a, b, c, . . . ; x,y,z . . . )}

means that the prover has a knowledge of (x, y, z, . . . ) such that f(a, b, c, . . . ; x,y,z . . . ) is true, where
a, b, c . . . are public variables.

A zero-knowledge proof of some statement satisfy the following three properties:

• Completeness: If st is true an honest verifier will always be convinced by an honest prover.
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• Soundness: For false statements, a prover cannot convince the verifier (even if the prover cheats
and deviates from the protocol)

• Zero-knowledge: No verifier learns anything other than the fact that the statement st is true if it is
true. To put it in another way, knowing the statement, but not the secret, is enough to construct a
scenario in which the prover knows the secret.

We defer the formal definitions of these properties to Groth [27].

Commitment Scheme. During the committing round, a commitment scheme allows a client to commit
to selected values while concealing them from others. During the revealing round, the client can choose
to reveal the committed value.

Definition 2.2.2 (Commitment Scheme). A commitment scheme includes two algorithms (COMMIT, VERIFY)

• cm← COMMIT(m, r) accepts a message m and a secret randomness r as inputs and returns the
commitment string cm.

• 0/1 ← VERIFY(m, cm, r) accepts a message m, a commitment cm and a decommitment value r
as inputs, and returns 1 if the commitment is opened correctly and 0 otherwise.

Our commitment scheme must satisfy two security requirements:

• Binding: Except for a negiligible probability, no adversary can efficiently produce cm, (m1, r1)
and (m2, r2) such that VERIFY(m1, cm, r1) = VERIFY(m2, cm, r2) = 1 and m1 ̸= m2.

• Hiding: Except for a negiligible probability, cm does not reveal anything about the committed
data.

Authenticated Data Structure ADS. An authenticated data structure (ADS) is suitable for particular
operations that an untrusted verifier is qualified of performing. The verifier can then efficiently verify the
validity of the proof results. This is achieved by the prover generating a concise proof that the verifier
can verify using the outcomes of each operation. We are solely interested in a data structure for set
membership in this work.

Definition 2.2.3 (Authenticated Data Structure). An authenticated data structure consists of four algo-
rithms Π = (INIT, PROVE, VERIFY, UPDATE).

• y ← INIT(1λ, X) takes the security parameter and a list X = (x1, . . . , xn) as inputs and outputs
y ∈ {0, 1}λ.

• π ← PROVE(i, x,X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and a X = (x1, . . . , xn) as inputs,
and outputs the proof that x = xi ∈ X .

• 0/1 ← VERIFY(i, x, y, π) takes an element xi ∈ {0, 1}∗, 1 ≤ i ≤ n, y ∈ {0, 1}λ and a proof π
as inputs. It outputs 1 if x = xi and y = INIT(1λ, X) and 0 otherwise.

• y′ ← UPDATE(i, x,X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and X as inputs, and outputs
y′ = INIT(1λ, X ′) where X ′ is X but xi ∈ X is replaced by x.

We require that the ADS be correct and secure. For the formal definitions of these qualities we refer
to the book by Boneh and Shoup [21]. Merkle tree [34] or RSA-accumulator [31, 15] are examples of
authenticated data structures.

2.3 System Overview

We will now describe the system’s components, the setup phase, the client, and the smart contract algo-
rithm.
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2.3.1 System Components

The system consists of two components: the client and the smart contract. A client interacts with
the smart contract via accounts held by external parties. A client can either deposit or withdraw coins.
The smart contract manages both deposits and withdrawals. The contract keeps track of various data
structures and parameters to verify the accuracy and validity of transactions received to it.
Deposit. The client can load a fixed amount of coins in the system, making a depositing transaction. If
this transaction is valid, miners will record the transaction in a blockchain block. Each deposit transaction
of the client reduces his credit by a fixed amount of coins on his address.
Withdraw. To withdraw coins a client must make a withdraw transaction. These transactions contain
a cryptographic proof, which proves that the client has made a deposit transaction in the past without
revealing which one it was.

2.3.2 Contract Setup

In the setup phase all public parameters, which are required by the client and the smart contract of
the mixer, are generated. Furthermore, the contract will be initialized with different data structures
to be protected from double-withdrawal. The deposit amt is specified as a fixed deposit amount of
coins. Furthermore the smart contract is setup with two empty lists: a list, DepositList, that includes
all commitments cm contained in depositing transactions and another list, NullifierList, that contains
all unique identifiers (i.e., sn) appeared in withdrawal transactions. We refer to pph as the state of the
contract in block h. The state includes all data structures of the contract which were initialized in the
setup phase. Furthermore, this state is implicitly provided to all client and contract algorithms. At last,
the contract is deployed in this phase.

2.3.3 Client Algorithm

A client can communicate with the smart contract using the following algorithms in a mixing system.
Note that each transaction is automatically signed using the private key associated with the Ethereum
account that executes the transaction.

• (wit, txdep)← CREATEDEPOSITTX(sk, amt) takes the secret key sk and the amount amt, speci-
fied in the setup phase as inputs and outputs a witness wit, which is needed to create withdrawals
in the future, and a deposit transaction txdep.

• txwdr ← CREATEWITHDRAWTX(sk′, wit) takes as input the secret key sk′ and the witness wit
and outputs a withdrawing transaction txwdr.

2.3.4 Smart Contract Algorithm

The smart contract should be able to handle deposits and withdrawals of coins. It consists of the following
algorithms:

• 0/1← ACCEPTDEPOSIT(txdep) takes as an input the deposit transaction txdep and outputs 1 if the
transaction was successful and 0 otherwise.

• 0/1← ISSUEWITHDRAW(txwdr) takes the withdrawing transaction txwdr as the input and outputs
1 and deposits amt to the sender txwdr.sender if the transaction was successful and 0 otherwise.

2.4 System Requirements

A secure autonomous mixer must satisfy certain properties. We use the properties from the AMR pa-
per [30]. In the following sections, we need tx.sender to indicate the address of the sender from which
tx originates.
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Privacy. Clients’ privacy must be protected by our system. Considering an adversary with access to
the history of all depositing and withdrawing transactions made to our mixer contract, the system must
ensure that depositing and withdrawing transactions cannot be linked.

Correctness. The goal of our system is to prevent clients from stealing coins from the contract or from
other clients. The system must be able to guarantee that a customer cannot withdraw more from the
contract than he deposited.

Availability. Clients should always be able to use the mixer. No one should be able to block clients from
depositing or withdrawing coins.
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Chapter 3

Improved Mixer: RSA + NIZK

In this chapter, we adapt the design of Zerocoin [36] to our design to reduce the costs associated with the
use of an on-chain mixer. We use a RSA accumulator as our authenticated data structure, and as a NIZK
proof, we will use a structure that already exists in Zerocoin [36]. Zerocoin employs a modified version
of the proof provided by Camenisch and Lysyanskaya [25].
Zerocoin approach. As stated, we follow the same protocol as Zerocoin [36]. We implement a RSA
accumulator to determine if a client has deposited funds. As proof of knowledge, we utilize the proof
scheme proposed by Zerocash. Our objective is to reduce the deposit fee incurred when using the Tornado
Cash service. This system makes use of a Merkle tree. The issue with this strategy is that it is expensive
to update the Merkle tree, resulting in high transaction costs. Using a RSA accumulator eliminates the
high cost of updating a Merkle tree after a transaction because it is significantly less computationally
intensive. Tornado Cash takes O(k log n) operations for k deposit transactions and a n leaves. We are
now able to reduce the number of operation to O(1).
In the following sections we will explain how the system of the mixer is built.

3.1 Cryptographic Building Blocks

RSA accumulator. A cryptographic accumulator is an authenticated data structure that generates a brief
binding commitment to a set of items as well as brief membership/non-membership proofs for each item
in the set. A RSA accumulator is an universal accumulator that supports both batch-processed member-
ship and non-membership proofs. Constructing the accumulator involves selecting a modulus N from a
group of unknown order, which can be generated by a trusted third party. The RSA accumulator’s start-
ing state is the generator g sampled from the group of unknown order, implying that the accumulator’s
list of items is empty. Strong collision resistance is exhibited by an accumulator when the RSA strong
assumption is hard. This concept was formally introduced by Benaloh and de Mare [15]. The RSA
accumulator is described as in the Zerocoin paper [36].

Definition 3.1.1 (RSA accumulator). A RSA accumulator scheme consists of four algorithms:
(ACC.INIT, ACC.PROVE, ACC.VERIFY, ACC.UPDATE):

• params ← ACC.INIT(1λ) takes a security parameter as input. Two prime numbers p and q are
generated to be the secret key. Further N = pq 1 is calculated and a seed value u ∈ QRN , u ̸= 1
is chosen. The output is (N, u) as params.

• A ← ACC.UPDATE(params, P ) takes params (N, u) and a set of primes P = {p1, . . . , pn} as
inputs and it computes the value of the accumulator A = up1···pn mod N .

• π ← ACC.PROVE(params, p, P ) takes as an input params (N, u), a prime p and a set of primes P
and outputs π also called witness. The witness π is the accumulation of all the values in P besides
p, i.e., π = ACC.UPDATE(params, P \ {p}).

1p and q are going to be discarded after the initialization
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• 0/1 ← ACC.VERIFY(params, p, A, π) takes as inputs params (N, u), p prime, a value of the
accumulator A and a witness π. It computes A′ = πp mod N and outputs 1 if A′ = A.
Otherwise 0.

For simplicity, the description above uses the full calculation of A. It should be noted that accumulators
can also be updated incrementally. This also implies that the witness must be updated for all other par-
ticipants; however, because the commitments are available on-chain, participants may always compute
the witness. If An is an accumulator, you can add an element x and determine An+1 by computing
An+1 = Ax

n mod N .

Primality test. The committed value of the client must be a prime number. Unless we keep control over
this, the system’s security will be compromised. An adversary may attempt to deposit a commitment that
for instance is a composite of two prime numbers. This commitment is connected with a fixed number
of coins. The commitment would be accumulated by the accumulator, but since there are two prime
numbers involved, there would be two entries in the DepositList. On the other hand, the balance of
the mixer increases only by one, as one deposit transaction has been done. If the adversary wishes to
withdraw the coins, he proves to the system with one value of the composition that he knows one value
of the accumulator, so regaining possession of the coins. Further, he can withdraw coins with the second
value of the composition, as the second value does not display on the NullifierList and he has never
withdrawn coins according to the system. Fermat primality test [32] and Miller-Rabin test [33] are the
most used tests for prime numbers since they are quick and straightforward. These tests are probabilistic.
Nevertheless, this form of test has a slight chance of incorrectly identifying a number as prime when it
is not. In order to prevent this, the test is done several times to reduce the likelihood of mistakes.

Adversary RSA Accumulator Mixer

(i) cm = cmp1 · cmp2 , 1 coin

gcm (ii)

gcmp1 ·cmp2

(iii) πcmp1

1 coin

(iii) πcmp1

1 coin

Figure 3.1. Possible attack on the mixer. An arrow represents a transfer. g is the current accumulator
value. (i) An adversary can generate a commitment cm such that it is a combination of two commitments
that are prime numbers; hence, the commitment sent to the mixer is not prime. Note that the adversary
only sends one coin. (ii) the accumulator will increase his value to the power of the commitments, which
is equivalent to raising it to the two part commitments. (iii) the adversary is now capable to provide proof
πcmp1

and πcmp2
and withdraw twice the amount of the deposit.

Definition 3.1.2 (Primality test). The primality test consists of one algorithm:

• 0/1 ← ISPRIME(n) takes an integer n and returns 1 if it is probably a prime number and 0
otherwise.
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Withdrawal Proof. To withdraw coins from the system, a user must prove the following two conditions:
(1) The client is aware of the committed values, and (2) the client has not previously withdrawn by
passing a new nullifier value. Specifically, a client must provide a proof of the following relationship:

Rwdr = {(i, sn,N,A, g, h; cm, r, wit ) : ACC.VERIFY(i, sn,A,wit) = 1 ∧ cm = gsn · hr} (3.1)

The details of this proof can be found in Appendix A. Note that we have to commit our message to a
prime, which is cm.

3.2 Detailed Construction

3.2.1 Contract Setup

CONTRACTSETUP(1λ)

1 : Choose amt ∈ Z>0to be a fixed deposit amount
2 : Initialize the RSA accumalator

(N, u)← ACC.INIT(1λ),

3 : Construct Cwdr for relationRwdr

4 : Let Π be the NIZK instance for Rwdr

5 : Setup params← Π.SETUP(1λ, R)

Initialize DepositList = {},NullifierList = {}
6 : Deploy smart contract with parameters:

pp = {amt, N, u, params,

NullifierList,DepositList}

Figure 3.2. Pseudocode for the setup of the smart contract.

Initialization of the smart contract occurs during the setup phase. First, we impose a restriction on the
number of coins a consumer may deposit in a single transaction. This is done so that an opponent
cannot determine who owns the coins based on the quantity. The RSA accumulator is then initialized
in accordance with Section 3.1.1. When configuring the NIZK instance, we are provided with two
keys (ek, vk). In addition, the lists DepositList and NullifierList are initialized. The first includes all
commitments, while the second has all unique identifiers. The public parameter pp contains all the
required information for a client to engage with the contract.

3.2.2 Deposit Interactions

Client. The client can deposit money into the smart contract using CREATEDEPOSITTX. By sampling
random r and sn, the message will be committed to a prime number. This is required since the smart
contract accepts only prime numbers as commitments. Finally, transactions must be signed using sk to
prevent an attacker from modifying the transaction’s recipient. In addition, a witness is produced that
will be needed to withdraw the coins again in the future.

Contract. When a smart contract receives a deposit transaction from an external address, it first has
to verify if the commitment is a prime number and it also has to verify the amount. Then DepositList
is updated, the index is incremented by one, and the accumulator is updated using the ACC.UPDATE

function.
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Client(sk, amt)

CREATEDEPOSITTX(sk, amt) :

1 : Sample sn, r
$←− {0, 1}λ s.t.

cm = gsn · hr ∧ 1 = ISPRIME(cm)

2 : return txdep = (amt, cm), wit = (sn, r)

txdep

Smart Contract

ACCEPTDEPOSIT(txdep)

1 : Parse txdep = (amt′, cm)

2 : Require 1 = ISPRIME(cm)

3 : Require amt = amt′

4 : Append cm to DepositList

5 : Increment index = index+ 1

6 : Compute

Anew = ACC.UPDATE(cm,DepositList)

7 : return 1

txdep

Figure 3.3. Deposit interactions between the client (CREATEDEPOSITTX algorithm) and the smart
contract (ACCEPTDEPOSIT algorithm).

3.2.3 Withdraw Interactions

Client. Using the CREATEWITHDRAWTX function, a client may provide a proof to withdraw amt to
the public key using the secret note, wit, and the secret key. The contract demands the client to provide
a proof that the client has deposited coins in the past, as well as a nullifier value sn to verify that those
coins have not been withdrawn previously, and to prevent customers from withdrawing coins without
having contributed any to the smart contract. pph represents the contract’s status at block height h. The
withdrawal transaction, txwdr, includes the proof πwdr, which proves to the smart contract the client’s
knowledge of a commitment, cm. Finally, txwdr is finally signed by sk′. Note that the client may compute
the witness by taking the current block’s accumulator checkpoint and take the cm-root from it, where cm
is the commitement she had to provide by depositing.

Contract. When a withdraw transaction is received, the smart contract checks the proof and ensures that
sn is not in the NullifierList. Further the given statement is being verified. The contract places sn in the
NullifierList to prevent future double-withdrawal. Finally, amt is deposited to the user’s address from the
smart contract.
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Client(sk′, wit)

CREATEWITHDRAWTX(sk′, wit) :

1 : Obtain pph from the contract

2 : A = ACC.UPDATE((N,u),DepositList)

3 : witdep = ACC.PROVE((N,u), cm,DepositList)

4 : πwdr ← Π.PROVE(ekdep, st[pk′, g, h,N, u,A, sn, cm, r], witdep)

5 : return txwdr = (snwdr, πwdr)

txwdr

Smart Contract

ISSUEWITHDRAW(txwdr) :

1 : Parse txwdr = (snwdr, πwdr)

2 : Require

snwdr /∈ NullifierList

Π.VERIFY(vkdep,

st[msg.sender, snwdr, snwdr],

πwdr) = 1

3 : Append snwdr to NullifierList

/* Send the original deposit to sender*/

4 : Do txwdr.sender.transfer(amt)

return 1

txwdr

Figure 3.4. The system’s deposit interactions between the client (CREATEWITHDRAWTX algorithm)
and smart contract (ISSUEWITHDRAW algorithm).

3.3 Security Discussion

Privacy. Our system achieves privacy. Because we are using NIZK we ensure the unlinkability of
addresses. Assuming the underlying crypography primitives are secure, an adversary can not link a
deposit and a withdrawal transaction.

Correctness. Our system achieves correctness. There are two hypothetical scenarios in which an ad-
versary might withdraw money without having previously deposited them: First, the attacker can either
produce a new transaction for the current contract state or intercept a withdrawal transaction and substi-
tute the recipient address with his own. The first result indicates that our primality test failed, while the
second result indicates that the attacker violated the security of the NIZK instance.

Availability. Because our smart contract runs autonomously on the blockchain, an attacker cannot pro-
hibit clients from interacting with the blockchain, therefore our system satisfies availability.

3.4 Evaluation

3.4.1 Parameter

Choice of cryptographic primitives. We adapted the implementation of the primality test provided by
riordant [4].

Hardware. We ran our experiment on a standard desktop system with an 11th Gen Intel(R) Core(TM)
i7-11800H @ 2.30G CPU and 16GB RAM.
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3.4.2 Performance

Onchain Costs to deposit. Figure 3.5 illustrates the total deposit charges per person for various accu-
mulator sizes. the cost is constant for each person. A deposit transaction costs 470k gas for a 1024bit
accumulator, 762k gas for a 2048bit accumulator and 1230k gas for a 3072bit accumulator. In contrast
to Tornado Cash, the price is based on the primality test and not the size of the Merkle tree. Although, for
instance a 2048bit accumulator accumulates far more commitments than a Merkle tree with height 20,
the cost is still less than with Tornado Cash. We used the Miller-Rabin primality test. This is relatively
expensive and accounts for more than a third of the cost of depositing.

Onchain Costs to withdraw. Since the implementation of the withdrawing method and the proof is
beyond the scope of this thesis, we refer to the GitHub post [2]. According to the developers of zeth [7],
withdrawing would cost about 100m gas, since computing large exponents is computationally very ex-
pensive. However, Fiore [16] has shown in his paper how the costs could be reduced.

Onchain Costs to deploy. The cost of deploying the contract is the most expensive operation. The
smallest accumulator costs around 2.1m gas, the 2048bit big accumulator 2.2m gas and the largest
accumulator 2.4m gas. Figure 3.6 gives a visual representation of the deploying costs. However, we note
that the deployment cost is a one-time cost which is amortized over the lifetime of the contract.
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Figure 3.5. On-chain costs of deposits for different accumulator sizes in comparison with Tornado Cash.
Each black line represents the indicated accumulator size. The grey line represents Tornado Cash with
different Merkle tree heights.
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Figure 3.6. On-chain costs of deploying the different size accumulators.
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Chapter 4

Improved Mixer: Merkle Pyramid Builder

4.1 System Overview

Traditional Ethereum mixers, such as Tornado Cash [5], have a significant drawback, namely that the
cost to deposit funds is around 1.1m gas due to the need to update the Merkle tree after each deposit
transaction. The need to update each time is redundant, as it is recommended to wait some time for other
clients to deposit before withdrawing. Influenced by this fact, by the work of Reyzin and Yakoubov [37]
and the practitioner-friendly version of this method, Merkle tree mountain range (MMR) [40] by Todd,
we developed our method Merkle Pyramid Builder. The goal is to amotize the deposit cost like in the
related method of Szydlo [39]. Note that the most relevant code components of our suggested method
are available in appendix A.2

4.2 Merkle Pyramid Builder

Merkle Pyramid Builder Method. The fundamental concept is not to continually update the Merkle
tree, but rather to gather deposit transactions and then update them collectively. Assuming we define a
deposit-queue of length l. This would result in a subtree with a height of log(l). Every even deposit in
the sequence does not have to pay for anything. In contrast, each odd deposit must hash all the hashes up
to the tree until there are no values remaining on the left side of the deposit in the same sub-tree. Every
l’s deposit has to compute all hashes up to and including the root. Figure 4.1 shows a visual example.
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root
deposit-queue

1. iteration

2. iteration

3. iteration

4. iteration

Figure 4.1. Graphical illustration of the MPB method with a deposit queue length of four. cmi represents
the deposit commitment. In the first iteration, a deposit is made. This is added to the deposit-queue. At
the following deposit, clients must hash its deposit together with the previously stored deposit. This new
value will be added to the queue, while the previous deposit will be removed. If a third deposit arrives,
the client must do nothing further. The fourth must now compute all hashes up to and including the root
using all deposit-queue values. The deposit-queue will then be deleted and the procedure will start again
from the beginning at the next deposit.

4.3 Detailed Construction

4.3.1 Cryptographic Building Blocks

Hash Functions. Hp : {0, 1}∗ → F is a preimage-resistant and collision-resistant hash function that
maps a binary string to an element in F, whereas H2p : F× F→ F is a collision-resistant hash function
that maps two elements in F into one single element in F. We refer to a hash function as “secure” if it is
collision-resistant.

zk-SNARK. A succinct NIZK for arithmetic circuit satisfiability is considered as zero-knowledge suc-
cinct non-interactive argument of knowledge or zk-SNARK. For a given field F, an arithmetic circuit C
accepts items from F as inputs and returns elements from F as outputs. To define the arithmetic circuit
satisfiability problem, we adapt a similar definition from Sasson et al.’s Zerocash paper [13].
For a field F, an arithmetic circuit is defined as

C : Fn × Fh → Fl

and the statisfiability problem is noted as

RC = {(st, wit ) ∈ Fn × Fh : C(st, wit ) = 0l}

with the language
LR := {st | ∃wit : (st, wit ) ∈ R}.

Definition 4.3.1 (zk-SNARK). zk-SNARK consists of three efficient algorithms (SETUP, PROVE, VERIFY)

• (ek, vk) ← SETUP(1λ, C) takes as inputs the security parameter and the circuit. As output, it
returns a string containing the evaluation key ek, which is used later by the prover to generate the
proof, and the verification key vk, which is used by the verifier to verify the proof.

• π ← PROVE(ek, st, wit) takes the evaluation key ek and (st, wit) ∈ RC as inputs and ouputs a
proof π for the statement st.
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• 0/1← VERIFY(vk, π, st) takes as inputs the verification key vk, the proof π, and the statement st.
It outputs 1 if the proof is valid for the statement.

Withdrawal Proof. To withdraw coins from the smart contract a client has to satisfy three conditions:

1. The client has committed values for certain existing commitments that were utilized to construct
the tree root using zk-SNARK.

2. The client did not withdraw previously, by passing a new nullifier value.

3. The secret key used to issue the withdrawal transaction is known by the client.

In other words, a client must give a proof showing the following relation for a Merkle tree T with a root
rootdep:

Rwdr : {pk, sn, rootdep; sk, kdep, r, pathi :

pk = EXTRACTPK(sk) ∧ sn = Hp(kdep) ∧
cm = Hp(kdep||r) ∧ T.VERIFY(i, cm, rootdep, pathi))}

(4.1)

Where pk, sn, rootdep are public values and sk, kdep, r, pathi are private values.

Merkle Tree. The Merkle tree is an example of authenticated set membership testing data structure.
This is a complete binary tree. The leaves of the Merkle tree are initialized with zero values. The smart
contract then preserves the Merkle tree Tdep over all commitments. When deposit transactions occur,
the smart contract keeps track of the total number of deposit transactions and updates the tree using the
ACCEPTDEPOSIT algorithm. We define the Merkle proof for commitment cmi as pathdep. In addition,
we define the root of the Merkle tree at block h as rootcurrwdr. We also denote rootdep.blockheight as the
height of the blockchain block at the moment when rootdep is updated. Figure 4.2 presents a visual
illustration.

Figure 4.2. Illustrative example of the Merkle tree, Tdep . The tree keeps track of commitments from
clients’ deposit transactions. The root of the tree, rootdep is used to verify the NIZK proofs from with-
drawing transactions.

Definition 4.3.2 (Merkle Tree). Merkle Hash tree consists of following algorithms:

• rootdep ← T.INIT(1λ, X) takes as inputs the security parameter and a set X = {01, . . . , 0n}. The
leaves are initialized with the set X and one initializes index = 1 to track the deposits. Further,
the list RootListwdr,k is initialized to be the list of the k most recent roots of T . The output is
rootdep.
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• π ← T.PROVE(i, x,X) takes as input an element x, index 1 ≤ i ≤ n and a set X and outputs that
x = xi ∈ X

• 0/1 ← T.VERIFY(i, x, rootdep, π) takes an element x, 1 ≤ i ≤ n, rootdep ∈ {0, 1}λ and a proof
π as inputs. The output is 1 if x = xi ∈ X and rootdep = T.INIT(1λ, X) and 0 otherwise.

• rootnew ← T.UPDATE(Q) takes a sub-tree Q containing all new hashes as input. The algorithm
inserts the sub-tree into the existing Merkle tree and so the new root will be updated. The output
is the new root rootnew

In order to deposit more cost-efficiently we define methods which allow us to batch deposit-transaction
and therefore allow us to update the Merkle tree less frequently.

Definition 4.3.3 (Deposit-Queuing). The maintenance of the deposit-queue can be described with the
following three algorithms:

• q ← CREATEQUEUE(l) takes as input an integer l, which will determine how many deposit trans-
actions we are batching. The output is an empty queue q with a fixed size l.

• q′ ← UPDATEQUEUE(q, cm) takes as input a list q containing all deposit transactions that have
not yet been stored in the Merkle tree and a new commitment cm. The algorithm stores this value
in the queue as long as it does not have enough elements to hash together. The output is updated
queue which contains all already hashed commitments.

• q′′ ← CLEARQUEUE(q) takes as input a list containing all deposit transactions which are already
stored in the Merkle tree. The algorithm then deletes all entries and returns an empty list.

4.3.2 Contract Setup

Let F represent the finite field we want to use in the contract. In the setup phase the algorithm CONTRACTSETUP

samples two secure hash functions Hp and H2p from the collision-resistant hash families. The procedure
further initializes amt for the fixed amount of coins that can be deposited.

CONTRACTSETUP(1λ)

1 : Sample Hp : {0, 1}∗ → F and H2p : F× F→ F
2 : Choose amt ∈ Z>0 to be a fixed deposit amount
3 : Choose d ∈ Z>0, Let X = {x1, . . . , x2d}
4 : where xi = 0λ for all xi ∈ X

5 : Initialize an empty tree rootdep = T.INIT(1λ, X),

6 : Choose k ∈ Z>0, set RootListwdr,k[i] = rootdep,

for 1 ≤ i ≤ k

7 : Construct Cwdr for statement described in equation 4.1
8 : Let Π be the zk-SNARK instance.

− Run (ekdep, vkdep)← Π.SETUP(1λ, Cwdr)

9 : Initialize: DepositList = {},NullifierList = {}
10 : Initialize: DepositQueue← CREATEQUEUE(l)

11 : Deploy smart contract with parameters :
pp = (F, Hp, H2p, amt

T, index,RootListwdr,k,DespositQueue

(ekdep, vkdep),DepositList,NullifierList)

Figure 4.3. Pseudocode for the setup of the smart contract. pp can be queried by any client.
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Setup Merkle Tree. Let’s define T as the Merkle tree with depth d. The algorithm T.INIT initializes T
as described.

Setup zk-SNARK parameters. We initialize a zk-SNARK-instance Π with the algorithm Π.SETUP

with Cwdr as input. We obtain two keys (ekdep, vkdep).

Setup commitments and nullifier lists. The contract initializes two empty lists. DepositList contains all
cm included in depositing transactions. NullifierList contains all unique identifiers sn, which commited
in a withdrawing transaction.

Setup deposit-queue. The DepositQueue is initialized to keep track of how many deposit transactions
are in the queue and how many of them were hashed to know if the next user has to pay for updating the
Merkle tree. We define the size l of the queue to determine how big the subtree should be.

4.3.3 Deposit Interaction

Client. A client can deposit coins into the smart contract using CREATEDEPOSITTX. First, the client
must randomly select k and r. Those are then hashed together and are used to construct the commitment.
The transaction is currently comprised of the commitment and the tokens the client wishes to transmit.
Additionally, the transaction must be signed with sk to prevent an attacker from just altering the trans-
action’s recipient. In addition, a witness is issued which will be used in the future to withdraw the coins
again.

Contract. At the beginning the smart contract verifies that the amount of coins is as requested and that
there is still free space in the Merkle tree. If the conditions are met the commitment is added in the
DepositList. With UPDATEQUEUE the DespositQueue will be updated. If this deposit-queue is full, the
Merkle tree will be updated using the algorithm T.UPDATE. Furthermore the smart contract will empty
the deposit-queue and finally add the new root to the RootListwdr,k

Client(sk, amt)

CREATEDEPOSITTX(sk, amt) :

1 : Sample (kdep, r)
$←− {0, 1}λ

2 : Compute cm = Hp(kdep||r)
3 : return txdep = (amt, cm) and wit = (kdep, r)

txdep

Smart Contract

ACCEPTDEPOSIT(txdep)

1 : Parse txdep = (amt′, cm)

2 : Require amt=amt′ and index < 2d

3 : Append cm to DepositList

4 : UPDATEQUEUE(DespositQueue, cm)

5 : Require DespositQueue to be full

Compute

rootnew = T.UPDATE(DespositQueue)

CLEARQUEUE(DespositQueue)

Append rootdep to RootListwdr,k

return 1

txdep

Figure 4.4. Deposit interactions between the client (CREATEDEPOSITTX algorithm) and smart contract
(ACCEPTDEPOSIT algorithm). Transaction txdep is signed by sk.
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4.3.4 Withdraw Interaction

Client. A client has to create a proof πwdr with the secret note, wit, and the secrete key sk′, to withdraw
amt to the public key pk′. The client has to prove to the contract the three points we mentioned in 4.3.1.

Contract. The contract checks the proof, πwdr, and confirms that the nullifier snwdr is not in the Nul-
lifierList when it receives a withdrawal transaction. The contract then appends snwdr to NullifierList to
avoid future double withdrawals. Finally, the smart contract deposits amt to the address specified by the
user.

Client(sk, amt)

CREATEWITHDRAWTX(sk, amt) :

1 : Parse wit = (kdep, r)

2 : Obtain pph from the contract

3 : Compute snwdr = Hp(kdep)

4 : Compute cm = Hp(kdep||r)

5 : Get index i of cm from DepositListh

6 : Choose rootdep ∈ RootListwdr,k

7 : Compute pathhdep,i such that

- T.VERIFY(i, cm, rootdep, path
h
dep,i) = 1

8 : Form: witdep = (sk′, kdep, r, path
h
dep,i)

9 : πwdr ← Π.PROVE(ekdep, st[pk′, snwdr, rootdep], witdep)

10 : return txwdr = (snwdr, rootdep, πwdr)

txwdr

Smart Contract

ISSUEWITHDRAW(txwdr) :

1 : Parse txwdr = (snwdr, rootdep, πwdr)

2 : Require

- rootdep ∈ RootListwdr,k

- snwdr /∈ NullifierList

- Π.VERIFY(vkdep, πwdr,

st[msg.sender, snwdr, snwdr, rootdep]) = 1

3 : Append snwdr to NullifierList

/* Send the original deposit to sender*/

4 : Do txwdr.sender.transfer(amt)

return 1

txwdr

Figure 4.5. Withdraw interactions between the client (CREATEWITHDRAWTX algorithm) and smart
contract (ISSUEWITHDRAW algorithm). The state of the contract at block height h is denoted by pph.
The withdraw transaction txwdr contains the proof πwdr that proves the client’s knowledge of cm =
Hp(kdep, r) which is a valid member of the Merkle tree with the root rootwdr. snwdr is used to nullify
the old commitment, cm. txwdr is signed by sk′.

20



4.4 Security Discussion

Privacy. Our system achieves privacy. Because we are using zk-SNARK we ensure the unlinkability
of addresses. Assuming the underlying crypography primitives are secure, an adversary can not link a
deposit and a withdrawal transaction.

Correctness. MPB satisfies correctness. There are two conceivable outcomes if an attacker can deliver
a withdrawal transaction that confirms without depositing any coins into the system. First, the adversary
can generate a new legitimate transaction for the present state of the contract (i.e. by watching the
commitment list), or it can intercept a withdrawal transaction and change the recipient address with its
own. In the first scenario, this indicates that the adversary breaches the preimage-resistant security of the
underlying hash function Hp, whereas in the second situation, the opponent breaches the security of the
zk-SNARK instance.

Availability. MPB does not fully satisfy availability, since clients cannot withdraw until the final client
in a sub-tree has updated the root. Nonetheless, we do not consider this a drawback. As previously
stated, anonymity rises the longer funds are in the mixer. By imposing a mandatory delay, we provide
more anonymity.

4.5 Evaluation

Choice of cryptographic primitives. We select Groth’s zk-SNARK [27] as our instance of zk-SNARK
owing to its efficiency in terms of the size of proofs and the calculations required by the verifier. We
employ the Pedersen 1 hash function [35] for Hp and the MiMC hash function [9], for H2p for crypto-
graphic hash functions. Compared to arithmetic circuits that rely on other hash functions like Jubjub [3],
arithmetic circuits that employ MiMC hash produce a smaller number of constraints and operations.
In addition to being created exclusively for SNARK applications, MiMC hash functions are also very
gas-efficient for Ethereum smart contract applications.

Software. For the arithmetic circuit design, the Circom library [11] is used to build the withdrawal
circuit, Cwdr, for the relation specified in Equation 4.1. We utilize Groth’s zk-SNARK proof system
implemented by the snarkjs package [12] to construct the client’s algorithms and to establish the trusted
environment for getting the proving and evaluation keys for the MPB contract and clients. We deployed
the MPB system on the EVM ganache [1].

Hardware. We ran our experiment on a standard desktop system with an 11th Gen Intel(R) Core(TM)
i7-11800H @ 2.30G CPU and 16GB RAM

4.5.1 Performance

We measured the performance and the cost of the MPB system using the tree depths d = 10, 15, 20, 25, 30
and the following deposit-queue length l = 2, 4, 8, 16, 32, 64, 128.

Onchain Cost to Deposit. Figure 4.6 illustrates how expanding the size of the deposit queue reduces
expenses. We may also observe that by reducing or raising the depth of the Merkle tree, the cost falls
or increases, accordingly. Note that reducing the depth of the Merkle tree reduces the number of users,
while raising the depth significantly increases the time required to compute the withdrawal proof. We
can also observe that for a deposit-queue of length 128, the gas costs are around 135k, which is quite
consistent amongst the various Merkle tree depths.

1Pedersen hash function is a secure hash function which maps a sequence of bits to a compressed point on an elliptic curve
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Figure 4.6. Average on-chain costs of deposits per client for different deposit-queue size and different
Merkle tree depth.
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Figure 4.7. Cost to deploy the MPB smart contract with different Merkle tree sizes.

Onchain Cost to Deploy. Figure 4.7 shows the expense associated with deploying smart contracts. All
expenditures exceed 6m gas, however the deployment cost is a one-time expense that is amortized over
the duration of the contract.
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Figure 4.8. Average on-chain costs of deposits per client for different deposit-queue lengths in compar-
ison with Tornado Cash. The dashed line represents the cost of depositing in Tornado Cash. It is about
1.1m gas.

Onchain Cost. Figure 4.8 illustrates the total deposit charges per person for various deposit queue-sizes.
The costs reduce in inverse proportion to the length of the deposit queue. However, the cost will never
go below 1.1k gas. Nevertheless, this is just a 1

7 of the cost of depositing in Tornado Cash. Note that the
costs associated with deposit-queue size one would roughly correspond to those of Tornado Cash. The
gas cost for a withdrawing transaction is approximately 350k, as the MPB contract needs to verify the
zk-SNARK proof.

4.6 Reduce Deposit Cost via Verifiable Computation

To further minimize costs, one can use verifiable computation techniques [26]. The primary concept is
to do the calculation off-chain and utilize the contract to validate its correctness. The client evaluates the
root of the Merkle tree and delivers the result along with a proof that the calculation was performed cor-
rectly. However, since the implementation would go beyond this bachelor thesis, we will only introduce
the theory. The technique of using verifiable computation to reduce on-chain cost was first introduced in
Hawk [29].

4.6.1 Verifiable Computation

Verifiable Computation Scheme. In a verifiable computation scheme, the client selects a function and
an input to send to the server. The server must evaluate the function on the input and return the result,
along with proof that the result is valid. The client then verifies that the output given by the user server is,
in fact, the result of the function computed on the specified input. The goal is to make such a verification
very efficient respectively to make this verification faster than the computation of the function itself.

Definition 4.6.1 (Verifiable Computation Scheme). Let F be a function, expressed as an arithmetic
circuit over a finite field F and λ be a security parameter.

• (ek, vk) ← VCINIT(1λ, F ) takes a security parameter and an arithmetic circuit as an input and
generates two public keys: an evaluation key ek and a verification key vk.
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• (y, π) ← VCPROVE(ek, x) takes as input an element x and the evaluation key ek and computes
y = F (x) and a proof π that y has been correctly computed.

• 0/1← VCVERIFY(vk, x, y, π) takes the verification key vk, the input/output (x, y) of the compu-
tation F and the proof π and outputs 1 if y = F (x) and 0 otherwise.

A zk-SNARK instance can be used as the verifiable computation scheme. Groth16 can be used for this
purpose.

Deposit Proof. To deposit coins to the smart contract a client has to give a proof showing the following
relation for a Merkle tree T with a root, rootdep:

Rdep : {pk, cm, rootolddep, root
new
dep , pathi : T.VCVERIFY(vk, rootolddep, root

new
dep , pathi)} (4.2)

4.6.2 Contract Setup

The CONTRACTSETUP algorithm differs marginally from the MPB method in section 4.3.2. The only
difference is that an additional instance must be initialized for the verifiable computation.

CONTRACTSETUP(1λ)

1 : Sample Hp : {0, 1}∗ → F and H2p : F× F→ F
2 : Choose amt ∈ Z>0 to be a fixed deposit amount
3 : Choose d ∈ Z>0, Let X = {x1, . . . , x2d}
4 : where xi = 0λ for all xi ∈ X

5 : Initialize an empty tree rootdep = T.INIT(1λ, X),

6 : Choose k ∈ Z>0, set RootListwdr,k[i] = rootdep,

for 1 ≤ i ≤ k

7 : Construct Cdep for statement described in 4.2
8 : Construct Cwdr for statement described in 4.1
9 : Let Πdep be the Verifiable Computation instance.

− Run (ekvcdep, vk
vc
dep)← Πdep.VCINIT(1λ, Cdep)

10 : Let Πwdr be the zk-SNARK instance.

− Run (ekdep, vkdep)← Πwdr.SETUP(1λ, Cwdr)

11 : Initialize: DepositList = {},NullifierList = {}
12 : Initialize: DepositQueue← CREATEQUEUE(l)

13 : Deploy smart contract with parameters :
pp = (F, Hp, H2p, amt

T, index,RootListwdr,k,DespositQueue

(ekdep, vkdep), (ek
vc
dep, vk

vc
dep),DepositList,NullifierList)

Figure 4.9. Pseudocode for the setup of the smart contract. pp can be queried by any client.

Setup Verifiable Computation Proof. We initialize a verifiable computation instance Πdep with the
algorithm Πdep.VCINIT with Cdep as input. We obtain two keys (ekvcdep, vk

vc
dep)
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4.6.3 Deposit Transaction

Client(sk, amt)

CREATEDEPOSITTX(sk, amt) :

1 : Sample (kdep, r)
$←− {0, 1}λ

2 : Compute cm = Hp(kdep||r)
3 : rootnew, πdep = VCPROVE(ekvcdep, cm)

4 : return txdep = (amt, rootnew, πdep, cm) and

wit = (kdep, r)

txdep

Smart Contract

ACCEPTDEPOSIT(txdep)

1 : Parse txdep = (amt′, cm)

2 : Require amt=amt′ and index < 2d

3 : Append cm to DepositList

4 : UPDATEQUEUE(DespositQueue, cm)

5 : Require DespositQueue to be full

Require 1 = T.VCVERIFY(vkvcdep, cm, rootnew, πdep)

Compute

T.rootnew = rootnew

CLEARQUEUE(DespositQueue)

Append rootdep to RootListwdr,k

return 1

txdep

Figure 4.10. Deposit interactions between the client (CREATEDEPOSITTX algorithm) and smart contract
(ACCEPTDEPOSIT algorithm). Transaction txdep is signed by sk.

Client. In comparison to section 4.3.3, the client must calculate and prove the proper calculation of the
new root in addition to the cm and amt. The rest remains unchanged.

Contract. In contrast to section 4.3.3, the smart contract must now do much fewer calculations. When
the DespositQueue is full, the client’s proof for the validity of the new root is checked. If this is the case,
the root of the contract is modified to match the client’s root. The rest remains the same as before.

4.6.4 Withdraw Interaction

Since verifiable computation only alters the method we deposit, the way we withdraw coins stays the
same as in section 4.3.4.
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Chapter 5

Conclusion

The lack of privacy features in open and permissionless blockchains can be mitigated to a degree via
coin mixers. Their operations are expensive due to both transaction fees and the fact that ”greater” pri-
vacy is more expensive than ”weaker” privacy when privacy quality is measured quantitatively with the
anonymity set size. In this thesis, we introduce two coin mixers.

The first mixer is based on a RSA accumulator, which reduces the cost by only needing a constant
number of operations. Despite of the high cost of the primality test we were able to reduce the deposit
cost. We implemented a simple RSA accumulator on-chain mixer. The deposit costs were measured on
the EVM ganache and we could see how different modulus sizes affect the cost of depositing in compar-
ison with Tornado Cash. For example by choosing a modulus of a 2048bit long number we could safe
about 300k gas in comparison with the standard Tornado Cash mixer.

The second on-chain mixer, the MPB-mixer is a more cost efficient version of the Tornado Cash mixer.
We introduced MPB and also implemented it in Solidity. We saw that by increasing the size of the
deposit-queue the average deposit-cost per person would decrease until approximately 110k gas is reached.
Furthermore there are not any addition costs for a withdrawal transaction, which costs about 350k gas.
We observed that regardless of the Merkle tree depth, if we select a big deposit-queue, the gas cost will
be around 135k. In addition, we proposed a second method for reducing depositing expenses. Using a
verified computation approach would reduce the on-chain cost associated with computing hash functions
to update the Merkle root.

Both our mixers should attract privacy-seeking users, who are searching for a more cost efficient ver-
sion of Tornado Cash. Therefore, we hope that such methods significantly broaden the number of users
of the mixers and thereby enhancing the quality of the anonymity set for all users engaged. However,
the recent U.S. legislation that made Tornado Cash illegal may reduce interest in these methods. Our
implementations and assessments demonstrate the practicability of our mixers by enabling anonymity
sets with more than thousands of members.

Our system uses the MiMC hash functions. MiMC might be replaced in the future by the Poseidon
hash function, which is not only cheaper but also faster. Further, our last presented method in Section
4.6 can be implemented and evaluated for additional cost reductions.
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Appendix A

Extra material

A.1 Contruction of a NIZK proof

In the following section we will provide you a detailed description of the NIZK proof used in section 3.1.

Consider that the commitment scheme’s parameters are a group Gq and two generators g1 and h1. To
commit to a value x, one choose a random r ∈ Zq and outputs COMMIT(msg, r) = gx1 · hr1. k′ and k′′

are security parameters. Under the discrete-logarithm assumption, this information-theoretically hiding
commitment scheme is binding. Furthermore we require that g2 and h2 ∈ QRN be available such that
logg2 h is unknown to the prover, where N is the value of the modular of the accumulator. Let e be the
value we want to hide and let u be a value such that ue = A mod N . Let also H : {0, 1}∗ → {0, 1}k
be a cryptographic hash function.

1. The prover chooses

rx1 ∈R [−B2k
′+k′′+2, B2k

′+k′′+2]
rx3 , rx7 , rx8 , rx10 , rx11 ∈R Z1

rx5 , rx9 , rx6 ∈R (−⌊N4 ⌋ · 2k
′+k′′ , . . . , ⌊N4 ⌋ · 2k

′+k′′)

rx2 , rx4 ∈R (−⌊N4 ⌋ · q · 2k
′+k′′ , . . . , ⌊N4 ⌋ · q · 2k

′+k′′)

and computes

C = ge1 · hr1 Ce = gr12 · he2 Cu = u · hr22 Cr = gr22 · hr32
t1 = gx1

1 · hx7
1 t2 = (

C
g1

)rx3 · hrx81 t3 = (g1 · C)rx10h
rx11
1 t′1 = hx5

2 · g
rx6
2

t′2 = h
rx1
2 · grx92 t′3 = C

rx1
u · ( 1

h2
)rx2 t′4 = C

rx1
r · ( 1

h2
)rx4 · ( 1

g2
)rx2

sx1 = rx1 − c · e sx7 = rx7 − c · r mod q

sx2 = rx2 − c · r2 · e sx8 = rx8 − c · r · (e− 1)−1 mod q

sx3 = rx3 + c · (e− 1)−1 mod q sx9 = rx9 − c · r1
sx4 = rx4 − c · r3 · e sx10 = rx10 − c · (e+ 1)−1 mod q

sx5 = rx5 − c · r3 sx11 = rx11 + c · r · (e+ 1)−1 mod q

sx6 = rx6 − c · r2

and also c = H(e, t1, . . . , t3, t
′
1, . . . , t

′
4)

The signature of knowledge on e is (c, g1, h1, g2, h2,C, Ce, Cu, Cr, rx1 , rx2 , rx4 , sx1 , . . . , sx11)
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2. The verifier computes

t̄1 = C · gsx11 · hsx71 t̄′3 = Ac · Csx1
u · ( 1

h2
)sx2

t̄2 = gc1(
C
g1

)sx3 · hsx81 t̄′4 = C
rx1
r · ( 1

h2
)rx4 · ( 1

g2
)rx2

t̄3 = gc1 · (g1 · C)sx10h
sx11
1 ¯sx1 ∈ [−B2k

′+k′′+2, B2k
′+k′′+2]

t̄′1 = Cc
r · h

sx5
2 · gsx62

c′ = H(e, t̄1, . . . , t̄3, t̄′1, . . . , t̄
′
4)

and verify c
!
= c′

We will define the first part of the proof as

π1 = (c, g1, h1, g2, h2,C, Ce, Cu, Cr, rx1 , rx2 , rx4 , sx1 , . . . , sx11)

The part (2) is a double discrete log signature of knowledge, that is described in the paper of Zero-
coin [36]. It is constructed as follows:
Let’s denote y1 = ga

x·bz · hw and let l ≤ k two security parameter. Let H : {0, 1}∗ → {0, 1}k be a
cryptographic hash function.

1. The prover chooses 2l numbers r1, . . . , rl, v′1, . . . , v
′
l and computes

• ti = ga
x·bri · hvi , for 1 ≤ i ≤ l

• si =

{
ri if c[i] = 0

ri − z otherwise.

• s′i =

{
vi if c[i] = 0

vi − w · bri−z otherwise.

• c = H(e||y1||a||b||g||h||x||t1|| . . . ||tl)

The signature of knowledge on e is (c, s1, . . . , sl, s′1, . . . , s
′
l)

2. the verifier computes

• t′i =

{
ga

x·bsi · hs′i if c[i] = 0

yb
si

1 · hs
′
i otherwise.

• c′ = H(e||y1||a||b||g||h||x||t′1|| . . . ||t′l)

and verify c
!
= c′

We will define the second part of the proof as

π2 = (c, s1, . . . , sl, s
′
1, . . . , s

′
l)

Finally, we need to combine the two parts of the proof to get our whole proof:

π = (π1, π2)

28



A.2 Code Snippets

1 function updateDepositStack(StackEntityStruct.StackEntity memory _newEntity) public
{

2 // if the stack is empty just save the new entity
3 if (depositStack.isEmpty()) {
4 depositStack.push(_newEntity);
5 } else {
6 while(true) {
7
8 // last entity of the stack
9 StackEntityStruct.StackEntity memory lastEntity = depositStack.peek();

10
11 // last entity of the stack and the new entity should have the same hash

level to calculate the new value
12 if (lastEntity.hashLevel == _newEntity.hashLevel) {
13
14 // hash last element of queue with newest element and increment hashlevel
15 bytes32 newValue = hashLeftRight(hasher, lastEntity.value, _newEntity.

value);
16 uint256 newHashLevel = _newEntity.hashLevel + 1;
17 _newEntity = StackEntityStruct.StackEntity(newValue, newHashLevel);
18
19 depositStack.pop();
20
21 if (depositStack.isEmpty() || depositStack.peek().hashLevel != _newEntity.

hashLevel) {
22 depositStack.push(_newEntity);
23 break;
24 }
25 } else {
26 depositStack.push(_newEntity);
27 break;
28 }
29 }
30 }
31 }
32
33 function mpbDeposit(bytes32 _commitment) external payable nonReentrant {
34 require(!commitments[_commitment], "The commitment has been submitted");
35 StackEntityStruct.StackEntity memory newEntity = StackEntityStruct.StackEntity(

_commitment,0);
36
37 if(currentIndex % 2**subTreeLevel == 2**subTreeLevel-1){
38 updateDepositStack(newEntity);
39 mpbInsert(depositStack.pop());
40 require(depositStack.isEmpty(), "not empty stack");
41
42 } else {
43 updateDepositStack(newEntity);
44 }
45 commitments[_commitment] = true;
46 _processDeposit();
47
48 emit Deposit(_commitment, currentIndex, block.timestamp);
49 currentIndex++;
50 }
51
52
53
54
55
56
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57 function mpbInsert(StackEntityStruct.StackEntity memory _newEntity) public {
58 uint32 _nextIndex = nextIndex;
59 require(_nextIndex != uint32(2)**levels, "Merkle tree is full. No more leaves

can be added");
60 bytes32 currentLevelHash;
61 bytes32 left;
62 bytes32 right;
63
64 uint _pyramidNextIndex = pyramidNextIndex;
65 uint pyramidCurrentIndex = _pyramidNextIndex;
66 currentLevelHash = _newEntity.value;
67
68 for (uint32 i = sub_tree_level; i < levels; i++) {
69 if (pyramidCurrentIndex % 2 == 0) {
70 left = currentLevelHash;
71 right = zeros(i);
72 filledSubtrees[i] = currentLevelHash;
73 } else {
74 left = filledSubtrees[i];
75 right = currentLevelHash;
76 }
77 currentLevelHash = hashLeftRight(hasher, left, right);
78 pyramidCurrentIndex /= 2;
79 }
80 uint32 newRootIndex = (currentRootIndex + 1) % ROOT_HISTORY_SIZE;
81 currentRootIndex = newRootIndex;
82 roots[newRootIndex] = currentLevelHash;
83 pyramidNextIndex = _pyramidNextIndex + 1;
84 nextIndex = _nextIndex + 1;
85 }
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