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Abstract

A blockchain is a technology that allows for the creation of a distributed and decentralized
network of parties that want to agree on a common sequence of records called blocks. These
blocks are verified without the need of a central authority. Verification is made possible
by consensus protocols which enable a set of nodes in the network to align on a common
value. Some protocols employ threshold signatures for block validation. Threshold signa-
ture schemes involve shares of a private key which are distributed across different nodes.
Each node can produce a partial signature on a message m by using his own share. A full
threshold signature requires a minimum number of partial signatures. In this thesis, we im-
plement an existing signature scheme, and measure its performance when being deployed in
two distinct consensus protocols.
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Chapter 1

Introduction

Consensus protocols are crucial components of current blockchain technology. They allow for honest
nodes in a decentralized network to reach an agreement on a system state in order to transition to the
next state. One desired property of such protocols is Byzantine Fault Tolerance (BFT). A consensus
protocol implementing BFT maintains reliability despite the presence of some malicious nodes that may
falsify information. This is achieved by using common cryptographic components, including signatures
creation and verification, as well as hash functions. BFT allows a system with 3f + 1 nodes, where f

denotes the number of malicious parties, to reach consensus (provided that at least 2f +1 non-byzantine
nodes, i.e. honest nodes, follow the protocol correctly). Some consensus protocols implement BFT
by deploying threshold signatures as follows: A designated leader node broadcasts a message (which
translates to block in our context) to the rest of the nodes in the network. Upon receiving the broadcast,
a node performs a validation procedure using their private key and responds with a partial signature back
to the leader. The leader waits for the arrival of sufficient valid responses before combining them into
one threshold signature. This threshold signature proves the approval of the message by a sufficient
number of nodes. One of the main advantages of threshold signatures is the fact that no more than a
single signature is needed to approve the subsequent block. This is crucial due to restrictions in memory
space requirements and broadcasting costs in the context of blockchains. In this thesis we will examine
the performance of the two distinct consensus protocols HotStuff [2] & Kauri [3] when using the BLS
signature scheme [1]. The main aims of this project are:

• Developing the BLS signature scheme in Go.

• Measuring the perfomance of the scheme when being deployed in both, the HotStuff and the Kauri
consensus protocol.

In Chapter 2 we introduce essential cryptographic notions that build the background for the following
chapters. Chapter 3 summarizes the most important design requirements and choices that were made.
We explain most important functions of the BLS scheme and give some technical insights in Chapter 4,
before evaluating the BLS signature scheme in Chapter 5.
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Chapter 2

Background

2.1 Byzantine Fault Tolerance in Blockchain

Byzantine Fault Tolerance (BFT) is a method in order to reach consensus in a decentralized network.
It aims to resolve the Byzantine Generals problem, a logical decision puzzle [19, 20]. It is based on
the possibility that generals from the same side leading different armies can experience communication
issues when deciding on how to proceed against the adversary. They will win the battle if all generals
take the same decision. If communication between the generals is bad or some generals are behaving
maliciously, causing some of the troops to attack while others don’t, the battle will be lost. Byzantine
faults summarize these types of difficulties. In a computer system that consists of several nodes, every
single node can be regarded as a general. A computer system implementing BFT has the ability to
continue operating even when some nodes may fail or purposefully try to fool it.
In blockchain technology, a certain amount of nodes must validate a transaction, before the transaction
is appended to the blockchain. Consensus algorithms are part of every blockchain network. They make
it possible that consensus protocols can reach BFT. A large-scale version of the Byzantine Generals
Problem affects blockchain networks, and particularly cryptocurrencies. In the following two sections
we are going to present different consensus algorithms, namely the HotStuff consensus protocol and
Kauri. They are both designed to work on permissioned blockchains. Permissioned blockchains are not
publicly accessible and only users that have permission can enter the network, contrary to permissionless
blockchain [18]. Bitcoin is the most prominent example of a permissionless blockchain.

2.2 HotStuff

HotStuff is a BFT consensus protocol, where communication is based on a star topology [2]. A replica is
acting as the designated leader (here P0) for each round of consensus. First, the leader proposes a trans-
action m that he received from a client C to all the other replicas. For a message m to be appended onto
the blockchain and the replicas updating their own state machine, the leader needs to gather votes from
enough replicas over three phases, the PREPARE-Phase, the PRE-COMMIT-Phase and the COMMIT-
Phase.The overall procedure in all three phases is similar:
In each phase the leader makes a proposal to the other replicas. Once the leader receives sufficient valid
responses (partial signatures from replicas P1, ..., P6) for the current proposal, it combines them into a
single quorum certificate QC in form of a threshold signature. He sends the quorum certificate QC to
the other nodes, which can validate that the quorum certificate QC is correct and enough nodes have
approved the proposal from the previous phase.
Finally (in the DECIDE-phase), assuming the leader has received enough valid commit votes, he as-
sembles all valid votes together into a commit quorum certificate, which he broadcast as a final decide
message to all the other nodes. Upon the receiving the decide message a replica may execute a state
transition and update their own state machine (which represents a copy of their own blockchain). Figure
2.1 gives an overview of HotStuffs topology and communication pattern. Communication in HotStuff is
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executed in linear time.

Figure 2.1. HotStuff topology and communication pattern with 7 nodes[2]

In Hotstuffs approach of using a star topology, the system can progress as long as the leader is non-
faulty. Additionally, HotStuff ensures to recover within f +1 steps in case of the presence of a malicious
leader.

2.3 Kauri

Kauri is BFT communication abstraction and is an extension of the HotStuff consensus protocol [3].
Hotstuff’s star topology can rapidly cause some problem to the leader. In HotStuff the leader needs
to send, receive and process messages from all other nodes, leading to a potential bandwidth and CPU
bottleneck. Instead of communicating over a star topology, in Kauri the communication pattern is a
tree. It is designed to improve system scalability and load balancing in HotStuff, which is an issue
since the leader works as a central node verifying the signatures of all other nodes. Similar to HotStuff,
Kauri works in succession of four phases PREPARE, PRE-COMMIT, COMMIT and DECIDE. Figure
2.2 depicts Kauris tree topology and its communication pattern. The root node (here P0) acts as the
designated leader sends forwards a message m to both his children P1 and P2. Both, P1 and P2 continue
sending m further down the tree by sending the message m to their own children. This procedure
continues until the leaf nodes (here P3, ..., P7) receive the message that was initially sent by the leader
P0. Leaf nodes validate the message m by signing it and propagate it up the tree by sending the signature
to their parents. A parent, receiving two signatures, may sign m himself before aggregating all 3 partial
signatures to form a multisignature. He then sends the multisignature to his own parent. The procedure
continues that way until the the leader receives two multisignatures from both his children. Those two
multisignatures contain partial signatures of all nodes that validated the proposal m. He then may then
sign the proposal himself and aggregate the two received multisignatures with his own partial signature.

Generally, trees are hard to reconfigure. In case of a failure (e.g. an internal node in the tree is
malicious and does not send anything) it’s not sufficient to simply switch the leader. A tree is said to
be robust if and only if it all internal nodes and the root node are honest. There is a factorial number of
trees but only a small fraction of them is robust. We aim to construct a robust tree to achieve consensus.
For this we divide all n nodes into m bins, where m represents the fanout of the tree. Each bin contains
at least t nodes, where t corresponds to the size of all internal nodes. If we loop over all the bins and
assign the nodes in the bin to cover the internal nodes, we are guaranteed to eventually (within f + 1
steps) reach a bin without any faulty node and therefore a tree with a robust configuration. There is a
catch though: The above strategy only holds in case f < m. For the case where f � m we start with the
same strategy. In case no bin contained only honest nodes, we fall back to a star topology. In the worst
case scenario, in Kauri, we will wait f + 1 +m steps until we end up with a robust star topology.
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Figure 2.2. Kauri topology and communication pattern with 7 nodes [3]

2.4 BLS Signature Scheme

Boneh-Lynn-Shacham (BLS) is a cryptographic signature scheme [1, 10, 14]. The scheme uses a bilinear
pairing function e for the verification of signatures. Signatures are elements of an elliptic curve subgroup.
BLS is designed for the usage of different curves and is not restricted to a specific elliptic curve. In our
implementation we made use of an elliptic curve called BLS12-381 [15]. The curve was designed in
2017 and used as the foundation for an upgrade on the Zcash protocol [17]. 381 is the number of bits
needed to represent coordinates on the curve, whereas the number 12 represents the curves embedding
degree. Coordinates of points are elements of a finite field Fq that has prime order q, and q is 381 bits
long.

For the signature scheme we make use of the following two subgroups of the BLS12-381 curve:

• G1 ⇢ E(Fq) where E : y2 = x
3 + 4

• G2 ⇢ E
0(Fq2) where E

0 : y2 = x
3 + 4(1 + i)

G1 and G2 are two additive cyclic groups of order r with generators g1 2 G1 and g2 2 G2 respec-
tively. The fact that the BLS12-381 actually contains two instead of one curve might be a bit confusing.
The reason for this are technical requirements the paring e has to satisfy. G1 and G2 need to be distinct
groups and must have the same prime-order r. In E(Fq) there is no other subgroup than G1 that has
order r. That’s why a subgroup G2 from a distinct curve E

0(Fq2) is needed.
It’s important to mention that coordinates of points in G1 are pairs of integers, whereas elements in G2

are pairs of complex integers. Therefore points in G2 are more expensive to work with and the take
double the amount of memory compared to points in G1. When dealing with digital signatures, G1 and
G2 are interchangeable. Thus, we can choose signatures to be elements in G1 and public keys members
of G2, or the other way around.

The pairing function e : G1⇥G2 �! GT that allows for the verification of signatures takes as input
elements P 2 G1 and Q 2 G2 and outputs a point from a (multiplicative) group GT ⇢ Fq12 . The pairing
e ensures that e(a · P, b · Q) = e(P, b · Q)a = e(P, Q)a·b = e(P · a, Q)b = e(b · P, a · Q) holds for
scalars a and b.

To generate a Private-Public Key pair, we select a random integer in [1, r � 1] to be the private Key
sk. The corresponding public key pk is pk := sk · g1. The discrete logarithm problem ensures that it
is unfeasible to recover sk given the public-key pk. To sign a message m we first need to map m onto
a point in the group G2 (assuming that we are using G2 for signatures). One way to accomplish this,
is to make use of a method called ”hash and check”. This method is not doable in constant time and
even attacking issues were mentioned. The IETF standard for hashing to curves [13] adopts a superior
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approach that is described in the draft for hashing to elliptic curves [5] . We sketch the approach in detail
in Chapter 4. Given a hash function h that maps messages onto an element of G2, we produce a signature
on a message m by computing � := h(m) · sk.

Given a message m, a signature � and a public key pk we want to ensure that � was created by
the holder of the sk that corresponds to pk. This is where the pairing function e comes into play. The
signature is valid, if and only if

e(g1,�) = e(pk, h(m))
is satisfied.

Compared to ECDSA or Schnorr signatures the scheme benefits of shorter signatures (about half the
size).

2.5 BLS Multisignatures

A useful property of the BLS signature scheme is that it allows for signature aggregation [1, 10]. It’s
either possible to aggregate signatures over different messages or we can also aggregate signatures over
the same message. The latter is also referred to as a multisignature [6]. For simplicity we are going to
consider the case where n nodes P1, .., Pn all sign the same message m. The nodes compute partial sig-
natures �1, ...,�n. To create a multisignature we add up all the signatures �i 2 G2 and the corresponding
public keys of all parties:

�agg = �1 + ...+ �n

pkagg = pk1 + ...+ pkn

To verify that �agg is valid, one only needs to check if e(g1,�agg) = e(pkagg, h(m)) holds. For the
verification of a message that was signed by n nodes we only compute 2 pairings, rather than 2n that one
would have to do if the n signatures would be verified separately. This is a big advantage since pairings
are expensive to compute.

When aggregating signatures over the same message m one is susceptible to the rogue public key
attack. In this attack, an attacker Eve chooses ↵  � Z+

r and computes pkEve = g1 · ↵ � pkBob with
pkBob 2 G1 being the public key of some unknowing user Bob. Eve can pretend that Bob and himself
signed the multisignature � = h(m) · ↵, because

e(g1,�) = e(g1, h(m) · ↵) = e(g1 · ↵, h(m)) = e(pkEve + pkBob, h(m)).
is satisfied. The attacker is able to commit Bob to some message m without Bob ever signing m. There
are standard defenses against the public key rogue attack. Prove knowledge of the secret key (PKOSK)
resolves the problem, which involves a zero-knowledge proof of knowledge. This way the proving party
is able to demonstrate knowledge of the secret key, without revealing any information about the secret
key itself.

2.6 Secret Sharing

Secret sharing is key ingredient in threshold cryptography. The process of distributing a secret amongst
a group of nodes {P1, ..., Pn} is known as Secret Sharing [9, 7, 8]. Each node possesses a different
share of the secret. The original secret can be reconstructed if more than a predetermined threshold k of
shares are combined together. A secure secret sharing scheme guarantees that the possession of k � 1
shares reveals no more information than the possession of 0 shares. Several secret sharing algorithm are
available. We use the Shamir’s secret sharing method, where a dealer D 62 {P1, ..., Pn} shares a secret
key x among {P1, ..., Pn}. For this, the dealer chooses a random polynomial p(X) of degree k � 1, s.t.
p(0) = x and generates shares si = p(i) for all i 2 {1, ..., n}. Node P1 gets attributed the share s1,
node P2 is attributed s2 and so on. In order to recreate the original secret x at least k parties with a set of
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indices I need to collaborate together and do lagrange interpolation. They compute

x = p(0) =
P
i2I

�
I
0,i · si

where
�
I
0,i =

Q
j2I,j 6=i

j
j�i

are the lagrange coefficients.
Figure 2.3 depicts an example of Secret Sharing. The y-value of the red point represents the shared

secret, and the points in blue represent the shares. Since the polynomial has degree 2, three distinct points
on the curve are sufficient to recreate the (unique) polynomial interpolating the three points.

Figure 2.3. An illustration of secret sharing using the polynomial f(p) = p
2 � p+ 1. The shared secret

in red is 1 and the resulting shares in blue are 1,3 and 7.

In case of BLS the dealer chooses a random polynomial p 2 Z+
r [X], with r being the degree of G1.

2.7 BLS Threshold Signatures

The BLS scheme allows for a threshold signatures [1]. A secret key x  � [1, r � 1] (with corre-
sponding public key u = g1 · sk0 2 G1) is shared by a central authority among n nodes using a secret
sharing method. Each node i is given a private key xi and a corresponding public-key ui = g1 · xi.
For the verification of threshold signatures a node can use the public key u of the shared secret x. In
order to create a valid threshold signature, at least k < n nodes have to collaborate together. If signing
some message m is required, every node Pi that decides to sign m can publish a partial signature �i

of the from �i = h(m) · xi 2 G2. For simplicity, lets assume that users 1, ..., k participate and gen-
erate partial signatures �1, ...,�k. Anyone can verify that a partial signature �i is valid by checking if
e(g1,�i) = e(ui, h(m)) holds. When all k partial signatures are valid, the complete signature can be
recovered as follows:

�  �
kP

i=1
�i · �i 2 G2, where �i =

k,j 6=iQ
i=1

j
j�i 2 Zr are the lagrange coefficients.

Every node can verify that � is indeed a valid signature by using the public-key v of the shared se-
cret. A node verifies that

e(g1,�) = e(v, h(m))
is fulfilled.
In case all the t parties behaved honestly and contributed a partial signature on the same message the
above equation holds, because
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� =
tP

i=1
�i · �i =

tP
i=1

(h(m)i) · �i = h(m) ·
tP

i=1
�i · xi = h(m) · x

holds.

In contrast to Secret Sharing, the secret key x is not put back together and nodes do never disclose
their private key. In the HotStuff consensus protocol, upon receiving sufficient valid partial signatures,
the leader creates a threshold signature. He then broadcasts the threshold signature to all other nodes in
the network. In Kauri we use multisignatures instead of threshold signatures.
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Chapter 3

Design

The key goal is to design an experiment where we measure the leader’s workload in HotStuff and in
Kauri. Initially, we were looking for an existing implementation of the HotStuff consensus protocol.
We were able to find a framework [11] written in Go that would fit our needs. The framework does
provide an implementation of HotStuff. The framework also contains parts of the BLS signature scheme
including the creation and verification of multisignatures based on the bls12-381 elliptic curve. The
framework makes use of the bls12381 package [12]. The package provides useful macros that will be
helpful during the process of implementing threshold signatures. It contains a pairing function e for the
verification of signatures, point addition in G1 and G2 and other useful tools. Parts of the frameworks
implementation do not follow the original descripton of the BLS paper [1]. However, since Kauri can
be seen as an extension of HotStuff, we decided to work with the existing framework and make some
important changes.

3.1 Secure threshold scheme

In the HotStuff framework, a designated leader of a round transmits a message m to all the other nodes in
the network. Eventually, the leader will receive partial signatures from several replicas. The leader then
verifies that the threshold k of valid partial signatures �i is met. The framework is indeed using BLS,
but it does employ multisignatures, not threshold signatures. Moreover the implemented multisignature
scheme is not secure because there is no check for knowledge of the secret key. Hence, we implemented
BLS threshold signatures according to the original BLS paper.

Signatures are points in G2 and public keys are elements in G1. Thus, public keys are small and fast
to work with compared to signatures in G2.

3.2 Star and Tree Topologies

In this section we explain how we simulate and measure the leader’s workload in HotStuff and in Kauri.
For the simulation we employ the BLS signature scheme.

3.2.1 Simulate one phase in HotStuff

We benchmark two different scenarios in HotStuff [2]. A first scenario where the leader creates a QC in
form of a threshold signature and a second scenario where the leader deploys multisignatures. In both
settings the procedure is similar. We can configurate the number of nodes n that are present in the sce-
nario and set the number of phases that shall be simulated. Since HotStuff itself requires that f < n/3,
the threshold k is set to k = n� f , where f = dn�1

3 e. In every phase the nodes sign a different message
m than in the previous phases. We are ensuring this by changing random bits of the message mprev from
the previous phase.
We create a script, where in each phase all n nodes produce a (valid) partial signature �i on some message
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m. We start measuring time at the point where the leader starts to verify the signatures. For simplicity
the leader only verifies the first k signatures �i for i 2 [1, k]. He then produces a (valid) QC either in
form of a threshold signatures or a multisignature. After the creation of a QC we stop measuring the
time. The networking part, where a leader broadcasts the QC to all other nodes is omitted in the mea-
surements. Furthermore we make other strong assumptions including that there is a check for KOSK
when working with multisignatures and assume that all nodes have sent a partial signature. We do not
measure HotStuff’s reconfiguration time.

3.2.2 Simulate one phase in Kauri

Regarding Kauri, the deployed communication abstraction in form of a tree makes it tedious to work with
threshold signatures [3]. For the simulation of a phase in Kauri we can set the depth d of the tree. We
work with a binary tree that has fanout 2. A complete binary tree of depth d contains 2d � 1 nodes with
2d�1 of them being leaf nodes. A multisignature has to meet a threshold k = n� f in order to be valid.
We make the assumption that all n nodes (except the leader) sign some message m to produce a partial
signature �i. Thus, the final multisignature is composed out of n � 1 (valid) partial signatures. Every
node receiving a signature will still go through the process of validating the signature though. We start
at the bottom of the tree, where every leaf node (sitting on level d) signs a message m and computes a
partial signature. Their parent node (sitting on level d� 1) verifies the signatures from both his children,
signs the message m himself and produces a multisignature. Nodes that are part of of the level d � 2
will not receive two partial signatures from their children, but two signatures that are already aggregated.
Therefore, we implemented a function that takes as an input an array of already aggregated signatures
and outputs a multisignature containing a list of all participants and some Point in G2 that represents
the signature. As soon as level d = 1 attained, the leader will receive two multisignatures from his two
children. That’s when we stop the time. The leader checks for correctness of the multisignatures and
makes sure that the threshold k is met. He then assembles the two signatures together to create the QC
in the form of a multisignature. That’s when we stop measuring the the time. This way we are able to
estimate the workload for a leader in one phase of Kauri. We make the assumpumtion that there is a
check for KOSK and all leaf nodes have sent a partial signature and a all internal nodes a multisignature
to their parent node. We are not measuring the protocol’s reconfiguration time.
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Chapter 4

Implementation

In this chapter, we give a technical insight to all the most important functions of the BLS signature
scheme.

4.1 Key Generation

The BLS scheme uses cyclic subgroups of G1 and G2 of prime-order r [1]. We denote with g1 and g2

the generators of G1, respectively G2. All nodes in the network have knowledge about these parameters.
In the actual implementation we make use of a cryptographically secure random number generator. The
KeyGen function takes as inputs a threshold parameter k and a integer n that represents the number
of nodes in the network. It outputs a set that contains n private key shares sk1, ..., skn, a set with the
corresponding public keys pk1, ..., pkn and the public key pk0 of the shared secret sk0.

Algorithm 1 Key Generation
1: procedure KEYGEN(k, n)
2: if k > n then

3: return invalid threshold parameter
4: sk0  Z+

r // r is the order of G1 and G2

5: pk0  sk0 · g1 2 G1

6: f  select a random polynomial of degree k � 1, s.t f(0) = sk0

7: for i = 1, ..., n do

8: ski  f(i)
9: pki  ski · g1

10: Sk  {sk1, ..., skn}
11: Pk  {pk1, ..., pkn}
12: return Sk, Pk, pk0

The algorithm first checks if the threshold parameter k does not exceed n. Otherwise it is not possible
to create valid threshold signatures. After assigning the secret sk0 a random number in [1, r � 1] and
computing the associated public key pk0 (pk0 is needed for verification purposes of threshold signatures),
the secret sk0 is shared among n nodes. For distribution of the sk0 we make use of Shamir’s secret
sharing method. Each node i gets assigned a private-public key pair ski and pki.

4.2 Signing and Verification

Upon receiving a message m from the leader, a node i first hashes m into a bit-string denoted by m
0. He

feeds m to the SHA-256 hash function h1, calculating m
0 = h1(m). This results in a bit-string of length

256.
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To produce a digital signature on m
0, mapping m

0 onto a point in G2 is required. We shall call the
function mapping bit-strings onto Points in G2 hashToCurve. There exist several ways to accomplish
this, with different levels of security and efficiency [10]. In the bls12381 library there’s an implementa-
tion of such a hash function satisfying the IETF standards for hashing onto elliptic curves [13]. A broad
description of the procedure looks as follows: We start by hashing m

0
mod q to create a point s 2 Fq.

It ensures that the resulting output is distributed uniformly. We then use a special function, called the
SWU map, that guarantees to convert the field point s into an elliptic curve point p. The point p is not
part of E0(Fq2) though but is a point on some other elliptic curve that is isogenous to E

0(Fq2). We then
translate p to some point r 2 E

0(Fq2) by using another function (3-isogeny). We are not quite done yet,
since r is a point in E

0(Fq2), but what we want to end up with is a point in the subgroup G2 ⇢ E
0(Fq2).

In a last step, cofactor clearing is used to map r 2 E
0(Fq2) to an element in G2. In other words, the

function hashToCurve is a composition of several functions [5]. The same procedure can be applied to
map bit-strings to G1. This is necessary if we want signatures to be in G1.

The Signing method described in Algortihm 2 takes as inputs a message m and the private key ski of
some node i. The method outputs a signature structure � that contains the signature itself and in addition
to that the nodes index i. The index is needed for verification purpose to reveal the signers identity in
order to access his public key.

Algorithm 2 Signing
1: procedure SIGN(m, ski)
2: m

0  h1(m) // m’ is a 256-bit string
3: c hashToCurve(m0) 2 G2

4: s c · ski 2 G2

5: �  {Signer : i, Signature : s}
6: return �

A time-consuming part of the Signing algorithm is when c 2 G2 is multiplied with the secret-key
scalar ski. Multiplication of a Point P 2 G2 with a scalar n can be regarded as the repeated addition
of Points in G2, i.e. n · P = P + P + ...+ P| {z }

n times

. Since simple addition of the same point P for large n

can be really time-consuming, there are several techniques that speed up the computation time of scalar
multiplication on some elliptic curves. In our implementation we use a variant of the Gallant-Lambert-
Vanstone (GLV) method [16][4], which we are not going to discuss here. Scalar multiplication in G1 and
especially in G2 remain expensive though.

For the verification that a signature � on some message m is valid, we transform the message into a
256-bit string and hash the string onto a point c 2 G2. Using the public-key pk of the signing node i, we
check if the pairings e(g2, �.Signature) and e(pk, c) have the same value. If they do then the verifying
node can be sure that it’s a valid signature signed by node i. If not, the verification method will output
”false”.

Algorithm 3 Verification
1: procedure VERIFY(�,m)
2: m

0  h1(m0)
3: c hashToCurve(m0) 2 G2

4: pk = �.Signer.PublicKey 2 G1

5: return e(g1, �.Signature)
?
= e(pk, c)

In line 5 of the Verification algorithm, two pairings e need to be evaluated to check if
e(g1, �.Signature)=e(pk, c) holds. Calculation of pairings consist of two parts. One of them being
the so-called Miller loop and the other one final exponentiation [10]. They are expensive in terms of
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computational costs, but we make use of a trick to reduce the costs of final exponentiation. We denote
with e

0 the pairing function before applying the final exponentiation. Normally we would now check if
e
0(g1, �.Signature)x = e

0(pk, c)x for some large number x = (qk � 1)/r. Instead of computing two
Miller Loops and additionally two final exponentiations, we use the fact that GT is a multiplicative group,
reorganise the equation and check if (e0(�g1, Signature) · e0(pk, c))x = 1 is fulfilled. We could negate
any of the four inputs of e0. Due to properties of pairings, negating an input value is equivalent of taking
the inverse of an element in GT . Using this technique we get rid of one out of two final exponentiations.
The implementation in the bls12381 library follows exactly the same procedure as above.

4.3 Multisignatures and Threshold Signatures Creation

A multisignature is a structure composed out of a set of participants and the signature itself which is a
point in G2. The method described in Algorithm 4 takes as input a set of partial signatures.

Algorithm 4 Create Multisignature
1: procedure MULTISIGNATURE(signatures)
2: if length(signatures) == 0 then

3: return nul
4: sagg  O // point at infinity (neutral element in G2)
5: participants {}
6: for � 2 signatures do

7: sagg  sagg + �.Signature

8: append �.Signer to participants

9: �agg  {Participants : participants, Signature : sagg}
10: return �agg

In case the input is not empty, the algorithm loops over all the partial signatures and follows the de-
scribed procedure in Section 2.5 to form a multisignature. The variable participants is a bitfield structure
made up of an array of bytes and an integer that represents the number of nodes that participated in the
creation of the multisignature. To check if a node i is a participant, we simply check if the bit at i-1 is set
to 1. The knowledge about the number of participants is important when it comes to the question if the
multisignature contains a quorum of certificates. Furthermore a list of all participants is needed to build
a public key for the purpose of verification.
In Kauri all the internal nodes and especially also the leader will receive two multisignatures and have
to form another multisignature. We do not show the pseudocode for that functionality here, but the idea
shares a lot of similarities with Algorithm 4. In addition to that, instead of verifying if the length of
the input is equal to 0, the leader verifies if the length of the signatures reach the threshold k before
computing a quorum certificate.

The procedure to create a threshold signature is different. After verifying every single partial signa-
ture using Algorithm 3, in HotStuff the leader calls the method Threshold Signatures and inputs a set of
(distinct) partial signatures. He outputs a single threshold signature �threshold. Identities of the partici-
pants are not revealed by �threshold. The function in Algorithm 5 describes the creation of a threshold
signature.

First, we need to ensure that the threshold of k partial signatures is met. We then create a set of
indies, containing all indices i of the nodes that have sent a valid partial signature to the leader. This set
is needed when it comes to the part where we compute the lagrange coefficients �i for all i 2 I . Because
of r being prime, the multiplicative inverse of (j � i) in the ring Zr (often written Z/rZ or Fr) can
be computed with the extended euclidean algorithm. An implementation of the algorithm can be found
inside Golangs math library. The calculation of �threshold follows strictly the procedure from section
2.7.
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Algorithm 5 Create Threshold Signature
1: procedure THRESHOLDSIGNATURE(signatures)
2: if length(signatures) < k then

3: return threshold barrier of at least k signatures is not met
4: I  {}
5: for partialSignature 2 signatures do

6: I  I [ {partialSignature.Signer}
7: �threshold  O // point at infinity (neutral element in G2)
8: for partialSignature 2 signatures do

9: i partialSignature.Signer

10: �i  
Q

j2I\{i}

j
j�imod r 2 Zr

11: �threshold  �threshold + �i · partialSignature.Signature
12: return �threshold

4.4 Multisignature and Threshold Signature Verification

The Verification of a multisignature �agg on some message m described in Algorithm 6 is similar to the
verification of a single signature. The difference is that we add up all public keys pki 2 G1 of nodes i
that participated in the creation of �agg before verifying �agg.

Algorithm 6 Multisignature Verification
1: procedure VERIFYMULTISIGNATURE(�agg, m)
2: m

0  h1(m0)
3: c hashToCurve(m0) 2 G2

4: pkagg  O // point at infinity (neutral element in G1)
5: for p 2 �agg.Participants do

6: pkagg  pkagg + p.PublicKey

7: return e(g1, �agg.Signature)
?
= e(pkagg, c)

It’s important to make a remark about deploying multisignatures in Kauri. Upon receiving a quorum
certificate in form of a multisignature from the leader, a node is not only checking wether e(g1, �agg.Signature)

?
=

e(pkagg, c) holds, but also if at least k different nodes did contribute in the creation of �agg.
Verifying if a threshold signature �threshold on a message m is valid is easier. Any node can call the

function V erifythresholdSignature with inputs �threshold and a message m.

Algorithm 7 Threshold Signature Verification
1: procedure VERIFYTHRESHOLDSIGNATURE(�threshold, m)
2: m

0  h1(m0)
3: c hashToCurve(m0) 2 G2

4: return e(g1, �threshold)
?
= e(pk0, c)

The signature �threshold can be verified using the public key pk0 of the shared secret sk0, because a
valid threshold signature on m is of the form �threshold = hashToCurve(m0) · sk0.
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Chapter 5

Results

In this chapter, we compare the leader’s computational effort when either using a tree or a star commu-
nication topology. Moreover we discuss the reasons behind the results and state possible improvements.
We conducted our experiments on a MacBook Pro with an Intel Core i5 CPU and 16GB of RAM.

5.1 Base Performance

We measure the leader’s workload in three different scenarios. A first scenario reproduces a phase when
deploying Kauri’s tree communication pattern. In Kauri the leader forms a Quorum Certificate (QC)
in form of a multisignature. In Scenario2 and Scenario3 we aim to simulate a phase in the HotStuff
Consensus Protocol. Thus, we reproduce a star communication pattern where the leader forms a QC.
This QC has once the form of a multisignature and once the form of a threshold signature. For all three
scenarios we simulated 100 phases with different blocks. We are interested in measuring the average
time it takes the leader to execute one phase. We simulate networks consisting of 7, 15, 31 and 63 nodes
with the respective threshold parameter k being 5, 10, 21 and 42.

Scenario Topology n = 7 n = 15 n = 31 n = 63 Possible in
Scenario1 tree (multisig) 3.9 5.6 8.7 15.2 Kauri
Scenario2 star (multisig) 6.7 12.7 26.0 52.4 HotStuff
Scenario3 star (threshold) 6.8 13.3 27.8 58.7 HotStuff

Table 5.1. Computational expense for the leader deployed in different communication topologies. Time
is measured in ms and represents the average time for one phase.

A few interesting things can be extracted from Table 5.1. In Scenario2 and Scenario3, the leader’s
workload grows approximately linear by a factor of 2 with respect to the amount of nodes in the network.
In Hotstuff’s star topology the leader verifies k partial signatures and creates either a multisignature
(Scenario2) or a threshold signature (Scenario3). Thus, for verifying all partial signatures, the leader
needs to evaluate 2k pairings. For the creation of a multisignature signatures the leader computes k

additions of signatures in G2. In Scenario1 the leader only verifies two multisignatures before combining
them and output a new multisignature himself. The verification process of both multisignatures involves
the evaluation of four pairings and a total of n � 1 public key additions in G1. The computation of
all parings is the most expensive part when using the BLS signature scheme. In Scenario1, the leader
benefits of the fact that no matter the size of the network the amount of pairings to compute remains
four. This leads to a comparable small workload for the leader in Scenario1 compared to Scenario2 and
Scenario3. This fact gets especially visible for bigger networks.

There is a small gap in terms of time difference between Scenario2 and Scenario3 where the leader
follows the HotStuff consensus protocol. Table 5.1 shows us that the creation of a threshold signature
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takes more time than the creation of a multisignature. The main reason for this is the computational
effort when multiplying the lagrange coefficients with the partial signatures in order to create a threshold
signature. The overall time spent on the computation of this product can be extracted from Table 5.2.
This small extra effort when creating threshold signatures pays of when it comes to the verification of
the signature. Table 5.3 shows the average time for the verification of a multisignature and a threshold
signature. While verification costs stay the same when dealing with threshold signatures, no matter the
amount of nodes present in the network, it does not with multisignatures. Verification of a multisignature
involves hashing a sha256 bit-string to an element in G2 (this costs don’t change no matter the size of
the network), but also the addition of k public keys in G1. The latter is the reason why multisignatures
get more expensive the bigger the network.

operation n = 7 n = 15 n = 31 n = 63

evaluation of 2k pairings 4.9 9.4 19.5 39.7
hashing onto curve (k times) 1.6 3.1 6.5 13.3

mul. of lagrange coeffs. with par. Signatures 0.2 0.5 1.1 3.0

Table 5.2. Time taken (in ms) for different operations needed for creating threshold signatures.

Table 5.2 shows the most expensive operations in terms of time when using the BLS signature scheme
for creating threshold signatures.

operation n = 7 n = 15 n = 31 n = 63

verification multisignature 2.2 3.1 5.3 9.6
verification threshold signature 1.3 1.2 1.3 1.2

Table 5.3. Time (in ms) needed for the verification of multisignatures and threshold signatures.

5.2 Swapping G1 and G2

An important change which we did not introduce initially, is to swap G1 and G2. Signatures are now
elements in G1 and public keys are elements in G2. This should most probably leave to a decrease
in terms of computational costs when multiplying partial signatures with scalars (e.g. threshold coeffi-
cients), since arithmetic operations in G1 are cheaper than in G2. The addition of public keys is now
more expensive.

Scenario Topology n = 7 n = 15 n = 31 n = 63 Possible in
Scenario1 tree (multisig) 3.6 (-7.7%) 5.4 (-3.6%) 8.8 (+1.1%) 15.9 (+4.6%) Kauri
Scenario2 star (multisig) 5.9 (-11.9%) 12.0 (-4.8%) 25.6 (-1.5%) 50.8 (-3.1%) HotStuff
Scenario3 star (threshold) 5.8 (-14.7%) 12.6 (-5.3%) 27.8 (±0%) 55.3 (-5.8%) HotStuff

Table 5.4. Average of the leaders workload when being deployed in the HotStuff and Kauri communi-
cation pattern, when signatures are in G1 and public keys in G2. Time is measured in ms and represents
the average time for one phase. Number in parentheses corresponds to the difference from the results
obtained in Table 5.1.

Table 5.4 summarizes the leaders workload for the three scenarios with signatures being points in G1

and public keys are elements of G2. Comparing these results with the results obtained in Table 5.1, we
do not notice a drastic change in performance.

Table 5.5 shows the most expensive operations when dealing with the creation of threshold signa-
tures. Hashing arbitrary sha256 bit-strings to points in G1 is cheaper compared to G2. This is proven
when comparing Table 5.2 and Table 5.5. Furthermore, we observe that the total costs of multiplying
signatures in G1 with the lagrange coefficients is cheaper than doing the same in G2.

16



operation n = 7 n = 15 n = 31 n = 63

evaluation of 2k pairings 4.8 10.2 22.3 42.8
hashing onto curve (k times) 0.9 1.8 3.9 7.7

mul. of lagrange coeffs. with par. Signatures 0.2 0.4 0.9 1.9

Table 5.5. Time taken (in ms) for different operations needed for creating threshold signatures in G1.

operation n = 7 n = 15 n = 31 n = 63

verification multisignature 2.0 3.3 5.6 10.1
verification threshold signature 1.1 1.3 1.2 1.3

Table 5.6. Time (in ms) needed for the verification of multisignatures and threshold signatures in G1

We can not see that changing the order of G1 and G2 has a drastic impact on the performance in the
three scenarios. This is the real efficiency of our model.

5.3 The importance to reduce the lagrange coefficients

In practice it is not realistic to not reduce the lagrange coefficients modulo r or, equivalently, to choose
a subgroups order r which is too big. Despite the fact of not being very realistic, we still tried it for the
three scenarios because it shows how efficiency changes if one chooses a field with longer representation.
It worsens the efficiency when working with threshold signatures as can be seen in Table 5.7.

Scenario Topology n = 7 n = 15 n = 31 n = 63 Possible in
Scenario1 tree (multisig) 3.9 5.7 8.5 15.0 Kauri
Scenario2 star (multisig) 6.7 12.9 27.0 51.7 HotStuff
Scenario3 star (threshold) 11.9 46.0 185.8 797.0 HotStuff

Table 5.7. Computational expense for the leader deployed in different communication topologies, when
the lagrange coefficients are not reduced modulo r or r is too big. Time is measured in ms and represents
the average time for one phase. Signatures are in G2.

Scenario Topology n = 7 n = 15 n = 31 n = 63 Possible in
Scenario1 tree (multisig) 3.3 4.9 8.0 14.3 Kauri
Scenario2 star (multisig) 5.4 11.3 22.8 45.7 HotStuff
Scenario3 star (threshold) 8.0 25.6 107.0 461.1 HotStuff

Table 5.8. Computational expense for the leader deployed in different communication topologies, when
lagrange coefficients are not reduced modulo r or r is too big. Time is measured in ms and represents
the average time for one phase. Signatures are in G1.

Scenario1 and Scenario2 from Table 5.7 and 5.8 do not differ by a lot from the results obtained
in Table 5.1 and Table 5.4. But there’s a drastic change in the performance when the leader deploys
threshold signatures. Furthermore, we extract the proof that it’s up to 50 percent cheaper if signatures
are elements in G1 rather than G2 when dealing with the creation of threshold signatures. One of the
reasons behind this is shown in Table 5.9. If we do not reduce the lagrange coefficients by mod r or r is
too big and the threshold k is large, the lagrange coefficients get larger and larger. Therefore the resulting
multiplication of the (large) lagrange coefficients with the partial signatures is expensive compared to the
multiplication with small coefficients. With big lagrange coefficients the difference when dealing with
partial signatures in G1 and G2 can not be overseen. When using multisignatures, we do not expect a
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big change since creation of an multisignatures involves k additions of partial signatures (either in G2 or
G1) and verification involves k additions of public keys (either in G1 or G2).

operation n = 7 n = 15 n = 31 n = 63

multiplication (in G2) 5.7 32.2 158.7 742.3
multiplication (in G1) 2.6 14.3 82.3 412.5

Table 5.9. Time taken for the multiplication of partial signatures with lagrange coefficients when using
threshold signatures. Time is measured in ms and represents the average time for one phase.
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Chapter 6

Conclusion

Consensus protocols are key components in today’s blockchain technology. The HotStuff consensus
protocol and Kauri both make use of digital signatures. We have implemented the BLS signature scheme
based on the elliptic curve BLS12-381. We made use of the signature scheme to evaluate the leader’s
computational effort in HotStuff and in Kauri.

Kauri’s tree topology aims to improve system’s scalability and load balancing, which is a problem in
HotStuff. Our results confirm the fact that Kauri is able to improve on both these issues. In a network
consisting of 63 nodes, in Kauri the leader will spend 15.2ms on average per phase, whereas in Hot-
Stuff the leader spends 52.4ms per phase. When working with threshold signatures in HotStuff, the time
needed for the leader per phase is even slightly higher (58.7ms). We furthermore present results that
may serve as a proof that the most expensive operations for the leader in the BLS scheme (based on
BLS12-381), when using threshold signatures, are the evaluation of pairings and hashing bit-strings to
the elliptic curve. We observed that the leader’s performance increases in HotStuff, if signatures are in
G1 and public keys in G2, and not the other way around.

However, our findings have to be considered carefully since we did not measure the network’s trans-
mission delay that occurs in real deployments of HotStuff and Kauri. Furthermore, we made the strong
assumption that all nodes would compute and send (correct) signatures to the leader. We are therefore
not taking into account the time needed for the reconfiguration of the protocol. Further improvements
may include the implementation of a reconfiguration protocol and therefore move towards a more real-
istic scenario. Another important change would be to implement a mechanism that verifies knowledge
of the secret key (KOSK) when using multisignatures. KOSK offers protection against the rogue public
key attack.
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