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Abstract

Over the course of the last few years multiple blockchains emerged that feature stake-based
consensus protocols. In comparison to the established proof-of-work-based approaches, these
protocols have the advantage of being more energy efficient and more scalable. This makes
these protocols a topic of interest to study. In this thesis we describe and compare six of the
most prominent stake-based consensus protocols, namely Algorand, Cardano, Ethereum 2.0,
EOSIO, Neo and COSMOS. We provide descriptions and pseudocode implementations for
each protocol and introduce uniformed terminology and notations across all protocols. With
this thesis we aim to provide a basis for further analysis of blockchain consensus protocols
based on stake.
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1
Introduction

Over the last few years there are more and more blockchains that feature stake-based consensus protocols.
The focus on stake-based approaches is largely motivated due to two key advantages: energy-efficiency
and scalability. In contrast, established proof-of-work blockchains such as Bitcoin [21] rely on participants
racing to solve a puzzle in order to determine the next block producer. Participants can invest more
computational power in order to raise their chances of winning the race. This competition for computational
power leads to a raising energy consumption. Stake-based blockchain protocols aim to solve this issue by
replacing the proof of work with a more energy-friendly design.

Furthermore the difficulty of the puzzle in proof-of-work protocols limits the rate at which new blocks
are discovered. This is because a harder puzzle means that it takes more attempts in order to find a block
that solves it. Proof-of-stake protocols are less limited in that regard, since the computation of a new block
is cheap compared to proof-of-work designs. This means that stake-based consensus protocols have the
potential of scaling better in comparison.

These two advantages make blockchain consensus protocols based on stake a compelling subject to
analyze. However these stake-based protocols use a wide variety of ways in how they incorporate stake
into their consensus. This variety extends even down to the terminology they use to describe similar
concepts. This makes it hard to compare the different protocols to each other. Additionally some protocols
lack an appropriate documentation, which further hinders analysis. Therefore the main goal of this thesis
is to provide descriptions and pseudocode implementations for the most prominent protocols. We make
the protocols easier to compare by introducing common terminology and using a common layout for both
the descriptions and pseudocode implementations. This allows us to more easily identify commonalities
and differences between the protocols.

The thesis is organized as follows. In Chapter 2 we define the terminology and notations we use
across all protocols. In addition we give a brief introduction to cryptographic mechanisms that are used in
multiple protocols. In Chapter 3 we give an introduction to stake-based consensus protocols and introduce
how we group them together. In Chapters 4, 5, 6 and 7 we describe the six protocols we cover in this thesis
divided into family specific chapters. The six protocols are Algorand, Cardano, Ethereum 2.0, EOSIO,
Neo and COSMOS. In Chapter 8 we compare the protocols to each other and provide an overview of our
work. Finally in Chapter 9 we reflect about the thesis and discuss future work.

4



2
Preliminaries

In this section we present the terms and notations we use for common concepts in stake-based protocols.
In addition we give an introduction for verifiable random functions and practical byzantine fault tolerance,
which are both used in multiple stake-based protocols that we discuss in this thesis.

2.1 Terminology and notations
Since we are going to look at multiple protocols, that all feature different terminology for similar concepts,
we use this section to define a common terminology. If a protocol uses different terms than the ones
introduced here, we briefly mention the original terms in the description of those protocols. We will now
introduce the terms and definitions we use for each concept.

2.1.1 Stake
Stake is defined as the wealth someone possesses in a blockchain network. This comes in the form of
coins or tokens of the cryptocurrency associated with the blockchain. In stake-based protocols someone’s
influence in the protocol is usually related to the stake they own in the system.

2.1.2 Parties and leaders
We will use the term party for a participant in the proof-of-stake consensus protocol. In the pseudocode a
party will be denoted with pi, where i is the party’s index. A special kind of party is the leader denoted by
pl. A leader is a party that is selected to produce the next block for the blockchain. Note that a party is
considered to fill a certain role as soon as it has been selected for that role, regardless of whether or not it
actually completes the task. Furthermore there are other roles that are unique to a protocol, in that case we
will introduce them, when we discuss those protocols.

5
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2.1.3 Blockchain
Since we are dealing with blockchain protocols in all instances, this term is fairly uniformly used already.
Therefore this section serves more to give our terms and notations for all concepts related to the blockchain.
A blockchain consists of blocks denoted with B that are linked with a hash chain where each block contains
the hash h of the previous one. In addition each block contains some data D that contains transactions
denoted by x and in some cases data relevant to the protocol. The latest block in the blockchain is called
the head of the chain while the first block in every blockchain is called the genesis block. Finally, all
parties keep track of the current state of the blockchain themselves and store it locally. This local chain is
denoted by B.

2.1.4 Epochs and slots
We divide runs of the protocols into epochs and epochs further into slots. With an epoch ej we denote a
period of time, where relevant parameters for the protocol such as stake distribution and votes are stable in
regards to the protocol. For example, even though the stake distribution changes as the result of each new
block, those changes do not immediately effect the consensus protocol. Rather the stake distribution is
only computed once per epoch and stays stable for the duration of the epoch. An epoch is further divided
into slots where one slot is the period during which a leader may potentially produce a new block. A slot
is denoted by sl.

2.2 Practical byzantine fault tolerance
Practical byzantine fault tolerance (PBFT) is a consensus protocol developed by Castro and Liskov [15].
The purpose of a BFT protocol is for honest parties to reach consensus on a value v despite the presence of
byzantine parties. A byzantine party is a participant in the consensus protocol, which acts either arbitrarily
or maliciously. What sets PBFT apart from other BFT protocols however is that it only requires the
participant to be partially synchronized instead of fully synchronized. This means that PBFT can be
applied in less controlled environments such as the internet or a blockchain network. This is why PBFT is
often used in stake-based blockchain protocols, where honest parties try to agree on the next block in the
presents of adversarial parties.

The PBFT protocol consists of at least one round, where a round consists of three phases. If the
participants successfully finish all three phases during a round, they have reached consensus on a value v.
If a phase fails then a new round of consensus is started. The three phases of a round are the pre-prepare,
the prepare and the commit phase. In the pre-prepare phase the leader of the round proposes a value v
to the other parties. The leader is usually selected by a leader-selection function, which assigns a unique
leader to each round. In the prepare phase the other parties validate the value v and signal their agreement
by sending a prepare message. If more then 2/3 of the participants agree with the value v, then they move
on to the commit phase. In the commit phase all parties confirm that they saw enough support for value
v during the prepare phase. They signal their confirmation with a commit message. If more than 2/3 of
the participants commit to value v in this way then, the parties reached consensus on v. In order to PBFT
protocols to function properly, it is required that more than 2/3 of the participants are honest.

2.3 Verifiable random function
A verifiable random function (VRF) is used in some of the stake-based consensus protocols we are
discussing. It is an important building block for random-selection mechanisms, as for example seen in
lottery based approaches. A VRF (r, π) = VRF(m, skvrf ) is similar to a pseudo-random function (PRF)
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r = PRF(m, k) in terms of input and output. A PRF produces a pseudo-random number r based on a
message m and a key k. The PRF will always produce the same output r for the same input pair (m, k).
The same functionality is also present in the VRF. The output r is also a pseudo-random value based on a
message m and a secret key skvrf . This secret key is part of the key pair (vkvrf , skvrf ), where vkvrf

is the public key. The key pair (vkvrf , skvrf ) is generated through the KeyGen(ρ) function, where ρ
denotes the randomness that is used to generate the keys.

To make the VRF verifiable it features a second output, the proof π. This is a non-interactive
cryptographic proof that proves that the random value r is indeed the result of the message m and secret
key skvrf . The proof π can be verified by another party by evaluating the Verify(m, r, π, vkvrf ) method.
Notice that the key used in the Verify method is the public key vkvrf . While the verifying party learns
whether the random value r is indeed the result of input (m, skvrf ), the verifier will not learn skvrf in the
process.



3
Stake-based consensus overview

In this section we go over the general concepts and ideas behind stake-based consensus protocols. Then we
give a brief introduction to the four families of stake-based protocols we encountered during our research.
Finally we describe some attacks that stake-based protocols face.

3.1 Stake-based consensus protocols
In stake-based consensus protocols parties try to find consensus on the next block to add to a blockchain.
Here stake is defined as the wealth a party owns in a blockchain network. This comes in the form of
coins or tokens of the cryptocurrency associated with the blockchain. The stake, which a party possesses,
determines the party’s influence in the protocol. This means that parties which have more stake also have
more influence. The reasoning here is that the more stake a party has the less likely it is to act in a way
that devalues that stake. Therefore a wealthy party is more likely to participate honestly in the protocol in
order to not jeopardize the health and reputation of the blockchain.

While some stake-based protocols consider a party’s entire stake to determine its influence, others
require the stake to be invested. This process is called staking. Here a party locks up a portion of its own
stake. While the stake is locked up it counts toward the party’s influence, but can not be used for any other
purpose. In these types of stake-based consensus protocols only parties which invested stake are able to
participate.

There are two aspects that a stake-based consensus protocol needs to define. The first is the chain
extension mechanism, where a party is selected as a leader to propose the next block. This leader-selection
process is usually dependent on a party’s stake, but can take many different forms. The second aspect
is block finalization. A finalized block is defined as a block that will always be part of the chain and
can no longer be reversed or changed. In stake-based protocols block finalization needs to be defined
algorithmically instead of probabilistically. This is due to the fact that the computation of new blocks
is cheap. Therefore creating an alternative chain or fork that does not contain a certain block is always
possible. That is why a stake-based protocol needs a block-finalization mechanism. We now give a brief
definition of the four different approaches for stake-based consensus protocols that we cover in this thesis.

8
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Lottery The lottery-based family of proof-of-stake protocols rely on a weighted random selection to
choose the leader. In those approaches any party in the blockchain network has the chance of being
selected as a leader. However a party’s chance of being chosen depends on the party’s relative stake in the
blockchain network. Therefore wealthier parties are more likely to be selected.

Slashing In slashing-based approaches parties may only participate in the consensus protocol, if they
have invested stake. In slashing protocols this locked-up stake actually serves as a security deposit. If a
party is caught after it misbehaved during the consensus protocol, then a portion of its locked-up stake
is removed. The removal of invested stake after a party misbehaved is called ”slashing”. Therefore
slashing-based protocols have an additional measure to keep parties honest.

Voting Voting-based approaches limit the number of parties that are allowed to participate in the
consensus protocol. All parties vote on which candidates should be selected for those spots. In this election
a party’s voting power is determined by the stake it possesses. The election is repeated after a set period
of time, usually after each epoch. Voters are expected to base their vote on the past performance of the
candidates and to vote out adversarial parties.

Hybrid-voting-slashing In this voting-slashing-hybrid approach, the participants of the consensus
protocol are voted for in an election. If a party wishes to vote it must first lock up a portion of its stake. Its
voting power is then determined by the amount of locked-up stake. This stake simultaneously serves as the
collateral for the slashing. In this approach voters are held responsible for the actions of their supported
candidate. This puts more pressure on the voter to only support candidates that they trust.

3.2 Attacks on stake-based protocols
When looking for possible attacks against proof-of-stake protocols, we can take the attacks against proof-
of-work protocols as a reference. Since many of them, such as double spending or selfish-mining, are
relevant to blockchain protocols in general. However, as mentioned before the creation of new blocks takes
much less effort in stake-based protocols. This opens up more avenues of attack, since even computing
long chains takes little effort. Therefore it is feasible to compute a fork that grows faster than the main
chain. In this section we will go over a list of attacks against proof-of-stake consensus protocols based on
the work of Kiayias et al. [19]. We will first go over the attacks that are present in proof-of-work-based
protocols as well and then transition to the attacks that are more specific to proof-of-stake-based protocols.

Double-spending attack The goal of a double spending attack is to issue two conflicting transactions
that are both accepted into the blockchain. For example a malicious party may try to issue two transactions
that involve the same coin but two different receivers. If both transactions are accepted in the same chain,
then that chains state becomes inconsistent.

Transaction denial attack In this attack the adversary aims to prevent that a certain transaction is
included in the blockchain. This attack may be aimed at a single transaction or a class of transactions, such
as preventing all transaction of a specific party from being confirmed.

Desychronization attack As the name suggests the goal of this attack is to cause an honest party to
become desynchronized from the rest of the network. This causes the desynchronized party to perform
actions at the wrong time, even tough the party is still operating honestly from its perspective. This can be
achieved by deliberately cutting off the targeted party from its means to synchronize with the network or
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through the delay of messages. A desychronization may also occur without the presents of an adversarial
party.

Eclipse attack Similar to the desychronization attack, the eclipse attack targets a honest party and
prevents it from participating in the protocol. The attack aims to cut off a honest party by blocking the
communication to the other participants.

51% attack In this scenario an adversary manages to control the majority of the resources that are used
in the leader selection process. In the case of proof-of-work protocols this would be computational power,
while for the proof-of-stake protocols this is the majority of stake in the system. Controlling a majority of
the resources means that an adversary is able to produce the majority of the blocks. If that is the case, then
it can outpace the honest parties in the chain extension and can therefore create forks at will.

Bribery attack The intention here is for the adversary to bribe a leader into producing a block for a fork
that serves the adversary. Since we are dealing with proof-of-stake protocols, a party’s mining power is
proportional to the stake that it possesses. This means that parties with more mining power also have more
stake in the system, which makes them less prone to bribery. While this does not completely negate the
attack for proof-of-stake systems, they are less prone to it compared to proof-of-work systems.

Selfish-mining In this attack an adversary withholds computed blocks. Once a honest party has generated
a new block, the attacker can release the withheld blocks to overtake the chain that the honest party extended.
This causes the chain containing the honest block to be abandoned. With this mining strategy the attacker
can create a chain where the rate of blocks computed by the attacker is higher. Since the mining of a new
block is tied to a reward, a higher rate of mined blocks results in a higher rate of rewards.

Grinding attack Grinding attacks are specific to stake-based protocols and aim to influence the random
leader selection process in the favor of the attacker. This is possible if the randomness for the leader
selection is based on data that the leader can influence, such as header information or block content. If this
is the case then an attacker, that was selected as leader, can compute multiple blocks and pick the one that
maximizes their chances to be selected as leader in future selections. Therefore increasing the probability
that the attacker is selected above of that of the intended distribution.

Long-range attack This is another attack that is only feasible in proof-of-stake systems. Since the
production of blocks takes little effort, an adversary can locally compute a separate chain, perhaps even
beginning at the genesis block. In this local run of the protocol the adversary is the only active participant
in the protocol. Therefore new blocks are only produced when the adversarial party is selected as the
leader. This way an adversary can produce a fork that is longer than the current chain. This enables the
adversary to mount a double-spending attack by submitting a transaction to the main chain and waiting for
it to be confirmed. After that, the locally computed chain can be presented to invalidate the confirmed
transaction.

Nothing-at-stake attack As with the long-range attack the ”nothing at stake” problem arises because the
production of a block costs only a small amount of effort. Therefore a malicious party can maintain and
produce blocks for multiple chains. Furthermore a party that produced a block for all available forks gains
the rewards for it, no matter which fork is selected as the new main chain. Which means that they do not
have an incentive to resolve a fork. A proof-of-stake system that is prone to the ”nothing at stake” problem
will have difficulties with resolving forks, which in turn will make it vulnerable to double spending attacks.
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Past-majority attack This attack combines the ideas of a 51% attack and a long-range attack. The
premise is that an adversary manages to corrupt a party that possessed a lot of stake in the past, but does not
so in the present. This can create a situation, where even though the adversary does not possess a majority
of the stake in the present, there is a period in the past where the adversary now possesses a majority for.
This allows the attacker to recompute the blocks for all selected leaders it now controls. Therefore creating
a new fork in the system.



4
Lottery-based proof-of-stake protocols

In this section we have a closer look at lottery-based proof-of-stake protocols. We first give a general
definition of lottery-based protocols and then take a closer look at two representatives of this family.

The central idea behind lottery-based proof-of-stake protocols is close to those of proof-of-work
designs. Proof-of-work protocols can be thought of as a random selection or lottery. In this case a party’s
chance of being selected as leader is proportional to its computational power. Lottery-based proof-of-stake
protocols use the same concept, but replace the computational power with the party’s stake in the system.
Note that a major challenge in proof-of-stake protocols is to design the selection process itself, since the
selection has to be random and verifiable for all parties.

The two lottery-based protocols we look at are Algorand and Cardano. Both of them use a weighted
random selection for key roles in the protocol, where the weight is a party’s stake in the system. Therefore
they have similarities and shared building blocks in regards to the lottery mechanisms. They differ the most
in the way they select and extend the main chain. Algorand avoids forks by using byzantine consensus
to agree on and finalize one proposed block at the time. Meanwhile Cardano resolves forks by always
selecting the longest valid fork as the current main chain.

4.1 Algorand
The first lottery-based protocol we look at is Algorand. Our analysis of Algorand is based on the works
of Chen and Micali [16] and Gilad et al. [18]. We split up the Algorand protocol into three parts. In the
order that these sub-protocols are executed, they are the block proposal protocol, the reduction protocol
and finally BA⋆ a binary-byzantine-consensus protocol. For each block all three sub-protocols are run
once in succession. In the Algorand protocol one such execution is known as a round. We refer to it as a
slot instead, in order to unify the terms across the protocols. However Algorand does not group together
several slots into an epoch like other protocols. Therefore the term epoch is not used in the description of
Algorand.

Algorand does not feature a global clock but instead all steps in the protocol are bound to a time limit.
The time limits for each step are the estimated time it takes for a party to compute and send the required
data. Therefore a new step in the protocol begins once the previous step concluded.

12
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Furthermore, during multiple steps of the protocol parties are randomly selected to fill key roles such
as the leader of a slot or that of a committee member during the BA⋆ protocol. In these instances Algorand
introduces the (r, π, v) = Sortition(skvrfi , τ,m,wi,W ) method, for a party pi to check privately whether
or not it was selected for the role. The Sortition method serves as a wrapper that combines the result of
multiple VRF evaluations into a single pair of random value r and proof π. In addition the value v is added
to the result to describe how many of the VRF evaluations resulted in a win.

A single VRF evaluation inside the Sortition method is computed as (r′, π′) = VRF(m′, skvrfi ).
While the same private key skvrfi is used in all evaluations, the message m is modified to form a unique
message m′ for each attempt. In order to determine if the VRF evaluation is a win, the value r′ is compared
to the threshold τ . If r′ is smaller than τ then the attempt is counted as a win. Note that rather then
changing the threshold according to a party’s stake in the system, Algorand gives parties one attempt
for every token they own. Which means each party has exactly wi attempts to win, where wi is the
amount of tokens the party pi possesses. Because of this it is actually possible for a party to win multiple
times during one selection, as represented by the output v of the Sortition method. Lastly note that the
Sortition method combines the output pairs (r′, π′) of all wi VRF evaluations into a single pair (r, π).
Therefore only one proof is needed to verify the correctness of the Sortition result. This is reflected in
the SortVerify(r, π, v,m, vkvrf ) method, where only proof π is needed to verify all wins v that the party
claims to have.

Finally, note that wi used for the slot slj is actually the stake of party pi from b blocks prior. So it is
the stake party pi possessed in slot slj−b. This delay is introduced to prevent an adversary from creating
new key pairs that win the selection of the current slot slj . Since those keys did not exist in slot slj−b they
are not allowed to participate in the selections of the current slot slj .

4.1.1 Chain-extension protocol
In this section we go over the three sub-protocols that together form the chain-extension protocol of
Algorand: the block proposal, the reduction and the BA⋆ sub-protocol. We give descriptions and
pseudocode implementations for each of the three sub-protocols in the following sections.

4.1.1.1 Block proposal

The goal of the block-proposal sub-protocol is to select a leader for the current slot and for that leader
to then propose a block for the chain extension. We have two subroutines in the block proposal protocol.
The first is triggered when a party confirms the block for the previous slot. This routine is responsible
to compute the randomness for the current slot and to determine a single leader that gets to extend the
chain with a new block. The other subroutine is triggered when delivering a block message. The block
messages contain a priority as well as the proposed block. The priority is used to select a single winner out
of all possible leaders and therefore also determines which block is the main candidate for the following
sub-protocols. We now describe the two subroutines in more detail and give a pseudocode representation
of the block-proposal protocol in Algorithm 1.

On confirming the block of the previous slot A party starts with the block-proposal protocol as soon as
the block of the previous slot is confirmed by the party itself. The first step is for the party to determine
the randomness ηj that is used as the seed in the evaluations of the Sortition method during the slot slj .
Normally the randomness ηj is provided in the block Bj−1 of the previous slot. The ηj is computed by
the previous leader by evaluating (ηj , π) = VRF(ηj−1||slj , skvrf ). The message used in the VRF is a
concatenation of ηj−1 the randomness for the previous slot and slj the slot identifier of the upcoming
slot. Since the message does not include any data that can be chosen by the leader, it can not influence
the randomness for the next slot. Of course the randomness proposed by the previous leader is only used,
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if the verification Verify(ηj−1∥slj , ηj , π, vkvrf ) succeeds. Alternatively if the verification fails or if the
previous block is empty, then the randomness ηj is computed as the hash H(ηj−1||slj) instead.

After the randomness ηj−1 has been computed a party pi evaluates Sortition(skvrfi , τleader, (ηj ,
LEADER, slj), wi,W ) = (r, π, v) to check if it is a possible leader for this slot. As we mentioned
previously the Sortition method signals with the return value v how many times the party pi won out of the
wi chances it has. In the case of the leader selection (ηj , LEADER, slj) is the message for which the VRF
is evaluated and τleader is the threshold for winning. If a party has at least one win, then it will propose a
block. Even tough multiple parties may win a chance to propose a block only one party’s block will be
selected in the end.

The selection criteria for this is the priority of the proposed block, where the block with the highest
priority wins. If a party wins multiple times it will still only propose one block, since only the block with
the highest priority has a chance of being selected in the end. Therefore a party computes the priority for
each of their wins as the hash H(r||k) for 1 ≤ k ≤ v and then selecting the highest priority. The priority
along with the output of the Sortition function and the identity of the party pi are included in the block
message. This way the other parties are able to verify the claimed priority. Please note that in practice
the priority is split of from the block into its own message and broadcast ahead of time. This is done for
efficiency, since this allows the parties to filter out low priority blocks much earlier. As a result there are
fewer block messages broadcast in vain.

After computing the priority the party then computes a block Bi = (slj , h,D, (ηj+1, π), σ) to propose.
A block contains the identifier for the current slot slj , the hash h of the previous block Bj−1, the list of
transactions D included in the block, the randomness for the next slot ηj+1 along with the proof π to verify
it and finally the signature σ over (slj , h,D, (ηj+1, π)). The party then stores the block along with its
priority as the highest priority block it has seen so far. Finally the party then broadcasts the block using
gossip-broadcast([BLOCK, (pi, priority, (r, π, v), Bi)]) along with the block’s priority and the proof data
(r, π, v) to the other parties.

Regardless of whether or not the party did propose a block it then waits for block messages from other
parties to arrive. The party waits for block messages for a duration of λstep + λblock. This is the estimated
time it takes for a party to finish their block-proposal step and to send the block message to other parties.
After the waiting period is over, the party then concludes the block-proposal sub-protocol and will start the
reduction protocol with the highest priority block it has witnessed thus far.

On block message delivery When a new block arrives, a party first compares the priority of the block to
the highest priority prioritymax it has witnessed so far. If the priority is smaller, the message is discarded,
because the block has no chance to be the highest priority block. Otherwise the party verifies the priority
by first evaluating SortVerify(r, π, v, (LEADER, j), vkvrfl ) and afterwards recomputes the priority with
the help of r and v. If the priority passes the verification, then it is recorded as the new highest priority
witnessed so far and the message is broadcast to other parties. This is done even though the block itself
might be invalid, since the protocol is strictly searching for the block with the highest priority, regardless
of its validity.

That being said, a party then immediately verifies the validity of the block B. First it verifies that all
transactions in the block data D are valid in regards to the local chain B. Then the party checks the block
signature σ over (slj , h,D, (ηj+1, π)). If both verifications hold then the block B will be recorded as
the highest priority block so far Bi. Should any of the verifications fail then Bi is set to an empty block
instead. As a special case, should a party ever receive two different valid blocks produced by the same
party, then it will reset Bi to the empty block. Since in that case the leader went against the protocol and is
most likely adversarial.
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Algorithm 1 Pseudocode: Algorand block proposal (party pi).
state

B: local blockchain
h: latest hash of local chain = H(head(B))
slj : current slot of chain-extension protocol
prioritymax: the highest priority of a selected leader witnessed by pi
pmax: party with the highest priority of a selected leader witnessed by pi
Bi :block that pi enters into BA⋆
unordered : set of transactions to be included in the block

vki, ski: signing key pair for the blocks
vkvrf

i , skvrf
i : key pair for the VRF proofs

wi: amount of stake of party pi in regards to the current slot slj

λstep + λblock: estimated time for a party to finish the protocol step and their block message to arrive
ηj : the randomness for the slot slj
τleader: the threshold to be selected as leader

upon pi confirms block Bj−1 of the previous slot slj−1 do
(ηj , π)← select (ηj , π) from the previous block Bj−1

if not Verify(ηj−1∥slj , ηj , π, vkvrf ) then
ηj ← H(ηj−1||slj)

(r, π, v)← Sortition(skvrf
i , τleader, (ηj , LEADER, slj), wi)

prioritymax ← 0
Bi ← empty block
if v > 0 then

priority ← max(H(r||k)) for 1 ≤ k ≤ v

D ← select maximal valid set of transactions from unordered

(ηj+1, π)← VRF(ηj ||slj , skvrf
i )

Bi ← (slj , h,D, (ηj+1, π), σ)
prioritymax ← priority
pmax ← pi
gossip-broadcast([PRIORITY, (pi, priority , (r, π, v), Bi)])

wait(λstep + λblock) //wait while gathering block messages
after timeout begin reduction step with block Bi (Alg. 2)

upon gossip-deliver([BLOCK, (pl, priority , (r, π, v), B)])do
if priority ≥ prioritymax then

verify SortVerify(r, π, v, (LEADER, j), vkvrf
l )

verify priority = max(H(r||k)) for 1 ≤ k ≤ v
if priority passes all verifications then

prioritymax ← priority
pmax ← pl
gossip-broadcast([BLOCK, (pl, priority , (r, π, v), B)])

verify the block signature σ over with the public key vkl of the current leader pl
verify that all transactions D in block B are valid in regards to the local chain B
if the block B passes all verifications then

Bi ← B
if at any point two different but valid blocks by the same party pl are delivered then

Bi ← empty block
else:

Bi ← empty block
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4.1.1.2 Reduction

The reduction protocol consists of two subroutines. The first is the main routine and begins immediately
after the block proposal has concluded. The second is triggered by incoming vote messages. In this section
we give a description of the reduction protocol and present a pseudocode representation of the protocol in
Algorithm 2.

The purpose of the reduction protocol is to prepare the parties for the BA⋆ protocol. Since the BA⋆
is a binary-byzantine-agreement protocol we must reduce the blocks that enter into BA⋆ to two choices.
Those two choices are the block with the highest priority from the block proposal and the empty block.
Not all parties may have witnessed the highest priority block during the block proposal. Therefore the
goal of the reduction protocol is to convince all parties to change their choice of block to the block that a
majority of parties has witnessed. If a party is not convinced to support this block, then it will enter the
BA⋆ protocol with the empty block.

In the reduction protocol as well as in the BA⋆ protocol, parties vote for the block that they support at
the moment. We represent this in the pseudocode with the method Vote((skvrfi , τ,m,wi), hi). In the Vote
method a party first evaluates the Sortition(skvrfi , τstep,m,wi) to compute if they are eligible to vote in
this round. This is the case if the party had at least one win during the Sortition. In other words when
v > 0. If they are allowed to vote then they will gossip-broadcast([VOTE, (pi, hi, (r, π, v))]), where hi is
the hash of the block the party votes for. Note that the number of wins v acts as the weight of the vote,
therefore parties with more wins have more influence in the voting process.

On conclusion of block proposal When block proposal concludes the party pi has decided on a block
Bi. This block is either the highest priority block the party has seen or the empty block. The reduction
protocol consists of two rounds of voting. Instead of including the whole blocks in the vote messages, only
the hashes of the blocks are used in order to be more efficient. Therefore the first step in the protocol is to
compute the hash hi of the block Bi. Additionally each party prepares the hash of the empty block.

The parties then conduct two rounds of voting. As mentioned above for a vote the parties first determine
if they are allowed to vote for this round. If applicable they then broadcast a vote message for the block
hash hi they support. The message m that is used to determine the eligibility of a party is specific to that
round of voting. This means that for each round there is a different set of parties that are part of the voting
committee. The two rounds of voting are almost identical. First a party votes for their block hash hi if
applicable. Regardless of whether the party did vote, it then waits for vote messages to arrive. The only
notable difference between the two rounds is that a party waits longer during the first round. Namely
λblock + λstep instead of just λstep as in the second round. This is because for the first round we want to
give the other parties enough time to finish their block proposal.

This waiting period has two possible outcomes: either a block hash gathers enough votes to win or the
waiting period ends in a timeout without a winner. A block hash needs more than Tstep ∗ τstep votes to be
accepted. Where Tstep ∗ τstep amounts to 2/3 of the estimated total number of votes in the voting round.
If there is a block hash hw that passed the threshold then party pi replaces the block hash they support hi

with hw. Otherwise if the vote ends in a timeout then pi changes hi to the empty block hash hempty .

On voting message delivery This subroutine tallies incoming votes for block hashes. The tallying stops
immediately if one block hashes gets enough votes to pass the threshold Tvote ∗ τvote. Incoming votes are
first validated by verifying the VRF proof. If the vote is valid then the votes v are added to the total votes
of the corresponding block hash. Finally we check if the block hash received enough votes to pass the
threshold. If that is the case, then the winning block hash is stored in the local variable hw.
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Algorithm 2 Pseudocode: Algorand reduction protocol (party pi).
state

Bi: the block that pi is entering into BA⋆ with
hi: the hash of the block that pi is entering into BA⋆ with

hw: is used to store the winning block hash of a vote

vkvrf
i , skvrf

i : key pair for the VRF proofs
wi: amount of stake of party pi in regards to the current slot slj

λstep + λblock: estimated time for a party to finish the protocol step and their block message to arrive
ηj : the randomness for the slot slj
τstep: the threshold to be selected for a step in BA⋆
Tstep: the fraction of votes needed in a step of BA⋆

upon pi concludes block proposal step do:
hi ← H(Bi)
hempty ← H(empty block)

Vote((skvrf
i , τstep, (ηj , REDUCTION ONE, slj), wi), hi)

hw ← NULL

wait(λblock + λstep) // wait while gathering vote messages
if a winning block hash hw was set then

hi ← hw

else: // no winner after λblock + λstep

hi ← hempty

Vote((skvrf
i , τstep, (ηj , REDUCTION TWO, slj), wi), hi)

hw ← NULL

wait(λstep) // wait while gathering vote messages
if a winning block hash hw was set then

hi ← hw

else: // no winner after λstep

hi ← hempty

begin BA⋆ step with block hash hi (Alg. 3)

upon gossip-deliver([VOTE, (pc, hb, r, π, v)])do
if SortVerify(r, π, v,m, vkvrf

c ) then
increase votes for hb by v
if votes for hb ≥ Tvote ∗ τvote then

hw ← hb
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4.1.1.3 Binary byzantine agreement BA⋆

Like other consensus protocols the goal of BA⋆ is for all honest parties to agree on the block that is added
to the chain. It is called a binary protocol because the parties initial values for the block is one of two
options. Either the highest priority block from the block proposal or the empty block. In the reduction
protocol, that comes before BA⋆, the parties previously narrowed down their vote to one of those two
options. BA⋆ is a special case of a byzantine agreement, since in each step of the protocol the active
participants change. Like in the leader selection, the committee membership for the BA⋆ protocol is won
via the Sortition method. But since a consensus protocol usually requires a participant to send multiple
messages, the committee members would be known after the first message they send. This makes them a
target for corruption by the adversary. Therefore BA⋆ randomly re-selects its committee members after
each step in the protocol to prevent them from becoming targets.

Like the reduction protocol we use the Vote method as a short hand for a party to first check whether
it is a committee member for the current step and then vote for the block hash they support if they were
selected. Additionally these votes are then tallied the same way. Therefore a result of the vote is either a
block hash that managed to accumulate enough votes during the waiting period or else a timeout. This is
reflected in the subroutine that is triggered when a new vote message is delivered. Note this subroutine
is identical to the one in the reduction protocol, therefore we wont go over it again here. Please refer to
Algorithm 3 for the pseudocode.

On conclusion of reduction protocol In this subroutine the parties try to find consensus over which
block to add to the chain. As a result of the reduction each party has a block hash hi that they intend to
support in the BA⋆ protocol. As a first step each party assigns this block hash to hr, which is the block
hash they vote for in each step. The value of hr may change from step to step based on the results, while
hi will remain the same during the whole protocol. The parties then try to reach consensus over a loop
of three steps. A party stops the loop when it either reaches consensus or when it reaches a maximum
number of steps smax. The three steps all follow a similar structure. They consist of a vote, where all
eligible parties vote for the block hash hr they currently support. Then each party tallies the vote messages
they delivered. If one option received enough votes the party will then check if the BA⋆ protocol can be
concluded. If instead there was a timeout then the party changes their voting strategy for the next step.

In the first step a party will only conclude BA⋆ if the party witnessed enough votes for a non-empty
block hash. If this happens in the very first step, then the party votes for this block hash in the finalization
round. If the winning block hash also gathers enough votes in the finalization round, then it is considered
final. Otherwise it is considered tentative. A tentative block is only considered final once a final block is
added to the chain after it. Additionally a party that concluded the BA⋆ protocol will continue to vote for
the winning block for three more steps. This is done to prevent a small group of parties from getting stuck
in the BA⋆ protocol, because they have insufficient votes to get past the threshold by themselves. Finally
if no option reached enough votes during the first step, then the party switches its vote hr to hi.

In the second step the party concludes BA⋆ if it witnesses enough votes for the empty block hash.
Like in step one it will continue to vote for the empty block hash for three additional steps before moving
on to the next slot. If the party did not witness enough votes for either option then it will switch its vote hr

to the empty block hash hempty .
Finally in the third step it is not possible for a party to conclude the BA⋆ protocol. Here we only care

about if there was a timeout or not. If there was a timeout, then the party will switch its vote based on the
result of the CommonCoin method. The result of this method is a coin flip of a slightly common coin. The
party will switch hr to hi if the bit is zero or to the hempty if the bit is one. To compute the result of the
coin flip a party takes all vote messages that it delivered during this step and computes the lowest priority
across all messages. Then it takes the least significant bit of the lowest priority as the result of the coin
flip. By basing the result of the coin on the lowest priority that was witnessed by a party, there is a high
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chance that a majority of the parties witnessed the same message. As a result they will switch their vote to
the same choice. This slightly common coin flip helps the parties to get unstuck if they are split in a way
where no option can reach the necessary votes to win. After the third step the party repeats the loop until it
finds consensus or the maximum number of steps is reached.

After the BA⋆ protocol concludes, then all parties will deliver the winning block to their local chain.
Furthermore each party will evaluate the finalization vote. As noted above, a party will only vote in the
finalization vote if it reached consensus on a non-empty block in the very first step. If there are more than
2/3 of votes for the finalization then the block that is added to the chain is considered final. Otherwise it is
considered tentative. A tentative block becomes final once a final block is added to the chain after it. Note
that in addition to the block and its status, the parties will store a kind of certificate for the new block. This
certificate consists of the signed collection of votes that caused the party to conclude the BA⋆ protocol.
These certificates are used to convince other parties of the correctness of the chain. Therefore they enable
parties that newly join or rejoin the chain to verify the chains that are proposed to them.

4.1.2 Protocol attributes
Algorand achieves its random selection by using VRFs as the basis of its selection mechanism. A important
feature of VRFs is that they can be evaluated privately and the result can be verified at a later stage. This
has the distinct advantage that a party can keep its role secret until it is ready to share its results. For
example a party that was selected as a leader will only share that fact with everyone else once it has
proposed its block. This means that an adversary will only learn of a party’s role after it has already acted.
This means that Algorand is capable of dealing with an adversary that is able to corrupt a party instantly.

Additionally, as we saw above, the Algorand protocol ensures that there is exactly one block added to
the chain for each slot. As a result there are no forks in Algorand. This attribute is achieved by including a
byzantine-consensus protocol in the chain extension. This ensures that the parties reach consensus on the
block that extends the chain. Because a byzantine-consensus protocol is included in the chain extension,
the minimum amount of honest stake needed is 2/3. This means that more than 2/3 of the stake must be
controlled by honest parties.

Finally, by having the parties store certificates for the blocks they found consensus on, new parties are
able to verify the chain they received upon joining. This is done by gathering and verifying certificates
for each block from other parties in the blockchain network. This way new parties or rejoining parties
can be protected from receiving false chains form an adversary, since the adversary is unable to forge the
necessary certificates for the false blocks that they inserted.
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Algorithm 3 Pseudocode: Algorand BA⋆ (party pi).
state

hi: the hash of the block that pi is entering into BA⋆ with
hr: the hash of the block that pi is voting for in the next step
hw: is used to store the winning block hash of a vote
s: current step in BA⋆ initialized as 1

vkvrf
i , skvrf

i : key pair for the VRF proofs
wi: amount of stake of party pi in regards to the current slot slj

λstep: timeout time for a party to finish a protocol step
ηj : the randomness for the slot slj
τstep: the threshold to be selected for a step in BA⋆
τfinal: the threshold to be selected for a finalization step in BA⋆
Tstep: the fraction of votes needed in a step of BA⋆
Tfinal: the fraction of votes needed in the finalization step of BA⋆

upon pi concludes reduction step do:
hr ← hi

until s > smax do:

Vote((skvrf
i , τstep, (ηj , COMMITTEE, slj , s), wi), hr)

hw ← NULL

wait(λstep) // wait while gathering vote messages
if a winning block hash hw was set then

if hr ̸= hempty then
pi votes for hr for the next 3 steps if it is part of the commitee for the step
if s = 1 then

Vote((skvrf
i , τfinal, (ηj , FINAL, slj), wi), hr)

conclude BA⋆ with hr as the result
else: // no winner after λstep

hr ← hi

s← s+ 1

Vote((skvrf
i , τstep, (ηj , COMMITTEE, slj , s), wi), hr)

hw ← NULL

wait(λstep) // wait while gathering vote messages
if a winning block hash hw was set then

if hr = hempty then
pi votes for hr for the next 3 steps if it is part of the committee for the step
conclude BA⋆ with hr as the result

else: // no winner after λstep

hr ← hempty

s← s+ 1

Vote((skvrf
i , τstep, (ηj , COMMITTEE, slj , s), wi), hr)

hw ← NULL

wait(λstep) // wait while gathering vote messages
if no a winning block hash hw was found then

b← CommonCoin()
if b = 0 then

hr ← hi

else:
hr ← hempty

s← s+ 1

upon gossip-deliver([VOTE, (pc, hb, r, π, v)])do
if SortVerify(r, π, v, (COMMITTEE, j, s), vkvrf

c ) then
increase votes for hb by v
if votes for hb ≥ Tvote ∗ τvote then

hw ← hb

hr ← hb
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4.2 Cardano
The second lottery-based protocol we are looking at is Cardano. Cardano uses Ouroboros for its proof-of-
stake consensus protocol. While there are many extensions to Ouroboros, we will focus on Ouroboros
Classic [19] and Praos [17] and will give only a high-level overview for the other extensions. We begin
with a detailed look at Ouroboros Classic and then go over the changes that were made for Praos.

4.2.1 Ouroboros Classic
Ouroboros Classic is the first iteration of the Ouroboros protocol. It can be viewed as consisting of three
sub-protocols. Namely the protocols for chain extension, generating randomness and preparing the input
for the blocks. A protocol run is divided into epochs which are further divided into slots. The participants
in the protocol are called stakeholders or players in the work of Kiayias et al. [19], but we will use the
term party instead. Furthermore we will use the term hash instead of state when we discuss the hashes that
make up the hash chain.

At the beginning of each epoch ej a leader is randomly selected for each slot sl in the epoch. The
leaders are selected from the set of all parties by using the deterministic function F(Sj , ρj , sl) where Sj
and ρj are the stake distribution among the parties and the randomness during the epoch ej . Finally sl is
the slot for which the leader is selected. A party’s relative stake directly corresponds to the probability that
it is selected as leader for a slot. The selections of F(Sj , ρj , sl) for each slot are independent from each
other.

A party that was selected as leader has two main tasks during the epoch. The first is to extend the
chain with a new block during the slot where it is the leader. The second is to participate in a multi-party
coin-toss protocol in order to compute the randomness ρj+1 for the next epoch. Both protocols run parallel
to each other. The second role that is selected for each slot is that of the input endorser. As with the leader
role one input endorser is chosen per slot out of all parties. Again the relative stake of a party directly
corresponds to the probability that it is selected for a slot. Note that there may be overlaps between the
group of leaders and the input endorsers. An input endorsers task is to collect, validate and prepare the
data to be used in the next block.

4.2.1.1 Chain-extension protocol

The chain-extension sub-protocol consists of two subroutines. The first is responsible for collecting new
blockchain candidates broadcast by other parties and is triggered when a new blockchain candidate is
delivered. The second is executed by each party for each slot and consist of updating the local blockchain
and the randomness if applicable. In addition the leader of the current slot will extend the blockchain by
adding a new block and broadcasting the resulting chain. We now go over the two subroutines in more
detail and give a pseudocode representation of the chain-extension sub-protocol in Algorithm 4

On blockchain candidate delivery When a party delivers a new blockchain candidate, the party will
first validate it. This is done by validating each block in the blockchain candidate. A block Bi =
(hi−1,Di, sll, σskl

) consists of the hash of the previous block hi = H(Bi−1), the data Di that is contained
in the block Bi, the index of the slot during which the block was computed sl and lastly the signature σskl

over (hi−1,Di, sl) by the leader of the slot sl. A block Bi is valid if signature σskl
passes verification and

the signature key pair for σ belongs to the selected leader of slot sl. This can be verified by checking if
vkl = F(Sj , ρj , sl), where Sj and ρj are the the stake distribution and the randomness for the epoch that
contains slot sl. If every block in the candidate blockchain passes this validation then the blockchain is
considered valid and is added to the set C of valid blockchain candidates.
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On the start of a new slot Each party becomes active at the beginning of each slot. The beginning
of a slot is signaled by a global clock. There are three tasks in total, two of which are executed by all
parties and one only by the leader of the slot. First each party checks if a new epoch ej for j ≥ 2 has
started. If that is the case then it computes the the stake distribution Sj for the new epoch. This is done by
considering all transactions in the local blockchain B up until the most recent stable block. A block is
considered stable when it is k blocks deep in the blockchain. Since this data is not available for the first
epoch the initial stake distribution S1 is given by the genesis block.

The second task preformed by all parties is to update the local chain B. As mentioned above, all
valid candidate chains are collected in the set C. Each party runs the method maxvalidk(C,B). This
function returns the longest valid chain B′ out of the set C ∪ B. B′ will replace the current local chain
B. To be considered valid, a chain can not fork from the local chain B for more then k blocks. This
ensures that there are no radical changes in the local blockchain and blocks that are considered stable are
not invalidated. If the method maxvalidk(C,B) finds multiple chains with maximal length, then B has
priority if it is an element of that set. Otherwise B′ is selected arbitrarily from the set of longest chains.
Note that maxvalidk does require that a party is never offline for more then k blocks. Because at that
point the parties local chain B will have fallen behind for more than k blocks. This means that all candidate
chains are no longer valid, since all of them are now filtered out by maxvalidk. Therefore creating a
situation where a long-absent party is no longer able to rejoin the protocol.

Finally each party checks if it was selected as the leader for the slot by evaluating the function
F(Sj , ρj , sl) for the current slot sl. The function will return the public signature key of the party that
was selected. By comparing the result of F(Sj , ρj , sl) to its own public signature key vki a party pi can
determine if it is the leader. If that is the case then the party will compute the new block B = (h,D, sl, σ)
where h = H(head(B)) is the hash of the latest block in the local blockchain. The variable D represents
the data that is included in the block, we will discuss the construction of D in the input endorsement
sub-protocol section. The slot that the block belongs to is represented by the variable sl. And σ is the
signature over (st,D, sl) with the secret signature key ski of party pi. The new block B is appended to
the local chain B. Finally the new chain is then broadcast to the other parties.

4.2.1.2 Creating randomness

The leader-selection function in the Ouroboros Classic protocol requires randomness in order to work
properly. This randomness needs to be renewed for each epoch. This is where the sub-protocol for creating
this randomness comes into play. This sub-protocol is run in parallel to the chain extension and involves
all the leaders of an epoch ej . The goal is to construct the randomness ρj+1 for the following epoch ej+1

through multi-party computation. An epoch consists of R slots, therefore this protocol involves up to R
parties. Note that it is possible for the same party to be leader in multiple slots during one epoch, therefore
the R parties are not necessarily distinct. Furthermore as a prerequisite all parties that participate in this
sub-protocol need to have published their public encryption key yi (of encryption key pair(yi, si)) on the
blockchain. Otherwise they are not included in the multi-party computation.

The idea is to use a R-party coin-toss protocol to construct the randomness for each epoch. However
using the coin-toss protocol by itself can be problematic since an adversarial party can choose to abort the
protocol. When this happens the honest parties will never learn the result of the coin toss. This can be
done even after every other party revealed its results. Because of this the adversarial party can learn the
overall result and decide afterwards to abort the protocol, if the result is not in its favor. This is why the
coin-toss protocol needs to be extended with a publicly-verifiable-secret-sharing scheme (PVSS) in order
to prevent an adversary from aborting the protocol. We will now describe this extended scheme in more
detail in the following paragraphs and give a pseudocode implementation in Algorithm 5.
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Algorithm 4 Pseudocode: Ouroboros Classic chain extension (party pi).
state

B: local blockchain
h: latest hash of local chain = H(head(B))
C: set of valid chain candidates
vki, ski: signing key pair for the blocks
D: list of the last d endorsed inputs to be included in the block
ρj : the randomness for the epoch ej

upon deliver([CHAIN, C]) do
for every block B = (h, d, sl, σ) ∈ C do

verify the signature σ over (h, d, sl) with the public key vkj of the leader of the slot sl
if C passed all block verifications then

C← C ∪ {C}

upon clock indicating the start of a new slot sl do
if a new epoch ej has started for j ≥ 2 then

compute the stake distribution Sj for the next epoch

B ← maxvalidk(B,C)

if pi is the leader of slot sl then
D ← select all endorsed inputs from D that are not included in a block of B
B ← (h,D, sl, σ) where σ = Signski(h,D, sl)
B ← B∥B
h← H(head(B))
broadcast([CHAIN,B])
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Commitment Phase In a first step we adjust R if necessary. Since a party’s public encryption key must
be published in order to participate in the PVSS, we adjust the number of participants R accordingly. Each
party starts by executing the method Deal(R,R/2, y1, ..., yR). This method will select a secret σ, in this
case σ is the contribution of the party for the coin-toss scheme. This secret is then split into R shares, one
for each party. The R/2 indicates that more then half of the shares are needed to reconstruct the secret σ.
The shares which are denoted by (σ1, ..., σR) are then encrypted with the public key of the receiver. For
example βi = Enc(σi, yi) denotes the encrypted share for party pi. Note that in addition βi contains a
non-interactive-zero-knowledge proof that allows the other parties to verify the validity of the encryption.
Each party then broadcasts the encrypted shares (βi, ..., βR) so that they are included in the blockchain.
The commitment phase starts at slot R− 2k − 4ℓ of each epoch and lasts for 2k + 3ℓ slots.

Reveal Phase Immediately after the commitment phase begins the reveal phase at slot R− ℓ and last for
ℓ slots until the end of the epoch. In this phase the parties will run the method Decrypt(si, βli) where βli

is the encrypted share for party pi for the secret of party pl. However a party will only decrypt a share if
two conditions are met. First all R shares (βl1, ..., βlR) must be present in the blockchain. Secondly every
share needs to be valid, which can be verified by evaluating the associated proof. Only if both conditions
are met is a party allowed to decrypt and broadcast its share of the corresponding secret.

Computing the randomness At the end of an epoch the shared secrets are reconstructed in order to
compute the randomness for the next epoch. First each party will collect all shares for each secret from
the blockchain. As mentioned, a secret can be reconstructed if more then R/2 shares are present. If that
is the case, we can compute the randomness that a party pl contributes with ρjl = H(Rec(σl1, ..., σlR)).
Here the ρjl denotes the randomness contributed by party pl for the epoch ej . If there are less then R/2

shares present, then the ρjl is set to zero. Finally the randomness for the next epoch can be computed with
ρj = ⊕R

l=1ρ
j
l .

4.2.1.3 Input endorsement

In Ouroboros it is not the leaders that decide what data is included in a block, instead it is prepared
by the input endorsers. We will denote those parties as pe. Exactly like with the leaders a single input
endorser is selected randomly for each slot. The probability of a party being selected as an input endorser
is again based on its relative stake in the system. An input endorser’s purpose is to collect transactions
and sub-protocol data to be included in the next block. The input endorser is responsible for verifying
the collected data and for resolving possible conflicts between transactions. The data is collected in an
endorsed input set D which is then broadcast.

Each party that delivers such an endorsed input set D will store it in a queue D which contains the
last d endorsed inputs, where d is a parameter of the sub-protocol. When a party is selected to be leader,
it includes all endorsed input sets D ∈ D in its next block . If a input set D is already part of a previous
block, it will not be included again. This means that a block may contain 0 to d endorsed input sets D.
Note that there may be transactions that are included in the blockchain more then once. This is resolved by
a strictly increasing serial number that each party includes in its own transactions. Therefore duplicate
transactions can be identified by their serial number. The serial numbers are also used in the case of two
conflicting transactions. Here the priority is given to the transaction with the smaller serial number. The
pseudocode for the input endorsement is included in Algorithm 6.

4.2.2 Ouroboros Praos
Ouroboros Praos [17] is an evolution of Ouroboros Classic that raises the security by allowing for a more
powerful adversary. It does this by changing the leader selection sub-protocol. Since in Ouroboros Classic
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Algorithm 5 Pseudocode: Ouroboros Classic creating randomness sub protocol (party pi).
state

B: local blockchain
ρj : the randomness for the epoch ej
yi, si: encryption key pair for VPSS

upon the start of the commitment phase do // phase lasts form slot R− 2k − 4ℓ to slot R− ℓ− 1
(β1, ..., βR)← Deal(R,R/2, y1, ..., yR)
broadcast([COMMIT, (β1, ..., βR)])

upon the start of the reveal phase do // phase lasts form slot R− ℓ to the end of the epoch
for 1 ≤ l ≤ R do

(βl1, ..., βlR) = query the local chain B for all encrypted shares provided by party pl
if all shares (βl1, ..., βlR) exist and every share passes verification then

σli ← Decrypt(si, βli)
broadcast([REVEAL, σli])

upon end of epoch ej−1 do
for 1 ≤ l ≤ R do

(σl1, ..., σlR) = query the local chain B for all decrypted shares provided by party pl
if more then R/2 decrypted shares are present do

ρjl ← H(Rec(σl1, ..., σlR))
else

ρjl ← 0

ρj ← ⊕R
l=1ρ

j
l

Algorithm 6 Pseudocode: Ouroboros Classic input endorsement sub protocol (input endorser party pe).
state

D: list of the last d endorsed inputs to be included in the block
ρj : the randomness for the epoch ej
unordered : set of input data to be endorsed

upon deliver([DATA, D]) do
if |D| ≥ d then remove the oldest entry from D
D← D∥D

upon clock indicating the start of a new slot sl do
if pi is the input endorser of slot sl then

broadcast([DATA, unordered ])

upon deliver([OP, x]) do
unordered ← unordered ∪ {x}

upon deliver([COMMIT, c]) do
unordered ← unordered ∪ {c}

upon deliver([REVEAL, r]) do
unordered ← unordered ∪ {r}
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all leaders of an epoch are known at the beginning of the epoch, they are in risk of being targeted by an
adversary. That is why the adversary in Ouroboros Classic may not corrupt a party instantly but only after
a delay. Otherwise the adversary would be able to systematically corrupt selected leaders before their slot
begins to take control of the system. To remove this restriction from the adversary, the leader-selection
process was changed, so that each party can evaluate privately whether it is the leader or not. If and only if
a party is a leader of the slot, it will be able to successfully prove it is the leader and therefore compute
a valid new block. Another change is the introduction of key-evolving signatures that provide forward
security in order to protect against adaptive corruption. We will now discuss the changes made to the
Ouroboros Classic protocol in more detail.

4.2.2.1 Verifiable random function for leader selection

In Praos the deterministic leader-selection function F(Sj , ρj , sl) form Ouroboros Classic is replaced with
a VRF-based selection mechanism. The main difference between the two approaches is that in Classic
every party that evaluates F will receive the same result for each slot. This results in every slot having
exactly one leader. This is not the case for Praos. Every party will evaluate the VRF privately and will
then find out whether or not they are selected as leader for the slot. However since the results of those
evaluations are independent form each other, there are slots that have no leader and slots that have multiple
leaders. Note that because the parties evaluate the VRF privately, the other parties only find out which
parties are leaders after they already broadcast their new blocks. This gives the adversary no time between
learning the set of leaders of a slot and them computing their blocks to corrupt them.

In Praos all parties evaluate the function VRF(m, skvrfi ) = (r, π) privately during each leader selection.
To determine if a party pi is a leader for the slot it evaluates r < T j

i . If the result is true then pi is a leader
of the slot. The threshold T j

i depends on the relative stake of party pi during epoch ej . The higher the
party’s relative stake is, the higher is the threshold T j

i . Therefore raising the party’s chances to become a
leader. As for the message m used in the VRF each party uses m = ηj∥sl∥TEST where ηj is the nonce
for epoch ej and sl the slot for which VRF is evaluated. Lastly TEST is simply the string TEST. This
string is used because the VRF is reused in the computation of the nonce ηj . We will discuss computation
of ηj later in this section. In short, a party computes (r, π) = VRF(m, skvrfi ) and checks if r < T j

i .
If that is the case then the party is a leader of the slot and may compute a new block. The party must
include Bπ = (pi, r, π) in the new block so that the other parties can verify that pi is in fact a leader
of the slot. They learn the party’s identity through Bπ and can therefore verify the claim by evaluating
Verify(ηj∥sl∥TEST, r, π, vkvrf ) and r < T j

i . If both statements are true the party pi is indeed a leader of
the slot.

When a party pi evaluates the VRF for the leader selection, it will also evaluate ρ = (ρr, ρπ) =
VRF(ηj∥sl∥NONCE, skvrf ). The randomness from this evaluation is used to compute the randomness
ηj+1 for the upcoming epoch. For this purpose ρ is included in the block. Therefore a block in the Praos
protocol is defined as B = (h,D, sl, Bπ, ρ, σ). When a new epoch ej begins every party can compute the
randomness for the epoch as follows: ηj = H(ηj−1∥j∥v). Here ηj−1 is the randomness of the previous
epoch and j the index of the current epoch. The value v is a concatenation of the values ρ that are included
in the stable blocks of the previous epoch ej−1.

Since Ouroboros Praos has additional variables included in the blocks compared to Classic, it is
important to note that the validation process has some additional steps. As in Classic the signature σ over
(h, d, sl, Bπ, ρ) needs to be verified. Secondly the proof π in Bπ needs to be verified successfully and
r < T j

i must be true. And lastly the proof ρπ in ρ must pass the verification as well.
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4.2.2.2 Key-evolving signatures

The Praos iteration of Ouroboros switches to a key-evolving signature scheme for the block signatures. In
this scheme the signature key is updated after each signature, while the old signature key is deleted. While
all signatures can still be linked to the same key, it is not feasible to reconstruct previous keys from the
current one. In Praos [17] these signatures are used to achieve forward security. This means that when
an adversary corrupts a party it can create valid signatures with the current key and all future keys, but
is unable to create valid signatures for past keys. In Praos the parties use a new key for every slot. This
means that even if the party did not sign a block during the slot, the key for this slot will be discarded.

This means that there is a slight change to the Sign method. We add the parameter sl to the method
resulting in Signski

((h,D, sl, Bπ, ρ), sl). With this added parameter we signal the method which iteration
of the signature key to use. If necessary the method will internally update the key until it arrives at the key
for the current slot. After the signature is created the key is updated one last time. All keys except the
newest one are erased in the process. Similarly the verification function Verifyvki

((h,D, sl, Bπ, ρ), σ, sl)
features the additional parameter of sl to identify which iteration of the signature key was used.

4.2.2.3 Chain-extension protocol

In this section we will give psuedocode for the Praos protocol depicted in Algorithm 7. The code only
covers the chain-extension sub-protocol. Because, as we discussed above, in Praos the creation of the
randomness for the next epoch is closely tied to the chain extension. Therefore we will combine the two
sub-protocols into one pseudocode snippet. Finally we will not present the input endorsement sub-protocol
again because it remains largely unchanged.

4.2.3 Further protocol extensions
Ouroboros features many more extensions after Praos. In this section we will quickly go over the features
that these extensions provide.

Ouroboros Genesis As we saw before Ouroboros Classic and Praos both require a party to be online at
least once every k blocks. This is mainly due to the chain-selection function maxvalidk. The Genesis
extension for Ouroboros changes the chain-selection function and enables parties to rejoin the chain even
after being offline for more then k blocks. All a party needs is a trusted copy of the genesis block of the
chain in order to rejoin. In the same way this extensions also allows new parties to join a long-running
chain.

Ouroboros Chronos Ouroboros Chronos aims to eliminate the need for a global clock by introducing a
sub-protocol for clock synchronization. This removes the need for a global clock, so that the parties only
require local clocks the run at the approximately same speed.

Ouroboros Crypsinous This extension extends Ouroboros into a privacy-preserving protocol. It intro-
duces a new coin evolution technique based on SNARKs and key-private forward-secure encryption.

Ouroboros Hydra The Hydra extension introduces isomorphic multi-party state channels to Ouroboros.
The state channels use an adopted version of the smart-contract code base, which allows users to use the
same code for both smart contracts and state channels.
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Algorithm 7 Pseudocode: Ouroboros Praos chain extension (party pi).
state

B: local blockchain
h: latest hash of local chain = H(head(B))
C: set of valid chain candidates
vki, ski: signing key pair for the blocks
vkvrf

i , skvrf
i : key pair for the VRF proofs

D: list of the last d endorsed inputs to be included in the block
ηj : the randomness for the epoch ej
T j
i : the party’s threshold of epoch ej

upon deliver([CHAIN, C]) do
for every block B = (h,D, sl, Bπ, ρ, σ) ∈ C do

Verifyvkl
((h,D, sl, Bπ, ρ), σ, sl) // where σ is a key-evolving signature

Verify(ηj∥sl∥NONCE, ρr, ρπ, vk
vrf )

Verify(ηj∥sl∥TEST, r, π, vkvrf )

verify r < T j
i

if C passed all block verifications then
C← C ∪ {C}

upon clock indicating the start of a new slot sl do
if a new epoch ej has started for j ≥ 2 then

compute the threshold T j
i for the leader selection for the next epoch

ηj ← H(ηj−1∥j∥v)

B ← maxvalidk(B,C)

(ρr, ρπ)← VRF(ηj∥sl∥NONCE, skvrf
i )

(r, π)← VRF(ηj∥sl∥TEST, skvrf
i )

if r < T j
i then // tests if pi is a leader of slot sl

D ← select all endorsed inputs from D that are not included in a block of B
Bπ ← (pi, r, π)
ρ← (ρr, ρπ)
B ← (h,D, sl, Bπ, ρ, σ) where σ = Signski((h,D, sl, Bπ, ρ), sl)
B ← B∥B
h← H(head(B))
broadcast([CHAIN,B])
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4.2.4 Protocol attributes
While some aspects are very similar between Ouroboros Classic and Praos the main difference is the
selection process. In Classic we have a global function that selects exactly one leader for each slot. This
function can be evaluated by each party to learn the leader of all slots for one epoch. This means that
an adversary must be limited in its ability to corrupt parties. Otherwise the adversary would be able to
corrupt the upcoming leaders in the epoch and therefore securing the majority of blocks that are produced.
This would open the opportunity for double-spending attacks. To prevent such a scenario Ouroboros
Praos changes the leader selection to a VRF-based mechanism. With this approach the identity of a leader
remains hidden until the new block is broadcast. Since the adversary does no longer learn who the leader
is ahead of time, the restrictions on the adversary can be lifted. This means that in Ouroboros Praos an
adversary is capable to corrupt a party instantly. Note that in order for both protocols to run correctly the
adversary can not be allowed to propose more than half the blocks. To prevent this from happening more
than 1/2 of the stake must be controlled by honest parties.

A side effect of the new selection mechanism in Praos is that there may be multiple leaders for one
slot. In addition it is also possible that there is no leader at all. Since there can be multiple leaders and
therefore multiple blocks per slot, there are going to be forks in Praos. This is the case even if all leaders
are honest. In contrast forks in Ouroboros Classic only happen when the leader of a slot is adversarial.
Both versions of Ouroboros deal with forks by using the chain selection method maxvalidk. The method
simply chooses the longest valid fork as the new local chain. However forks that go back more than k
blocks are not considered. This is mainly a defense against long-range attacks and provides a way to
enforce that blocks, that are more then k blocks deep in the chain, are final. Otherwise an adversary could
construct a fork that goes all the way back to the genesis block. This is feasible because the computation
of blocks is cheap.

This comes at a cost however. Since parties are not allowed to consider forks that differ for more than
k blocks from their local chain, they can not be absent for more than k slots. Otherwise they would be in
a situation where they are unable to select any of the chains suggested to them, because every option is
deemed invalid by maxvalidk. Similarly new parties face the same problem, they are unable to obtain
the current chain without violating the restrictions that maxvalidk imposes. It should be noted that the
Ouroboros Genesis extension provides a solution for this problem, where parties have a secure way to join
or rejoin the protocol.

4.3 Comparison: Algorand and Cardano
In this section we give a short comparison between the Algorand and Cardano. For the sake of this
comparison we are mainly focusing on Ouroboros Praos in case of Cardano, since it is the newer version
of Ouroboros and is currently being used in practice.

Starting out with the similarities we can see that both protocols use a VRF as the core building block
for their role selection, although there are differences in the selection mechanisms. For starters they both
have a different solutions of how a party’s stake changes their chances of winning the selection. Cardano
computes individual thresholds for each party based on their stake, while Algorand lets parties have
multiple tries based on the stake they own. Furthermore they pursue different strategies when it comes to
how many leaders are likely to be selected for one slot. Algorand chooses its threshold high enough, so
that there is always at least one leader being selected. Afterwards multiple selected leaders are narrowed
down to one overall winner. Meanwhile even though having a single leader is the most desired outcome in
Cardano. Cardano will allow for multiple leaders or even no leaders being selected. In fact such empty
slots are indeed even beneficial in Cardano by allowing parties to re-synchronize if needed.

The two protocols further differ in their strategy for the block selection. Cardano allows for all leaders
to propose blocks to the other parties. Each party will then decide individually which chain it is going
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to adapt based on the options it received. This is done with the chain selection method maxvalidk, that
selects the longest valid chain, while considering only chains that do not fork for more than k blocks from
the party’s local chain. Algorand on the other hand uses a binary-byzantine-agreement protocol, where
all honest parties must find consensus on the block that is to be added to the chain. Since the new block
is agreed upon by all honest parties it can be considered final as soon as it is added. In Cardano on the
other hand a block is only considered final once it is k blocks deep into the chain and is protected by the
restrictions of maxvalidk. Therefore Algorand is able to finalize blocks faster than Cardano. However the
inclusion of a byzantine-agreement protocol requires Algorand to have more than 2/3 of the stake to be in
the hands of honest parties. In comparison Cardano does only require more than 1/2 of the stake to be
honest.



5
Slashing-based proof-of-stake protocols

In this next section we focus on slashing based proof-of-stake protocols. We first go over the general
concepts of slashing and then look more closely at one representative of this family of protocols.

In slashing-based proof-of-stake protocols only a sub-group of parties participates in the chain-
extension protocol. To become a member of that group, a party has to lock up some of its stake in a
security deposit. The party can then participate in the chain-extension protocol and earn rewards for doing
so. However, should a party misbehave and go against the protocol rules, it is penalized. In this case a
portion of the party’s locked-up stake is slashed (or, in other words, lost). These penalties or slashings are
what keeps the parties honest, since in most cases the stake gained from going against the protocol is not
worth the penalty. While slashing does incentivize parties to follow a protocol, it is not a chain-extension
protocol by itself. Therefore different representatives of slashing-based designs may feature different
chain-extension protocols.

We are going to focus on Ethereum 2.0 as the representative for the slashing-based protocols. While
slashing is a core concept of Ethereum’s design, its chain-extension protocol shares some similarities with
lottery-based approaches.

5.1 Ethereum 2.0
In this section we focus on Ethereum 2.0 as a representative of a slashing-based proof-of-stake protocol.
Ethereum started out as a proof-of-work-based blockchain protocol and is now in the midst of upgrading to
Ethereum 2.0. Our analysis of Ethereum 2.0 is based on the work of Buterin and Griffith [13] and Buterin
et al. [14]. We also use additional information from the annotated code specification of Ethereum 2.0 [12].

In Ethereum 2.0 parties can voluntarily lock up some of their stake to participate in the chain-extension
protocol. The stake that is required to join the chain extension is the same amount for all parties. A party
that takes part in the chain extension this way is called a validator. We will denote such a party as vi
and the set of all validators as V. The set of validators along with their locked-up stake are stored and
maintained in the beacon chain. Ethereum 2.0’s architecture consists of one beacon chain and several
shard chains. The beacon chain keeps track of the validators and manages the chain-extension protocol. It
does however not contain transactions and smart contracts. That is where the shard chains come in. Shard
chains are responsible for keeping track of stake transactions and smart contracts. The chain extension of
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the shard chains is going to be linked to that of the beacon chain. However at this time only the beacon
chain has been implemented, therefore we will limit our analysis of Ethereum 2.0 to the chain-extension
protocol of the beacon chain.

Ethereum 2.0 uses Gasper as part of its chain-extension protocol. Gasper itself is a combination of two
building blocks working together. The first is Casper the Friendly Finality Gadget (Casper FFG). Casper
FFG is a protocol that is based on PBFT with the goal of finalizing the blocks in the beacon chain. The
second is a chain-selection protocol called LMD GHOST (Latest Message Driven Greediest Heaviest
Observed SubTree). We describe the functionality of Casper FFG and LMD GHOST in more detail in
later sections.

For its leader selection Ethereum 2.0 randomly selects a leader form the validator set Vj for each slot
sl in epoch ej . The leaders are selected with the help of a deterministic function F(Sj , ηj , sl). Here Sj is
the stake distribution of the locked-up stake of the validators and ηj the randomness during epoch ej . The
input sl is the identifier of the slot for which the leader is selected. Because all validators locked up the
same amount of stake, they have the same probability of being selected. The only exceptions are validators
that got their stake slashed due to a violation of the protocol. Those validators have a lesser chance of
being selected as the leader compared to everyone else. The leader of the slot computes and broadcast a
new block. All other validators will then select their new local chain based on LMD GHOST.

In addition to a leader, each slot also features a committee of attesters. These committees are formed
with a deterministic function C(ηj ,Vj). This function takes as inputs the randomness ηj and the set of
validators Vj during epoch ej . The function forms equally sized committees for each slot of epoch ej .
Each validator in Vj is part of exactly one of these committees per epoch.

Attesters compute and broadcast attestations during the slot where they are part of the committee.
Note that because the leader selection and the forming of the committees are independent of each other,
there can be the case that a validator is the leader and an attester in the same slot. Since every validator
is an attester in exactly one slot, every validator broadcasts exactly one attestation α per epoch. These
attestations are used as votes in both Casper FFG for the block finalization and LMD GHOST for the
chain selection. In the case of LMD GHOST the attesters vote for the block that they consider the correct
head of the chain based on their current view. For Casper FFG the attesters vote on which block should
be finalized next. This is done in the form of a checkpoint edge. We now look at Casper FFG and LMD
GHOST in more detail.

5.1.1 Casper FFG
As mentioned above Casper FFG is a protocol that is designed to finalize blocks in the beacon chain.
Casper FFG is based on PBFT where all validators Vj of the current epoch ej participate. The attestations
that the validators broadcast during the epoch, serve as votes in the PBFT consensus. Since it takes a whole
epoch for all attestations to be computed and broadcast, the validators will only be able to reach consensus
on a single block per epoch. These blocks are referred to as checkpoint blocks or epoch boundary blocks.
An epoch boundary block is usually the first block in an epoch. If the first block of the epoch should be
missing then the last existing block of the previous epoch fills the role. We can think of these checkpoint
blocks forming their own checkpoint chain and the validators try to find consensus on which checkpoint
block to add to the chain next.

To achieve this the validators vote for the next checkpoint block in their attestations in the form of a
checkpoint edge. A checkpoint edge consists of two checkpoint blocks, a source block and a target block.
A validator will choose the source block as the current head of the checkpoint chain according to their
view V . This block is also referred to the last justified checkpoint block LJ(V). The view V in this case is
a set of all blocks, attestations and supermajority links the validator has witnessed so far. The target block
is the epoch boundary block of the current epoch according to the validators local chain B. This is denoted
by LEBB(B).
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The validators reach consensus on a checkpoint edge if it reaches more than 2/3 of the votes. Note
that the votes of the validators are weighted according to their locked-up stake. So a checkpoint edge
needs to gather the support of 2/3 of the stake. If that is the case the checkpoint edge is considered a
supermajority link and is added to the checkpoint chain. Therefore the target block in the supermajority
link is now the new head of the checkpoint chain. A block in the checkpoint chain can have two states:
justified and finalized. The genesis block is always considered to be both justified and finalized. A block is
justified if it is the target of a supermajority link, where the source is a justified block. A block is finalized
if it is justified and there is a supermajority link where it is the source.

5.1.2 LMD GHOST
LMD GHOST uses the second vote in the attestations for its chain-selection algorithm. In the second vote
a validator votes for the block that they consider the current head of the beacon chain. In short, LMD
GHOST selects the chain with the most weight based on the votes. Also here, the weight of a vote is
the equal to the locked-up stake of the validator that cast the vote. In more detail LMD GHOST starts
its search from the last finalized checkpoint block. It then works its way towards the head of the chain.
Each time it reaches a fork it computes the weight of all forks based on the most recent attestations of
all validators. It then chooses the fork with the highest weight and continues the search. The search ends
when LMD GHOST reaches the head of one of the forks. This block is then selected as the current head of
the beacon chain.

5.1.3 Slashing
In Ethereum 2.0 there are three major slashing offences. One of them concerns the leader and two of them
the attesters. A leader commits a slashable offence if they ever publish more than one valid block for a
single slot sl. For another validator to prove such an offence they need to refer to the two blocks that stand
in violation of this rule.

For the two slashing offences an attester can commit, we consider two distinct checkpoint edge votes.
We will denote them as (s1, t1) and (s2, t2). For both slashing offences we are looking at cases where the
two distinct votes are in contradiction to each other. This is the case when both edges can not exist in the
same fork. The first slashable offence occurs when an attester votes twice for the same epoch. This is the
case if h(t1) = h(t2), where h is a function that returns the depth or position of the block in the checkpoint
chain. Since both blocks would occupy the same position in the checkpoint chain they can not possibly be
part of the same fork.

The second slashable offence occurs when an attester casts two votes where one surrounds the other.
This is the case when h(s1) < h(s2) < h(t2) < h(t1). Note that the index does not dictate the order in
which the two votes were cast. Therefore the scenario h(s2) < h(s1) < h(t1) < h(t2) is also in violation
of the same rule. In both scenarios the two checkpoint edges can not be part of the same fork without
violating the Casper FFG protocol. In order to prove either of the two slashing offences, a validator needs
to refer to the two conflicting attestations as evidence.

In all cases if a slashing offence by a validator is proven, then a portion of their locked-up stake is
slashed. The validator that presented the evidence is given a portion of that stake as a reward. The amount
that is slashed may vary. One deciding factor for example is the amount of slashing offences committed
during the epoch. The punishment is more severe when there are more violations. This is done in order to
discourage collusion between validators. In any case a slashed validator will be ejected from the validator
set after a set amount of epochs. The validator continues to participate in the protocol as an attester or
leader until the ejection is in effect. During that time the validator may be subject to further slashings if
there are further slashing offences on their part.
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5.1.4 Chain-extension protocol
In this section we describe the chain-extension protocol of Ethereum 2.0. The chain-extension protocol is
split in four subroutines. The first two handle the delivery of block and attestation messages respectively.
The other two become active at the beginning and at the halfway point of a slot. We now describe the
subroutines in more detail and give a pseudocode implementation of the chain-extension protocol in
Algorithm 8.

On conclusion of previous slot At the beginning of a new slot sl every validator vi checks if a new
epoch ej has started. If that is the case then the stake distribution Sj and the randomness ηj for this epoch
are computed. The computation of the randomness is based on a RANDAO mix [12]. For Ethereum 2.0
every leader includes a random value ρ in the proposed block. All random values ρ of an epoch are added
to the previous epoch randomness ηj−1 through the XOR operation to form the next epoch randomness
ηj . Note that in practice the epoch randomness ηj is computed at the end of epoch ej−5. This allows
validators to learn in advance, when they have an active role in an upcoming epoch. This way they can
better plan, when to be online and participate in the protocol.

The remaining part of this subroutine is then only executed by the leader of the current slot sl. Here the
leader of the slot computes and broadcasts a new block B = (h,newattests,newslashings,D, ρ, sl, σ).
The hash h is the hash of the previous block in the local chain B. The newattests contains all new attesta-
tions that the leader has witnessed and were not included in any previous block. Similarly newslashings
contains the evidence for all new slashable offences the leader has discovered. Since the beacon chain does
not contain transactions, the set D simply serves to store additional data. The randomness ρ = Signski

(ej)
is used in the computation for the epoch randomness. It is a BLS-signature over the identifier ej of the
current epoch. In the BLS-signature scheme the signatures are deterministic, meaning that the same key ski
and message m always lead to the same signature ρ. Here the BLS-signature is equivalent to a VRF. Since
the message is predetermined, a leader is only able to compute one unique signature ρ. Additionally since it
is a signature, the correct construction of ρ can be verified by other parties. Finally the block B also contains
the identifier of the current slot sl and a block signature σ over (h,newattests,newslashings,D, ρ, sl).
After the block is computed the leader will then broadcast the block to the other parties.

On halfway point during the slot Halfway through the slot the attesters become active. The main
purpose here is for them to compute and broadcast their attestation. They wait until the halfway point of
the slot to do this, in order to give the new block time to arrive. This way they can include the new block
in their chain selection. The attestation α = (sl, (source, target), head, σ) consists of the two votes
(source, target) and head. Additionally it contains the identifier of the current slot sl and the signature
σ over (sl, (source, target), head). The vote for the checkpoint edge (source, target) is chosen as
(LJ(V),LEBB(B)). Here the LJ(V) selects last justified checkpoint block based on the supermajority links
that validator vi has seen so far. LEBB(B) selects the last epoch boundary block based on local chain that
validator vi has selected. This usually is the block from the first slot in the current epoch. Finally the vote
for the current head is simply chosen as the head of the current local chain B selected by validator vi.

On block message delivery When a new block message arrives the new block B is validated by verifying
the signature σ. If block B passed the verification, then it is added to the validator’s view V . Afterwards
the chain selection LMD GHOST(V) is executed to select the new local chain B. Since the new block
contains newattests , the selection of the chain may have changed.

In the next step the validator vi needs to tally the new checkpoint-edge votes contained in the new
block. If a checkpoint edge reaches the supermajority of 2/3 of the votes then the checkpoint is added to
the view V as a supermajority link.
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And lastly the validator checks for leader and attester slashing offences. For the new block B we
search for a second block B′ for the same slot sl. For the attestations in the block B we check if any of the
new attestations stands in conflict with an attestation that is already part of the local view V . If any slashing
offences are found they are added to the newslashings set. Those slashing offences are then included in
the next block, when validator vi is the leader of a slot.

On attestation message delivery In the subroutine for the delivery of a new attestation message we
simply verify the signature σ of the attestation α. If the attestation α is valid then we add it to the local
view V for further use.

5.1.5 Protocol attributes
Even tough Ethereum 2.0 is primarily a slashing-based proof-of-stake protocol, it still features a lottery-
based leader selection. Similar to Ouroboros Classic, Ethereum 2.0 selects its leaders with a global function,
that selects a single leader for each slot. Because of this forks are rare under normal circumstances. An
adversarial leader could create a fork by broadcasting two different blocks during their slot, but that would
also open them up for being slashed. This in turn would cause them to lose part of their locked up stake
and thus would diminish their chances of being selected as leader in future slots. However since the leaders
of an epoch are known by everyone ahead of time this makes them potential targets for the adversary.
Therefore the adversary in Ethereum 2.0 must be subjected to a corruption delay.

Finalization in Ethereum 2.0 is handled by Casper FFG, a consensus protocol based on PBFT. Instead
of finding consensus on each block, Casper FFG reaches consensus on one checkpoint block per epoch. A
block that is not a checkpoint block is final as soon as there is a finalized checkpoint block after it in the
chain. This usually happens when the checkpoint block of the following epoch is finalized. Therefore the
time it takes for a non-checkpoint block to be finalized is three epochs under normal circumstances. Since
Casper FFG is a PBFT based consensus protocol, Ethereum 2.0 requires that 2/3 of all the locked-up
stake is controlled by honest validators. Note that through slashing Ethereum 2.0 is able to regulate this
ratio to a certain degree. Not only does the possibility of losing stake discourage adversarial behavior, but
through slashing the power of caught adversarial validators is diminished until they are ejected from the
chain-extension protocol.

Finally Ethereum 2.0 is designed to have a changing set of validators. Therefore it is possible for new
validators to join and old validators to leave. Because of this Ethereum 2.0 records all attestations in the
blocks. Therefore the entire voting history for both Casper FFG and LMD GHOST is recorded in the chain.
This way a new validator is able to recompute and verify the entire history of the chain.
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Algorithm 8 Pseudocode: Ethereum 2.0 chain extension (validator vi)
state

B: local blockchain
V: local view of all blocks, attestations and supermajority links
h: latest hash of local chain = H(head(B))
ej : the current epoch of the chain-extension protocol
sl: current slot of chain-extension protocol
Vj : set of validators for epoch ej
Sj : stake distribution for epoch ej
unordered : set of additional data to be included in the block
newslashings: set of slashing offences to be included in the block
vki, ski: signing key pair for the blocks
wj : amount of stake of party pi in regards to the current epoch ej
ηj : the randomness for epoch ej
τslot: duration of a slot

upon deliver([BLOCK, B]) do
verify the signature σ over (h,newattests,newslashings,D, sl)
if B passed verification then
V ← V ∪B
B ← LMD GHOST (V)
update supermajority links in V based on the results of Casper FFG based on newattests in B
if there already exists a different valid block B′ ∈ V for the same slot sl then

s← compute a new leader slashing offence with block pair (B,B′) as proof
newslashings ← newslashings ∪ {s}

check if any attestation α ∈ newattests stands in conflict to an earlier attestation α′ ∈ V
for all such conflicting attestation pairs (α, α′) do

s← compute a new attester slashing offence with attestation pair (α, α′) as proof
newslashings ← newslashings ∪ {s}

upon deliver([ATTESTATION, α]) do
verify the signature σ over (sl, (source, target), head)
if α passed verification then
V ← V ∪ {α}

upon vi concludes previous slot do
if a new epoch ej has started for j ≥ 2 then

compute the stake distribution Sj for the next epoch
ηj ← ηj−1 ⊕mixj−5, where mixj−5 is the ⊕ aggregation of ρ values in blocks from epoch ej−5

if vi is the leader of slot sl then
newattests ← select maximal valid set of new attestations from V
newslashings ← select maximal valid slashing offences from newslashings
D ← select maximal valid set of additional data from unordered
ρ← Signski(ej)
σ ← Signski(h,newattests,newslashings,D, ρ, sl)
B ← (h,newattests,newslashings,D, ρ, sl, σ)
V ← V∥B
B ← B∥B
h← H(head(B))
broadcast([BLOCK, B])

upon τslot/2 time has passed in the current slot sl do
if vi is an attester of slot sl then

source← LJ(V)
target← LEBB(B)
head← head(B)
σ ← signature over (sl, (source, target), head)
α← (sl, (source, target), head, σ)
broadcast([ATTESTATION, α])



6
Voting-based proof-of-stake protocols

In this section we discuss the voting-based protocols. We first go over the general concepts and structure
of the voting family of stake-based consensus protocols. Afterwards we give a more detailed description
of two representatives for voting-based approaches.

The core idea of voting-based protocols is that the responsibility to extend the chain is delegated to a
selected group of parties. The members of this sub-group are selected by vote. While every party in the
network is allowed to vote, the weight of a party’s vote is tied to the amount of stake they possess. This
can be accomplished by either giving each party one vote, that is weighted based on the party’s stake, or by
giving each party multiple votes based on their stake in the system. In both cases a party’s voting power in
the election is directly tied to the amount of stake the party has. The election is repeated after every epoch.
This gives all parties the opportunity to shift their support based on the performance of the previously
elected parties.

The two representatives from the voting family we discuss in this thesis are EOSIO and Neo. While
they share the same basic concepts, their implementations of the voting process do deviate in some aspects.
For example EOSIO does require the parties to lock up stake in order to be able to vote. Therefore in
EOSIO’s case only locked-up stake is considered when a party’s voting power is computed. In Neo on the
other hand all parties are able to vote and their entire stake is considered to determine their voting power.
Furthermore in EOSIO voters have up to 30 votes based on their locked-up stake, while in Neo each voter
gets exactly one weighted vote.

6.1 EOSIO
In this section we describe the EOSIO protocol as part of the family of voting-based proof-of-stake
protocols. Due to the lack of scientific sources describing the consensus protocol of EOSIO, our description
is largely based on the documentation of version 2.1 of EOSIO [5]. To supplement the information provided
in the documentation, we referred to articles [2, 20] and GitHub issues [3] about the voting and block
finalization protocols. It should be noted that while version 2.1 of EOSIO was released in 2020, all
other sources were published back in 2018. Interestingly we found mentions of additional features in our
2018 sources that are not described in the documentation. This includes for example slashing offences
to exclude adversarial block producers or an alternative protocol for block finalization. However for this

37



CHAPTER 6. VOTING-BASED PROOF-OF-STAKE PROTOCOLS 38

thesis we limit our description of EOSIO to what is described in the documentation of EOSIO v2.1. While
a thorough analysis of EOSIO’s source code would provide a more complete representation of the protocol,
it is however not in the scope of this thesis.

EOSIO uses a combination of two protocols. The first is the chain-extension protocol delegated proof
of stake (dPoS). As the name suggests dPoS delegates the chain extension to a selected sub-group of 21
parties. In EOSIO those parties are referred to as delegates, however we will use the term validator instead.
The 21 validators are selected through a vote by the parties of the network. Additionally EOSIO uses a
pipelined-byzantine-fault-tolerance protocol (pipelined BFT) for the finalization of blocks, which in the
documentation is also referred to as asynchronous byzantine fault tolerance (aBFT). We now describe the
voting process and the two protocols in more detail and will then give a description of the chain-extension
protocol itself.

6.1.1 Voting process
In EOSIO the 21 validators that partake in the chain-extension protocol are elected by vote for every epoch.
In order to vote in such an election a party must lock up a portion of their stake. The amount of stake they
locked up determines their voting power in the election. For each token that a party staked, it receives one
vote in the election for up to a maximum of 30 votes. The weight of those votes are still proportional to
the total amount of tokens staked by the party. For example if a party stakes a 100 tokens, then it gets the
maximum 30 votes, where each vote has a weight of 100. Furthermore the weight of a party’s votes is
subject to ”decay”. Although the term ”decay” suggests that a party’s voting power decreases over time,
the opposite is true. A party is rewarded for actively participating in the elections by increasing the weight
of their votes. If a party remains inactive and does not re-cast their votes, the weight of the votes stay the
same. While the votes of inactive parties do not lose weight, they do lose voting power relative to active
parties.

A party can cast their vote in a vote transaction containing a list of all candidates they vote for. When
the result of a vote is computed each party’s most recent vote is considered. Then the top 21 candidates
are selected based on the weighted total of their received votes. Parties do not have to re-cast their vote
for every election in order for it to count. However they are incentivized to do so, through the vote decay
mechanism. Finally, we assume that there are mechanisms in place for parties to unlock their stake again,
however there is no clear definition of such a mechanism in the provided documentation.

6.1.2 Delegated proof of stake
After the 21 validators for an epoch ej are selected, those validators are then assigned slots in the epoch
where they are the block producer. A block producer is EOSIO’s term for the leader role. This schedule Sj

is computed by sorting the elected validators based on their identifiers and assigning the slots according
to that order. An epoch in EOSIO has 252 slots which means that each validator is the leader of 12 slots.
Those 12 slots are assigned consecutively, meaning that the first 12 slots in an epoch are assigned to the
first validator, the second set to the second validator and so on. During the slot the leader computes and
broadcasts a new block to extend the chain. If a leader fails to broadcast a block during the time limit of a
slot, then that slot remains without a block. If a leader fails to produce a block for multiple slots, then it is
replaced with the party that placed 22nd in the last vote.

To resolve possible forks, EOSIO uses the chain-selection algorithm maxV alidLIB(V). Here V
represents a party’s local view, which contains a record of all proposed blocks that the party has delivered.
The method maxV alidLIB(V) selects the longest valid chain, out of all chains in a party’s view V . In
addition the selected chain must contain the last irreversible block (LIB). The LIB is defined as the most
recently finalized block, which corresponds to the finalized block with the highest block height. As
mentioned the block finalization is handled by the ”pipelined BFT”, which we discuss in the next section.
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6.1.3 Pipelined byzantine fault tolerance
EOSIO uses ”pipelined BFT” as its block-finalization protocol, which is derived from PBFT. Similar to
other PBFT-like protocols, finding consensus on a new block is divided into three phases. In ”pipelined
BFT” these phases are named propose, pre-commit and commit phase. These phases correspond to the
pre-prepare, prepare and commit phases in PBFT. However the main difference between PBFT and
”pipelined BFT” is that the validators in ”pipelined BFT” do not use dedicated messages for the consensus,
but instead use their produced blocks to communicate. When a validator extends the chain it chooses
where the block is added. By adding their block to a fork, a party confirms that they approve of the
previous blocks in that fork. A party can specify the number of blocks, it chooses to confirm in the block.
Setting the confirmedBlocks field in a block to n, confirms the n previous blocks starting with their own
newly added block. We can interpret the addition of a new block to the chain as the party broadcasting a
propose message for that block. When a validator then extends the fork confirming that block, this can be
interpreted as a pre-commit message for that block. Once a block is followed by at least 2N/3 + 1 = 15
blocks by distinct validators, the consensus of this block enters the commit phase. Once the same chain is
extended by a second set of 15 blocks, the validators reach consensus on the proposed block. The block is
then considered final. In short, a block in EOSIO is considered final once two sets of 15 validators have
confirmed it by extending the chain containing that block.

6.1.4 Chain-extension protocol
In this section we describe the chain-extension protocol of EOSIO. There are only two subroutines relevant
to the chain extension. The first is triggered once a slot concludes and handles the execution of the next slot.
The second handles the delivery of incoming block messages. The pseudocode for the chain-extension
protocol is given in Algorithm 9.

On start of a new slot A new slot starts as soon as the previous one has ended. The first thing that needs
to be checked is if that slot marks the beginning of a new epoch ej . If that is the case then the validators for
the epoch ej+2 need to be determined by evaluating the election result. This set of validators Vj+2 is then
included in the first block of the epoch ej . This gives the block enough time to be finalized by the start of
epoch ej+2. The party then reads the validator set Vj for the current epoch from the local blockchain B.
Afterwards the schedule for the current epoch Sj is computed by sorting the validators and assigning a
block of 12 slots to each of them.

The remainder of the subroutine is then only executed by the leader of the current slot sl. The leader
computes and broadcasts a new block B = (h, sl, pl,Vj+2, confirmedBlocks,D, σ). Here the hash h
denotes the hash of the previous block, sl stands for the current slot and pl is the identifier of the leader
that created the block. The set of validators for an upcoming epoch Vj+2 is only added in the first
slot of an epoch and is left as NULL for the others. The field confirmedBlocks denotes the number of
blocks, prior to B, that the validator approves. ConfirmedBlocks covers all blocks between the party’s
last block and B. Note that the party’s previous block is not included in the count, while the block B
is. Lastly D denotes the list of transactions included in the block while σ is the block signature over
(h, sl, pl,Vj+2, confirmedBlocks,D). After the block is computed the leader broadcasts the block to the
other parties.

On block message delivery When a new block message is delivered its signature and transactions are
verified. If the block is valid then it is added to a party’s local view V . The local view contains all valid
blocks, that a party has delivered along with their current status regarding finalization. Afterwards the party
checks whether there are new finalized blocks based on the confirmations made by that delivered block B.
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If there are new finalized blocks according to the ”pipelined BFT” protocol, their status is updated in the
local view V . Finally a new local chain B is selected with the maxV alidLIB(V) function.

Algorithm 9 Pseudocode: EOSIO chain extension (party pi)
state

B: local blockchain
V: local view of all blocks and block finalizations
h: latest hash of local chain = H(head(B))
ej : the current epoch of the chain-extension protocol
sl: current slot of chain-extension protocol
Vj : set of validators for epoch ej
Sj : schedule for the leaders in epoch ej
unordered : set of additional data to be included in the block
vki, ski: signing key pair for the blocks
λslot: duration of a slot
lastConfirmed : block height of the last block produced by pi

upon deliver([BLOCK, B]) do
verify the signature σ over (h, sl, pl,Vj+2, confirmedBlocks,D)
verify all transactions in D
if B passed verification then
V ← V ∪B
compute new finalized blocks based on block confirmations of Block B
change the status of those blocks to final in V
B ← maxV alidLIB(V)
h← H(B)

upon start of new slot do
if a new epoch ej has started then

Vj+2 ← compute the Top N candidates // validator set Vj for ej has already been determined
Sj ← compute leader schedule based on validators Vj

if pi is the leader according to the schedule Sj then
D ← select maximum set of valid transactions from unordered
confirmedBlocks ← (height(B) + 1)− lastConfirmed
σ ← (h, sl, pi,Vj+2, confirmedBlocks,D)
B ← (h, sl, pi,Vj+2, confirmedBlocks,D, σ)
B ← B||B
h← H(B)
lastConfirmed ← height(B)
broadcast([BLOCK, B])

6.1.5 Protocol attributes
EOSIO solves the leader selection by having the parties of the network vote on the validators for the chain
extension. Once the 21 validators are established, the rest of the scheduling is entirely deterministic. Not
even the placement of the validators in the top 21 matters, because the scheduling is ordered by their
identifiers rather then their placement. An interesting attribute of the scheduling is that all 12 slots of a
validator are placed consecutive to each other. This seems to result in a slower finalization of blocks, since
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a single block needs at least two sets of 2/3 + 1 confirmations from other validators to be considered final.
This means that is takes around 12∗2∗(2N/3+1) = 360 slots to finalize a block. With a round-robin-type
scheduling a block could be finalized within around 2 ∗ (2N/3 + 1) = 30 slots instead. However it is
possible that this point has since been addressed, but is not reflected in the EOSIO documentation [5].
Therefore we again emphasize the importance of a thorough analysis of the source code to get a clearer
picture.

EOSIO uses a combination of dPoS and ”pipelined BFT” for its chain extension. Since dPoS assigns
exactly one leader to each slot, forks should only happen when the leader of a slot is adversarial. To resolve
possible forks EOSIO uses the maxV alidLIB chain selection method. Here the longest valid chain is
selected that also includes the most recently finalized block. EOSIO uses ”pipelined BFT” as a means to
finalize blocks. In order to reach consensus, ”pipelined BFT” requires more than 2/3 of the validators
to be honest. However it should be noted that it is not mentioned how this ratio translates to how much
honest stake and therefore voting power is needed in order to secure enough honest validators. Therefore
EOSIO is difficult to compare directly to other proof-of-stake protocols.

Finally EOSIO stores all information relevant to the chain-extension protocol within the blockchain.
Therefore a party can recompute all relevant steps in the dPoS and ”pipelined BFT” protocols. This allows
all parties in the network to validate the entire history of the chain.

6.2 Neo
In this section we are going to discuss Neo as the second representative of voting-based protocols. The
sources for scientific papers describing Neo are sparse. A analysis of an older version of Neo’s consensus
protocol can be found in the work of Wang et al. [22]. It describes the delegated byzantine fault tolerance
(dBFT) protocol as implemented in Neo and formalizes two attacks that allow an adversary to create a fork
in the chain. The suggested changes have since been considered in the new version of the protocol dBFT
2.0.

Our work is therefore mainly based on the online documentation of Neo version 3 (N3) [7]. In
particular we focus on the the description of the dBFT 2.0 consensus protocol [9] [8]. Finally we consult
Neo’s source code [6] to supplement the information from the documentation.

As mentioned above, Neo uses dBFT as its chain-extension protocol. Delegated byzantine fault
tolerance is a variant of PBFT. One of the main differences is the way dBFT selects its participants for the
consensus. The participants or delegates are chosen by vote. Every party in the network can cast a vote in
the election, where the weight of a party’s vote depends on the stake held by that party. We now describe
the voting process and the chain-extension protocol in more detail in the following sections.

6.2.1 Voting process
In Neo an election is being held every epoch to determine both the committee members and validators.
The committee members in Neo’s case are responsible for the governance of the Neo network. Based on
the result of the election the top 21 candidates are selected as committee members. The top 7 candidates
additionally earn the right to participate in the chain-extension protocol as validators. Therefore the
validators are a subgroup of the committee members.

The election results are recomputed at the start of every epoch, which in Neo’s case lasts for 21 slots.
Every party in the network may vote in the elections. However in order to participate in the election as
a candidate, parties need to register. This is done with a registration transaction, where a party pays a
one-time fee in order to register as a candidate.

Even though the election result is recomputed every epoch, the parties do not have to re-cast their vote
every time. Rather they vote by submitting a vote transaction to the blockchain, where they declare who
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they vote for. When the result of an election is computed only each party’s most recent vote transaction
is considered. The weight of a party’s vote directly correlates with the stake that the party owns at the
moment of the evaluation.

Parties are incentivized to participate in the vote by obtaining rewards when the candidate they voted
for is elected as a committee member or a validator. In fact voting for a validator earns the party double
the award compared to a committee member. Not only does this reward system encourage casting a vote,
but seems to incentivize parties to vote for candidates that are likely to win a validator role. Furthermore
note that parties are able to compute the current election result before they cast their vote. Which means
they are able to compute who is likely to win under the current circumstances.

6.2.2 Chain-extension protocol
As mentioned, the 7 validators that participate in the chain-extension protocol are evaluated at the beginning
of each epoch. The epoch itself is then divided into 21 slots. Neo refers to the leader role in the protocol as
primary or speaker. The leader is selected by evaluating vl = (height(B)− v) mod N . Here height(B)
denotes the height of the blockchain, v describes the current view in the dBFT protocol and N denotes
the number of validators, in this case 7. The N validators are indexed from 0 to N − 1. Therefore
(height(B)− v) mod N outputs the index of the selected leader. The view v describes the current attempt
to reach consensus on the block proposed by the leader of the view. A view ends if the validators reach
consensus on the proposed block or if the they decide to replace the current leader and start a new view. If
the validators are unable to find consensus under the current leader, they can request to start a new view
with a change-view-request message. In this case the variable v is increased by one, which results in a new
leader being selected in the next view. A slot ends when the validators reach consensus on a new block. In
this case the view v is reset to zero for the next slot.

We divide the description of the chain-extension protocol into three parts. The first describes the
consensus protocol itself, in the second part we discuss how the validators can request a new leader through
a view change and lastly we will describe the recovery mechanisms of the protocol. We give a pseudocode
implementation of the protocol in Algorithms 10 and 11. Algorithm 10 contains the subroutines for the
consensus, while Algorithm 11 contains the the change view and recovery subroutines.

6.2.2.1 Consensus protocol

The dBFT 2.0 consensus protocol consists of three phases. The prepare request phase, the prepare response
phase and the commit phase. If the validators manage to finish all three phases successfully then they find
consensus on a new block to add to the blockchain. If at any point a validator detects a problem, it can
request a view change to restart the process with a different leader. Several subroutines are involved here,
three of which handle the delivery for the prepare request, prepare response and commit messages. These
subroutines can be found in Algorithm 11. The other two are triggered at the start of a new slot and at the
start of a new view and can be found in Algorithm 10.

On conclusion of previous slot A new slot sl starts directly after the previous one concluded. At the
beginning of a new slot a party checks if a new epoch ej has started. If that is the case then the validators
Vj for the new epoch are computed. This is done by collecting the most recent vote transaction of each
party from the blockchain B. A party’s vote is weighted by the stake wj it possesses at the beginning of
epoch ej . The weighted votes are then tallied and the top N candidates are selected as validators Vj for the
epoch. The validators will then start the first view of the slot sl, where the view number v is reset to zero.

On the start of a new view This is the main subroutine of the dBFT 2.0 consensus protocol. Here the
validators try to find consensus over the three phases of the protocol, the prepare request, the prepare
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response and the commit phase. The subroutine starts with the prepare request phase. Here the leader of
the current view is determined by evaluating vl = (height(B)− v) mod N . The leader will then propose
a list of transactions D to the other validators. Note that the leader does not propose an entire block, but
just the data to be included in the new block. The leader will then broadcast that data to the other validators
in a prepare request message (sl, v, pi, h,D, σ). Here sl denotes the current slot, v describes which view
the message is for and pi is the identifier of the sender. Note that these three variables are included in every
consensus message along with a message signature σ. The variables unique to the prepare request are h
the hash of the current head of the blockchain and D the list of transactions proposed by the leader.

Meanwhile the other validators are waiting for the prepare request message to arrive. The time that
they wait is λtimeout. If a validator does not deliver a prepare request message during that period of time
then it will abort the current view and request a view change. We describe this procedure in the next
section. If a valid prepare request does arrive then the validator will start the prepare response phase by
computing and broadcasting a prepare response message (sl, v, pi, hpr, σ). The hash hpr is the hash of
the prepare request message H(prepareRequest) that validator vi received. By broadcasting this prepare
response a validator confirms, that it accepts the list of transactions D in the prepare request message.

In the second half of the prepare response phase all validators, including the leader, wait for prepare
response messages to arrive. If they receive M prepare responses for the same prepare request, then they
will move on to the commit phase. Here M denotes the number of validators needed to reach consensus. In
Neo M is defined as M = ⌊2N/3⌋+ 1, which for N = 7 amounts to M = 5. If a validator waits longer
than λtimeout, the prepare response phase will end in a timeout. In this case the validator will abort the
current view and request a view change.

Once a validator enters the commit phase it will then compute and broadcast a commit message
(sl, v, pi, σcommit, σ). The signature σcommit is a signature over the content of the next block (h, sl,D).
With the commit message a validator confirms that it has seen enough prepare response messages to
determine the consensus on the next block. Once a validator is committed to a block it can no longer
commit to any other block during the same slot sl.

The second half of the commit phase works similar to that of the prepare response phase. All validators
that have broadcast a commit message will then wait for M commit messages to arrive. If there are enough
messages, then the validator can conclude the consensus protocol by computing and broadcasting the new
block B = (h, sl,D, signatures). Here instead of a single block signature by the leader, we include all
M signatures σcommit from the commit messages. These signatures then not only show the authenticity
of the block, but also demonstrate that the block gathered enough support during the consensus protocol.
Once the new block is broadcast, the next slot begins. Finally if there are not enough commit messages
before the timeout, then the validator will compute and broadcast a recovery message and restart the timer.
Since the validator has already committed to a block, it can not request a view change. Because a view
change would lead to a new list of transactions being proposed. Instead a recovery message is sent with the
goal to help the other validators progress to the commit phase. We discuss the recovery process in more
detail in a later section.

On prepare request delivery On the delivery of a new prepare request message, the prepare request
is validated. In particular this includes the validation of the transaction data D′. The prepare request is
accepted, if all the transactions in D′ are valid. Once the prepare request is accepted it is saved to the
validators local state. If the leader’s proposed list of transactions D′ did not pass the validation, then the
validator requests a view change, in order to replace the current leader.

On prepare response delivery When a new prepare response is delivered it is first validated. If the
message passes all validations then it is saved to a local set of prepare responses. Afterwards the timer for
incoming prepare responses is reset. Therefore a timeout only takes place, if the time between two new
prepare response messages is more than λtimeout.



CHAPTER 6. VOTING-BASED PROOF-OF-STAKE PROTOCOLS 44

On commit delivery The delivery of new commit messages is handled similarly to that of the prepare
response messages. New commit messages are validated when they are delivered. If the commit message
passes all validations then it is added to the local set of delivered commit messages. Afterwards the timer
for new commit messages to arrive is reset to λtimeout.

6.2.2.2 Change view

In this section we describe the process for the validators to request and execute a view change. A view
change replaces the current leader and starts a new view of the consensus protocol. Therefore validators
will request a view change, when they detect a reason for why reaching consensus is not possible under
the current leader. Those reasons include the leader proposing invalid transaction data or messages
not reaching a validator in time. There are two subroutines involved in this process. The first is the
abortCurrentView(reason) method, which a validator invokes if they encounter a reason to change the
current view. The second is the delivery of the change-view-request messages. Both of them can be found
in Algorithm 11.

abortCurrentView() method In this method a validator first checks if reaching consensus is still
possible with the remaining validators. For this purpose a party computes two sets of validators Vfailed

and Vcommitted. Vfailed is the set of validators, that have not sent a message in a while. This could be due
to a crash or because they are cut off from the rest of the validators. The validators in set Vcommitted have
already sent their commit message and are therefore no longer able to participate in the consensus. The
validator then checks if there are still at least M active validators left in order to reach consensus. If that is
the case then it will compute and broadcast a change view request (sl, v + 1, pi, timestamp, reason, σ).
The view counter v will only be incremented by one for the next view. In addition the change view
request contains a timestamp and a reason for the view change. If the number of remaining validators is
not enough to reach consensus then the validator will compute and broadcast a recovery request instead
(sl, v, pi, timestamp, σ). The recovery request only features a timestamp in addition to the other data
contained in all consensus messages. The recovery process is described in a later section.

On change view request delivery When a new change view request arrives it is first validated. If
the message is not valid then it is simply ignored. Otherwise it is added to the local set of delivered
change-view-request messages. Next the requested new view number vr is compared to the local view
v. If the requested view number vr is equal or smaller to the local view v, then the change view request
is instead treated as a recovery request and the handleRecoveryRequest method is invoked. The reason
here is that the sender seems to be stuck in a previous view and is therefore out of sync with the other
validators. Otherwise if vr is greater then v the processing of the change view request continues normally.
Additionally validators that already committed to an outcome of the consensus are unable to participate in
a view change and will therefore ignore the request. In all other cases the validator will then check if it has
delivered at least M change view requests for the view vr. If that is the case it will immediately start a
new view of consensus with view vr.

6.2.2.3 Recovery

Finally the recovery process is invoked if the validators are stuck and are unable to find consensus.
Additionally the recovery process is also requested when a validator detects that they are out of sync.
During the recovery the validators will share all valid messages that they delivered during this slot. All
validators will then process the messages that they have not delivered themselves yet. This way all
validators can catch up on messages that they missed and are able to continue with the consensus protocol.
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Algorithm 10 Pseudocode: Neo chain extension (party pi) Part 1
state

B: local blockchain
h: latest hash of local chain = H(head(B))
ej : the current epoch of the chain-extension protocol
sl: current slot of chain-extension protocol
Vj : set of validators for epoch ej
unordered : set of transaction data to be included in the block
D: list of transactions included in the block
vki, ski: signing key pair for the blocks
λtimeout: duration a party waits for messages
v: the current view of dBFT protocol
prepareRequest : the prepare request message of the current view
prepareResponses: the set of prepare response messages of the current view
commits: the set of commit messages of the current view
changeViewRequests: the set of change view messages of the current view

upon pi concludes previous slot do
if a new epoch ej has started then

Vj ← compute the Top N candidates based on every party’s most recent vote
if pi ∈ Vj then

prepareRequest , prepareResponses, commits, changeViewRequests ← ∅
v ← 0
start new view with v set to 0

upon start of a new view v for the current slot sl do
if pi is the leader for the view v then
D ← select maximum valid transactions from unordered
prepareRequest ← (sl, v, pi, h,D)
σ ← Signski

(sl, v, pi, h,D)
broadcast([PREPARE REQUEST, (sl, v, pi, h,D, σ)])

else
wait(λtimeout) // wait for prepare request message to arrive
if prepareRequest is set then

hpr ← H(prepareRequest)
σ ← Signski

((sl, v, pi, hpr))

broadcast([PREPARE RESPONSE, (sl, v, pi, hpr, σ)])
else // timeout

abortCurrentView(”timeout for prepare request”)

wait(λtimeout) // wait while gathering prepare response messages
if there are M prepare response messages for the same hash hpr then

σcommit ← Signski
((h, sl,D))

σ ← Signski
((sl, v, pi, σcommit))

broadcast([COMMIT, (sl, v, pi, σcommit, σ)])
else // timeout

abortCurrentView(”timeout for prepare responses”)

wait(λtimeout) // wait while gathering commit messages
if there are M commit messages for the same hash hpr then

signatures← select all block signatures σcommit from commits
B ← (h, sl,D, signatures)
B ← B||B
h← H(B)
broadcast([BLOCK, B])

else // timeout
messages← (prepareRequest , prepareResponses, commits, changeViewRequests)
σ ← Signski

(sl, v, pi,messages)

broadcast([RECOVERY, (sl, v, pi,messages, σ)])
restart clock for incoming commit messages
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On recovery request delivery When a new recovery request is delivered then it is immediately validated.
If the recovery request is valid then it is passed to the handleRecoveryRequest method.

handleRecoveryRequest() method In the handleRecoveryRequest a validator decides whether or not
they will reply to the request with a recovery message. If the validator has already broadcast a commit
message during this slot then it will answer the recovery request. Otherwise the validator will only answer
if their index vi is among the F indices that follow the senders index vs. F in this case is the number
of maximum amount of faulty validators, that dBFT 2.0 can handle (F = 2 in N3). Presumably this
condition is inserted to avoid the network being flooded with to many recovery messages. However
the exact motivation behind this condition is not communicated in Neo’s documentation. In any case if
a validator has decided to answer the request, it will then compute and broadcast a recovery message
(sl, v, pi,messages, σ). Here messages is a collection of all valid prepare request, prepare response,
commit and change-view-request messages that the validator delivered during this slot.

On recovery message delivery On the arrival of a new recovery message the validator will first verify
the message’s validity. If the message is valid the validator will compare the view vr from the message
with the local view v in order to decide which messages to process. If the local view v is smaller then
that of the message vr, then that means that the validator is behind compared to the sender. Therefore the
validator will process the change view messages contained in the recovery message in order to catch up.

If the local view v is bigger, then that of sender vr this means that the validator is ahead. The validator
in this case will process the prepare request and prepare response messages, in order to determine whether
or not to switch back to the sender’s view vr. Afterwards the validator will then also process the commit
messages. And finally if the two views are the same then the validator will directly process the commit
messages.

While processing the messages in the recovery message the validators will repeat the same steps as if
the messages were delivered normally. If possible the validators will then continue the consensus protocol
with the new information from the recovery message.

6.2.3 Protocol attributes
In Neo the leader selection is not based on random selection. Rather Neo determines the validators that
participate in the chain-extension protocol through voting. The validators then take turns to act as a leader
for the duration of an epoch. Since the election results are public knowledge, the elected validators are at
risk of being targeted by an adversary. In addition Neo limits the participants to 7, which means that it can
only tolerate up to 2 adversarial parties. Therefore an adversary only needs to control 3 validators in order
to prevent the honest validators from reaching consensus.

For the chain extension Neo uses the dBFT 2.0 protocol, which is a variant of PBFT. Therefore Neo
does not feature any forks. Since dBFT 2.0 is a byzantine-consensus protocol, more than 2/3 of the
participants need to be honest. It is worth noting that there is no mention in the documentation of how this
translates to the honest stake needed in order to ensure at least 5 honest validators being elected.

Finally since blocks include the block signatures of M validators, all parties in the network are able
to verify that more than 2/3 validators agree with a block. Therefore it is possible for a single party to
validate the entire chain by themselves with no additional input.

6.3 Comparison: EOSIO and Neo
In this section we make a small comparison between the two voting-based protocols EOSIO and Neo. We
compare their voting processes as well as their chain-extension protocols.
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Algorithm 11 Pseudocode: Neo chain extension (cont.) (party pi) Part 2

upon deliver([PREPARE REQUEST, (sl, v, ps, h,D′, σ)]) do
verify signature σ over (sl, v, ps, h,D′)
verify transaction data D′ in prepareRequest
if all transaction x ∈ D′ are valid then

prepareRequest ← (sl, v, ps, h,D′, σ)
D ← D′

else
abortCurrentView(”invalid transactions”)

upon deliver([PREPARE RESPONSE, (sl, v, ps, hpr, σ)]) do
verify σ over (sl, v, ps, hpr)
if prepare response is valid then

prepareResponses ← prepareResponses ∪ {prepareResponse}
restart clock for incoming prepare response messages

upon deliver([COMMIT, (sl, v, ps, σcommit, σ)]) do
verify message signature σ over (sl, v, pi, σcommit)
verify commit signature σ over (h, sl,D)
if commit is valid then

commits ← commits ∪ {commit}
restart clock for incoming prepare response messages

function abortCurrentView(reason)
if N − (|Vfailed|+ |Vcommitted|) < M) then //remaining validators unable to reach consensus

σ ← Signski
(sl, v, pi, timestamp)

broadcast([RECOVERY REQUEST, (sl, v, pi, timestamp, σ)])
else

σ ← Signski
(sl, v + 1, pi, timestamp, reason)

broadcast([CHANGEVIEW REQUEST, (sl, v + 1, pi, timestamp, reason, σ)])

upon deliver([CHANGEVIEW REQUEST, (sl, v, ps, timestamp, reason)]) do
if change view request is valid then

changeViewRequests ← changeViewRequests ∪ {changeV iewRequest}
if vr ≤ v then // received change view request for a previous view

handleRecoveryRequest(changeV iewRequest)
else if pi has not yet sent a commit message for current slot sl then

if pi delivered M change view messages for the same view vr then
start new view with vr

upon deliver([RECOVERY REQUEST, (sl, v, ps, timestamp)]) do
if recovery request is valid then

handleRecoveryRequest(recoveryRequest)

function handleRecoveryRequest((sl, v, ps, timestamp))
if pi has already sent a commit or pi ∈ [psender + 1, psender + F ] mod N then

messages← (prepareRequest , prepareResponses, commits, changeViewRequests)
σ ← Signski

(sl, v, pi,messages)

broadcast([RECOVERY, (sl, v, pi,messages, σ)])

upon deliver([RECOVERY, (sl, vr, ps,messages)]) do
if recovery message is valid then

if v < vr then
process all new changeViewRequests in messages

else
if v > vr then

process prepareRequest from messages
process all new prepareResponses from messages

process all new commits from messages
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Even tough both EOSIO and Neo use voting as a way to select the participants for their chain-extension
protocols, their voting processes feature some key differences. This starts with the electorate. While in
Neo any party is able to vote in an election, EOSIO requires a party to lock up stake in order to vote.
Furthermore the voting power in the two protocols is computed differently. In Neo a party receives one
vote that is weighted by the party’s stake. In EOSIO on the other hand a party can receive up to 30 votes
depending on their invested stake. Additionally the weight of those votes is proportional to the party’s
locked-up stake and is further influenced by vote decay. Vote decay is the main incentive in EOSIO for
voters to actively participate in the elections. This is because voters are rewarded with a higher voting
power whenever they cast a vote. In contrast, Neo rewards voters that voted for a winning candidate, with
a portion of the generated stake from the chain extension.

What both protocols have in common however is that it remains unclear how those definitions of voting
power and voting incentives influence the result of the vote. Specifically there is no mention of how much
honest stake or voting power is likely needed to ensure that more then 2/3 of the elected candidates are
honest. Additionally selecting participants in the chain-extension protocol through a public vote means
that the validators are publicly known as well. This makes them more at risk to be targeted by an adversary.
Furthermore the number of validators in both cases is rather low compared to other protocols. At 7
validators for Neo and 21 for EOSIO the two protocols can only deal with 2 and 6 adversarial validators
respectively.

In terms of their chain extension Neo only uses dBFT while EOSIO uses a combination of dPoS and
”pipelined BFT”. Since Neo uses a form of BFT in its chain extension, blocks in Neo are final as soon as
they are added to the chain. In EOSIO however the finalization of blocks is delayed and only happens after
about 360 slots or 2 epochs.



7
Hybrid-voting-slashing proof-of-stake protocols

In this section we discuss a protocol that combines ideas from the voting and slashing families. We first go
over the general concepts that are adapted into this hybrid approach. Finally we describe a representative
of the hybrid-voting-slashing family.

Like in voting-based approaches, here a sub-group of parties is elected to participate in the chain-
extension protocol. A party’s voting power in the election is based on their stake. Here the candidates or
in some cases voters need to lock up stake in order to participate in the voting process. Like in slashing
based protocols, this locked-up stake serves as collateral for when the party misbehaves. This has the
goal of keeping a party honest, since in most cases the stake gained from misbehaving is not worth the
punishment.

For this thesis we are looking at COSMOS as a representative of voting-slashing hybrids. In terms
of slashing COSMOS does target the elected candidates as well as the voters. Therefore not only the
misbehaving party is subject to the slashing, but also the parties that voted for it. Therefore in COSMOS
voters are held accountable for the behavior of the candidates they support.

7.1 COSMOS
In this section we discuss the voting-slashing-hybrid protocol COSMOS. We base our description of
COSMOS on its whitepaper [4]. We supplement this with additional information from the validators
FAQ on the COSMOS git repository [1]. Additionally COSMOS uses Tendermint as its chain-extension
protocol. For Tendermint we use the works of Buchman et al. [11] as well as the documentation of
Tendermint [10]. Note that even though both versions of Tendermint are largely the same, they do have
some differences. This mainly concerns the mechanics of locking and unlocking a value during the
consensus. Since the documentation [10] is the more recent source of the two, we will base our description
of the Tendermint consensus protocol on that.

As mentioned, COSMOS uses Tendermint as its chain-extension protocol. Tendermint itself is a variant
of practical byzantine fault tolerance (PBFT). The main difference to PBFT is that Tendermint integrates
the round change and recovery mechanisms of PBFT into the normal flow of the pre-prepare, prepare and
commit phases. COSMOS only allows for a limited number of parties to participate in the Tendermint
consensus. These participants, referred to as validators, are selected through a vote by the parties in the
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network. COSMOS combines the ideas of voting and slashing by holding the voters accountable for the
actions of their candidate. When a validator misbehaves it suffers the consequences of slashing, however
voters that supported that validator are affected by the slashing as well. So the slashing in COSMOS has
not only the goal of keeping the validators honest, but also to encourage voters to support validators that
they trust. We now discuss the voting process and the slashing mechanisms in more detail in the following
sections and finally give a description of the Tendermint chain-extension protocol.

7.1.1 Voting process
Voting in COSMOS is a continuous process, meaning that the validators are evaluated after each new
block. The validator spots in COSMOS are limited. That limit started out at 100 validators and gets raised
every year to an overall maximum of 300 validators. To participate in the vote a party needs to lock up
some of their stake. The amount of stake can be chosen freely by the party and represents the weight of
the party’s vote. In COSMOS this process is called bonding and can be achieved through making a special
bonding transaction. A party can cast exactly one vote per bonding transaction. However a party can
cast additional votes by making multiple bonding transactions. Note that for each bonding transaction an
additional portion of a party’s stake is locked up. A vote will always go towards exactly one candidate.
Voters can either vote for themselves or any other candidate. In COSMOS there are no conditions to
becoming a candidate. Therefore it is theoretically possible for a party to become a validator without
voting for themselves.

The evaluation of the result is done after each new block. Based on all the votes the candidates are
sorted based on the weighted total of the votes they received. Then the top N candidates are selected as
the new validators. Here N denotes the number of validators that COSMOS currently allows. However
an important difference to other voting-based protocols is that the validator’s weighted total corresponds
directly to its voting power in the Tendermint protocol. Finally if a party does drop out of the top N ,
then all stake bonded to that party is automatically unbonded. This means that all votes for that party are
revoked and the locked-up stake is returned to the corresponding parties after a set unbonding period. Note
that a party may also revoke their vote manually by making a unbonding transaction.

7.1.2 Slashing
In COSMOS there are four situations that lead to a validator being slashed. Three of them are based on the
validator itself committing a slashable offence, while the fourth is caused by a validator being hacked. The
three slashable offences, which a validator can commit are double-signing, unavailability and non-voting.
Double-signing describes the situation where a validator signs two conflicting votes during the Tendermint
consensus. In order for the slashing to come into effect, a second party can gather the two conflicting votes
as evidence and submit them in a dedicated slashing transaction. The consequence for double-signing is a
portion of the locked-up stake being slashed as well as the validator being unbonded. This leads to the
guilty party losing its role as a validator. The slashing for unavailability comes into effect if a validator does
not participate in the consensus protocol for several blocks. In order to determine a party’s participation, a
record of the votes during the last round of the consensus is included in each block. A party is considered
inactive if the party’s vote is not included in that record. The punishment for unavailability is proportional
to the amount of blocks that a party was inactive for. Additionally if the number of missed blocks goes
over a set threshold, then the inactive validator is unbonded. Finally non-voting describes the situation
where a validator did not participate in a governance vote. This only leads to a minor portion of the stake
being slashed and does not lead to the exclusion of the validator from the chain-extension protocol. In all
three instances, the slashing is targeted at all parties which currently support the validator. This may not
include the validator itself depending on whether it voted for itself or not. Note that only the stake that is
tied to the party’s vote for the misbehaving validator is affected by the slashing. A party’s unbonded stake
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and locked-up stake for other votes are not affected.
The fourth cause for a validator and its voters being slashed is that the validator was hacked. COSMOS

features a bounty system, where hackers can claim a bounty after hacking a validator. This is done through
a bounty transaction, which a hacker makes in the name of the hacked validator by signing the transaction
with the validator’s private signature key. The bounty consists of the slashed stake of all voters which
supported the hacked validator with their vote. Additionally the validator is removed from its role and the
remaining stake is unbonded. This bounty system discourages parties from pooling all the voting power on
a few validators. Because a large amount of voting power leads to a higher bounty and therefore makes
the validator a more attractive target for hackers. All in all, the slashing conditions in COSMOS should
motivate parties to vote for candidates that they trust and to divide up their votes on multiple candidates
instead investing all their stake into a single candidate.

7.1.3 Chain-extension protocol
For the chain extension, COSMOS uses the Terndermint consensus protocol. Tendermint itself is a variant
of PBFT. Therefore in Tendermint the validators try to find consensus on the next block over several
rounds. A round in Tendermint consists of three separate phases the propose, the prevote and the precommit
phase. The three phases correspond to the pre-prepare, prepare and commit phases in the PBFT protocol.
What sets Tendermint apart from other PBFT protocols is that it integrates the round change and recovery
mechanisms into the normal flow of its rounds. Additionally Tendermint features a commit step, where
the new found block is broadcast by the validators and a newHeight step, where the validators setup the
consensus for the next block. In addition to these three subroutines we describe how Tendermint handles
the delivery of its propose, prevote and precommit messages. The pseudocode for Tendermint is given in
Algorithm 12 and Algorithm 13. Algorithm 12 contains the newHeight and commit steps as well as the
delivery of the messages. Meanwhile Algorithm 13 describes how a round of consensus is handled.

On start of newHeight step This subroutine is used to prepare the consensus for the next block. It starts
out with the party waiting on additional precommit messages from the last round of the previous consensus.
These precommit messages are stored in the local variable lastCommits to be included in the next block.
There are two reasons for this. The first is to prove that the validators did indeed reach consensus on
the previous block and the second is to record a validator’s participation in the consensus. After this the
new validator set V for the upcoming block height H is determined based on the local blockchain B.
Afterwards the party resets its state to prepare for the next consensus. Finally if the party is a validator for
the new block height H , then it will start the first round of consensus with round R set to zero.

On start of new round of consensus One round of the consensus protocol consists of three phases. The
propose phase, where the leader of the round computes and proposes a new block. The prevote phase,
where the validators signal their approval of the proposed block by broadcasting a prevote message. Lastly
the precommit phase, where the validators signal that they are ready to commit to a block with a precommit
message. In contrast to other PBFT-based consensus protocols, in Tendermint the validators will run
through all three phases in each round even if it is already clear that a consensus can not be reached.
Furthermore the validators will always send prevote and precommit messages even if they do not agree
with the proposed block. Instead they either vote for a block from a previous round or the value NIL.

A round starts of with the propose phase. Here a validator evaluates the deterministic function F(H,R)
to determine the leader of this round. The inputs here are the current block height H and the current round
R. The function F selects the next leader through weighted round-robin, where the weight corresponds to
a validators voting power. If the validator is the leader of this round it will then propose a block B. This
block B can either be a newly computed block or a block that was proposed in a previous round. This
decision depends on whether or not the leader has already precommitted to a block in a previous round. If
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a validator is currently precommitted to a block the validator is considered to be locked. Therefore if the
leader is still locked on a previous block, it will include that block in its proposal. Note that a validator
is considered locked if the variable lockedRound > −1. Otherwise if a leader is not locked then it will
compute and broadcast a new block B = (h,H, lastCommits,D, σblock). Here h denotes the hash of the
previous block, H stands for the current block height, lastCommits is the set of precommits that lead to
the consensus on the previous block, D is a list of transactions and σblock is the block signature.

Finally the leader then computes and broadcasts the propose message (H,R,B,PoLC , σ). Here H
and R describe the current block height and round, B denotes the proposed block and σ the message
signature. Finally the PoLC stands for proof of lock change. This is a set of prevote messages from a
previous round. The PoLC is only set if in a previous round there was 2/3 majority of prevotes for a value
v. Here a 2/3 majority means that more than 2/3 of the overall voting power voted for the value v. With
the PoLC the leader may convince the other validators to unlock their current lock. The PoLC is only
included if the leader has previously witnessed such a 2/3 majority in a prevote. Otherwise it is set to NIL.

Meanwhile the other validators wait for the propose message to arrive. If no valid proposal arrives
during the waiting time of λtimeout, then the validator will vote for the value vi = NIL in the prevote.
Otherwise if a valid proposal does arrive the validator will vote for the proposed block B, provided the it is
not locked into another value. Should the validator still be locked, it will vote for the lockedValue instead.
Finally the validator may be convinced through the PoLC propose in the propose message to unlock itself
prior to that decision. A validator will unlock if the provided PoLC propose is more recent then its own
lock. In that case the local variables lockedRound and lockedValue are reset. After the validator has
decided on a value vi it will then compute and broadcast the prevote message (H,R, vi, σ). Here H and
R are again the current block height and round, vi is the value the validator decided to vote for and lastly
σ is the message signature. Note that for efficiency Tendermint only includes a hash of the block B in the
prevote and precommit messages. We however simplified our pseudocode implementation by including
the entire block in the two messages.

Next, all validators including the leader start the prevote phase by waiting on the prevote messages to
arrive. The validators wait for a duration of λtimeout. Afterwards the validators decide on the value they
vote for in the precommit, based on the prevote messages they delivered. If there is no 2/3 majority winner
based on the prevotes, then a validator will vote for the value vi = NIL in the precommit. Otherwise a
validator will first store the votes for the winning value in the local PoLC variable. If the winning vote
is a block B then the validator decides to vote for B in the precommit. In addition it creates a lock for
this value by setting lockedValue = B and lockedRound = R. If however the winning value was NIL
the validator instead decides to vote for NIL in the precommit. Additionally it unlocks any existing lock
by setting lockedValue = NIL and lockedRound = −1. Once a validator has decided on a value it then
goes forward with computing and broadcasting the precommit message (H,R, vi, σ). The prevote and
precommit messages have the same structure and only are differentiated by their message type.

Finally the validators proceed to the precommit phase and wait for the precommit messages of other
validators to arrive. If during the λtimeout waiting time a block B gathers a 2/3 majority of precommit
votes, then the validators have reached consensus. In this case they then start the commit step with the
block B. If there is no winning value or the winning value is NIL, then the validators start the next
consensus round R+ 1 instead.

On start of commit step The commit step is rather simple. In it the validators add the consensus block
to their local chain and then broadcast the block to the rest of the network. Afterwards the next consensus
is started by invoking the newHeight step for the next block height H + 1.

On propose message delivery When a new propose message is delivered the message itself and the
proposed block B are validated. If both are valid then the message is stored in the local variable proposal .
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On prevote message delivery When a new prevote message is delivered it is first validated. Once the
message has passed validation it is then added to the other prevotes. Additionally there is a special event
that the validators are looking out for, which concerns the delivery of prevotes from a future round R+ x.
If at any point a validator delivers a 2/3 majority of prevotes from a future round R + x, then it skips
ahead to the prevote phase of that round R+ x. This event is referred to as a common exit condition in
Tendermint and can happen at any point during a consensus round. This event adds a sort of catch-up
mechanism, if a validator should ever get out of sync with the other validators. Lastly note that for this
common exit condition to trigger the prevotes only have to be from the same round, the value does not
matter in this case.

On precommit message delivery When a new precommit message is delivered, it is first validated. Once
the message has passed validation it is then added to the other precommits. There is a similar common exit
condition here as for the prevotes. If a validator ever delivers a 2/3 majority of precommits for a future
round R+ x, then it skips ahead to the precommit phase of that round R+ x. In addition there is a second
common exit condition. This one is triggered as soon as a 2/3 majority for a block B in the current round
R is delivered. In that case the validator starts the commit step for block B immediately. This condition
can be triggered at any point during the current round R and lets the validator skip the rest of the round.

7.1.4 Protocol attributes
For the chain extension COSMOS uses the Tendermint consensus protocol. The leader selection in
Tendermint is a weighted round-robin, that selects exactly one leader for each round of consensus. The
leader selection method is similar to a priority queue in its design and does not feature random selection.
Since Tendermint is a BFT consensus protocol it finalizes blocks instantly, forks do not occur in COSMOS
under normal circumstances. Since the validators and the leaders are both publicly known ahead of time,
this could make them potential targets for an adversary. However COSMOS does feature a bounty system
for successfully hacking a validator. This leads to voters being discouraged from pooling all their votes
on a few candidates and therefore the voting power is spread more evenly among the 100+ validators.
Therefore while validators are still potential targets for adversaries, they are less likely to stand out in
terms of voting power.

Since Tendermint is a PBFT-based consensus protocol, COSMOS needs more than 2/3 of the voting
power to be in honest hands in order to function correctly. Since a validator’s voting power is based on
the weighted total of all the votes it received, this more directly translates to the condition that 2/3 of the
bonded stake must be honest. Furthermore COSMOS uses slashing to keep validators and voters honest.

Since the final precommit messages of each block are stored on the chain, all parties in the network
can verify consensus. However the protocol designers do state that in order for a party to avoid being the
victim of a long-range attack, it can not be offline for longer then the unbonding period. Similarly a party
does need the help of a trusted party in order to join or rejoin the network.



CHAPTER 7. HYBRID-VOTING-SLASHING PROOF-OF-STAKE PROTOCOLS 54

Algorithm 12 Pseudocode: COSMOS/Tendermint chain extension (party pi) Part 1
state

B: local blockchain
h: latest hash of local chain = H(head(B))
V: current set of validators
unordered : set of transaction data to be included in the block
D: list of transactions included in the block
vki, ski: signing key pair for the blocks
λtimeout: duration a party waits for messages to arrive
H: block height of the consensus block
R: the current round of Tendermint protocol
lockedValue: the most recent value the validator has precommit to
lockedRound : the round in which lockedValue was set
PoLC : the set of prevote messages from round RPoLC with 2/3 support for value vPoLC

lastCommits: the set of commit signatures for previous block
proposal : the propose message of the current round
preVotes: the set of prevote messages of the current block height H
preCommits: the set of precommit messages of the block height current H

//Tendermint Chain extension starts with newHeight step
upon start of newHeight step for new block height H do

wait(λtimeout) // wait while gathering remaining precommit messages
lastCommits ← select from preCommits all precommits from the final vote

V← compute the Top N validators based on local blockchain B
R← 0
lockedValue ← NIL

lockedRound ← −1
PoLC , proposal , preVotes, preCommits ← ∅
if pi ∈ V then

start new round with R set to 0 // see Algorithm 13

upon start of commit step for block B and block height H do
B ← B||B
h← H(B)
broadcast([BLOCK, (B)])
H ← H + 1
start newHeight step for next block height H

upon deliver([PROPOSE, (H,R,B,PoLC , σ)]) do
verify the message signature σ over (H,R,B,PoLC )
verify the block signature σblock over (h,H, lastCommits,D)
verify all transactions in D of block B
if propose message is valid and B passed verification then

proposal ← (H,R,B,PoLC , σ)

upon deliver([PREVOTE, (H,R, vi, σ)]) do
verify the message signature σ over (H,R, vi)
if prevote message is valid then

preVotes ← preVotes ∪ {(H,R, vi, σ)}
if at any point a 2/3 majority of prevotes for the same round R+ x is delivered then

jump to the start of prevote phase for round R+ x

upon deliver([PRECOMMIT, (H,R, vi, σ)]) do
verify the message signature σ over (H,R, vi)
if precommit message is valid then

preCommits ← preCommits ∪ {(H,R, vi, σ)}
if at any point a 2/3 majority of precommits for a value v is delivered then

start new commit step with block B = v
if at any point a 2/3 majority of precommits for the same round R+ x is delivered then

jump to the start of precommit phase for round R+ x
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Algorithm 13 Pseudocode: COSMOS/Tendermint chain extension (party pi) Part 2

upon start of a new round R for the current block height height do
if pi is the leader for the round r then

if pi is still locked then
B ← lockedValue

else
D ← select maximum valid transactions from unordered
B ← (h,H, lastCommits,D, σblock)

σ ← Signski
(H,R,B,PoLC )

proposal ← (H,R,B,PoLC , σ)
broadcast([PROPOSE, (H,R,B,PoLC , σ)])

else
wait(λtimeout) // wait for propose message to arrive
if proposal is set then

if PoLC proposal unlocks pi then
lockedValue ← nil
lockedRound ← −1

if pi is still locked then
vi ← lockedValue

else
vi ← B

else // timeout
vi ← NIL

σ ← Signski
(H,R, vi)

broadcast([PREVOTE, (H,R, vi, σ)])

wait(λtimeout) // wait while gathering prevote messages
if there is a 2/3 majority of prevotes for a value v in round R then

// start of prevote phase
PoLC ← select all prevotes for value v in round R from preVotes
if value v is a block B then

vi ← B
lockedValue ← vi
lockedRound ← R

else // v is NIL

vi ← NIL

lockedValue ← NIL

lockedRound ← −1
else // timeout

vi ← NIL

σ ← Signski
(H,R, vi)

broadcast([PRECOMMIT, (H,R, vi, σ)])

wait(λtimeout) // wait while gathering precommit messages
if there is a 2/3 majority of precommits for a value v and round R then

// start of precommit phase
if value v is a block B then

start new commit step with block B = v
else // v is NIL

start new round with for R+ 1
else // timeout

start new round with for R+ 1



8
Comparison/Overview

In this section we compare all the stake-based consensus protocols we discussed in this thesis. We give a
summary of that comparison in Table 8.1 and will highlight some observations during this section.

Algorand Like the majority of the protocols discussed in this thesis, Algorand relies on BFT as a core
building block in its chain-extension protocol. However Algorand is unique in that it uses a form of binary
BFT rather then PBFT. Furthermore all parties in the network participate in the binary BFT but only a
different sub-group of them become active during each round. The active participants for each round of
the binary BFT are determined through weighted random selection. This allows them to stay anonymous
until they cast their vote. As a result Algorand is a somewhat permissionless BFT consensus protocol.

Cardano When we look at Table 8.1, we see that Cardano stands out compared to the other protocols. It
is the only protocol that does not feature BFT in any way. Instead Cardano’s design seems much more like
a direct translation of a proof-of-work protocol. Similar to proof-of-work protocols, Cardano only needs
more then 1/2 of the stake to be honest. Additionally the fact that a block in Cardano is final after it is k
blocks deep in the chain is similar to the finalization criteria in proof-of-work protocols as well.

Ethereum 2.0 Ethereum 2.0 is one of the four protocols that uses a variant of PBFT. However instead of
applying PBFT directly to determine the next block, Ethereum 2.0 uses it only for checkpoint finalization.
Ethereum 2.0 also spans what would be considered a round in PBFT over a period of two epochs. While
this does increase the time to finalize a block it also grants the opportunity to have more validators
participate in the consensus. This large number of validators decreases the likelihood of an adversary
controlling more than 1/3 of them. In addition the inclusion of slashing should further strengthen that
effect.

Neo Neo’s dBFT 2.0 is the variant that departures the least from PBFT. Through voting it determines
the group of validators that take part in the consensus. The consensus protocol itself fairly close in its
construction to PBFT. However it is worth mentioning that Neo reduced the number of validators from 21
down to 7 in its newest version N3. This means that Neo can only tolerate a maximum of 2 adversarial
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Permissioned Synchronization Honest stake Finalization BFT based
Algorand No partially n ≥ 2f + 1 instant Yes
Cardano No global clock n ≥ f + 1 k blocks No

Ethereum 2.0 Yes partially n ≥ 2f + 1 3 epochs Yes
Neo Yes partially n ≥ 2f + 1(*) instant Yes

EOSIO Yes partially n ≥ 2f + 1(*) 2 epochs Yes
COSMOS Yes partially n ≥ 2f + 1 instant Yes

(*) Number of validators not stake

Table 8.1: Comparison between all protocols.

validators. Furthermore there is no information on how much honest voting power is required to prevent
that more then 1/3 of the elected validators are adversarial.

EOSIO EOSIO’s use of their PBFT-variant ”pipelined BFT” is very similar to that of Ethereum. The
main purpose of ”pipelined BFT” is again the finalization of blocks. It should be noted though that in
EOSIO there are only 21 validators involved in consensus, which is considerably less than in Ethereum
2.0. While we saw hints of slashing mechanisms during our research there are no mentions of slashing in
the documentation. Finally, as with Neo there is no mention of how adversarial voters may influence the
election.

COSMOS COSMOS handles the election process differently from Neo and EOSIO. There are two
major differences in its design. The first is that rather then all elected validators having the same voting
power, a validator’s voting power corresponds to the total weight of the received votes. The second is that
voters are held responsible for the actions of their candidate. Therefore voting for trustworthy candidates
is more important in COSMOS. These two design choices help to draw a much clearer connection of how
the required 2/3 honest majority for the consensus translates to the required honesty of the voters.



9
Conclusion

In this thesis we provided an overview over some of the most prominent stake-based consensus protocols.
Furthermore we provide descriptions and pseudocode with common terminology, notations and layout
for each of those protocols. We hope that our work serves as a basis for further analysis of stake-based
consensus protocols.

Of course, there are still some prominent protocols, such as Solana or Nxt, that were not included in
this thesis due to time constraints. Therefore one way to build upon our work would be to include further
protocols. In particular it would be interesting to see if there are other hybrid combinations that we have
not encountered during our research.

Another way to extend our work would be to do a deeper analysis for protocols that do not provide a
scientific paper, such as Neo or EOSIO. This would clear up some uncertainties we encountered due to the
lack of information. This way we would be able to provide a more accurate description of those protocols.
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