
Randomness and Games on Ethereum

Master Thesis

Peter Allemann

University of Bern

Supervised by:
Prof. Dr. Christian Cachin

Luca Zanolini & Ignacio Amores Sesar

December 2021

Abstract

Randomness in computer systems serves many important use cases. Provid-
ing randomness to blockchains without compromising security or decentral-
ization turns out to be no easy task. This work aims to provide an overview
of currently used methods as well as an implementation to simulate a coin
flip on Ethereum between two parties.

1

Acknowledgements

I would like to thank Prof. Dr. Christian Cachin for his time, patience, and
guidance. Thanks also go to Luca Zanolini and Ignacio Amores Sesar for
their counseling and insightful discussions. I would like to thank my parents
who supported me throughout all these years that led me here. And finally, I
am grateful for my girlfriend Nathalie Meichtry for her mental support and
encouragement.

2

Contents

1 Introduction 5
1.1 Goal and Motivations . 7

2 The Problem With Randomness 9
2.1 Randomness in Computer Systems . 9
2.2 True Randomness Versus Pseudorandomness 10

2.2.1 The Cost of Pseudorandomness 10
2.3 Integrity of Random Numbers in a Blockchain Environment 11

2.3.1 Blockhash as a Source of Pseudorandomness 11
2.3.2 Randomness in Games on a Blockchain 12

3 Background 13
3.1 Blockchain . 13

3.1.1 Ethereum . 14
3.2 Smart Contracts in Solidity . 14
3.3 Entropy . 15
3.4 True Randomness . 16

3.4.1 General Solution for Creating True Random Bits 16
3.4.2 Practical Solutions to Generate Randomness 17

3.5 Pseudorandomness . 17
3.5.1 The Seed . 18

3.6 Randomness and Its Role in Key Generation 18
3.7 Public Key Cryptography . 19

3.7.1 Elliptic Curve Multiplication 19
3.8 Hash Functions . 20

3.8.1 Keccak-256 . 21
3.9 Digital Signatures . 22
3.10 Probabilistic Algorithm . 22
3.11 Formalization of a Verifiable Random Function 22

3.11.1 Generator, Evaluator and Verifier 23
3.11.2 Property Requirements of a VRF 23

3

CONTENTS 4

3.11.2.1 Domain-Range Correctness and Complete Provability 23
3.11.2.2 Unique Provability 24
3.11.2.3 Residual Pseudorandomness 24

4 Common Practical Solutions and Related Work 25
4.1 Common Methods to Provide True Random Numbers 25

4.1.1 The Oracle Pattern . 25
4.2 Common Methods to Provide Pseudorandom Numbers 26

4.2.1 Blockhash as a Source of Randomness 26
4.2.2 Commit-Reveal . 26
4.2.3 Collaborative Scheme . 27
4.2.4 Chainlink . 28

4.2.4.1 Accessing Pseudorandomness Through Chainlink VRF 29
4.2.4.2 Chainlink VRF Implementation Details 29

5 The VRF-Approach 31
5.1 Components of a Verifiable Random Function 32

5.1.1 Creating a Key-Pair . 32
5.1.2 Creating the Proof . 32
5.1.3 Pseudorandomness From the Proof 33
5.1.4 Verification of the Proof . 33

5.1.4.1 VRF-Solidity . 33
5.2 The Implementation . 34

5.2.1 The Coin Flipper . 34
5.2.1.1 Possible Attacks Against the Owner 36
5.2.1.2 Censorship by Miner 37

5.2.2 The Elliptic-Curve Proof Factory 37
5.2.3 The RSA Proof Factory . 39
5.2.4 Generating Key-Pairs and Proofs Offline with Go 41

5.2.4.1 Creating Proofs for Elliptic Curve Based VRFs with Go 41
5.2.4.2 Creating Proofs for RSA Based VRFs with Go 41

6 Conclusion and Future Work 42

1
Introduction

Coming up with truly random numbers in a distributed environment like Ethereum is a
well known problem [16]. The deterministic nature of Ethereum prevents the generation
of truly random numbers. Yet, a variety of applications rely on randomness. Namely a
lot of games often require some sort of randomness in order to be worthwhile playing.
For example, any kind of card game is quite a dull experience if the player knows the
order in which the cards are stacked in advance. However a dull experience is not the
biggest problem. A dull game is probably not going to be played a lot anyway. A game
that is potentially predictable by some of the participants or hosts is prone to being rigged
or abused. In an ideal world we would be able to implement games on Ethereum that
rely on some sort of randomness that is in no way or another affected by anybody. There
are numerous ways how contracts try to come up with random numbers. Some of the
more prominent ones might be the following, each with its advantages and disadvantages:
Using the blockhash as a source of randomness, using a commit-reveal scheme, using
an oracle as a provider of true randomness, using a collaborative scheme in which users
work together to come up with a random number. It should be noted that there are
several aspects that must be considered when trying to come up with random numbers.
These aspects are randomness, security, cost and delay. Cost is defined by how much
computational power is required to generate a pseudorandom number. In Ethereum
every transaction has to be covered by an amount of gas, which can be payed for in
Ether, according to the computational power that is required to execute it. The more
computational power required, the more expensive the transaction becomes. Delay refers
to the time it takes for the random number to become available. Randomness means that
the produced random number should not be predictable by the consumer. Security entails

5

CHAPTER 1. INTRODUCTION 6

that the produced random number is not only unpredictable to some but all users of the
network, the produced random number should not rely on an external source in any way,
the produced random number should not be abusable by the miners. Depending on the
context in which the random number is required, these aspects should be considered
appropriately. In other words, when choosing a method to come up with random numbers
it should be considered what costs will be justifiable, how much time can pass until the
random number is available, is the random number unpredictable by the users, is security
at an appropriate level for what is at stake. Each of the before mentioned methods to
come up with random numbers (blockhash, commit-reveal, oracle, collaboration) fail
to completely satisfy all of these security criteria. Therefore, they should be considered
unfit for applications in which there is a lot at stake.

Another way of coming up with pseudorandom numbers is with the use of a verifiable
random function (VRF) [21, 25]. A verifiable random function consists of two main
functions and requires at least two parties to participate. The first function, the generator
function G, takes as input a secret key SK and an alpha string α, the output consists of
the so called beta string β which serves as the pseudorandom number and the pi string
π serving as a proof for correct execution. The first input, SK, is provided by the first
party. The second input, α, is provided by the second party. The alpha string α could
also be generated from the combined input of multiple parties. This allows for more
than two parties to participate. The second function, the validator-function V, takes as
input a public key PK, α and π; the output consists of a boolean value. If the value
of said boolean is true, then G was executed with the correct corresponding SK. Since
the validator function does not rely on SK, it can be executed by all participants. A
VRF should satisfy the aforementioned security criteria. Implementation blueprints for
such verifiable random functions are available. The VRF-solidity library [20] provides
an implementation for an elliptic curve based validator function written in Solidity for
Ethereum.

Since the VRF-solidity library [20] does not provide a generator function, this work
provides an implementation for an elliptic curve based generator function in Solidity as
well as in the Go programming language. The pi strings generated by these functions
can be verified by the VRF-solidity library. Further it provides an implementation for an
RSA based generator and validator function, also written in Solidity and in Go. Similar
to elliptic curve multiplication, where there exists no efficient inverse operation, the RSA
based approach relies on the fact that there is no efficient way of factoring large integer
numbers. These two different methods are then analyzed and compared in regard of cost,
delay, randomness and security.

CHAPTER 1. INTRODUCTION 7

1.1 Goal and Motivations
Providing true randomness or pseudorandomness in a blockchain like environment like
Ethereum is not trivial. There is a variety of applications that rely on randomness. The
most obvious of which are probably games which rely on some sort of hidden information
(e.g. card games, lotteries, etc.). It should be obvious that true randomness can never
be derived from a deterministic system and therefore the only way to get access to
true randomness is through an oracle that feeds information to the blockchain from the
outside. The caveat is, of course, that such an approach undermines one of the primary
properties of a blockchain, and that is being a decentralized and highly redundant system.
Relying on a single entity, like an oracle, introduces a single centralized point to the
system (an argument for a decentralized system that provides true randomness to the
blockchain could be made, but even then there is no easy way to guarantee that the true
randomness was generated in a sound manner and without malicious intent). Providing
pseudorandomness to the blockchain still requires some external information but there
are some simple ways to guarantee, or at least reinforce, that the involved parties have a
hard time guessing the outcome in advance.

Here it should be noted that there is a significant difference between an application
that relies on pseudorandomness in order to solve outcomes between opposing players
and an application which allows players to play against the ’house’ (like in roulette).

An easy solution for two players to settle a bet, is to let both players first commit
to a secret number si by announcing its hash hash(si) publicly. After a predefined time
(number of new blocks mined) the players reveal their secret number si. Now each player
can verify hash(si). Once both players are satisfied that the hashes are indeed correct, the
hash of the concatenated numbers hash(s1‖s2) can be used as a pseudorandom number.
This is of course assuming both players act in a sound manner (no censorship attacks
against each other). A smart contract can guarantee that both players must follow the
protocol. If more players are involved, this becomes more complex because the last
player (a player could also enter multiple times) to reveal his secret number si has an
advantage over the others (Byzantine fault).

An application which allows players to play against a ’house’ is more complex, since
a smart contract has no way of storing information outside the blockchain by itself. It
has to either rely on an externally owned account (EOA) to handle hidden variables used
in a commit-reveal scheme, or rely on multiple competing players to come up with the
pseudorandomness which brings the same difficulties as mentioned in the paragraph
above.

The goal of this thesis is to provide an overview of the currently available methods to
generate pseudorandomness as well as providing a sound implementation for a simulation
of a bet on a coin flip between two parties in a blockchain environment like Ethereum
using a verifiable random function (VRF). The benefit of using a VRF over a commit-

CHAPTER 1. INTRODUCTION 8

reveal scheme being that the party owning the secret key does not have to ever reveal its
secret key and therefore possibly has to participate in less communication.

2
The Problem With Randomness

Randomness plays an important role in science, art, statistics, cryptography, gaming,
gambling, and other areas. Because of that, there are of course also a lot of applications
that rely on randomness. However, providing randomness to applications, or computer
systems in general, is not a trivial task. Various approaches for providing random
numbers are being implemented and used currently, a few of them are being discussed in
the next chapter. They provide either true random numbers or pseudorandom numbers.
None of these approaches are perfectly safe however. For some applications, like a lottery
for example, security is a major concern while for others it is not. Depending on the
method used they also come with different costs attached.

2.1 Randomness in Computer Systems
Achieving true randomness in computer systems is hard. This is especially true for a
deterministic system like Ethereum, in which a consensus has to be reached among a
majority of nodes. This implies that true randomness is impossible to achieve within
Ethereum [16]. Otherwise each node would come to a different result when evaluating
transactions. Yet there is a real need for random numbers in Ethereum applications.
Especially in games.

9

CHAPTER 2. THE PROBLEM WITH RANDOMNESS 10

2.2 True Randomness Versus Pseudorandomness
There are various phenomenons in nature that can be considered as truly random. Mean-
ing, these phenomenons seem to lack to follow a predictable pattern. Even if the
probability distribution of a certain event is known and therefore the frequency of an
outcome in multiple observations can be predicted, the outcome of a single observation
is by definition unpredictable. However, the deterministic nature of Ethereum commands
that we cannot rely on true random numbers from within the Ethereum network. True ran-
dom numbers can only be acquired from external sources through so called oracles [16].
There are a number of options how such external sources could provide random numbers.
For example, by observation of cosmic background radiation, atmospheric noise or the
decay of radioactive material. Randomness acquired in such a manner can be consid-
ered truly random, since it is impossible to predict the outcome in advance. However,
relying on an external source as a provider for true random numbers has its downsides.
It requires that the external source is trusted to act with sound intent. Furthermore it
requires that the system now relies on an external source as a single centralized entity.
An alternative option is pseudorandomness. The term pseudorandomness measures the
extent to which a sequence of numbers appear to be random to an outside observer, even
though produced by a completely deterministic, and therefore repeatable, algorithm. This
can be achieved by hiding either the algorithm or parts of the algorithm to the observer
of the random number. Here it should be noted that Chainlink [10] (which is discussed
in detail in subsection 4.2.4) actually provides a solution to pseudorandom numbers
in a decentralized manner. Further, pseudorandom numbers always come with a delay
because they have to be calculated in some way or another while true random numbers
have to be provided from an outside source and can be available the soonest within the
next new block.

2.2.1 The Cost of Pseudorandomness
Since pseudorandom numbers have to be calculated by an algorithm, they come with
a computational cost attached. There are various methods in order to come up with
pseudorandom numbers. Depending on the algorithm used, these computational costs
vary greatly. In Ethereum transactions have to be payed for in gas [16]. Gas can be
purchased with Ether. The more computationally expensive a transaction is, the more
gas is required. Because of that circumstance, the method which provides pseudorandom
numbers to a contract should be chosen appropriately. It does not make sense to use a
method that is very sophisticated but generates a tremendous amount of computational
costs, if there is not a lot at stake in the first place.

CHAPTER 2. THE PROBLEM WITH RANDOMNESS 11

2.3 Integrity of Random Numbers in a Blockchain En-
vironment

One of the challenges when trying to provide randomness or pseudorandomness to a
blockchain like Ethereum is making sure no one is being able to abuse it with malicious
intent. A provided random number or pseudorandom number should not be predictable
or manipulated by anyone that consumes or relies on its outcome. Further, the provider
should not be able to manipulate the outcome once the random number has been generated.
There might always be multiple entities that try to abuse the system for their personal gain.
There are at least three main parties that should always be taken into consideration when
analyzing the integrity of a provided random number or pseudorandom number. First
off, the provider of the random number or pseudorandom number. If the random number
or pseudorandom number is being generated by the same source that is consuming it
later, that source usually has a strong incentive to manipulate the provided randomness
to his own advantage. Because of this, the provider of randomness should either be
decoupled from the consumer or provide proof that the randomness was generated in
a sound manner. This can be achieved by the use of verifiable random functions. For
obvious reasons the consumer of randomness has every bit of incentive to manipulate the
randomness or pseudorandomness to his own favor. The consumer should be decoupled
from the process of creation of randomness if possible. Lastly, the block miners. The
block miners eventually decide which transactions are being included in the blockchain.
Because of this, they are naturally in a powerful position to manipulate when and whether
events take place on the blockchain. Further any collaborations between these three
parties should also be taken into account. It can never be guaranteed that the integrity of
a random number or pseudorandom number can be completely trusted. The process in
which it has been generated however, should be structured in a way that incentivises the
randomness provider to act in a sound manner while at the same time make it as difficult
as possible for the consumer and for miners to affect the outcome of the randomness or
the way the randomness is being consumed by the consumers.

2.3.1 Blockhash as a Source of Pseudorandomness
Using the blockhash as a source of pseudorandomness [5, 28] allows the block miner to
decide whether he wants to publish the found block, or if the resulting pseudorandomness
does not work in their favour, to discard it. Obviously the potential gain of discarding the
block should out weight the loss the miner would experience by broadcasting the found
block. It has been tried to use a combination of two different block hashes as the source
of randomness in an attempt to circumvent this problem [9]. By doing so usually two
predetermined blocks of a given height are being used. For example block number h for
the first block and block number h+5 for the second block. However, this approach is

CHAPTER 2. THE PROBLEM WITH RANDOMNESS 12

rather short-sighted because it does not guarantee that these two blocks are coming from
two separate miners. Further, if the blocks are being found by two different miners, it
does not prevent the miners from collaborating together. But most important of all, the
miner of the second block (block number h+5) does not even have to collaborate with
the miner of the first block. The blockhash of the first block (block number h) is available
and visible to anyone anyway. In this sense, even if there had been more than two miners,
the miner of the last block alone can decide or at least influence (by not releasing the
found block) the outcome of the attempt at providing pseudorandomness [9].

2.3.2 Randomness in Games on a Blockchain
Randomness is an integral part of many games and is often the reason why these games
are interesting or even worth playing. Secure randomness is a property that is difficult to
obtain on blockchains. Blockchain based gaming is promising in that it allows players
to truly own their in game assets compared to conventional game models where players
are relying on the game provider to administer their assets. Randomness could be used
to determine player rewards for such games. Through Non Fungible Tokens (NFT) a
player could gain provable ownership of his in game assets and make sure that they are
immutable. Obtained assets could even be used in different blockchain based games
which would incentivize a market for such assets. Today such a market already exists and
its assets are quickly gaining value [6]. In order to provide randomness to a blockchain
based game, developers have to decide whether they want to rely on centralized off-chain
solutions or make us of an on-chain pseudorandomness algorithm. Off-chain solutions
often come with the drawback of being centralized (one exception being Chainlink [10],
which is discussed in more detail in subsection 4.2.4) and non-transparent, while on-chain
pseudorandomness algorithms are often open for a variety of attack vectors (censorship
attack, collaboration with a miner, forking, unsound implementation [9]). With market
assets gaining more value, the requirements for secure and transparent randomness is
increasing rapidly [8].

3
Background

This chapter covers the theoretical and technical background of using and providing
pseudorandom numbers in distributed systems.

3.1 Blockchain
A blockchain is a system which allows to record information in such a way that makes it
very difficult for these recordings to being changed.

In general a blockchain is a digital ledger which contains a number of blocks each
containing a number of individual transactions. This digital ledger or blockchain is
duplicated and distributed to each node of the network. Once a new transaction is made,
it will be broadcasted to the network and upon agreement among participants, is accepted
and included in the blockchain as part of the next block. The network considers the
longest blockchain as the current valid blockchain. Each block contains the hash value
of its predecessor. This mechanism makes it particularly difficult to change the contents
of the blockchain.

Not all blockchains are equal. A blockchain can be implemented in a variety of
ways and with a wide spectrum of properties. The following are usual components of a
blockchain [16]:

• A peer-to-peer network propagating transactions and blocks.

• Messages or Transactions.

13

CHAPTER 3. BACKGROUND 14

• A consensus protocol.

• A state machine processing transactions according to consensus rules.

• A chain of cryptographically secured blocks.

• A game-theoretically sound incentivization scheme (e.g. proof-of-work)

• A software implementation of the above.

3.1.1 Ethereum
Ethereum is sometimes described as ’a world computer’ and is an open-source project.
Ethereum is a decentralized computer system that executes so called smart contracts as
its programs. It uses a blockchain to synchronize and store the systems state. The cryp-
tocurrency Ether largely governs state changes to the system. Ethereum allows to build
decentralized applications that are transparent and are robust against censorship [16].

3.2 Smart Contracts in Solidity
Solidity is a high-level object-oriented programming language designed to implement
smart contracts on the Ethereum Virtual Machine (EVM). It is influenced by C++, Python
and JavaScript [15]. In Ethereum there are two types of accounts, both types can be
identified with an address. Externally owned accounts (EOAs) are controlled by users and
do not contain any other data than the currently available amount of Ether. A public- and
private-keypair allows to make transactions from these accounts, whereas a transaction
can only be made if it has been cryptographically signed with the corresponding private
key. Contract accounts on the other hand are governed not by users but by their code
that is executed by the EVM. This code is what is referred to as a smart contract. Smart
contracts are simply computer programs that run deterministically on the EVM. The word
contract has no legal implications. Since the contents of the blockchain are immutable,
the code of a smart contract cannot be changed. This means, the only way to change
a contract is to deploy a new updated version of it that lives in parallel to the old one.
However, a smart contract can be deleted by its owner in order to release the occupied
address space (incentivized by negative Gas costs). The outcome of an execution of a
smart contract depends only on the current state of the Ethereum blockchain, no matter
who runs it. A smart contract has access to its own state as well as to the transaction that
called it and some basic information about the most recent blocks. A smart contract only
reacts to a transaction started from an EOA. It can call other smart contracts, but it will
never start acting without an impulse from an EOA. Transactions are atomic, meaning
each transaction is executed completely and in order. There are no parallel executions of

CHAPTER 3. BACKGROUND 15

smart contracts. If a transaction fails it will not be included in the blockchain, treating it
as if it was never called in the first place [16].

3.3 Entropy
Entropy is the level of uncertainty or surprise in a possible outcome of an event. Shannon
entropy [26] is defined as follows:

H(X) = −
n∑
i=1

P (xi) · log2P (xi)

X is a discrete random variable that can take on the values x1,...,xn. The probability for X
to take on the value xi is P(xi). Since we want to measure the entropy in bits, log2 is used.
H(X) is the resulting entropy in bits. Generally as the possible number of values of X
increase, the provided entropy increases as well but not as fast as the number of possible
values. Uniform distribution of outcomes maximizes entropy. A derivation from uniform
distribution of outcomes will always lower entropy.

A fair coin will result in one bit of entropy per coin toss:

H(Fair coin toss) = −
2∑
i=1

1

2
· log2

1

2

= −1

2
(−1)− 1

2
(−1)

= 1

A biased coin (P (x1) = 0.8) will result in less than one bit of entropy per coin toss:

H(Biased coin toss) = −
2∑
i=1

P (xi) · log2P (xi)

= −0.8 · log2(0.8)− 0.2 · log2(0.2)

= 0.7219280948873623

Throwing a fair eight-sided die will result in three bits of entropy:

H(8 sided die) = −
8∑
i=1

P (xi) · log2P (xi)

= −8 · 0.125 · log2(0.125)

= 3

CHAPTER 3. BACKGROUND 16

Entropy can be used to roughly estimate the measure of unpredictability of a cryp-
tographic key. For example, a 256-bit long key that was generated through a series of
256 fair coin tosses takes on average 2255 guesses to break by brute force [5]. Since
all transactions on the Ethereum blockchain are deterministic, the outcome of each
transaction has foreseeable and calculatable outcome that involves no uncertainty at all.

3.4 True Randomness
Randomness is commonly viewed as the property of a process that results in events
which are unpredictable in advance. That is to say independent from a given starting
point or setting, the outcome of the process cannot be predicted in advance. Even if full
knowledge of the initial setting and workings of the involved mechanisms and infinite
computational power are available. Knowledge about the distribution of multiple events
also does not provide any insights into the outcome of the next event. For example, a
fair coin is a coin which is equally likely to land on heads as it is to land on tails if it is
being tossed into the air. If a fair coin is being flipped repeatedly, the ratio of landing on
tails vs heads will gravitate towards a one to one ratio if enough flips are being made.
But the knowledge about the frequency of an outcome must still not grant any insight
into the outcome of any one individual event. If said fair coin lands heads for the tenth
time in a row, it will not be more or less likely to land heads on the eleventh flip. The
chances of each outcome will remain the same, independent of previous outcomes. This
is sometimes called true randomness. True randomness is nondeterministic and aperiodic,
meaning there is virtually no way of reproducing an event reliably.

True randomness is often used due to its inherent fairness. Applications of true
randomness can be observed in many different fields. Probably the most obvious appli-
cation that comes to mind is gambling that includes dice or some other source of true
randomness like a roulette wheel. Another prominent application for true randomness
are lotteries. True randomness also plays an important role in the generation of data
encryption keys [16].

Here it should be noted that according to logician Frank P. Ramsey pure true random-
ness is impossible, due to the fact that any structure will necessarily contain an orderly
substructure [22]. Given this impossibility however, an effort in studying the various
degrees, and therefore various qualities, of randomness can certainly be made [18].

For the rest of this work, true randomness refers to an event that is unconditionally
unpredictable by an adversary, even if he possesses infinite computing resources.

3.4.1 General Solution for Creating True Random Bits
In order to create a string of truly random bits the following steps should be taken.
First, one has to gather some bits from a source that is unknown to the adversary. Even

CHAPTER 3. BACKGROUND 17

though these bits might not necessarily all be independent, they must contain some
information that is unavailable to the adversary. Second, it has to be determined how
many bits were gathered that are independent and not guessable by the adversary. The
amount of these bits is referred to as entropy. Third, with the help of a hash function an
output can be created that is functionally dependant of all input bits, while all output
bits are functionally independent from each other. Hash functions which are considered
cryptographically strong (e.g. Keccak-256) are regarded to posses these properties [16].
The output can now be considered as a set of independent and unguessable bits that can
be used with confidence as random bits [5].

3.4.2 Practical Solutions to Generate Randomness
True randomness can be created in two different ways.

First, it can be derived from observing the environment. Following are a few examples
how true randomness can be obtained. Brownian motion [3] describes the movement
of larger particles that are interacting with lighter and faster moving molecules and
can be observed via microscope. Random.org [23] uses radio receivers to pick up
atmospheric noise in order to generate randomness. HotBits [29] is observing time
intervals between beta decay of radioactive elements. Repeated coin flips will generate
one bit of randomness at a time, which is not a very efficient but a very simple method.
Arnold G. Reinhold proposes a dice-ware generator that uses a few dice and a shoe box
to create high-quality true randomness [7].

Second, true randomness can come from systems whose behaviour is sensitive to
small variations of its starting condition. An example of such a system is the double
pendulum. A double pendulum is a pendulum that has another pendulum attached to its
end. The motion of such a double pendulum is chaotic in nature and very sensitive to
its initial conditions. Depending on how accurate the initial conditions are known, the
longer the motion of the pendulum can be predicted. However, no matter how accurate
the initial conditions are known, after a certain point the motion of the double pendulum
becomes completely unpredictable [27].

As long as one is careful not to introduce unwanted patterns into the generation
process by accident, the possibilities to come up with true random numbers are virtually
endless.

3.5 Pseudorandomness
Pseudorandomness is derived from algorithms which try to immitate true randomness.
The main goal of a pseudorandom number generator (PRNG) is to produce an output that
is indistinguishable from true randomness to an outside observer that has no information
about the seed used in conjunction with the algorithm. This means, the algorithm has

CHAPTER 3. BACKGROUND 18

to produce an output that is apparently free of any patterns or regularities. Further, the
knowledge about previously produced outputs must not aide the adversary to guess the
next output. Pseudorandom number generators are deterministic and periodic, which
means an outcome can be reproduced if the right starting parameters are known. Also,
only a limited amount of different outputs can be created. One of the advantages
pseudorandom number generators have over true random number generators is their
efficiency at which number can be output.

Due to the above stated properties one prominent applications of pseudorandomness
are computer simulation and modelling.

For the rest of this work, pseudorandomness refers to an event that is unconditionally
unpredictable by an adversary, only if he possesses limited computing resources.

3.5.1 The Seed
In case a source for true random numbers is available but does not provide a enough
random bits, a PRNG can be used to increase the number of random bits to an outside
observer. The PRNG uses the true random bits as an input, a so called seed, and
calculates the corresponding output. Such a PRNG should be cryptographically strong,
meaning that it has been proved that unless the knowledge about the seed is known to the
adversary he is only able to guess the next output bit with a likely hood no more than
1

2
+ ε, where ε decreases exponentially with the length of the seed (under the assumption

P6=NP) [24]. So the length of the seed determines how robust the produced output is
against a brute force attack. However, this is only feasible against an adversary with
limited computational power [5]. As a practical example, there exists software which
initializes the random number generator of the operating system by using user generated
input (for example movement of the mouse cursor).

3.6 Randomness and Its Role in Key Generation
In cryptography one of the most common needs for random values is the generation of
cryptographic keys (or passwords). To illustrate lets consider the following example. In
order to crack a four-letter-password one would theoretically need to try every single
possibility of four-letter combinations (worst case). Which would result in 264=456976
attempts. However, if the password was created by a user, it is highly likely that it is in
the form of a four-letter word that is easy to remember. This circumstance drastically
lowers the possible candidates for the password. There are roughly 5500 four-letter
words in the English dictionary [1], so in order to crack the four-letter password only
about one hundredth of all possible combinations have to be tried. So there is a need
for values which cannot be guessed by an adversary any more efficient than by trying

CHAPTER 3. BACKGROUND 19

every single available possibility [5]. The easiest way to guarantee this property for a
cryptographic key, is to rely on some secure source of randomness for the generation of
said key.

In Ethereum each Externally Owned Account (EOA) is being controlled by a private
key. The corresponding public key can be derived via elliptic curve multiplication from
the private key. The address of the EOA is then derived from part of the public key. The
private key is essentially a number between 1 and 2256 (actually 2218 since the first 38
digits are fixed due to the order of the elliptic curve). In order to create a new EOA, a
private key from this tremendously large range of numbers has to be chosen at random.

3.7 Public Key Cryptography
Public key cryptography makes use of unique keys to secure information. Such keys
can be obtained by mathematical functions which are easy to compute but difficult to
invert (sometimes called one-way-functions or trapdoor functions). The inverse of such
a function is in general only obtainable by use of brute force methods. For example, it
is very simple to multiply large prime numbers. But the inverse, factorizing a product
of two large prime numbers is not so simple. The larger the prime numbers used, the
more computationally expensive this operation gets. Figuring out the prime factors of
the number 8469277 would involve a lot of trial and error until the first prime is found.
While multiplying 1997 and 4241, which results in 8469277, is a simple operation.

3.7.1 Elliptic Curve Multiplication
With newer algorithms like Quadratic Sieve [12] the amount of work required to factorize
large numbers actually decreases relative to the length of the number. This implies that
in order to keep up with the available computational resources larger and larger prime
numbers have to be used. At the same time the amount of work to multiply such large
numbers relative to the amount of work to factorize them becomes smaller and smaller.
This situation is not sustainable in the long term [11].

In Ethereum key pairs are generated via elliptic curve multiplication. Among fur-
ther applications are digital signatures and pseudorandom generators. Elliptic curve
cryptography allows to use smaller keys compared to non elliptic curve cryptography
while providing equivalent security [11]. Elliptic curve multiplication is a function that
is practically irreversible. To this day no algorithm has been found that improves upon
the naive approach of simply trying each possibility in order to reverse an elliptic curve
multiplication [11]. The elliptic curve used by Ethereum (and also by Bitcoin) is defined
as a set of points (x,y) which satisfy the equation y2 mod p = (x3 + 7) mod p. The
parameter p is a very large prime number (p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1).
This curve is called secp256k1 and is defined in Standards for Efficient Cryptography

CHAPTER 3. BACKGROUND 20

(SEC 2) [17]. In order to derive a public key from a private key, the multiplication K = k
* G has to be performed. Here K is the public key and consists of the point (x,y) which
satisfies the above mentioned solution y2 mod p = (x3 +7) mod p. The private key is
represented by k and is a scalar. G is a predefined point. The elliptic curve multiplication
works a little different from regular multiplication. Regular multiplication can be seen as
a series of regular additions (2+2+2+2+2 = 5 ·2). Elliptic curve multiplication works
in a similar way. Other than regular addition of two points, elliptic curve addition is
defined in the following manner. Consider the equation P3 = P1 + P2. Drawing a straight
line between P1 and P2 will cross the elliptic curve in exactly one Point P3’. Now all that
is left to do, is to reflect this point at the x-axis which will finally bring us to the point P3.
Similar to regular multiplication, elliptic curve multiplication is simply a consecutive
execution of additions. There are some special cases defined, if P1 and P2 are the same
points, the tangent from P1 to the elliptic curve is being used to derive the next point
on the curve, further if P1 = (x,y) and P2 = (x,-y) then there won’t be any intersection
between the elliptic curve and the line between the two points (in this case P3 is simply
defined as P1). A public key is represented as a series of 130 hexadecimal characters
and consists of a prefix (0x04) followed by the x-coordinate (64 hex) followed by a
y-coordinate (64 hex). There is no known approach which can invert a public key and
will find its corresponding private key. The only way to do so would be to multiply every
possible private key with the generator point and compare the result with the private key.
This approach would take quite a while. Try iterating through 2256 (continue reading
when you are done).

3.8 Hash Functions
A hash function generally takes an input of arbitrary length and maps it to a fixed length
output. Due to the fact that the input space is larger than the output space, such hash
functions are many to one functions by nature. This means, many different outputs can
generate the same output value, also called a collision. For the hash functions used by
Ethereum (e.g. Keccak-256) it is virtually impossible to find such collisions due to the
smooth distribution of the output over an enormous output space. A cryptographic hash
function, is a function which satisfies the following properties. Determinism: The same
input value will always generate the same output value. Verifiability: It is efficient to
calculate the hash (linear complexity). Noncorrelation: If only a single bit in the input
value is being changed, the output value must change in such a way that it is impossible
to correlate it in any way to the original input value. Irreversibility: The only way to
reverse the hash function is by brute force (trying out every possible input). Collision
protection: It should be practically impossible to find two different input values that
correspond to the same hash output value.

Cryptographic hash functions can be used e.g. in order to sign messages (finger-

CHAPTER 3. BACKGROUND 21

print), as part of pseudorandom number generators or in commit reveal mechanisms. In
Ethereum they allow to derive addresses from public keys and are a key component of
proof of work [16].

3.8.1 Keccak-256
The Keccak-256 hash function is used in Ethereum quite often. It is also used to derive
an Ethereum address from a public key. In order to do so Keccak-256 is being used to
hash the public key K like so Keccak256(PK). The last twenty bytes (least significant
bytes) of this hash output refer to the corresponding Ethereum address.

The following is an example of how to derive the address of an EOA from its private
key k by using elliptic curve multiplication and the hash function Keccak256. Given the
private key k:

k = 0xddde823cc26fb3cd14b59da1977622016d506d1030810a6f
02e719045ac7d30a

Public key K can be derived by elliptic curve multiplication of the private key k with the
generator point G:

K = 0xddde823cc26fb3cd14b59da1977622016d506d1030810a6f
02e719045ac7d30a * G

Like the generator point G, the public key K consists of an x- and y-coordinate:

K = (x, y)
x = 0x911530718d23180b83d32e69a58094f8272716b3760b1a47

273b60bcd7ce7df5
y = 0x2f83f720f08b2128a023303bbe5be8e269598fad06b1c7b9

846851e24dd67b91

The public key K is represented by concatenating its x- and y-coordinates like so:

K = 911530718d23180b83d32e69a58094f8272716b3760b1a4727
3b60bcd7ce7df52f83f720f08b2128a023303bbe5be8e26959
8fad06b1c7b9846851e24dd67b91

Now the hash of the public key K can be calculated:

Keccak256(K) = f06eafa160da4630dd6d683e4de2425af9767d7
c99091cb149cdf5c9bb3ea77a

By taking the twenty least significant bits of this hash value we get the address of the
corresponding EOA:

Address = 4de2425af9767d7c99091cb149cdf5c9bb3ea77a

CHAPTER 3. BACKGROUND 22

3.9 Digital Signatures
Digital signatures can be used in order to guarantee that a message was actually sent by
the sender himself and was not altered in the transmission. This can be accomplished
by adding the value sign(message, secret key) to the message. Anyone who now wishes
to verify that the message was indeed sent by the owner of the secret key and was not
altered in the process of transmission can simply execute verify(message, public key,
sign(message, secret key)) which will only return the value True if the proper parameters
were used.

Ethereum transactions are signed with the private key belonging to the Externally
Owned Account (EOA) which initiated the transaction. Elliptic curve mathematics ensure
that everyone can verify that the transaction was actually initiated by the owner of the
private key without actually revealing anything about the private key itself.

3.10 Probabilistic Algorithm
A probabilistic algorithm assigns elements from one set to elements from another set
according to its innate probability distribution. It can be seen as a function F : X× Y→
[0, 1] that has to satisfy the condition

∀x ∈ X :
∑
y∈Y

F(x,y) ≤ 1

So if X = Y = {1, 2, 3} and f(2, 3) = {(1, 1) 7→ 0.5, (1, 2) 7→ 0.25, (1, 3) 7→
0.25, anythingelse 7→ 0} then calling f (2,3) will return (1,1) half of the time, on
the other half it will return (1,2) or (1,3) with equal probability.

3.11 Formalization of a Verifiable Random Function
The general idea of a verifiable random function is to create pseudorandomness through a
function fs. The subscript s denotes a secret seed. The knowledge of s allows to evaluate
the function fs at point α as well as the construction of a proof π. π alone can be used to
verify that the value fs(α) is indeed correct. At the same time, π must not compromise
the unpredictability at any other point at which the function fs will be evaluated and no
corresponding π is available.

The following is an attempt at defining VRFs with as little mathematical notation
involved as possible. A rigorous mathematical definition of VRFs can be found in the
paper Verifiable Random Functions by Micali, Rabin and Vadhan [25].

CHAPTER 3. BACKGROUND 23

3.11.1 Generator, Evaluator and Verifier
In order to construct a VRF three main algorithms are required, each of which are
polynomial in time in regard to their input. This means, each algorithm will terminate
after a number of steps which can be described as a polynomial of its input length for
any given input.

The first of these three algorithms is the function generator called G. It takes a
security parameter k as input from which it produces a keypair public key PK and secret
key SK. The security parameter k is in the form of a unary string, which is a string
consisting of the same symbol repeated for k times. G has to be probabilistic. Meaning,
each different security parameter k is mapped to a different keypair SK and PK at random.
SK and PK are binary strings. The function generator G does not calculate PK from SK,
it merely chooses a keypair from a given k.

The second of these algorithms is the function evaluator F = (F1, F2). The function
evaluator F takes two binary strings as input parameters. The first of which is SK and
the second α. The output of F is two binary strings, the β = F1(SK,α) and π = F2(SK,α).
F1 and F2 have to be deterministic. Meaning, for a given input the algorithm will always
arrive at the same output while always going through the exact same sequences.

The third and last of these algorithms is the function verifier V. It takes as an input
the four binary strings PK, α, β and π. The function verifier V is probabilistic and its
output is either true or false.

3.11.2 Property Requirements of a VRF
Assume any three functions a : N −→ N ∪ {∗} and b, s : N −→ N that are all computable
in polynomial time with regard to k. Further a(k) and b(k) both have to be bounded by a
polynomial in k. This means there exists a function g(k) which takes a smaller or equal
value for any k than a(k) and b(k) as well as that there exists a function h(k) which takes
a greater or equal value for any k than a(k) and b(k). In case a(k) takes on the value
* it does not have to be bounded by a polynomial in k. It can be said that (G, F, V) is
a verifiable pseudorandom function (VRF) of input length a(k), output length b(k) and
security s(k) if the following three properties are satisfied:

3.11.2.1 Domain-Range Correctness and Complete Provability

First, the algorithm F1 has to produce for each input α of length a(k) a corresponding
output β of length b(k). Further, the algorithm F2 has to produce, from any input α, a
corresponding output π which will then result in an output true when used as input for
the function verifier V. The aforementioned properties have to hold with an increasing
probability (1-2-ω(k)) with respect to the amount of assigned keypairs in algorithm G. In
other words, any input (SK, α) of correct length to the function evaluator F produces an

CHAPTER 3. BACKGROUND 24

output (β, π) of correct length which can then be used as as an input (PK, α, β, π) to the
function verifier V to generate true as an output. If this was not the case, the parameter α
could be chosen in a way so that the function evaluator F would produce outputs which
could never be proven to be correct by the function verifier V.

3.11.2.2 Unique Provability

Second, given the parameters PK, α, β1, β2, π1, π2 where β1 and β2 are not equal,
the function verifier V will only output true for one of the two proofs provided. In
other words, for any point (SK,α) at which the function evaluator F is being evaluated,
there must be exactly one corresponding output (β, π) which will produce true as an
output when used as input to the function verifier V. If this was not the case, and two (or
more) different pairs of parameters (β1, π1) and (β2, π2) both can be used to validate the
input (SK, α), the executor of function evaluator F could choose to publish the output
parameters which are favorable for him.

3.11.2.3 Residual Pseudorandomness

Third, an adversary who is allowed to query the function evaluator F and function verifier
V for s(k) steps and who has access to (SK,PK) but not to α must not be able to reproduce

β = F(SK,α) with a probability greater than
1

2|β|
+

1

s(k)
where |β| is the length of the

string β. This means that a given output of β = F1(SK,α) should be indistinguishable
from random to anyone who does not have access to α.

If these three properties hold, F1(SK,·) can be seen as a VRF.

4
Common Practical Solutions and Related

Work

In this chapter common practical solutions for coming up with random numbers and
pseudorandom numbers on Ethereum are discussed.

4.1 Common Methods to Provide True Random Num-
bers

The following is an example for how contracts can get access to true random numbers on
the Ethereum blockchain.

4.1.1 The Oracle Pattern
One prominent way of coming up with true randomness is by relying on an outside
service through a so called oracle. The idea is that some external entity has access to a
reliable source of randomness like observing cosmic background radiation, atmospheric
noise or the decay rate of radio active elements. A contract can request a true random
number from an oracle. The oracle then interacts with the external entity and provides
the true randomness to the contract. This approach however, undermines the basic idea of
the blockchain as a decentralized system, since the provider of the randomness represents
a single central entity. In other words, the application which relies on an oracle as a
source of randomness has to blindly trust said oracle as well as the data provider. There

25

CHAPTER 4. COMMON PRACTICAL SOLUTIONS AND RELATED WORK 26

is no easy way to ensure that the provided numbers are truly random. Even worse, if
there is Ether at stake, there is no way of ensuring that the oracle and the data provider
are acting without malicious intent. This approach can provide both true randomness
as well as pseudorandomness. The external provider will most likely rise a fee for a
request of a true random number or pseudorandom number. A further fee will probably
be raised by the oracle as well. In a best case scenario the requested true randomness
or pseudorandomness can be expected to be available within a delay of one block. In
order to decrease the trust required in a single oracle a request could be posed to multiple
oracles. The provided results are then compared. A result is only accepted if a given
subset of said oracles provide the same result. This would of course increase the costs by
a multitude of oracles queried.

4.2 Common Methods to Provide Pseudorandom Num-
bers

The following are common examples contracts try to generate pseudo random numbers
on the Ethereum blockchain.

4.2.1 Blockhash as a Source of Randomness
One simple solution many contracts make use of, is to use the latest blockhash as a source
of pseudorandomness. This can be achieved by the following simple code fragment.

// Supposedly pseudorandom number generator.
function newPseudoRandomNumber() internal view returns
(uint) {

return uint(blockhash(block.number-1));
}

The problem with this approach is that block.number is of course readily available
on the blockchain. Because of that, anyone who wishes to predict that supposedly pseudo
random number can do so by calling uint(blockhash(block.number-1));.
Further a miner could choose to withhold a found block if the outcome will be to his
disadvantage. However, this is only a relevant concern if the resulting disadvantage
is comparable to the block reward of the withheld block. This method comes with no
additional costs attached.

4.2.2 Commit-Reveal
The commit-reveal scheme is yet another cost-efficient way of providing pseudo random
numbers. It represents a substantial improvement over the use of the blockhash alone

CHAPTER 4. COMMON PRACTICAL SOLUTIONS AND RELATED WORK 27

with little costs attached. In this approach a trusted party, chosen by the contrast, provides
a seed which will be hashed together with the blockhash of a future block. The provided
seed will be sealed by hashing it together with the address of the trusted party. The sealed
hash is then stored in the contract that requires the pseudorandom number. The actual
seed remains hidden until the previously defined blockhash becomes available. Once the
previously defined blockhash becomes available, the seed can be revealed by the trusted
party. With help of the sealed hash it can now be verified that the provided seed has not
been altered since. The pseudorandom number is now generated by hashing the seed
together with the blockhash. This way the pseudo random number can no longer be easily
predicted by use of block.number. Further miners can no longer gain any insight
to what the generated pseudo random number will be based on the blockhash alone. In
order to predict the outcome of the pseudorandom number the seed provider would have
to collaborate together with the miner of the predefined block. Since hashing can be
considered relatively inexpensive, this method comes with very little extra cost attached.
But the pseudorandom number is not available immediately. The pseudorandom number
can be expected to be available the soonest after two blocks. However, it still requires to
trust the seed provider to reveal his seed once the predefined block has been mined. Since
the seed provider has access to the outcome of the pseudorandom number as soon as the
revealing transaction has been made, he has the option to take measures not to include
the transaction in the block with the block number which would result in an unfavorable
pseudorandom number outcome for him.

4.2.3 Collaborative Scheme
In this method a number of parties collaborate in order to come up with a random
number. RANDAO is probably the most prominent example of this approach [13].
Contracts that require a pseudorandom number can make a request to a generator con-
tract. A fee has to be paid to the generator contract. The creation of the random
number follows three main steps. First, each party that wishes to participate in the
generation of the pseudorandom number has to provide a sealed seed hash(seed)
together with a deposit to the generator contract. These sealed seeds have to be provided
within a time frame specified by the generator contract. Secondly, each participant
has to provide his seed to the generator contract. The contract now validates the
correctness of each provided seed by running it against the hash() function and
comparing it to the previously provided hash(seed). Seeds that turned out to be
valid are then stored in the contract. If a participant does not reveal his seed, his de-
posit will be confiscated. The deposits of the other participants will be returned and
the requesting contract has to wait for a new round where a new pseudorandom num-
ber is being generated. Thirdly, the generator contract now generates a pseudorandom
number from the collected seeds. Here a simple XOR-function can be used like this
newPseudorandomNumber = xor(seed1, seed2, ... , seedn). The

CHAPTER 4. COMMON PRACTICAL SOLUTIONS AND RELATED WORK 28

variable newPseudoRandomNumber is then stored in the generator contract and sent
to all the contracts that requested the pseudorandom number in the first place. Now, as
an incentive, a part of the profit from the fees paid by the requesting contracts is being
sent to the seed providers together with their deposit. Reward settings depend on the
implementation and configuration of the generation contract. Here it should be noted
that if an XOR-function is used, committing should only be allowed with an unique
hash(seed). Otherwise, due to the nature of the XOR-function, committing a second
time to the same number essentially removes both seed from the equation. This could
be abused by an attacker [14]. The delay can generally be expected to be around seven
blocks. This is because it can be assumed that nobody can produce seven consecutive
blocks and therefore influence the outcome of the pseudorandom number with his mining
power. The costs for requesting a pseudorandom number from such a generator contract
are, again, dependant on its configuration. The context in which a pseudorandom number
is being used should be considered. The more there is at stake from the requested pseudo-
random number, the higher the deposits of the seed providers should be. For example, if
the pseudorandom number is being used for a bet where the better pays 10 Ether and has
a fifty-fifty chance on doubling, the deposit for the seed providers should be higher than
10 Ether. For example, lets assume a 20 Ether deposit. This way, if the better decides
to participate in the generator contract as a seed provider he can decide to withhold the
revelation of his seed in the second step. By doing so he can get a second chance if he
realizes the outcome of the generated pseudorandom number will be to his disadvantage.
However, he will still lose his deposit, resulting in a loss of 20 Ether plus a potential
gain of 10 Ether. There is yet another way of preventing seeds from being revealed and
therefore influence the outcome of the generated pseudorandom number. The attacker
does not necessarily have to produce seven consecutive blocks, but he can try to outbid
an honest seed provider by filling each of the blocks with transactions that have a greater
gas prices than the transaction that would reveal the seed. This prevents the honest seed
provider effectively from revealing his seed and therefore the pseudorandom number is
not being provided to the contracts that requested it in the first place. They have to wait
for the next pseudorandom number that is being provided by the generator contract.

4.2.4 Chainlink
Chainlink is a decentralized oracle network that provides smart contracts with highly
available connections to data feeds. This way a smart contract can obtain a variety of real
world validated data, like currency prices, sports results or IoT sensor readings. Chainlink
does this through an oracle network. Each oracle in the network gets its data from a
different source. This solves the problem of relying on a single oracle as an interface to
real world data, which would defy the purpose of a decentralized application. Chainlink
VRF provides verifiable randomness through its oracle network. As of writing this,
Chainlink VRF has served over one million requests for verifiable pseudorandomness to

CHAPTER 4. COMMON PRACTICAL SOLUTIONS AND RELATED WORK 29

Binance Smart Chain, Polygon and Ethereum. Chainlink identifies six areas for typical
use cases where their service may be of use (gaming and the metaverse, NFT creation
and distribution, lucky draws and DeFi, marketing campaigns and loyalty rewards, fair
selection and ordering processes, and authentication and security) [4].

4.2.4.1 Accessing Pseudorandomness Through Chainlink VRF

Chainlink VRF (Verifiable Random Function) is a provably-fair and verifiable source of
randomness designed for smart contracts [10]. They provide access to pseudorandom-
ness without compromising on security or usability. Other than data feeds the provided
randomness cannot be reference data. If the result of randomness was stored on chain,
any actor could see and predict the outcome. In order to obtain a random number, a smart
contract can make a request for a random number to the Chainlink network. The Chain-
link network then responds by aggregating responses from a required number of network
participants (Chainlink nodes). Once threshold for required number of participants is met,
the result is broadcasted as a single transaction to the requesting smart contract. For each
request for a new pseudorandom number, the oracle network first provides a proof that
the number has been created. This proof is then being verified and made accessible on the
blockchain before the the pseudorandomness can be consumed. This is called a Request
and Receive cycle. This ensures that the pseudorandomness cannot be manipulated by
miners or by the oracles themselves. The provided pseudorandomness comes at different
costs depending on the required security (number of Chainlink nodes involved). Oracles
need to be paid in LINK. This demands that the smart contract is in possession of at least
the required amount of LINK to request a pseudorandom number from the Chainlink
network. LINK conforms to the ERC-677 token standard, an extension of ERC-20. This
standard is what enables data to be encoded in token transfers. The payment in LINK
happens during the request to the Chainlink network. This is integral to the Request and
Receive cycle. Since the oracle and the block miner both have some influence on when
the VRF responses appear on the blockchain, the requesting smart contract has to make
sure that the order in which the requested pseudorandomness appears on the blockchain
cannot be used to manipulate the behaviour of the smart contract. The blockhash of
the block which contains the requestRandomness call is mixed into the seed of
the VRF. Because of this, a powerful miner could in principle fork the blockchain in
order to force the requestRandomness call to be made in another block resulting
in a possibly different outcome for the requested pseudorandomness. The cost for such
an attack scales with the amount of blocks the VRF oracle waits until it responds to the
request.

4.2.4.2 Chainlink VRF Implementation Details

A smart contract that wants to use the Chainlink VRF service needs to import and extend

CHAPTER 4. COMMON PRACTICAL SOLUTIONS AND RELATED WORK 30

a contract called VRFConsumerBase. It then needs to store two variables, keyHash
is used to tell the oracle exactly what exactly is being requested (e.g. number of involved
oracles), fee is the amount of LINK that is to be used in the request. Further mappings
between pseudorandomness requestID (return from the request) and the user of the
pseudorandomness as well as between the actual result of the request and the user
of the pseudorandomness have to be established. With the requestRandomness
function provided by VRFConsumerBase the keyHash and fee is being sent to the
Chainlink VRF network. The fulfillRandomness function is being used by the
Chainlink VRF network to provide the requested pseudorandomness to the contract. It
returns the requestId along with the corresponding pseudorandomness. By overriding
the fullfillRandomness function the contract is now being able to make use of
the pseudorandomness provided by the Chainlink VRF network.

5
The VRF-Approach

As discussed before, the manipulation of provided pseudorandomness is a major security
concern for any application that relies on it. An application should try to aim to have
its randomness or pseudorandomness be equally uncertain for all participants as well
as try to be provably fair. At the same time, the outcome of the randomness should
be unpredictable for any adversary. A verifiable Random Function, in short VRF, was
proposed by Micali, Rabin, Vadhan [25]. A VRF is set of functions that allows a party to
generate a beta-string by hashing a secret key SK together with a publicly available byte
string, the so called alpha-string. The generated beta-string can serve as pseudorandom
number and is unique in the sense that it is hard to replicate without knowledge of the SK.
At the same time a proof, called the pi-string, is being created which can later be used
to verify that the pseudorandom number has in fact been correctly generated from the
SK and alpha-string. In order to do so a public key PK that corresponds to the SK used
to generate the pseudorandom number is required. This allows anyone in possession
of the PK and the alpha-string to verify the soundness of the provided pseudorandom
number without revealing any information about the SK that was being used. This
approach provides a simple way of preventing the provider of the pseudorandomness
from manipulating the outcome of the pseudorandom number. A VRF should further
have the following properties. Collision resistance, meaning it is hard to find two different
inputs that result in the same output. Pseudorandomness, meaning for an observer who
does not know the SK, the outcome appears to be random. Trusted uniqueness, meaning
that for any given PK, an alpha-string input to the VRF will result in a unique beta-
string. This is important, if using the same PK and alpha-string could result in different
beta-strings the owner of the SK could choose to publish a beta-string that is favorable

31

CHAPTER 5. THE VRF-APPROACH 32

for him. The provided pseudorandom number can be available within one block the
soonest. The cost of providing pseudorandom numbers in this manner relies heavily on
the individual implementation. Of course the specific usage of a VRF in a contract has
to be implemented with sound logic. The internet-draft from Hong Kong University of
Science and Technology titled Verifiable Random Functions (VRF) provides blueprints
for the implementation of an elliptic curve based VRF as well as for a RSA based
VRF [21]. Providing pseudorandomness on Ethereum between two parties using a VRF
function requires a total of three interactions between these parties. Assuming party A
provides and operates the VRF, party B has to first commit to an alpha-string, then reveal
said alpha-string, and finally party A has to forge the pseudorandomness along with a
proof from its own SK and the received alpha-string. Compared to a commit-reveal-
scheme, where both parties commit to a bit-string which later gets revealed and hashed,
this approach requires less interaction between parties.

5.1 Components of a Verifiable Random Function
Depending on the definition, a VRF consists of three or four main functions. The first
function assigns a PK to a corresponding SK. The second function consists of two parts,
where the first part provides a pseudorandom number and the second part provides a
corresponding proof. The third function is a verification function which allows makes
use of the afore created proof to verify the soundness of the created pseudorandom
number. The second function can in fact be reduced to its second part, which produces
only the proof. If implemented this way, a pseudorandom number can simply be derived
by calculating a hash from the created proof.

5.1.1 Creating a Key-Pair
Ideally a key-pair is obtained by providing a random seed to a generator function, which
then provides a key-pair from a sufficiently large pool. Humans are notoriously bad at
coming up with randomness, because of that it is a good idea to use the aid of such a
function in order to create the SK. The key-pair (SK,PK) has to be created with regard to
the rest of the VRF. The SK is to be kept secret by its holder at all times. Once the SK
has been leaked, the pseudorandomness property of the VRF is no longer guaranteed,
since anyone with knowledge about SK will be able to predict the outcome of the VRF.

5.1.2 Creating the Proof
For the prove-function two input parameters are required. The SK and the alpha-string.
These two parameters should be provided from two separate parties and never be used
more than once. Otherwise the outcome can be predicted, since each two inputs always

CHAPTER 5. THE VRF-APPROACH 33

produce a unique output. The output comes in the form of a byte-string, called the
pi-string. The pi-string later serves as proof of the correct execution of the proof-function.
Further it will be used as an input parameter when the pseudorandomness will be created
later on.

5.1.3 Pseudorandomness From the Proof
With the proof-to-hash-function the actual pseudorandomness is being generated. This
function can be executed by any participants in possession of the pi-string. As input
parameter it takes only a single parameter, that is the pi-string created by the proof-
function. The produced output is called beta-string and can serve as pseudorandomness
for the participants involved. The validity of this beta-string has to be checked with the
verification-function in order to make sure it has not been tampered with.

5.1.4 Verification of the Proof
With the verification-function the integrity of the provided pseudorandomness can be
validated. The verification-functions requires three parameter as an input. These parame-
ters are the following. The PK corresponding to the SK used to generate the proof. The
alpha-string used to generate the proof. The pi-string that has been created from the SK
and the alpha-string. This function can be executed by any participants in possession of
said parameters. The output of the verification-function comes in the form of a boolean
and takes the value of either true, in case of correctly formed proof, or false in case of a
malformed proof and therefore pseudorandomness that should not be trusted.

5.1.4.1 VRF-Solidity

An implementation for verifying elliptic curve based proofs in Solidity has been pro-
vided by Mario Cao [2]. This VRF-solidity library provides two main functions.
The verify(...) function provides a way to verify provided proofs. This func-
tion entails heavy elliptic curve operations and is quite costly at around 2000k of
gas. A fastVerify(...) function provides yet another way to verify provided
proof although at reduced gas costs by using the precompiled ecrecover func-
tion. fastVerify(...) is supposedly requiring only one tenth of the gas costs
of verify(...) resulting in approximate cost of 200k gas. This however, is being
achieved with a trade off in security. Further the library also provides the following
three convenience functions. First, the decodeProof(...) functions decodes from
bytes to a VRF proof. Second, the decodePoint(...) function decodes from bytes
to a point on the elliptic curve. Finally, the computeFastVerifyParams(...)
function computes the parameters, being the elliptic curve points, required for the
fastVerify(...) function. It should be noted that the library does not provide a

CHAPTER 5. THE VRF-APPROACH 34

way of creating proofs. The SK should, for obvious reasons, never be used in a transaction
over the network. In this regard, it makes sense that the library does not provide a way to
create proofs since the SK is a necessary parameter that has to be used when creating a
proof.

5.2 The Implementation
The following has been implemented. The CoinFlipper contract written in Solidity
which allows two parties to simulate a fair coin flip. This contract is mainly used as an ex-
ample of an Ethereum application which requires some sort of randomness. This contract
allows both parties to bet money, the winner takes double. The ECProofFactory, a
contract written in Solidity which mainly allows the formation of elliptic curve based
proofs. It also provides the possibility to derive a corresponding PK pair from a SK. In
order to check the validity of a given proof it relies on the afore mentioned vrf-solidity
library. The RSAProofFactory, a contract written in Solidity which allows the forma-
tion of RSA based proofs. From these proofs a pseudorandom byte string, or beta-string,
can be derived. Finally, it implements a method which allows to verify the proofs created
in this manner. It is of utmost importance that none of the functions that use a SK as a
parameter are being used on chain, since transactions are visible to the entire network
and knowledge about the SK should remain with the owner. As a workaround a local
test chain environment should be used. Alternatively an implementation in the Go pro-
gramming language allows the formation of RSA- and elliptic curve based proofs. This
enables a more convenient way of creating proofs without having to rely on a local test
network.

5.2.1 The Coin Flipper
CoinFlipper is an Ethereum contract [16] which allows two parties to simulate a
fair coin flip. The owner of the CoinFlipper contract accepts a bet. A bet can be made
by an Externally Owned Contract (EOA) and entails an amount of Ether [16] which is
within the limits specified by the CoinFlipper contract. Once a bet is set, the owner of
the CoinFlipper contract has to resolve the bet, and eventually reward the better.

For convenience sake the owner of the CoinFlipper contract will be called the Owner
while the better will be called the Better.

Before deployment of the CoinFlipper, the Owner should define the lower limit of
accepted bets and the reward factor for a winning bet. Defining the lower limit prevents
the Owner from losing Ether on very small bets, since the Owner has to pay gas [16]
in order to resolve an ongoing bet. The default reward factor for a bet is set to two,
which means if the Better bets 1 Ether he will be rewarded by an amount of 2 Ether if he
wins the coin flip. Since the simulated coin flip is fair and the Owner has to invest Gas

CHAPTER 5. THE VRF-APPROACH 35

in order to resolve bets, this will result in the Owner losing Ether should he decide to
continuously resolve bets. In order to incentivize the Owner to continuously accept and
resolve bets, the reward factor for bet should be adjusted so it is smaller than two and
still makes it profitable for the Owner to run the contract even if only bets equal to the
lower limit are being played. Obviously, the closer the reward factor is to two, the more
attractive it becomes for the Better to bet for the next coin flip. The further the reward
factor gets below two, the more attractive it becomes for the Owner to continue resolving
bets.

A Verifiable Random Function (VRF) [21] is being used in order to provide a fair
coin flip.

At first the Owner commits to a SK and provides a paired PK which will be made
visible in the CoinFlipper contract. Further, the Owner also has to transfer some funds to
the CoinFlipper contract, in order to reward winning bets.

As soon as this is done, the CoinFlipper contract will accept valid bets from a Better.
Now bets can be placed. For a bet to be considered valid, it has to suffice a number

of predefined criteria. Namely the amount of Ether sent in the bet has to be lower or
equal to the predefined upper limit for bets and equal or greater than the predefined lower
limit for bets. Further, it must not surpass the current balance of the CoinFlipper contract,
otherwise there are not enough funds to reward a winning bet. Additionally there can only
ever be one bet at a time. Meaning if currently a bet is ongoing, the CoinFlipper contract
will not accept new bets. This limitation has been made for simplicity’s sake and could be
eliminated if need arises. The Better must also commit to a byte-string by providing the
keccak-256 hash value of said byte-string. After the commit lies sufficiently deep within
the blockchain (after 7 blocks in the current implementation, which equals to around two
minute time difference), the Better has to reveal his byte-string. This extra commit-reveal
step is necessary in order to prevent the Owner from censoring bets (taking measures so
they are not included in the blockchain). The revealed byte-string is then extended with
an integer (uint256) which indicates the number of the current bet, this concatenation
forms the alpha-string. This prevents that the same alpha-string is being used more than
once. This way neither the Owner nor the Better will know the outcome of the coin
flip in advance. This necessary difference in block height should be adjusted according
to the bet size the contract accepts. This measure is necessary in order to prevent the
Owner from behaving maliciously. The greater the difference in block height, the harder
it becomes for the Owner to behave maliciously. If there is no such difference in block
height between the block which contains the bet placement transaction and the block
which contains the transaction which resolves the bet, the Owner could collaborate with
the miner in order to gain an advantage. The miner could decide to not release a block
which would result in a loss for the Owner, or he could simply decide to not to include
the transaction which places the bet in the block.

Once the Better has placed his bet, the Owner cannot withdraw funds from the

CHAPTER 5. THE VRF-APPROACH 36

CoinFlipper contract until he has resolved the bet. Without this mechanism in place, the
owner could simply withdraw all the funds from the CoinFlipper once he realizes he
is about to lose on a bet.

Once a bet has been placed and revealed, the next step is for the Owner to resolve the
bet.

Once the bet is revealed, the Owner holds both SK and alpha. With knowledge of
these two parameters the outcome of the VRF becomes completely predictable for the
Owner. Because of this circumstance it is of utmost importance that the transaction
committing to the bet and the transaction resolving the bet are placed in blocks that have
a reasonably big difference in block height.

Resolving a bet can be accomplished by providing a valid proof [21]. A valid proof
can be formed with the current alpha-string, the SK and the use of the ProofFactory
contract which is discussed later on. Alternatively the Go implementation can be used to
form valid proofs. The Go implementation for forming proofs is discussed in section
5.2.4. This proof simultaneously serves as the pseudorandom [28] output of the coin flip.
If a valid proof is being provided by the Owner, the better will be rewarded according
to the bet reward factor and the amount of his bet if he wins or not otherwise. Now the
CoinFlipper contract is open again for new bets.

The more bets played on a CoinFlipper contract, the more trustworthy it becomes in
general. A high number of played bets indicates the Owner of the contract is resolving
bets with a high likelihood. This incentivises Betters to play on said CoinFlipper contract,
which in turn also incentivises the Owner to keep resolving bets.

A different solution to incentivize the Owner to resolve bets would be to implement
a required time limit in which each bet has to be resolved. If said time limit passes
without the Owner resolving the bet, he would automatically lose and the Better would
win. Such a time limit would also prevent the CoinFlipper contract from locking up.
In the current implementation this can happen if the Owner decides to not resolve a
running bet, resulting in both the Owners and the Betters funds becoming stuck within
the contract. This is a result of the necessary mechanisms in place that prevent either
party from bailing out of a running bet. However, such a time window would also open
up the possibility for censorship attacks against the Owner in which the Better could
prevent the Owner from resolving the bet within the necessary time window. Resulting
in a win for the Better.

5.2.1.1 Possible Attacks Against the Owner

During the resolving phase the Owner of the CoinFlipper has to broadcast his transaction
to resolve the bet to the network. This opens up the possibility for a censorship attack
against the Owner if the resolving transaction has to be made within a given time
window. In case that the Owner wins the bet he still needs to resolve it in order to not
automatically lose after the time window in which the bet has to be resolved passes. Once

CHAPTER 5. THE VRF-APPROACH 37

the transaction to resolve the bet is broadcasted to the network the Better will realize
that he has lost the bet. He can now take steps to prevent the bet from being resolved.
This could be done by doing transactions which are willing to pay high gas fees. This
approach is only viable for very high value bets that would be so heavy that they could
justify the required gas costs for such an attack. Alternatively the Better could simply
collaborate with miners, in order to exclude transactions from the current block which
are trying to resolve the bet.

A possible solution would be to implement another commit-reveal part to the re-
solving phase. Here the Owner would commit to the resolved outcome by publishing
hash(result). After a given time frame, he would then publish the result as well.
If the time frame is large enough, this approach protects the Owner from falling victim
to a censorship attack as described above. However this would make the whole process
slower and now the communication requirements are at the same height as with a pure
commit-reveal scheme.

5.2.1.2 Censorship by Miner

In any case where a party has to make a transaction to the blockchain in order to not lose a
previously stacked amount of Ether, the party becomes vulnerable to a censorship attack.
In the CoinFlipper contract this is the case once a party has published the hash of a later
to be revealed seed. Here the assumption is being made that a miner does not possess the
necessary mining power to censor a transaction throughout several consecutive blocks (7
blocks in the current implementation).

5.2.2 The Elliptic-Curve Proof Factory
The ProofFactory contract covers three use cases. First, it allows to derive a PK
pair to a given SK. Second, given a SK and an alpha byte string it can create valid proofs
for an Elliptic Curve VRF according to the description in the internet-draft from Kong
University of Science and Technology titled Verifiable Random Functions (VRF) [21].
Thirdly, it can validate proofs with help of the vrf-solidity library [2].

Some of the functions of this contract require a SK as a parameter, because of
that these functions should never be used on chain. A solution would be to use an
isolated private node on which the contract is then run. Another solution would be an
implementation of the same functionality in another programming language. This could
make it more convenient to run locally.

In order to derive a PK from a SK, the function derivePublicKey() makes use
of the EllipticCurve library [19]. Here an elliptic curve multiplication is being
performed with the SK as the scalar and the generator point of the elliptic curve.

The function createProof uses the SK and the alpha byte string as parameters in
order to generate a proof, also called Pi-String. This is achieved through the steps laid

CHAPTER 5. THE VRF-APPROACH 38

out in the internet-draft Verifiable Random Functions (VRF) [21]. The algorithm works
as follows:

Algorithm 1: ECVRF prove
Data: SK, alpha string
Result: pi string
PK = derivePoint(SK, G);
hPoint = hashToTryAndIncrement(PK, alpha string);
hString = encodePoint(hPoint);
gammaPoint = derivePoint(SK, hPoint);
k = nonceGeneration(SK, hString);
kB = derivePoint(k, G);
kH = derivePoint(k, hPoint);
c = hashPoints(hPoint, gammaPoint, kB, kH);
s = (k + c * SK) mod PP;
pi string = concatenate(encodePoint(gammaPoint), intToString16(c),
intToString32(s));

Step 1: The PK has to be derived from the SK via elliptic curve multiplication with
the generator point G of the curve.

Step 2: hPoint is a point on the elliptic curve. It can be derived by hashing the
concatenation of the PK and the alpha string repeatedly (together with an added counter)
until a point is found which lays on the curve.

Step 3: In hString the found Point from step 2 is simply put into a string representation
in which the y-coordinate is represented with an added prefix.

Step 4: The gammaPoint has to be derived from the SK via elliptic curve multiplica-
tion with the in step 2 generated hPoint.

Step 5: Derives a nonce pseudo randomly and uniformly from SK and hString
generated in step 3. This prevents an attacker from deriving the SK after observing
multiple proofs generated from the same SK.

Step 6: An elliptic curve multiplication between the scalar k and the generator point
G as well as hPoint is performed. The resulting points kB, kH on the curve are then
hashed (sha256) together with hPoint and gammaPoint. The first half (most significant
bits) of this hash value is then assigned to c.

Step 7: The variable c is multiplied by SK added to the nonce k modulus the prime
order of the used curve.

Step 8: Here the pi string is formed by concatenating the encoded gammaPoint, part
of c converted to an integer and part of s converted to an integer.

Step 9: The pi string is being returned.
The proof, or Pi-String, itself also serves as the source for generated pseudorandom-

ness. The vrf-solidity library [20] provides a function called decodeProof which
decodes a valid proof into its single components. With the function gammaToHash,

CHAPTER 5. THE VRF-APPROACH 39

also found in the vrf-solidity library [20], said components can be used to derive a
pseudorandom bytestring.

Once a proof has been created it can be validated with the help of the vrf-solidity
library [20]. This process requires the use of the PK, the proof itself and the alpha byte
string.

5.2.3 The RSA Proof Factory
The ProofFactory contract also covers three use cases. First, given a SK and an alpha
byte string it can create valid proofs for a RSA Full Domain Hash VRF according to the
internet-draft Verifiable Random Functions [21]. Second, from the proof it can create a
pseudorandom byte string. Thirdly, it can validate said proofs.

Some of the functions of this contract require a SK as a parameter, because of that the
contract should never be used on chain. A solution would be to use an isolated private
node on which the contract is then run. Another solution would be an implementation
of the same functionality in another programming language. This could make it more
convenient to run locally.

The function createProof uses the SK and the alpha byte string as parameters in order
to generate a proof, also called Pi-String. This is achieved through the steps laid out in
the internet-draft Verifiable Random Functions (VRF) [21].

Algorithm 2: createProof
Data: SK, alphaString
Result: piString
oneString = I2OSP(1, 1);
EM = MGF1(concatenate(oneString, I2OSP(k, 4), I2OSP(n, k), alphaString),
k-1);

m = OS2IP(EM);
s = RSASP1(SK, m);
piString = I2OSP(s, k);

Step 1: I2OSP produces an octet string of a desired length from an integer. The
first parameter is the integer which is to be converted into an octet string. The second
parameter is the desired length of the octet string. oneString receives the converted
integer in octet string form.

Step 2: MGF1 is a mask generation function that takes an octet string of arbitrary
length as a seed to generate a pseudorandom octet string of desired length (here k-1).
sha256 is used as the underlying hash algorithm.

Step 3: OS2IP converts an octet string to a non-negative integer.
Step 4: RSASP is a RSA signature primitive. Given SK and the in step 3 generated m,

it raises the m to the secret RSA exponent modulo n.

CHAPTER 5. THE VRF-APPROACH 40

Step 5: piString is formed by transforming the number s in step 4 into an octet string
of length k (length of the RSA modulus in octets).

Step 6: The piString is being returned.
The proof, or Pi-String, itself also serves as the source for generated pseudoran-

domness. The function called proofToHash can be used to derive a pseudorandom
bytestring from said proof.

Algorithm 3: proofToHash
Data: piString
Result: betaString
twoString = I2OSP(2, 1);
betaString = Hash(concatenate(twoString,piString));

Step 1: I2OSP produces an octet string of a desired length from an integer. The
first parameter is the integer which is to be converted into an octet string. The second
parameter is the desired length of the octet string. oneString receives the converted
integer in octet string form.

Step 2: The concatenation of twoString and piString is hashed (sha256) and assigned
to betaString.

Step 3: betaString is returned as the produced pseudorandom octet string.
Once a proof has been created it can be validated with the help of the verify function.

This process requires the use of the PK, the proof itself and the alpha byte string and will
return a boolean with value true, if the proof is valid, or false if the proof is invalid.

Algorithm 4: verifyProof
Data: PK, alphaString, piString
Result: boolean
s = OS2IP(piString);
m = RSAVP1(PK, s);
EM1 = I2OSP(m, k-1);
oneString = I2OSP(1,1);
EM2 = MGF1(concatenate(oneString, I2OSP(k, 4), I2OSP(n, k), alphaString),
k-1);

return EM1 == EM2;

Step 1: OS2IP converts an octet string to a non-negative integer.
Step 2: RSAVP1 is a RSA verification primitive. Given a PK and s, it raises the s to

the public RSA exponent modulo n.
Step 3 & 4: I2OSP produces an octet string of a desired length from an integer. The

first parameter is the integer which is to be converted into an octet string. The second
parameter is the desired length of the octet string. oneString receives the converted
integer in octet string form.

Step 5: MGF1 is a mask generation function that takes an octet string of arbitrary

CHAPTER 5. THE VRF-APPROACH 41

length as a seed to generate a pseudorandom octet string of desired length (here k-1).
sha256 is used as the underlying hash algorithm.

Step 6: The output is determined by whether EM1 and EM2 are equal or not.

5.2.4 Generating Key-Pairs and Proofs Offline with Go
Since the secret key SK must be kept secret in order to guarantee the pseudorandomness
property of the VRF, it should never be passed as a transaction over the network. Although
both contracts, ECProofFactory and RSAProofFactory, implement a method to
create proofs as well as a method to create key pairs, they should never be used on a
live network. This is due to the fact that these methods are using the SK as a parameter.
If once SK is part of a transaction, it will be visible to anyone on the network. These
methods can be used on a local test-network, if the user is confident enough that no one
else will gain access to his SK. To provide a more convenient method for creating keypairs
and calculating proofs without having to access a local test-network, an implementation
of these methods in Go is being provided. Once the proof is being formed, it can be
transmitted to the network, since it does not provide any information about the SK.
The Go implementation renders the solidity-functions which create keypairs and proofs
redundant. However for convenience and testing purposes these functions will remain in
the code.

5.2.4.1 Creating Proofs for Elliptic Curve Based VRFs with Go

The Go-File createProofEC.go contains a method to create key pairs (SK,PK) from
scratch as well as a method to create a PK to a given SK. In order to form proofs, the
library crypto/ecdsa is being used.

5.2.4.2 Creating Proofs for RSA Based VRFs with Go

The Go-file createProofRSA.go contains a method to create key pairs (SK,PK)
from scratch. In order to form proofs, the guidelines in the internet-draft from Verifiable
Random Functions (VRF) have been followed [21]. The algorithm works in the same
manner as Algorithm 2 described in section 5.2.3.

6
Conclusion and Future Work

Providing provably fair randomness or pseudorandomness to a blockchain like Ethereum
can be an intriguingly difficult endeavor. Relying on an oracle for true randomness defies
the underlying principle of a distributed system. As we have seen, using the blockhash
(or any other parameter that stems from within the blockchain) as a source is not a good
solution due to the vulnerability to numerous attacks that mostly involve some form of
collaboration with a miner. Collaborative schemes are vulnerable to censorship attacks
and require a large commitment to deposits from the participants. The commit-reveal
approach is a relatively easy solution, however it requires the distribution of a new
commit for every single use. Using a VRF allows using the same public key over and
over again, provided the secret key does not get compromised. When implementing the
use of a VRF into a contract various security aspects have to be considered in order to not
fall victim of common attacks. The most convenient and convincing solution to provide
pseudorandomness to a Ethereum contract is by using Chainlink VRF. Chainlink VRF
requests can easily be made for different security requirements at different fees.

As an outlook for future work a comparison in regard to costs and security between
the current implementation of the CoinFlipper could be made with a contract that requests
its pseudorandomness from Chainlink VRF. Further the current implementation of the
CoinFlipper could be extended in the following manner. Allowing multiple games at
the same time. Implementing the requirement for a commit to each resolved bet (this
would entail an analysis for possible censorship attacks against the Owner). Since the
CoinFlipper contract provides a way to make bets between users, it would be interesting
to explore the requirements for a slot-machine-like contract that allows bets between a
contract and users.

42

Bibliography

[1] “4 letter words.” https://www.wordgamedictionary.com/word-
lists/4-letter-words/. Accessed: 2021-09-24.

[2] “Announcing our verifiable random function (vrf) library in solidity.”
https://medium.com/witnet/announcing-our-verifiable-
random-function-vrf-library-in-solidity-c847edf123f7.
Accessed: 2021-08-04.

[3] “The brownian movement.” https://www.feynmanlectures.caltech.
edu/I_41.html. Accessed: 2021-08-17.

[4] “Chainlink vrf hits one million requests.” https://www.bsc.news/post/
chainlink-verifiable-random-function-hits-landmark-1-
million-requests. Accessed: 2021-10-11.

[5] “Cryptographic random numbers.” https://theworld.com/˜cme/
P1363/ranno.html. Accessed: 2021-08-04.

[6] “Cryptokitties.” https://www.cryptokitties.co/. Accessed: 2021-09-
11.

[7] “Diceware for passphrase generation and other cryptographic applications.”
https://theworld.com/˜reinhold/diceware.txt. Accessed: 2021-
08-17.

[8] “The economic impact of random rewards in blockchain video games.”
https://blog.chain.link/the-economic-impact-of-random-
rewards-in-blockchain-video-games/. Accessed: 2021-09-11.

[9] “How not to run a blockchain lottery.” https://hackingdistributed.
com/2017/12/24/how-not-to-run-a-blockchain-lottery/. Ac-
cessed: 2021-08-04.

[10] “Introduction to chainlink vrf.” https://docs.chain.link/docs/
chainlink-vrf/. Accessed: 2021-08-04.

43

https://www.wordgamedictionary.com/word-lists/4-letter-words/
https://www.wordgamedictionary.com/word-lists/4-letter-words/
https://medium.com/witnet/announcing-our-verifiable-random-function-vrf-library-in-solidity-c847edf123f7
https://medium.com/witnet/announcing-our-verifiable-random-function-vrf-library-in-solidity-c847edf123f7
https://www.feynmanlectures.caltech.edu/I_41.html
https://www.feynmanlectures.caltech.edu/I_41.html
https://www.bsc.news/post/chainlink-verifiable-random-function-hits-landmark-1-million-requests
https://www.bsc.news/post/chainlink-verifiable-random-function-hits-landmark-1-million-requests
https://www.bsc.news/post/chainlink-verifiable-random-function-hits-landmark-1-million-requests
https://theworld.com/~cme/P1363/ranno.html
https://theworld.com/~cme/P1363/ranno.html
https://www.cryptokitties.co/
https://theworld.com/~reinhold/diceware.txt
https://blog.chain.link/the-economic-impact-of-random-rewards-in-blockchain-video-games/
https://blog.chain.link/the-economic-impact-of-random-rewards-in-blockchain-video-games/
https://hackingdistributed.com/2017/12/24/how-not-to-run-a-blockchain-lottery/
https://hackingdistributed.com/2017/12/24/how-not-to-run-a-blockchain-lottery/
https://docs.chain.link/docs/chainlink-vrf/
https://docs.chain.link/docs/chainlink-vrf/

BIBLIOGRAPHY 44

[11] “Primer on elliptic curve cryptography.” https://blog.cloudflare.com/
a-relatively-easy-to-understand-primer-on-elliptic-
curve-cryptography/. Accessed: 2021-09-24.

[12] “Quadratic sieve.” https://mathworld.wolfram.com/
QuadraticSieve.html. Accessed: 2021-09-24.

[13] “Randao: Blockchain based verifiable random number generator.” https://www.
randao.org/. Accessed: 2021-01-09.

[14] “Rigging randao: Defeating the crypto world’s favorite “trustless” random
number generator.” https://revelry.co/resources/development/
critical-randao-vulnerability/. Accessed: 2021-10-11.

[15] “Solidity.” https://docs.soliditylang.org/en/v0.8.7/. Accessed:
2021-09-12.

[16] A. Antonopoulos and G. D, Mastering Ethereum: Building Smart Contracts and
DApps. O’Reilly Media, 2018.

[17] D. R. L. Brown, “Standards for efficient cryptography (sec 2): Recommended
elliptic curve domain parameters.” http://www.secg.org/sec2-v2.pdf,
2010. Accessed: 2021-10-11.

[18] C. S. Calude, “Quantum randomness: From practice to theory and back,” in The In-
computable: Journeys Beyond the Turing Barrier (S. B. Cooper and M. I. Soskova,
eds.), Theory and Applications of Computability, pp. 169–181, Springer Interna-
tional Publishing, 2017.

[19] M. Cao, “elliptic-curve-solidity.” https://github.com/witnet/
elliptic-curve-solidity. Accessed: 2021-10-03.

[20] M. Cao, “vrf-solidity.” https://github.com/witnet/vrf-solidity.
Accessed: 2021-10-03.

[21] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Včelák, “Verifiable Random
Functions (VRFs),” Internet-Draft draft-irtf-cfrg-vrf-10, Internet Engineering Task
Force, Nov. 2021. Work in Progress.

[22] R. L. Graham, “Euclidean ramsey theory,” in Handbook of Discrete and Com-
putational Geometry, Second Edition (J. E. Goodman and J. O’Rourke, eds.),
pp. 239–254, Chapman and Hall/CRC, 2004.

[23] M. Haahr, “RANDOM.ORG: true random number service.” https://www.
random.org.

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://mathworld.wolfram.com/QuadraticSieve.html
https://mathworld.wolfram.com/QuadraticSieve.html
https://www.randao.org/
https://www.randao.org/
https://revelry.co/resources/development/critical-randao-vulnerability/
https://revelry.co/resources/development/critical-randao-vulnerability/
https://docs.soliditylang.org/en/v0.8.7/
http://www.secg.org/sec2-v2.pdf
https://github.com/witnet/elliptic-curve-solidity
https://github.com/witnet/elliptic-curve-solidity
https://github.com/witnet/vrf-solidity
https://www.random.org
https://www.random.org

BIBLIOGRAPHY 45

[24] D. E. E. III, S. D. Crocker, and J. I. Schiller, “Randomness recommendations for
security,” RFC, vol. 1750, pp. 1–30, 1994.

[25] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in 40th Annual
Symposium on Foundations of Computer Science (Cat. No.99CB37039), pp. 120–
130, 1999.

[26] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[27] T. Shinbrot, C. Grebogi, J. Wisdom, and J. Yorke, “Chaos in a double pendulum,”
American Journal of Physics, vol. 60, pp. 491–499, June 1992.

[28] S. P. Vadhan, “Pseudorandomness,” Found. Trends Theor. Comput. Sci., vol. 7,
no. 1-3, pp. 1–336, 2012.

[29] J. Walker, “HotBits: genuine random numbers, generated by radioactive decay.”
https://www.fourmilab.ch/hotbits/.

https://www.fourmilab.ch/hotbits/

	1 Introduction
	1.1 Goal and Motivations

	2 The Problem With Randomness
	2.1 Randomness in Computer Systems
	2.2 True Randomness Versus Pseudorandomness
	2.2.1 The Cost of Pseudorandomness

	2.3 Integrity of Random Numbers in a Blockchain Environment
	2.3.1 Blockhash as a Source of Pseudorandomness
	2.3.2 Randomness in Games on a Blockchain

	3 Background
	3.1 Blockchain
	3.1.1 Ethereum

	3.2 Smart Contracts in Solidity
	3.3 Entropy
	3.4 True Randomness
	3.4.1 General Solution for Creating True Random Bits
	3.4.2 Practical Solutions to Generate Randomness

	3.5 Pseudorandomness
	3.5.1 The Seed

	3.6 Randomness and Its Role in Key Generation
	3.7 Public Key Cryptography
	3.7.1 Elliptic Curve Multiplication

	3.8 Hash Functions
	3.8.1 Keccak-256

	3.9 Digital Signatures
	3.10 Probabilistic Algorithm
	3.11 Formalization of a Verifiable Random Function
	3.11.1 Generator, Evaluator and Verifier
	3.11.2 Property Requirements of a VRF
	3.11.2.1 Domain-Range Correctness and Complete Provability
	3.11.2.2 Unique Provability
	3.11.2.3 Residual Pseudorandomness

	4 Common Practical Solutions and Related Work
	4.1 Common Methods to Provide True Random Numbers
	4.1.1 The Oracle Pattern

	4.2 Common Methods to Provide Pseudorandom Numbers
	4.2.1 Blockhash as a Source of Randomness
	4.2.2 Commit-Reveal
	4.2.3 Collaborative Scheme
	4.2.4 Chainlink
	4.2.4.1 Accessing Pseudorandomness Through Chainlink VRF
	4.2.4.2 Chainlink VRF Implementation Details

	5 The VRF-Approach
	5.1 Components of a Verifiable Random Function
	5.1.1 Creating a Key-Pair
	5.1.2 Creating the Proof
	5.1.3 Pseudorandomness From the Proof
	5.1.4 Verification of the Proof
	5.1.4.1 VRF-Solidity

	5.2 The Implementation
	5.2.1 The Coin Flipper
	5.2.1.1 Possible Attacks Against the Owner
	5.2.1.2 Censorship by Miner

	5.2.2 The Elliptic-Curve Proof Factory
	5.2.3 The RSA Proof Factory
	5.2.4 Generating Key-Pairs and Proofs Offline with Go
	5.2.4.1 Creating Proofs for Elliptic Curve Based VRFs with Go
	5.2.4.2 Creating Proofs for RSA Based VRFs with Go

	6 Conclusion and Future Work

