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Abstract

Like Bitcoin, Cardano is an Unspent Transaction Output (UTXO) based blockchain.
However while on the Bitcoin blockchain UTXOs are spent by basically signing
transactions with a private key (using a very limited scripting language), Cardano
allows arbitrary validation logic by introducing the Haskell based Plutus script-
ing language to define spending conditions. Cardano’s UTXO model demands a
different design approach for decentralized applications than the more common ac-
count model (used for instance by Ethereum). So, simply taking a smart contract
from Ethereum and translating it ”from Solidity to Plutus” is often a bad idea. In
this paper I describe how a ’concurrency problem’ can arise when multiple parties
simultaneously try to use an ’Ethereum-style’ decentralized exchange (DEX) on
Cardano and implement a simple solution. Multiple teams in the Cardano ecosys-
tem are implementing or have already implemented concurrent DEXs by the time
of writing this paper, but no Automated Market Maker (AMM) style DEX has gone
live on the Cardano mainnet yet.
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Chapter 1

Introduction

In 2021, the ’Alonzo’ hard fork brought smart contract capability to the Cardano blockchain.
A few days before the mainnet hard fork, the ’concurreny issue’ became a hot topic in some
cryptocurrency social media channels. The reason: Minswap, one of the teams building a DEX
for the Cardano blockchain, had gone live with a test version of their application on the public
testnet and most people wanting to try it out just got this message:

Figure 1.1. UTXO missing..

In a blogpost [1], Minswap appologized for the bad user experience but also argued that
testnets exist to improve unfinished products: ”Minswap has known about the concurrency
challenge since we first began building on Cardano over 6 months ago”, they wrote. ”It’s an
issue that every competent team and development lab building DeFi protocols on Cardano must
overcome. It’s not a fundamental flaw, but is simply a design challenge that must be addressed.”
About a month later they published a Medium article, introducing their solution called Laminar
[2] as ”an eUTXO scaling protocol for accounting-style smart contract”. Sundaeswap, another
project on Cardano, described the ’concurrency issue’ faced by a UTXO-style DEX already
earlier, in their first whitepaper [3] published on June 1 2021. ”Because any given eUTXO
can only be spent once, as part of one transaction, it appears as if only one swap can happen
per block”, they explained. ”On the Cardano blockchain, there is roughly one block every 20
seconds. This would be abysmal throughput for a decentralized exchange.”
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1.1 The extended UTXO model
To understand the ’concurrency issue’ it is important to understand Cardanos UTXO archi-
tecture. UTXOs are easiest explained with the cash analogy. While users of account based
blockchains like Ethereum control an account whose value can be increased or decreased, users
of the Cardano blockchain just control a bunch of UTXOs, all containing a certain value. As the
first letter in ’UTXO’ says, these outputs are ’unspent’, exactly like a banknote kept in a phys-
ical wallet. And in the same way as a banknote can be spent, these UTXOs can be spent only
as a whole. So, a crypto wallet holding a UTXO worth 100 Ada (Ada being Cardano’s original
currency) wanting to pay 20 Ada to a seller, has to put the whole amount into the transaction.
The transaction will then have two outputs: a UTXO worth 20 Ada for the seller and a UTXO
worth 80 Ada (minus the transaction fee, to be precise) going back to the buyer. Summarizing
the result of the buy transaction: One UTXO has been spent (and will be unusable in the future)
and two new UTXOs have been created (and will be usable by the the seller/buyer once the
block recording the transaction is included in the ledger state).

Figure 1.2. UTXO style vs accounting style ledger representation.

Figure 1.2 shows the difference between the UTXO and account style model: the first ma-
nipulates the ledger state through ’destruction and creation’ without changing the state of vari-
ables, the second changes the ledger state through manipulation of global (account) variables.
The reason why both these models exist is explained by Chakravarty et al. [4] as follows:
”Ethereum chose the account model explicitly to facilitate more expressive smart contracts. On
the other hand, Bitcoin chose UTXO also for good reasons, including that its semantic model
stays simple in a complex concurrent and distributed computing environment. This raises the
question of whether it is possible to have expressive smart contracts, while keeping the semantic
simplicity of the UTXO model.” The answer given to this question by Cardano (and the authors
of the above cited paper) is the eUTXO, the extended UTXO. There are four major concepts
that transform a UTXO into a eUTXO:

• The first extension is that the eUTXO is associated to a ’Validator’ (or to be more precise:
to an address given by the hash of the validator script) instead of to a public key. The
validator script is a function that must evaluate to True in order to unlock UTXOs sitting at
the address given by that very same validator script. Similarly in Bitcoin, scriptPubKeys
are represented as BitcoinScriptAddresses with the Pay-To-Script Hash (P2SH).

• The second change is that the eUTXO contains a ’Datum’, which allows it to carry some
state. To be more precise: currently, a eUTXO just contains the hash of the Datum and
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the spending transaction must provide the actual Datum value.

• The third extension is the ’Redeemer’: To spend an eUTXO, this Redeemer must - as with
the datum - be passed as a parameter into the validator script. The Redeemer typically
describes an action. For instance if an eUTXO carries in it’s Datum an exchange rate
as state, a Redeemer ’update’ could trigger a certain part of the validation logic in the
validator. So a validator script could contain the condition that updating the state of the
exchange rate is only possible for the party having created the original eUTXO while
other actions like ’use’ can be performed by arbitrary users.

• The last change is that the validator script of an eUTXO sees the whole transaction that is
currently being validated (a transaction can include as inputs and outputs multipe UTXOs
from different script addresses and private addresses). This information, called the con-
text, is passed into the validator as an additional argument of type ScriptContext. As the
authors of the eUTXO paper explain: ”The information supplied in the context enables
the validator to enforce much stronger conditions than is possible with a bare UTXO
model — in particular, it can inspect the outputs of the current transaction, which is es-
sential for ensuring contract continuity.” In the example mentioned in the previous point,
this contract continuity would be: the eUTXO containing the exchange rate can only be
spent in a transaction if a new UTXO is produced in the same transaction that also con-
tains the exchange rate and is associated to the same script address. If this validation rule
is not enforced, the exchange rate state and thus the contract continuity could get ’lost’.
Figure 1.3 shows the most important component of the ScriptContext, the TxInfo record.
It contains, as mentioned above, the list of all the outputs and all the inputs of the trans-
action, and also for example the amount of fees paid for the transaction (txInfoFee) or the
amount of new tokens minted (txInfoImint)

Figure 1.3. Some components of the ScriptContext.

Figure 1.4 shows a Bitcoin style spending transaction, and spending UTXOs from private ad-
dresses on Cardano works this way as well. The UTXO is represented by the circle in the
middle, coming as output from one transaction and going as input into a new transaction. Fig-
ure 1.5 shows the spending of a eUTXO sitting at a validator script address (again represented
as the circle). For simplicity reasons I will not differentiate between UTXOs and eUTXOs from
now on and just call them UTXOs.
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Figure 1.4. From simple private key valida-
tion..

Figure 1.5. ..to arbitrary validation logic.

Another remark about wording in this paper: most of time, the term ’smart contract’ is
used to describe programs that are stored on a blockchain and run when certain conditions are
met. For clarity reasons I will try to avoid it in this paper, because the term ’smart contract’ is
somehow misleading when it comes to Cardano (or any other UTXO style blockchain). Plutus
scripts can do nothing else than returning ’True’ or ’False’; they only validate transactions
and never initiate an action on the blockchain on their own the way as an Ethereum smart
contract can. Such an action (following a successful script evalution) must be done with off-
chain code. As Cardano Founder and CEO of the development company of the blockchain Input
Outuput Global (IOG) suggested, the term ’programmable validators’ is therefore better suited
to describe how Cardano imposes the terms of a contract.

Figure 1.6. No more smart contracts.

1.2 The ’concurrency issue’
Combining the fact that the state of an Ethereum style smart contract is contained in a UTXO
on Cardano (e.g. the ’exchange rate UTXO’ described above) and the fact that a UTXO can
only be spent once brings us back to the core of the ’concurrency issue’: what if two users
simultaneously want to include the exchange rate contained in the UTXO in their transactions?
Only one of them will get the desired input while the other user will have to try building the
transaction again one block later. In this concrete case, the ’concurrency issue’ is easily solved:
A so-called ’oracle’ that provides the exchange rate as a service can produce (and update)
multiple exchange rate UTXOs for multiple users instead of just one, all containing the same
exchange rate. However if the UTXO contains as state a liquidity pool instead of an easily
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reproducible exchange rate, the ’concurrency issue’ becomes more difficult to solve. This is
the case for the DEX with automated market maker (AMM) functionality that I will describe
in detail below. For now just this: An AMM-DEX UTXO contains two currencies that form
a liquidity pool together. How liquidity pools work is described for example in Cryptopedia
[5]. One key takeaway from the article is that slippage - the percentage change in the effective
price paid in a trade relative to the expected price given by the state of the liquidity pool before
the trade - is a big concern in markets/pools with low liquidity. So even though in theory it
is possible to split an AMM-DEX UTXO in multiple AMM-DEX UTXOs, each containing a
fraction of the two currencies from the original UTXO, this is a bad idea because of increasing
slippage.

Given this contention problem over a liquidity pool, a DEX on Cardano could try to avoid
having to deal with such a global state altogether and instead implement the orderbook pattern
that is traditionally used by centralized exchanges.

The orderbook pattern An order book is basically a list of open buy and sell offers for
specific amounts of currency and every buy order needs to be matched with a sell order. IOG
describes the order book pattern and Cardano in their docs [6] as a natural fit: ”Every order
is a single UTXO, and matching a set of orders means building a transaction that spends the
relevant UTXOs. The UTXOs are script UTXOs with a known address and a datum value that
holds the quoted price and some bookkeeping information (for example, an address to pay the
money to, and an expiration date). The currency value locked in the UTXO is the ’inverse’ of
the order.”

While there were lots of discussions in Cardano forums about the development progress of
different AMM-DEX projects, the until then little known Muesliswap DEX [7] went live on the
mainnet at the end of November using the order book pattern. Three weeks later, it had already
approached the number of 50’000 transactions with its backbone smart contract, making it the
most used contract in the still short Cardano ’Alonzo’ era network history.

As suggested by IOG, a UTXO paid to the Muesliswap contract contains in the Order(Datum)
the name and quantity of the coin the user wants to buy (see Figure 1.7). As value, the UTXO
contains the amount of the currency the user wants to sell in exchange for his buy offer. If
an independent matchmaker then finds an ’inverse’ offer UTXO in the ledger, he can submit a
transaction with both offer UTXOs as inputs. In order for the transaction to be successful, the
’FullMatch’ part of the ’mkOrderValidator’ shown in Figure 1.8 must evaluate to True for both
UTXOs. The central function in it being ’correctFull’: It checks that the transaction contains
outputs to the two public keys defined in the OrderDatum of the order UTXOs. The Can-
celOrder Redeemer can be triggered with only one input and comes with only one condition:
only the party that has created the UTXO can spend it (i.e. transfer it back to his own wallet).
This means that as long as no one else includes the order in a swap transaction with the redeemer
(called OrderAction in mkOrderValidator) ’FullMatch’, it can be cancelled by the owner.

Figure 1.7. Setting the terms for a currency exchange.
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Figure 1.8. Conditions given by the validator script.

Also the Sundaeswap team argues, that ”an order book model for an exchange, which on
Ethereum is disastrously expensive to maintain and update, seems more fundamentally suited
to Cardano”. But they see a potential liquidity problem, meaning that no trades can be made
because sell and buy offers are too far apart. ”Most pools on decentralized exchanges are thinly
traded”, they write in a blogpost [8]: ”Uniswap, for example, has over 8,000 trading pairs. If
we rank the pools by trading volume and examine 30, we see only a couple of trades per hour.
Consequently,we felt that a pure orderbook without the support of an AMM would be a poor
fit.”

Automated Market Maker Automated market makers (AMM) try to solve the problem of
illiquid markets by incentivizing users to provide liquidity for a share of the trading fees. The
bigger the liquidity, the less slippage will occur, as mentioned above. But even with very low
liquidity, trading is always possible whereas an order book would maybe find no matches at
all. Protocols like Bancor or Uniswap and basically all DEXs on account style blockchains use
AMMs.

1.3 Outlook
Given the two main architectures, I decided to implement a DEX that allows concurrent swaps
based on the AMM model. In the following chapters I will introduce my solution to the ’con-
currency issue’, which is based on a simple batching mechanism first presented by ”Meld” in a
Medium article [9] in mid 2021. The general idea is the following: Instead of letting the users
interact directly with the contested liquidity pool state, the application allows them to make
reservations. These reservations then get aggregated into one transaction involving the liquidity
pool state.

In the following chapter, I will first briefly introduce an AMM DEX that doesn’t address the
’concurrency issue’. Then I will show how to go from there to a concurrent DEX by introducing
a reservation layer between the user and the swap transaction. In chapter 3, I will describe this
reservation layer in detail, e.g by showing what conditions must be satisfied to make or to
retrieve a reservation. In chapter 4 I then present the swap layer which contains the core logic
of my application: It validates the swap of the aggregated reservations and makes sure that
all swap participants receive the correct amount given the state of the liquidity pool. While
chapters 3 and 4 describe on-chain code, in chapter 5 I introduce the importance of off-chain
code for decentralized applications on Cardano. I also address the question whether applications
on Cardano can be considered as truly decentralized even though they rely heavily on off-chain
code.
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Chapter 2

Dex-Design

As (non-concurrent) basis for my project, I took the already existing application presented in
a lesson of the Plutus Pioneer Program [10] organized by Lars Brünjes, director of education
at IOG. The app uses several Uniswap modules [11] from the Plutus library that I used as
well, adjusted according to my needs and renamed as Swap modules in the src directory of my
project.

The functioning of the original DEX is summarized in Figure 2.1. Tx2 describes the creation
of a liquidity pool with currencies A and B. The DEX lets an arbitrary user create such a liqudity
pool - this pool technically just being a UTXO sitting at the pool script address as described
above. Bob can spend the PoolAB UTXO (resp. use it in his transaction) by fulfilling the
conditions given by the PoolAB validator script. The most important part of the validation logic
being that during the spending transaction (Tx3), a new UTXO must be created at the same
address and that the amounts of Currency A and B contained in this new UTXO must be high
enough so that their product is bigger then the product of the amounts of A and B in the old
Pool UTXO. The validation logic follows the Uniswap protocol [12] which basically states that
the product of currency A and currency B must slightly increase during a Swap, the increased
value representing fees for the liquidity providers.

In this concrete example, The product A x B in the UTXO is 1’000 x 2’ 000 = 2’000’000
before the execution of Tx3. After Tx3, which adds 100A to the pool and removes 181B from
the pool, the product in the new UTXO is 1’100 x 1’819 = 2’000’900. So, Bob submits Tx3
with - as inputs - the PoolAB UTXO and a UTXO from his own wallet containing 100A. These
100A ’flow’ into the new PoolAB UTXO which in turn allows Bob to decrease the amount of
CurrencyB in the pool by 181B. Changing the amounts of currencyA and currencyB in the pool
of course also affects the exchange rate offered by the DEX. Before the swap, the rate B/A is
equal to 2, after the swap B/A is 1,6536.

Tx4 and Tx5 in Figure 2.1 add respectively remove liquidity from the PoolAB, Tx6 closes
the liquidity pool (under the condidtion that nobody except the user executing the transaction
has any liquidity left in the pool)

The ’concurrency issue’ in this DEX is the fact that only one user can spend the PoolAB
UTXO. Of course, the validation logic forces this user to create a new UTXO containing the
updated state for the next user, but this new PoolAB UTXO is only available once the block
containing Bobs transaction is added to the blockchain. This limits the DEX usage to one swap
per block, with Cardano having a block interval of about 20 seconds.

Reserving instead of swapping To bring concurrency into this system, an additional layer
can be introduced in front of Tx3, which I will call reservation layer in this paper. Thanks to
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Figure 2.1. Creation (Tx2), use (Tx3), manipulation (Tx4, Tx5) and closure (Tx6) of a liquidity
pool.

this layer, users don’t interact directly with the Swap state and thus with the UTXO sitting at the
address of the Pool validator script anymore. Instead, they create swap orders without touching
the PoolAB UTXO. A batcher then combines these swap orders into one final transaction. As
mentioned above, this Idea was first presented by ”Meld” [9]. Figure 2.2 shows these two layers,
respectively transaction phases. Same as in Tx3 in Figure 2.1, the ’Apply’ transaction takes as
input the State (called PoolAB in Figure 2.1). But instead of just Bob’s private UTXO, there are
now several inputs, representing the swap orders coming out of several Reserve transactions.

Figure 2.2. Including multiple swap orders into one ’Apply’ transaction.

Figure 2.3 shows how these inputs are produced in earlier blocks. In Block 2, Reserve 1
is spent to create Step 1; in Block 3, Reserve 3 is spent to create Step 3; in Block 4 finally,
Step 1 and Step 3 together with Reserve 2 and State from Block 1 are spent as part of the Swap
transaction. The outputs of this transaction will be used as inputs for the next Swap to repeat
the cycle.

In the reservation layer (left part of Figure 2.2), users can spend Reserve UTXOs and convert
them into Steps (as done in Block 2 and Block 3 in Figure 2.3). In my DEX and so from now
on I will call the ’Reserve’ a unused reserve UTXO and the ’Step’ a used reserve UTXO.
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Figure 2.3. Getting the transaction inputs from previous blocks.

It is important to note that the batcher (i.e. the party that executes the ’Apply’ transaction)
cannot only include used reserve UTXOs in the transaction but must also include all the unused
ones. This guarantees that no reservations are left out of the transaction and thus makes the swap
deterministic. This idea was explained in the above-mentioned Medium article [9]. A weakness
of this architecture however is that it leads to unnecessarily large transactions volumes if a lot
of unused reserve UTXOs have to be included into swap transactions repeatedly. I addressed
this problem by making the number N of Reserve UTXOs variable with a simple mechanism
that I will describe later in the paper.

The ’Command’ datatype below describes the command line interface of the Dex applica-
tion. In my implementation, I have added the functionalities ’Reserve’, ’Retrieve’ and ’Re-
serveFunds’, while the first seven commands were already available in the original IOG version
(and shown in Figure 2.1). ’ReserveFunds’ doesn’t trigger a transaction, it only looks for used
reserve UTXOs on the blockchain and reports back how many there are and the total value
of currencies to swap they contain. ’Reserve’ takes as parameters two amounts (Integers) and
two currencies (Chars). Executing this command will create a used reserve UTXO containing
amount int1 of currency char1 and amount int2 of currency char2. Typically, one of these two
amounts will be zero as it makes no sense swapping A against B and B against A at the same
time. ’Retrieve’ takes as arguments two currencies (chars). This command cancels a Reserva-
tion if there is a used reserve UTXO and if the transaction is initiated by the creator of the used
reserve UTXO. Retrieve only cancels one reservation, so if a user made several reservations and
wants to cancel all of them, he has to submit several retrieve transactions.

data Command =
Funds

| Pools
| Create Integer Char Integer Char
| Add Integer Char Integer Char
| Remove Integer Char Char
| Close Char Char
| Swap Char Char
| Reserve Integer Char Integer Char
| Retrieve Char Char
| ReserveFunds

So basically, the first seven commands initiate actions in the Swap layer, while the last three
affect the Reservation layer. I will describe the two layers in the following two chapters, starting
with the Reservation layer.
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Chapter 3

Reservation layer

As already described above, a reserve UTXO can either be used or unused. This state is encoded
in the Datum of the UTXO, called ReserveDatum. Addtionally, the Datum tells which liquidity
pool the reserve UTXO is made for, how many reserve UTXOs are currently in circulation
(encoded by the Integer) and - if the state is ’Used’ - which public key made the reservation.

data ReserveDatum = Unused LiquidityPool Integer
| Used LiquidityPool PubKeyHash Integer

The Datum of the reserve UTXOs in Block 1 in Figure 2.3 is ’Unused’ while the reserve
UTXO produced by the transaction in Block 2 has the Datum ’Used’. Depending on the state of
the Reserve UTXO, different actions are possible. These possible spending actions are checked
by the reserve validator script and defined by the ReserveRedeemer:

data ReserveRedeemer = Reserve | Retrieve | Include | Destroy

As the Reserve validator script below shows, a Reserve UTXO in the ’Unused’ state can
either be reserved, included or destroyed. A Reserve UTXO in the ’Used’ state can be retrieved
or included. When a new pool is created, a fixed number of Reserve UTXOs must be created in
the same transaction and they are all in the ’Unused’ state. After having been used and included
in a swap, the state of all the Reserve UTXOs is ’Unused’ again. The last two conditions are
not set by the reserve validator script but by the swap validator script that I will describe in the
next chapter.

mkReserveValidator u rs ps reserveDatum reserveRedeemer ctx =
case reserveDatum of

(Unused lp n) -> case reserveRedeemer of
Reserve ->

outputContainsFee &&
outputHasToken &&
correctLiquidityPool &&
correctNrReserveTokens

Include ->
poolStateCoinIncluded

Destroy ->
uniswapIncluded &&
outputStateUnused outputDatum
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(Used lp pkh n) -> case reserveRedeemer of
Retrieve ->

(Validation.txSignedBy info pkh) &&
outputHasToken &&
outputStateUnused outputDatum &&
correctLiquidityPool &&
correctNrReserveTokens

Include ->
poolStateCoinIncluded

In the following paragraphs I will describe the different redeemer actions Reserve, Retrieve,
Include and Destroy one by one.

Reserve To swap A against B, a user creates a used reserve UTXO containing the amount
of A he wants to swap and the hash of his public key so that the party performing the swap
knows to what address to pay the swapped amount of B to. This is the ’Reserve’ action de-
scribed in Figure 2.2. Figure 3.1 shows a transaction including a Reserve spending action in
detail with all the inputs and outputs. This transaction must satisfy the conditions given by the
mkReserveValidator function (code above, lines 5 to 8):

• outputContainsFee: The Fee in Ada must be part of the Value of the output reserve
UTXO. During the swap transaction, this fee will be paid to the wallet of the user per-
forming the swap.

• correct liquidity pool: Because all Reserve UTXOs from all existing liquidity pools have
the same Reserve Address, The lp value in the ReserveDatum associates them with the
correct liquidity pool. So, to make a reservation for PoolAB, the user needs to attach a
datum with the lp value ’AB’.

• correct number of reserve tokens N: the datum also keeps track of the number of reserve
UTXOs currently in circulation. By making a reservation, the user must not change this
number. The number of reserve UTXOs only changes during the swap transaction: It
increases if the reserve UTXOs are heavily used and decreases if the Reserve UTXOs are
not much used.

• It is maybe noteworthy that the Reserve validator doesn’t force the user to create a ’Used’
Reserve UTXO or to provide his public key in the ReserveDatum, as by not doing so it
would be to his own disadvantage.

• outputHasToken: Every Reserve UTXO contains a ReserveCoin in it’s value. N of these
Coins are minted when the pool is created and burned when the pool is closed. Coins
to identify UTXOs are very common on the Cardano blockchain. The reason is that
validation only takes place when a UTXO is spent. The creation of a UTXO at a script
address on the other hand comes with no restrictions. So nothing can stop a user from
creating additional Reserve UTXOs for a certain pool. But having a potentially infinite
number of Reserve UTXOs would make it impossible to demand that all reserve UTXOs
must be included in the swap transaction in order to make it deterministic. So, instead of
collecting all the Reserve UTXOs, the swap transaction collects all the Reserve UTXOs
containing a ReserveCoin.

11



ownOutput :: TxOut
ownOutput = case [ o | o <- getContinuingOutputs ctx ] of

[o] -> o
_ -> traceError "expected only one Reserve output"

outputHasToken :: Bool
outputHasToken = isUnity (txOutValue ownOutput) rs

The first function inspects the transaction context for outputs to the same script address
as the address of the UTXO currently being validated (the reserve script address in this
case). There must only be one such output, meaning that the validator doesn’t allow
transactions with two or more simultaneous reservations. The second function checks if
the discovered output contains the above mentioned ReserveCoin (rs).

Figure 3.1. Creating a used reserve UTXO.

Retrieve The validation conditions for the ’Retrieve’ action are much simpler: The reserve
UTXO must be in the ’Used’ state as it wouldn’t make sense to retrieve a unused reservation.
And the public key hash in the ReserveDatum must be the one from the users wallet perform-
ing the retrieve action. This guarantees that only the creator of a reservation can retrieve it.
Additionally, the user is forced to create a new ’Unused’ Reserve UTXO containing the Re-
serveCoin so that no reserve UTXOs are missing for the next Swap. correctLiquidityPool and
correctNrReserveTokens are checked for the same reasons as in a Reserve action: The newly
created unused reserve UTXO must be associated to the same liquidity pool as the old one and
track the same number of reserve UTXOs in circulation.

Figure 3.2. Cancelling a reservation and recreating a unused reserve UTXO.

Include The most important action is obviously ’Include’. It can be performed whether the
UTXO is ’Used’ or ’Unused’ and comes - maybe surprisingly - with only one condition: pool-
StateCoinIncluded. The reason for this is that the validation is delegated to the poolAB. The
delegation works as follows: In the same way that a ReserveCoin identifies a Reserve UTXO, a
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poolStateCoin identifies a Pool UTXO. So by making sure that the poolStateCoin is part of the
transaction, we also guarantee that the Pool UTXO is spent in that transaction. And the Pool
UTXO can only be spent by satisfying its own validation logic (described in the following chap-
ter). So by requiring the presence of the poolStateCoin, the Reserve validator script delegates
the ’Include’ validation to the Pool validator script.

This makes sense also for efficiency reasons. As IOG writes in a blog post [13]: ’When
adopting such a batching pattern, one should bear in mind that, whenever N orders sitting at the
request script are consumed within a single transaction, the request script will be executed N
times on transaction submission.’ Meanwhile, there is only one single state given by the poolAB
UTXO, and so the Pool validator script is only executed once during the swap transaction.

Destroy The fourth and last possible action for a Reserve UTXO is ’Destroy’. This action
can only be performed if the UniswapCoin is present in the same transaction. So again, this is
a case of delegation of validation logic, this time by making sure that a ’PoolFactory’ UTXO
containing the UniswapCoin is spent in the same transaction. Above, I used the term ’Pool
validation logic’ when talking about the spending of the ’Pool’ UTXO while in the present
context I’m talking about the spending of a ’PoolFactory’ UTXO. Under the hood though, there
is only one validator script (shown in simplified version below) for both of them. The Factory
and the Pool UTXOs are UTXO instances sitting the same address, but differentiated by their
Datum (either being ’Factory’ with a list of liquidity pools or ’Pool’ with a specific liquidity
pool and an amount of liquidity coins). Because the ’PoolFactory’ instance contains as value the
UniswapCoin (us, passed into the validation logic in lines 8, 10 and 11 below), it can be spent
with the Redeemers ’Create’ or ’Close’ as shown in the simplified code below. For a UTXO
not containing this coin, validateCreate, validateCloseFactory and validateClosePool would not
validate.

mkUniswapValidator :: Uniswap
-> UniswapDatum
-> UniswapAction
-> ScriptContext
-> Bool

mkUniswapValidator us Factory Create = validateCreate us
mkUniswapValidator _ Pool Swap = validateSwap
mkUniswapValidator us Factory Close = validateCloseFactory us
mkUniswapValidator us Pool Close = validateClosePool us
mkUniswapValidator _ Pool Remove = validateRemove
mkUniswapValidator _ Pool Add = validateAdd
mkUniswapValidator _ _ _ = False

So, coming back to the Reserve UTXOs: given the delegation of validation, they can and
must be destroyed - respectively their ReserveCoins must be burned - when a Pool is closed and
so this condition is included in the ’validateClosePool’ function. Burning the coins is important,
because otherwise lingering ReserveCoins would exist that could be used to create additional
valid Reserve UTXOs. A second condition for destroying reserve UTXOs, also given by the
mkUniswapValidator, is that the state of the reserve UTXOs being ’destroyed’ must be unused.
otherwise, the user that made the reservations would loose his money.
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Chapter 4

Swap layer

Swap After having described the reservation layer, I’m coming now to the second layer, in
which the ’Apply’ transaction from Figure 2.2 takes place. As already mentioned, the (used
and unused) reserve UTXOs must be included in this transaction with the redeemer ’Include’.
And as also mentioned, the validation logic is delegated to the spending of the pool UTXO
through the ’poolStateCoinIncluded’ function. Figure 4.1 shows all the inputs and outputs of
this transaction.

Figure 4.1. Swapping the orders made by Wallet1 and Wallet2.

As Figure 4.1 shows, the Pool UTXO is spent with the ’Swap’ redeemer. This triggers the
’validateSwap’ function, the ninth line of the mkUniswapValidator script above shown here in
more detail:

mkUniswapValidator _ c r (Pool lp _) Swap ctx = validateSwap r lp c ctx

To evaluate to True, validateSwap must fulfill the following conditions:

allClientsReceiveCoins &&
allReserveOutputsPresent &&
allReserveInputsPresent &&
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checkSwap oldA oldB newA newB &&
(isUnity inVal c) &&
(isUnity outVal c) &&
noUniswapMinting

• allReserveInputsPresent: This condition makes sure that all the reservations - whether
they are ’Used’ or ’Unused’ - are included in the swap transaction. The function gets the
correct amount of reserve UTXOs from the Datum of any of the reserve UTXOs.

• allReserveOutputsPresent: Part of the swap validation is a mechanism to determine the
number N of Reserve UTXOs for the next reservation round. This is done by looking at
the ratio r of the used number to the total number of reserve UTXOs. If r is above 0.7, an
additional ReserveCoin is minted and included (in an additional Reserve UTXO) in the
transaction output. If the ratio is below 0.3 and there are more then 3 reserve UTXOs in
the transaction input, a ReserveCoin is burned. The allReserveOutputsPresent function
checks that the transaction output contains exactly the new number of reserve UTXOs
(nrNewRes).

nrNewRes
| nrUsedRes/nrOldRes >= .7 = nrOldRes + 1
| nrUsedRes/nrOldRes <= .3 = max 3 (nrOldRes - 1)
| otherwise = nrOldRes

This is a very simple way of adjusting the number of reserve UTXOs. It could of course
be done in a more sophisticated way by determining the newNrReserveTokens based on
the information of multiple previous rounds instead of just one.

• allClientsReceiveCoins: This is really the core function of my whole program. It makes
sure that everyone that made a reservations will receive the correct amount out of the
swap transaction. To validate, the following function must evaluate to True:

allClientsReceiveCoins = valuesToPay == valuesPaid

’valuesPaid’ is a list of all the payments to all the PublicKeys observed in the transaction.
It is easy to get thanks to the ScriptContext parameter that contains this information.

’valuesToPay’ is more difficult to construct. The goal for this function is to be determin-
istic (meaning that given a set of inputs, it always delivers the same output), so that the
party building the swap transaction cannot manipulate it. A manipulation could be done
for example by first applying all the sell reservations of currencyA to the liquidity pool
and thus increasing the relative amount of currencyA in the pool (resp. lowering the rel-
ative value of currencyA). Then, the swap executor could first apply his own reservation
for buying A before all the others, thus getting currencyA for lower price.

Meld suggests in the above mentioned article [9] applying timestamps to the reservations
and then applying them to the liquidity pool in the order given by these timestamps.

In my implementation though, the reservations are not applied to the liquidity pool one
by one. Instead, the first step is to calculate the difference of the total inputs of currenies
A and B, ’SwapInputAmountA x r - SwapInputAmountB’. r is the ratio of ’totalAmountB
/ totalAmountA’ in the liquidity pool before the transaction and thus the current exchange
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rate. And so ’SwapInputAmountA x r’ is the value of the input of CurrencyA expressed
in terms of CurrencyB. The second step is to apply ’SwapInputAmountA x r - SwapIn-
putAmountB’ to the liquidity pool if the difference is positive (meaning that the value
of all CurrencyA inputs is bigger then the value of all CurrencyB inputs). Otherwise,
’SwapInputAmountB - SwapInputAmountA x r’ is applied.

The following function returns this amount, the second amount being equal to zero in
each case.

amountForSwapInput :: Integer -> (A, B) -> (A, B)
amountForSwapInput r (a,b)

| a * r > b = (a - b / r, 0)
| otherwise = (0, b - a * r)

So only either CurrencyA or CurrencyB is applied to the liquidity pool (or neither, in case
of TotalCurrencyA * r = TotalCurrencyB). If CurrencyA is applied, that means that the
total value of all the CurrencyA inputs (in terms of CurrencyB) is bigger then the total
value of all the CurrencyB inputs. So the users that made reservations to sell CurrencyA
will get all the CurrencyB inputs plus the result of the swap. The users that made reserva-
tions to sell CurrencyB just get the amount TotalCurrencyB / r from the TotalCurrencyA
input.

The result of this logic are the following functions:

totalValA’ :: Amount A
totalValA’

| newA - oldA > 0 = totalValB / r
| otherwise = (oldA - newA) + totalValA

totalValB’ :: Amount B
totalValB’

| newA - oldA > 0 = (oldB - newB) + totalValB
| otherwise = totalValA * r

totalValA’ is the amount that will be distributed between the users swapping CurrencyB
for CurrencyA and totalValB’ is the amount that will be distributed between the users
swapping CurrencyA for CurrencyB. oldA, newA, oldB and newB are the values in the
liquidity pool before and after the swap.

In the transaction shown in Figure 4.1, ’totalValA * r’ is equal to ’totalValB’ (the exchange
rate r, given by 1000A and 2000B, is 2, so the 100 A are worth 200 B). This means that
the inputs can be swapped directly. The suppliers (in this case only one, wallet1) of the
100 A get the 200 B and the suppliers of the 200 B (wallet2) get the 100 A. The PoolAB
UTXO must of course be included in the transaction anyway as it provides the exchange
rate r and as Reserve UTXOs can only be spent in the presence of a PoolStateCoin.

Once the total amount of A and B in the output is known, it must be made sure that the
providers of CurrencyA get the correct share of the output of CurrencyB and vice versa.
This is done by calculating the percentage of the total input of one currency provided by a
user and guaranteeing that he gets the same percentage of the output of the other currency.

16



For example: If User1 supplies 10 percent of the total input of currencyB, he must get 10
percent of the total output of currencyA.

One problem with this implementation was that the equality condition ’valuesToPay ==
valuesPaid’ doesn’t hold if the party performing the Swap transaction himself also made
reservations. This is because the value paid to the public key of the party performing
the swap includes the fees paid by the other users. To solve the problem, reservations
from a public key performing the swap are filterd out before the ’allClientsReceiveCoins’
function is run.

The logic behind this is the following: The validator guarantees certain conditions for all
third party users paying money to the script address. Once these conditions are satisfied
by a transaction and there is still money left to spend, this ’excess’ amount goes auto-
matically to the wallet of the party submitting the transaction. In the case of the swap
transaction this means that once every user gets a UTXO with the percentage of the out-
put he is entitled to, to party performing the swap can take all the rest (thus including the
fees). If he doesn’t agree with this output, he simply doesn’t submit the transaction.

• The four remaining conditions (checkSwap, isUnity inVal c, isUnity outVal c and noUniswap-
Minting) were given by the original Uniswap script, with checkSwap being the imple-
mentation of the above mentioned UniswapV1 protocol. The values for the arguments
oldA and oldB are coming from the Uniswap UTXO being spent in the transaction and
the values of newA and newB from the Uniswap UTXO being created in the transaction.
Getting the amountForSwapInput for one currency (the other being zero) from the func-
tion described on page 16, the app calculates how much of the second currency it can take
out of the liquidity pool without invalidating the checkSwap function.

Create/Close As already mentioned, the transaction creating a Pool UTXO must also create
the correct amount of Reserve UTXOs. For simplicity reasons, I have hardcoded this number
to three in the validator script:

amountOf minted r == 3

The number of ReserveCoins that must be burned when a pool is closed cannot not be hardcoded
because it gets adjusted during every swap transaction in its lifespan. The final number of
ReserveCoins is encoded in the Datum of every reserve UTXO and can be retrieved easily:

amountOf minted r == negate nrReserveTokens

The remaining redeemer actions Remove and Add, invoked to add/remove liquidity to/from
a pool are not impacted by my implementation and so I will not describe them here.
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Chapter 5

On-chain and off-chain components

A potential flaw making my DEX completely unusable would be to not set a maximum amount
for the reservations. I describe this problem in detail because it illustrates very well potential
limitations coming with the fact that script validation takes place in the narrow transaction
context (ScriptContext). The problem is the following: If the total amount of a currency locked
in the reserve UTXOs is bigger then the amount of that currency in the liquidity pool, the
swap cannot happen because the amount of a currency in a liquidity pool must never become
negative (nor zero, as the product of the two currencies must increase with every swap). At the
same time, the swap validator doesn’t allow the swap transaction to leave aside any reservations
as the inclusion of all the reservations is mandatory to make the swap deterministic. So unless
enough reserve UTXOs get cancelled by the users or the amount of the currency in the liquidity
pool increases, the swap transaction can never happen.

The easiest solution for this problem would be to just limit the amounts of currencyA and
currencyB a user can put into a reserve UTXO to the amounts of

oldA/nrReserveTokens
oldB/nrReserveTokens

respectively, where oldA and oldB are the amounts of A and B in the pool before the swap.
Given these conditions, all reservations together could never exceed the amount contained of
the liquidity pool of either currency. But: The PoolAB UTXO that holds the information about
oldA and oldB is not included in the reserve transaction. So, because the validator only sees
the scriptContext and not the whole ledger, the conditions cannot be checked. Including the
PoolAB UTXO is of course no option - as not needing it for every reservation is what made this
DEX concurrent in the first place.

The problem can be solved, though, with minimal on-chain computation. Instead of check-
ing the conditions in the reservation layer, all my DEX implementation does is filter out the
used reserve UTXOs (each containing amtA of currencyA and amtB of currencyB) during the
swap validation with the following lambda function:

(amtA, amtB) -> amtA <= oldA/nrReserveTokens &&
amtB <= oldB/nrReserveTokens

The idea behind this is that the swap validator guarantees the correct output if the user follows
the rule of not reserving more than ’oldA/nrReserveTokens’ of currencyA and ’oldB/nrReserveTokens’
of currencyB. Making sure that this doesn’t happen, meanwhile, is the job of the off-chain code
that I haven’t described yet.

The off-chain part of a Plutus application is code written in Haskell (while the On-chain part
is written in Plutus, a subset of Haskell, and pre-compiled to Plutus core by the GHC plug-in
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called Plutus Tx). The job of the off-chain code is basically to build transactions that can be sub-
mitted to the blockchain and making sure that these transactions will pass the validation logic.
The transaction building, of course, can be done with the ’outside’ knowledge of the whole
ledger state. So it is easy to check the following conditions before submitting the transaction to
the blockchain and abort the process by throwing an error if the conditions are not met:

when (amountA >= poolAmtA/nrReserveTokens) ||
(amountB >= poolAmtB/nrReserveTokens)
$ throwError "reservation exceeds limit"

the values of amountA and amountB to be swapped are coming from the uniswap-client (in the
app directory of my project), which constructs for the user the cli described on page 9. The
uniswap-client submits the command entered by the users via http-request to the uniswap-pab,
which is the server component of the Uniswap app. The ’pab’ in uniswap-pab stands for Plutus
Application Backend [14] and it is - among other things - used to forward user input to the
running contract instances defined in the off-chain code. My program submits the transactions
defined in the contracts to a simulated blockchain initiated by the Plutus.PAB.Simulator module
[15]

The on-chain swap validator script filtering out reservations that exceed a certain amount
could be more sophisticated. For example, it could guarantee that users that made reservations
exceeding the limit get their money back during the swap transaction. This would come with
the advantage of users non having to make sure that the off-chain code (which can be provided
by different implementations for the same on-chain code) aborts transactions with reservations
that are too big. The disadvantage on the other hand is that there is more on-chain computation
which of course is much more expensive then off-chain computation.

Decentralized or not? The example above shows very well the different degrees of decen-
tralization of Cardano apps. One could argue that they are not decentralized at all, since the
on-chain part is just a programmable validator that validates transactions and never jumps into
action otherwise - so there can be no smart contract that waits for reservations and then, once
the are part of the ledger, performs the aggregated swap by itself. But a well written validator
guarantees that exactly the intended (and only the intended) swap can be performed by some
off-chain code.

If these guarantees are properly encoded in the validator script, users don’t need to trust the
party performing the swap. That’s why Sundaeswap, when comparing different architectures for
DEX implementations on Cardano, gave all of them high scores in the category decentralisation
(see Figure 5.1). The only model that doesn’t get the highest decentralization score, ’Governed
Scoopers’ is the one they decided to implement. As they explain in a Medium article [16],
they first leaned towards the ’Escrow Tokens’ model, which is the one I implemented for this
thesis. ”Unfortunately”, they note, ”this solution crashes head first into the sizing limits of the
Cardano blockchain”, explaining that ”in practice, our first implementation of this was hitting
the Cardano protocol limits with 5 or 6 escrow tokens, before even adding in features like
governance.”

They decided to sacrifice a little bit of decentralization for better scores in other categories.
”If you can trust your aggregators to consistently and fairly choose which orders to include, you
no longer need escrow tokens, for example. You can focus on that contention-less on-ramp,
and on protocol composability”, they explain. SundaeSwap will try to establish a ”limited
amount of trust in the aggregators” by, as one of the mechanisms, licensing them and giving the
SundaeSwap community the power to revoke these licences via a vote.
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Figure 5.1. Scores given to different DEX architectures by Sundaeswap [16].
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Chapter 6

Conclusion

Further development The Sundaeswap arguments in the previous chapter show that my DEX
implementation is hardly usable as a real world application (in addition to the fact that I didn’t
use the newest version of the Plutus language and the PAB as these components were still
evolving when I started writing this thesis), but it demonstrates how the problem of a single
state being under a lot of contention can be solved by introducing an additional layer. This
pattern will - in combination with other techniques - surely be used in some AMM-style DEXs
appearing on the Cardano blockchain in the coming months.

A quite radical way to avoid triggering the N reserve validator scripts that come with the
additional reserve layer while still having the same degree of concurrency was presented in
September by IOG in the already mentioned blogpost [13]. The idea is that users only send
a notification to the reservation layer and the order itself to their own public key address. All
order UTXOs sitting at wallet addresses must contain an ’order’ token so that the batcher can
identify them and build the aggregated swap transaction. Because the orders are sitting at public
key addresses, no validator script has to be run to spend them (the notifications in the reserva-
tion layer are only inspected to find the orders, but not spent). This pattern comes with the
disadvantage though that all users must be online to sign the aggregated transaction to authorize
the spending of their orders.

Additionally, IOG is developing hydra heads [17] as an isomorphic layer 2 solution where
DEXs could build their swap transactions in the future. This would solve the problem of the
transaction size limit that stopped Sundaeswap from further developing their ’Escrow Tokens’
model.

Worth the trouble? Given the difficulties of building a concurrent AMM style DEX on Car-
dano: Is the UTXO model worth it? My personal opinion is of course of little relevance, espe-
cially as I have no experience building DEXs on account-style blockchains. But still, a number
of strong arguments in favour of the UTXO model seem obvious to me. First and most impor-
tantly: In contrast to f.ex Ethereum, on the Cardano blockchain a correctly built transaction can
never fail in mid-script execution. As IOG explains [18], ”the success or failure of transaction
validation depends only on the transaction itself and its inputs, and not on anything else on the
blockchain. As a consequence, the validity of a transaction can be checked off-chain, before
the transaction is sent to the blockchain.” This means that a transaction only fails if some other
transaction concurrently consumes an input that the transaction is expecting - or if the off-chain
code is badly written and the transaction is submitted anyway. The first scenario is checked
in the phase-1 validation and the second scenario in phase-2 validation [19]. To discourage
denial of service attacks through submitting faulty transactions and to guarantee that the valida-
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tor nodes are compensated for their work in case phase-2 validation fails, a collateral is used.
But if already phase-1 validation fails (because the on-chain conditions have changed since the
transaction was constructed), the transaction is rejected entirely without any fees or collateral
being charged. Another argument for the UTXO model is that the fees for a valid transaction
are deterministic because given the same inputs, the validation always produces the same result
as the global ledger state does not influence it. This means that transactions on Cardano are not
in danger of ’running out of gas’ as Ethereum smart contract executions are.

As a last point: Developers might have to find innovative solutions to make their apps
concurrent due to the ’local’ nature of transaction validation. But the other side of the medal
is that this ’local’ nature of transaction validation makes a high degree of parallelism possible.
”A node could, in principle, validate transactions in parallel, if those transactions do not try
to consume the same input”, so the above mentioned explainer [18]. ”This is great both for
efficiency and for reasoning, simplifying the analysis of possible outcomes, and proving that
‘nothing bad’ can happen.”
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