
Exploring Blockchain-based
Decentralized Exchanges

Bachelor Thesis

Benjamin Helmy
from

Solothurn, Switzerland

Faculty of Science, University of Bern

10. Oktober 2021

Prof. Christian Cachin
Jovana Micic

Cryptology and Data Security Group
Institute of Computer Science
University of Bern, Switzerland

ii

Abstract

Frontrunning has become a frequently discussed subject in the world of cryptocur-
rencies and decentralized exchanges. This is an act where a malicious attacker reacts
to given information by trying to get his transactions executed before another trans-
action. This thesis covers some base concepts from transactions on the Ethereum
blockchain, giving an in depth understanding of gas prices, miners and transaction
ordering and how these topics are related to frontrunning. The architecture of the
most popular decentralized exchange called Uniswap will be explained and its vul-
nerabilities to frontrunning. A literature research of blockchain concepts shows that
each transaction on the Ethereum blockchain is in need of the native cryptocurrency
Ether, which defines how fast a transaction will be executed. The participants who
add transactions to the blockchain are called miners and are being incentivised for
their services by a fee paid in Ether. Because miners are profit-oriented stakeholders
in the Ethereum blockchain ecosystem, the possibility of frontrunning transactions
by paying higher gas prices to animate a miner to execute a transaction before an-
other is possible. The fact that miners are profit-oriented also leads to a trade-off
between fast and cheap transactions. The Uniswap protocol, which is a system of non-
upgradeable smart contracts on the Ethereum blockchain, is powering an approach
of an automated market maker and is mostly used for swaps between two ERC-20
tokens. By looking at the architecture of Uniswap there are obviously lucrative pos-
sibilities to frontrun various transactions. A final approach tries to put together all
previous gathered information by developing an algorithm which automatically tries
to frontrun Uniswap transactions.

iii

iv

Contents

1 Introduction 1

2 Definitions 3
2.1 Ethereum Blockchain . 3

2.1.1 Cryptocurrencies . 4
2.1.2 Transaction Pool . 4
2.1.3 Blockchain Transactions . 4
2.1.4 Overview . 5

3 Frontrunning 7
3.1 Traditional Frontrunning . 7
3.2 Frontrunning on the Blockchain . 7

4 Uniswap 9
4.1 Description and Usage . 9

4.1.1 Automated Market Maker . 9
4.1.2 Permissionless System . 9
4.1.3 Liquidity Pools . 10
4.1.4 Pair Prices . 10

5 Frontrunning Uniswap 13
5.1 Introduction . 13
5.2 Structure . 13

5.2.1 Pending Transactions . 14
5.2.2 Information of Pending Transactions . 16
5.2.3 Uniswap Prices . 16
5.2.4 Arbitrage . 17
5.2.5 Frontrunning and Afterrunning . 17
5.2.6 Slippage Tolerance . 17

5.3 Potential Extractable Amount . 18

6 Conclusion 19

v

vi

Chapter 1

Introduction

Since the adventurous rise of the cryptocurrency Bitcoin, almost everybody has heard from this
new technology called blockchain. Many new startups and platforms have risen with a blockchain
based business model. Moreover, the sector of cryptocurrencies has increased massively. Up un-
til now, there are more than six thousand cryptocurrencies listed on CoinMarketCap, the most
popular platform for crypotcurrencies [10].
One of the most famous places to trade such cryptocurrencies is Uniswap [24]. Uniswap is a de-
centralized open source exchange platform to swap ERC-20 tokens with an average daily trading
volume of approximately one billion USD [26].
A pivotal difference to other exchange platforms is that they use the approach of an automated
market maker instead of the traditional order book system. An automated market maker system
is not in need of a buyer and a seller for a trade, but holds a liquidity pools of two assets where
the prices of each asset gets calculated by a constant product formula. Traders can input a given
amount of one asset into the pool and receive an output according to a constant product formula.
One of the biggest security risks with Uniswap is frontrunning. With frontrunning a malicious
attacker can observe transactions on the blockchain, before they are confirmed, and then react
accordingly. This means that they attempt to have their own transaction finalised before or
instead of the observed transaction [3].
Frontrunning is possible because Uniswap transactions occur on the Ethereum blockchain, where
transactions get executed according to their gas prices [12]. The gas price is the amount of money
an individual needs to pay so that their transaction gets executed. The participants who are in
charge of executing transactions and including them into the blockchain are called miners. They
bundle multiple transactions together into a block which they then include into the blockchain
being incentivised by the sum of all fees of transactions they include into their block. So to fron-
trun a transaction one needs to gather knowledge about the gas price of a specific transaction
and then send a transaction with an adjusted higher gas price, so that it gets included first.
To protect Uniswap transactions against frontrunning, a slippage parameter got included which
checks if there is any significant price change which is higher than the defined slippage, since the
time the transaction got placed, before the transaction gets finalised. If somebody would have
frontrun a transaction changing the price of an asset significantly (more than the set slippage
value), the transaction would be aborted.
There is already some related work about frontrunning attacks on blockchains like the paper
from Eskandari, Moosavi, and Clark, where frontrunning attacks on decentralized exchanges are
analyzed as well as abnormal miner behavior during an inital coin offering of a company [3].
A paper written by Sobol where the potential of frontrunning attacks on the decentralized ex-
change Quipuswap gets analysed gives some additional information [5]. Another engaging paper
was written by Daian et al. where strategies of trading bots get analysed as well as how bots
take part in so called priority gas auctions [2].
The goal of this thesis is to give an overview of different related topics concerning frontrunning

1

and decentralized exchanges and in a second step to develop an algorithm which tries to au-
tomatically frontrun specific transaction which happen on the decentralized exchange Uniswap,
with the goal to make arbitrage.
In chapter two the manner of transactions which happen on the blockchain will be explained
as well as a quick analysis of the data structure of transactions. Additionally, key concepts like
mining and gas prices will be discussed in connection to a in depth analysis of frontrunning will
be made in chapter three. Furthermore in chapter four an overview of the core concepts and
architecture of the Uniswap protocol will be given. Finally, there will be an approach of devel-
oping an algorithm which frontruns Uniswap transactions, combing the established knowledge
and concepts from the first part of the thesis.

2

Chapter 2

Definitions

2.1 Ethereum Blockchain

In order to understand how transactions can be frontrun and what that means, one first needs
to take a deeper look into how the Ethereum blockchain works.
A blockchain can in simplified terms be seen as a huge online database where people can store
and fetch data. While in a traditional databases entries are made and stored into different tables,
on the blockchain information gets stored in the manner of a distributed ledger. Different infor-
mation gets collected into a block, which then, when the block has fulfilled his storage capacity
gets added to the the blockchain. Every block has an unique hash from which it can be identified.
Additionally, each block holds the hash value of the block in front, forming a chronological chain.
In Figure 2.1 a blockchain containing 3 blocks can be seen. The first two blocks have already
fulfilled their storage of possible transactions and are therefore already mined. It can also be
seen that the second block holds the hash of the previous block. Because the third block has not
fulfilled its storage capacity, it is still pending.

Figure 2.1. Two mined blocks and one pending block

Each piece of information added to the blockchain, also know as transactions, can also be identi-
fied by its unique hash. Furthermore, each transaction always contains the address of its sender
and receiver as well as a gas price. The gas price is the fee the sender pays so that their transac-
tion gets included in the blockchain. The higher the fee, the faster the transaction gets executed.
If the fee is too low, the transaction may be pending forever and therefore will never get executed.
As already mentioned, each block can be identified with its unique hash value and also has a link
to its previous block. As all transactions are signed and hashed via cryptographic hash functions,
it generates an unforgeable log containing all transactions ever made [4]. The process of linking
a finished block with multiple transactions and then incorporating them into the blockchain is
called mining. While this process is in need of computational power, the miner gets rewarded
with money for his services which contains the sum of the gas money from all transactions the
miner included in his block [12].
This fee is paid in Ether (ETH) the native currency of Ethereum. Nowadays (Sep. 2021), 1 ETH

3

is worth approximately 3000 USD [30].

2.1.1 Cryptocurrencies

Blockchains are most popular for transactions and mining of cryptocurrencies. As previously
mentioned, the native currency of the Ethereum blockchain is Ether and miners get rewarded
with it for offering their computational power to expand the blockchain.
While Ether can only be received when one takes part in the mining process or bought with
fiat money1, it is possible to create own tokens on the Ethereum Blockchain, so called ERC-20
tokens. These tokens are similar to other cryptocurrencies with the difference that they do not
have an own underlying blockchain but are built on top of the Ethereum blockchain [21].

2.1.2 Transaction Pool

When a transaction gets made on the blockchain it first gets stored into a transaction pool, often
also referred to as the mempool, waiting to get mined. Miners are profit-oriented actors earning
money from every transaction they include into their blocks. So from a full transaction pool
miners will always choose those transactions with the highest gas price. This leads to a trade-off
for the users between cheap and fast transactions. If the gas price is too low there is a risk that
the transaction will stay eternally in the transaction pool with a pending status.

2.1.3 Blockchain Transactions

Listing 2.1 shows the transactions structure of a pending ethereum blockchain transaction.

1 {

2 hash: ’0xb0fe9a02ed7e2ac38c8f3688443267766bc6fe98dc5e5a8edf5934b23778f683 ’,

3 type: 0,

4 accessList: null ,

5 blockHash: null ,

6 blockNumber: null ,

7 transactionIndex: null ,

8 confirmations: 0,

9 from: ’0x47135FC56cF8E979c2eA2CAcbaFF3461Ba2e3eD6 ’,

10 gasPrice: BigNumber { _hex: ’0x195af22100 ’, _isBigNumber: true },

11 gasLimit: BigNumber { _hex: ’0x03641a ’, _isBigNumber: true },

12 to: ’0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ’,

13 value: BigNumber { _hex: ’0x00’, _isBigNumber: true },

14 nonce: 77,

15 data: ’0x791ac947000850d73dbab067eb2e79

16 8e2800551913039b73f2000000000

17 000 a00000000000000000000000

18 007135 fc56cf8e979c2ea2cacbaff3461ba2e3ed6000000000000000000000000000000000000

19 0000000000000000000061292087000

20 000000000000002000000000000000000000000 e1030b48b2033314979143766d7dc1f40ef8ce

21 11000 zzz00000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 ’,

22 r: ’0x7c4ca0231ea48023f9a6400bc54c7ade629f30577955b0b361a125a9888ddc02 ’,

23 s: ’0x0c58171802b99321129cf8c403b5c6e8a216fd55a6559ac71e0be041aa998ab1 ’,

24 v: 38,

25 creates: null ,

26 chainId: 1,

27 wait: [Function (anonymous)]

28 }

Listing 2.1. Ethereum blockchain transaction structure

1Normal money that is used to pay for goods.

4

The hash value is an unique key generated for every transaction. With the hash value it is
possible to get all information for the underlying transaction. The blockNumber indicates into
which block the transaction got mined. When blockNumber is null, the transaction is still
pending. The from and to values indicate from which address the transactions has come and
where it is directed.
The gasPrice is in regards to this work, the most important attribute. It defines how much
money the sender needs to pay for the transaction to get executed.
The data field is an encoded piece of information about which contracts and functions got called.

2.1.4 Overview

In Figure 2.2 the complete blockchain system can be seen. It consists of pending transactions in
the transaction pool, which get grouped into a block, which then gets added to the blockchain in
a chained manner. A block holds a specific amount of transactions which can either be confirmed
if the block has already been mined or still pending if the block has not yet been mined or the
transaction has not yet be choosen from the transaction pool by a miner. Because miners are
profit-oriented, they include the transactions with the highest gas prices.

Figure 2.2. Blockchain ecosystem overview

5

6

Chapter 3

Frontrunning

3.1 Traditional Frontrunning

Frontrunning is a long-standing phenomenon. It is defined as a the reaction of someone to prior
access to market information about upcoming events.
In 1977 the US. Securities Exchange Commission (SEC) defined frontrunning as follows: “The
practice of effecting an options transaction based upon non-public information regarding an
impending block transaction in the underlying stock, in order to obtain a profit when the options
market adjusts to the price at which the block trades.”[1]

Example. Imagine a client giving his stock broker the order to buy 100’000 shares of the
company XY. This enormous buy action leads to a rise of the stock price by 10%. A malicious
broker, would now buy shares of this stock for themselves before executing the order of their
client, benefiting from the 10% increase of the stock price.

3.2 Frontrunning on the Blockchain

The concept of frontrunning works slightly different on the blockchain. As already mentioned in
chapter 2.1, transactions which happen on the blockchain get bundled sequentially together and
then get mined as a block into the blockchain. The miner then gets rewarded with a fee made up
from all the gas prices of each individual transaction. Obviously, miners strive to get the highest
possible reward. Therefore, they always choose those transactions with the highest available gas
prices from the transaction pool. The current average paid gasPrice on the Ethereum blockchain
is 123 GWEI, which matches an execution time of approximately three minutes (Oct. 2021) [13].
Because miners have the freedom to choose the transactions they want to include into their block,
it makes sense that a miner will only choose those transactions with the highest gas price. To
speed up an own transaction the logical action would be to increase the gas price.
This concept suggests why frontrunning on the Ethereum blockchain is possible. A transaction
could get sent after another transaction and still get executed before it. The only thing one
has to do, is to pay a higher gas price. Timing here is a crucial element. The average time a
transaction is pending before it gets included into a block is about 180 seconds (Sep. 2021).
Therefore, the transaction that should frontrun the first executed transaction, should be sent in
the range of 180 seconds after the first transaction so that it will still be included in the same
block. The more time passed after the first transaction the less likely it is that it can successfully
frontrun the first transaction [13].
The action to pay a higher gas price than any other practitioner is not per se called frontrunning.
The malicious action where a user sees or receives confidential information and then reacts
accordingly to them is frontrunning.
It is also important to differentiate from insider trading and arbitrage. With insider trading, a

7

party has access to privileged information that might predict future actions, while frontrunning
especially on the blockchain is a specific observation of pending transactions and a reaction
to them. On the other hand it is difficult to distinguish between arbitrage and frontrunning.
Because arbitrage is defined as the benefit of public information where the fastest to react profits,
it could be argued that the access to the transaction pool is public as well. This would make
sense in some cases, but with arbitrage nobody gets harmed, meanwhile the person who gets
frontrun, mostly suffers from damages like worse stock prices or missed opportunities [3].
A common method where advantage of frontrunning is taken, is sandwich trading. This is an
action where one spots a transaction in the transaction pool which will have an affect of a specific
asset, for example a buy order which changes the price of a token by 10%. One will then frontrun
this transaction with an own buy order as well executing a sell order with a lower gas price than
the spotted transaction, "sandwiching" the transaction and exploiting the slippage the spotted
transaction induces.

Example. Imagine person A scans the transaction pool and sees a transaction, where person B
buys 1000 units of a specific token, with a gas price of 120 GWEI. This buy order would lead
to a 15% price increase. Person A would now send an own transaction, with a gas price that is
higher than 120 GWEI, where he also buys tokens of this token, as well as a second transaction,
with a gas price smaller than 120 GWEI, selling the tokens again.
The order the transactions will be executed is Buy A - Buy B - Sell A. User A therefore has
sandwiched the transaction of user B, taking advantage of the 15% price increase from the
transaction of user B.

8

Chapter 4

Uniswap

4.1 Description and Usage

Uniswap is a peer-to-peer decentralized exchange implemented as a system of non-upgradeable
smart contracts on the Ethereum blockchain, where ERC-20 Tokens can be exchanged and traded.
Because of its blockchain basis, matters of decentralization and security get prioritized. The
whole code is open-source and licensed under the GPL [22] [14]. Other than typical exchange
platforms, Uniswap uses a automated market maker system. To understand the differences and
advantages Uniswap offers against traditional exchanges, one first needs to look at the concept
of automated market makers and how they differ from central limit order book based exchanges,
as well as how permissionless systems work.
Until today, Uniswap released 3 versions of their protocol. Version 1 was released back in 2018
as a proof of concept for automated market makers. It was limited only to swaps between Ether
and ERC20 tokens. With the upgrade to Version 2, token swaps between two ERC20 tokens got
possible. Other additional features got introduced as well as some technical improvements were
made[11]. With the release of Version 3 in March 2021, Uniswap tried to improve the flexibility
and efficiency of their automated market maker system and as well improve capital efficiency for
liquidity providers [20] [27].

4.1.1 Automated Market Maker

Currently, most public exchange platforms and markets use a classic order book system where
buyers and sellers meet at a current price level. Uniswap on the other hand uses the approach
of a so called Automated Market Maker AMM or also known as Function Market Maker.
The main idea of an automated market maker is to enable trades at any time. This works with
a system of liquidity reserves of two assets where users can trade them at a price which gets
determined by a fixed formula based on the amount of liquidity of both assets in the pool. After
every trade a new ratio of the two assets is the pool where accordingly the new market price
get calculated. The advantage this system should provide is that there is no need to always
have a buyer and seller, instead it can directly be traded with the pool [25]. To provide enough
liquidity, users are requested to add their own capital to these liquidity pools, earning incentives
according to how much they contribute [21].

4.1.2 Permissionless System

The second thing where Uniswap differentiates itself from traditional exchanges is the permis-
sionless design of the Uniswap protocol. Meaning that nobody can get restricted from using its
services. In traditional financial markets, some services get restricted based on wealth or for
example geography, while with the Uniswap protocol anyone can swap tokens at any time.

9

4.1.3 Liquidity Pools

The base concept of an automated market system is that users can trade a any time they want
and are not restricted to a order book system where buyer and seller need to meet. This gets
realised by the implementation of the already mentioned liquidity pools. Such a pool is only
capable of holding two assets which then can be traded for each other. Such two assets in a
pool are called pair. For every new liquidity pool that is, made a new smart contract on the
blockchain gets created [23]. The initial amount of tokens in the pool is zero and someone needs
to make an initial deposit at a ratio that reflects the current market situation, providing other-
wise opportunities for arbitrage.
To incentivise people to deposit tokens into a liquidity pool, user receive specific liquidity tokens
when they deposit tokens. These tokens should display a liquidity providers part of the total vol-
ume they provided for the pool. If a new liquidity pool gets created the initial liquidity provider
receives liquidity tokens equal to the following equation

let x = amount token A
let y = amount token B

p
x ⇤ y = t (4.1)

Example. Imagine one deposits 20 units of token X and 5 units of token Y into a new created
liquidity pool he will receive

p
20 ⇤ 5 = 10 liquidity tokens. Now another user deposits as well

20 units of token X and 5 units of token Y he will as well receive 10 liquidity tokens because he
now provided as much liquidity as user 1, providing now 50% of the whole pool.

Liquidity providers are incentivised for providing liquidity. For every transaction that is made
with the liquidity pool the trader has to pay a 0.03% fee on his trade, which then gets dispensed
to every provider according to their proportional contribution of the whole pool [23].

4.1.4 Pair Prices

The most frequent way users interact with the Uniswap protocol is the "Swap". This is a process
where an individual exchanges ERC-20 tokens for each other [24]. Because of its automated
market maker system, a trader trades against a liquidity pool. Inputting a specific amount of
tokens as well as an additional 0.03% fee for the liquidity providers, then receiving the output of
his desired token.
Because the price of a pair is dependent on the amount of liquidity of both tokens in the pool,
every transaction has an influence on the price, which gets determined by the constant product
formula below.

x ⇤ y = k (4.2)

Trades that occur must not change the product k of a pairs token reserve. Because k stays
constant it is often referred to as the invariant. The structure of this constant product formula
leads to the result that bigger trades lead to a higher slippage in price.

10

Figure 4.1. Effect of swap on token ratio [22]

In Figure 4.3 it can be seen that the current liquidity pool holds 100 units of token A and 10
tokens of unit B. From the constant product formula, the invariant k = 100 ⇤ 10 = 1000.

Example . If a trader wants to receive one unit of Token B, changing the amount of token B
to 9, he needs to input 11.111 units of Token A, as well as a 0.03% fee, so that the equation
111.111 ⇤ 9 = 1000 still holds.
Imagining a trader wants to receive seven units of token B, he would need 200 units of token A,
increasing the price from 11.111 units of token A for one unit of Token B, to 40 units of Token
B for one unit of Token A.

This example shows very clearly that the liquidity pool system works very well for large pools
and small trading volumes. But when the trades increase in volume, the prices may react very
sensitively to it.
The structure of constant product formula leads to a plot similar to a 1

x curve, where it can be
seen that as long as the liquidity pool is more or less evenly filled with both tokens, trades can
be executed without any problem at a relatively normal price.

11

12

Chapter 5

Frontrunning Uniswap

5.1 Introduction

A real danger decentralized exchanges face are frontrunning attacks. For educational purposes it
is analysed if and how it would be possible to make a frontrunning attack on transactions made
on Uniswap, changing the transaction order by bribing the miners with a higher gas price and
using a sandwich technique to make some profits [7].

5.2 Structure

Such a frontrunning algorithm consists of multiple steps and pieces of information one needs to
put together. Since it is known that frontrunning a transaction from a non-miner position can
only be made by adjusting gas prices, this will be our main focus. A coarse approach is described
below:

• Watch the Ethereum blockchain for pending transactions.

• Filter for Uniswap Router V2 contract calls.

• Extract information from pending transactions (pair, value, gas price).

• Get current trading-price of the pair.

• Get new price of the pair after observed pending transaction gets executed.

• Calculate the price slippage of the transaction.

• Calculate potential arbitrage from slippage.

• If lucrative: frontrun first transaction with higher gas fee with buy/sell order.

• Let observed transaction be executed.

• Run second transaction with lower gas fee with sell/buy order.

In Algorithm 1 below, a pseudocode of how such an algorithm could look is being displayed.
The while true statement in line 1 states an infinite loop, which lets the algorithm run forever.
Line 2 and 3 then scan all pending transactions and filter for Uniswap Router V2 contracts.
Lines 4 and 5 extract the current price the pair tokens from the spotted Uniswap transactions
are currently trading at and then on line 7 and 8 the new prices the tokens will have after the
transaction will be finalised get extracted. Line 10 and 11 then would call another function which
calculates the slippage the tokens would experience after the transaction would be finalised. Now

13

another function can be called that calculates the potential arbitrage that could be made from
the token slippages with a specific order value [L. 13]. The consideration that two transactions
with each a higher and lower gas price needs to be made, leads to the calculation of the expenses
on line 14, where simply the gas price of the filtered transaction gets doubled. From there, if the
potential arbitrage is higher than the expenses [L.16], one would buy tokens at the calculated
order value with a higher gas price to frontrun the filtered transaction [L.17] and then sell the
tokens again with a lower gas price [L.18], sandwiching the the filtered transaction.

5.2.1 Pending Transactions

The first step in realising the trading algorithm is to get all pending transactions on the Ethereum
Blockchain. In Listing 5.1 on Line 1, it can be seen that this is done by using the ethers.js
library, which has the goal to interact with the Ethereum blockchain and its ecosystem [19].
Instead of running a full node on ones own, a Infura Node and it’s API is used to access the
Ethereum blockchain over a web-socket [L.2][17]. To fetch all pending transactions a custom
web-socket provider is created, searching all transactions with the keyword "pending" [L.5].
To filter only transactions which call the "Uniswap Router V2" contract, a simple if clause is
entered checking whether the to address is the address of the Uniswap contract [L.8] [29]. The
V2 router is used although there was a release of a V3 with improved price prediction, but on
starting this thesis V3 was not released yet.

1 var ethers = require("ethers");

14

2 var url = "wss:// mainnet.infura.io/ws/v3 /373902 b40f7245d8af5da39f89ae4349";

3

4

5 customWsProvider.on("pending", (tx) => {

6 customWsProvider.getTransaction(tx).then(function (transaction) {

7 try{

8 if(transaction.to == "0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D"){

9 console.log(transaction);

10 }

11 else

12 {console.log("Transaction not relevant")}

13 } catch{

14 console.log("error")

15 }

16 });

17 });

18

Listing 5.1. Get pending Uniswap transactions

Transaction Structure

The output one gets is a constant stream of information about pending transactions. A discus-
sion of the specific values has already been made in chapter 2.2. An important thing to mention
is that the values blockHash, blockNumber, blockNumber in Listing 5.2 which are null, identify
that it is a pending transaction, otherwise it would have some information.

1 {

2 hash: ’0xb0fe9a02ed7e2ac38c8f3688443267766bc6fe98dc5e5a8edf5934b23778f683 ’,

3 type: 0,

4 accessList: null ,

5 blockHash: null ,

6 blockNumber: null ,

7 transactionIndex: null ,

8 confirmations: 0,

9 from: ’0x47135FC56cF8E979c2eA2CAcbaFF3461Ba2e3eD6 ’,

10 gasPrice: BigNumber { _hex: ’0x195af22100 ’, _isBigNumber: true },

11 gasLimit: BigNumber { _hex: ’0x03641a ’, _isBigNumber: true },

12 to: ’0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ’,

13 value: BigNumber { _hex: ’0x00’, _isBigNumber: true },

14 nonce: 77,

15 data: ’0x791ac947000850d73dbab067eb2e79

16 8e2800551913039b73f2000000000

17 000 a00000000000000000000000

18 007135 fc56cf8e979c2ea2cacbaff3461ba2e3ed6000000000000000000000000000000000000

19 0000000000000000000061292087000

20 000000000000002000000000000000000000000 e1030b48b2033314979143766d7dc1f40ef8ce

21 11000 zzz00000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 ’,

22 r: ’0x7c4ca0231ea48023f9a6400bc54c7ade629f30577955b0b361a125a9888ddc02 ’,

23 s: ’0x0c58171802b99321129cf8c403b5c6e8a216fd55a6559ac71e0be041aa998ab1 ’,

24 v: 38,

25 creates: null ,

26 chainId: 1,

27 wait: [Function (anonymous)]

28 }

Listing 5.2. Example of an Ethereum blockchain transaction structure

15

5.2.2 Information of Pending Transactions

When one takes a deeper look into the output, one can see that the gas price has to be converted
as well as the value from a hexadecimal value to a decimal.
The last information which cannot be analysed yet is the data section. The cryptic string has
to be decoded using a custom ABI for the Uniswap V2 Contract. This is needed to be done to
see which functions and input values this transaction has. One has to watch out for transactions
which call a Uniswap swap function and extract all information about the token pair, trading
volume and gas price.

5.2.3 Uniswap Prices

Since it should be know which pairs got included in the filtered transaction, one can now query
the current prices of the pair and the new prices the tokens should have after the transaction
gets executed, because every buy or sell action changes the price of a token.
For this example one will look at the Pair Ether - DAI.
DAI is an Ethereum based stable coin which is soft-pegged at the U.S Dollar and some other
cryptocurrencies. One unit of Dai currently trades at a price of 1.00 USD [8].
To retrieve exact prices of the Uniswap network, the Uniswap SDK which helps developers to
build on top of Uniswap is beeing used [28] [15].
The SDK can be installed with:

1 npm install @uniswap/sdk

Before starting to program some libraries have to be imported. Furthermore in Listing 5.3 on
Line 3, the blockchain, the code should interact with, gets defined, in this case the mainnet. Also
the token address of DAI needs to be added [L.4].
Now the chosen tokens are getting created. Because of the specifications of the Uniswap V2
contracts, one cannot use Ether directly but need to use wrapped Ether, the ERC-20 compatible
version of Ether [6]. One can now create the desired token-pair [L.10].
A route object can then be created, to then query the current prices of the tokens [L.12]. From
this point on, one can get the current prices or tokens. Because WETH is set as the input amount
of the route object it will per default query the price of how many DAI one WETH would cost.
To get the price of one DAI in WETH, the query can simply be inverted [L.15, L.16].
Now a new trade is being specified where a specified amount of WETH is getting swapped for
DAI. Furthermore, one needs to specify the amount one wants to trade in Gwei, a small unit
form of Ether [L.13]. Later, when all parts are getting put together, this value will be the value
extracted from the spotted pending transactions.
Now query the new prices of the token pair [L.17]. It is important to keep in mind, that no
actual trade is being made, but just a potential action has been defined where potential changes
in price would follow.
A crucial thing which needs to be mentioned is the difference between the execution price and
the midprice. The midprice is an aggregated price where past values play a important role, while
the execution price is the price where it will actually be executed [18].

16

1 const {ChainId , Fetcher , WETH , Route , Trade , TokenAmount , TradeType} = require(’

@uniswap/sdk’);

2

3 const chainId = ChainId.MAINNET;

4 const tokenAddress = ’0x6B175474E89094C44Da98b954EedeAC495271d0F ’; //DAI Address

5

6 const init = async () => {

7 const dai = await Fetcher.fetchTokenData(chainId , tokenAddress);

8 const weth = WETH[chainId];

9

10 const pair = await Fetcher.fetchPairData(dai , weth);

11

12 const route = new Route ([pair], weth);

13 const trade = new Trade(route , new TokenAmount(weth , ’100000000000000000 ’),

TradeType.EXACT_INPUT); //100 Ether are beeing swapped

14

15 var first_midprice = route.midPrice.toSignificant (6);

16 var first_midprice_inverted = route.midPrice.invert ().toSignificant (6);

17 var second_midprice = trade.nextMidPrice.toSignificant (6);

18 var slippage = (second_midprice/first_midprice) -1;

19 var difference = first_midprice - second_midprice

Listing 5.3. Get Uniswap prices [18]

5.2.4 Arbitrage

Every transaction which is made, has an impact on the price of the pair. The impact a trans-
action has on the price, is dependent on the size of the liquidity pool. A small swap in a big
liquidity pool is likely to have no price impact, while a big transaction in a smaller liquidity pool
can have a big impact.
With the knowledge gathered earlier, the potential arbitrage can now be calculated.

Example.
let x = old price of token 1
let y = new price of token 1
slippage = (x/y)� 1
arbitrage = (input ⇤ slippage)� (gas_price ⇤ 2)

5.2.5 Frontrunning and Afterrunning

When deciding that it would make sense to frontrun this transaction, one can simply send a
transaction with a higher gas price to place it in front of the spotted transaction and benefit
from the price increase of the token price. Then one would send a second transaction with an
inverted sell/buy order to sandwich the spotted transaction to get back to the starting point.
The current documentation of Uniswap is very incomprehensible and not very developed yet. It
is not clear how an implementation of a swap, where the gas price can be manipulated could be
implemented, therefore, it would go beyond the scope of this thesis leaving the whole approach
of this bot on a theoretical base.

5.2.6 Slippage Tolerance

The slippage tolerance is the percentage of how much the price of a pair may change between
submission and execution. This is per default set on Uniswap to either 0.1% or 0.5%.
Slippage may happen, because between submission and execution, depending on the heights of

17

the gas price, it may take up to 20 second until the transaction gets executed. In this time other
transactions may occur. With a pair with a high volume there is a high probability that there
will happen transactions from other people and therefore changing the price.
To protect the swaper from unpleasant surprises, one can set a slippage tolerance, where one can
set how much the price may change before the transaction gets cancelled.
Because of this slippage, it is important, that the frontrunning transaction one tries to execute
is not too high, such that the defined slippage of the spotted transaction later aborts it.
An interesting thing to mention, is that if one sets the slippage tolerance bigger than 1% one gets
a warning from Uniswap, saying that there is a risk that the transaction could get frontrunned.

5.3 Potential Extractable Amount

To check whether it is worth to frontrun a transaction, one needs to keep in mind that the
arbitrage which can be made from frontrunning a transaction, needs to be bigger than the gas
prices one needs to pay, while the input should not change the price of the pair more than the
set slippage tolerance. If this is the case, it would be lucrative to frontrun the transaction.
An example of what could be possible with a functioning frontrunning bot shows the following
example. In March 2021, a frontrunning bot made a profit of 0.056 Ether which was at that time
approximately 84 USD from one sandwiching attack [9].
Figure 5.1 shows three transactions where the first and the last transaction came from a fron-
trunning bot. All transactions were mined in the same block. It can be clearly seen that the
frontrunning bot spotted the order for 11’496 MANA and then successfully sandwiched it [16].

Figure 5.1. Example frontrunning bot [16]

18

Chapter 6

Conclusion

As the whole field of blockchain based technologies is relatively new, there are still many oppor-
tunities and technologies that are emerging at the moment. At the same time and also because
there is no central control or surveillance, there are some wicked threats to keep an eye on. Min-
ers can be bribed to execute some transactions before others and thereby provide the possibility
of frontrunning. It is also posssible to get a glimpse into the future, with just some lines of code,
to observe the transaction pool about the upcoming transactions.
Furthermore, frontrunning transactions is not that difficult. Pending transactions only need to
be analysed how much gas they are paying and then an own transaction with a higher gas price
can be sent.
Since it was not possible to decode the data which has been retrieved from pending transactions,
the part of calculating the potential arbitrage belongs to a theoretical area.
While it is possible to scan pending transactions and then frontrun them, the question remains
how much potential arbitrage could be extracted. The arbitrage needs to be large enough to
compensate for the gas prices of both the "sandwich" transactions, while one needs to adjust
their input value, such that the price change the first transaction leads to, does not exceed the
set slippage tolerance canceling the chosen pending transaction.
However the goal of this thesis was to implement a working frontrunning algorithm, it was not
possible to fully implement this because of a lack of knowledge and time. It was possible to re-
treive pending transactions and filter for those which interact with the Uniswap smart contracts,
but decoding the content of the transactions was not possible.
While one cannot be punished for frontrunning other transactions, because there is no central
surveillance or governmental institution, it still harms the individual who gets frontrun. In the
case of sandwich trading, the frontrunner takes advantage of the change in price the frontrunned
transaction is responsible for, but because every transaction changes the price of the token pair
it will leave the original transaction with a worse price than if it did not frontrun it.
Because frontrunning is always an existing potential risk that could threaten a transaction and
additionally, argued in the Flash Boys 2.0 paper from Daian et al., that the miner extractable
value resulting from order optimization is a threat to the blockchain consensus stability threaten-
ing the whole Ethereum ecosystem, there needs to be thought of ways to impede or even prevent
frontrunning in the future.

19

20

Bibliography

[1] H. O. S. et al., “Report of the special study of the options markets to the securities and
exchange commission,” 1979.

[2] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels,
“Flash boys 2.0: Frontrunning, transaction reordering, and consensus instability in decen-
tralized exchanges,” Apr. 2019.

[3] S. Eskandari, M. Moosavi, and J. Clark, “Sok: Transparent dishonesty: Front-running
attacks on blockchain,” pp. 170–189, Feb. 2019. doi: 10.1007/978-3-030-43725-1_13.

[4] S. Ferretti and G. D’Angelo, “On the ethereum blockchain structure: A complex networks
theory perspective,” Aug. 2019.

[5] A. Sobol, “Frontrunning on automated decentralized exchange in proof of stake environ-
ment,” 2020. [Online]. Available: https://eprint.iacr.org/2020/1206.

[6] ADolmatov, “Wrapped ether (weth),”
[7] CoinGecko, Top Decentralized Exchanges (DEX) Ranking by Trading Volume - Spot,

https://www.coingecko.com/en/exchanges/decentralized, Accessed: 2021-08-21.
[8] Coinmarketcap, Dai, https://coinmarketcap.com/currencies/multi-collateral-

dai/, Accessed: 2021-08-23.
[9] Coinmarketcap, Ethereum, https://coinmarketcap.com/currencies/ethereum/, Ac-

cessed: 2021-08-21.
[10] CoinMarketCap, Today’s Cryptocurrency Prices by Market Cap, https://coinmarketcap.

com, Accessed: 2021-08-20.
[11] R. Das, Medium, Should you use Uniswap v1 or v2? https://medium.com/coinmonks/

should-you-use-uniswap-v1-or-v2-70f8e6cb3c2c, Accessed: 2021-10-09.
[12] Ethereum, Ethereum official website, https://ethereum.org/en/eth/, Accessed: 2021-

08-26.
[13] Etherscan, Ethereum Gas Tracker, https://etherscan.io/gastracker, Accessed: 2021-

08-29.
[14] Github, Uniswap repository, https://github.com/Uniswap, Accessed: 2021-09-24.
[15] Github, Uniswap V2 - SDK, https://docs.uniswap.org/sdk/2.0.0/introduction,

Accessed: 2021-09-24.
[16] R. Huber, Arbitrage und Frontrunning in DeFi, https://www.bitcoinsuisse.com/de/

research/decrypt/arbitrage-und-frontrunning-in-defi, Accessed: 2021-09-30.
[17] I. Inc, Infura, The Infura Ethereum API, https://infura.io/product/ethereum,

Accessed: 2021-08-21.
[18] J. Klepatch, EatTheBlocks YouTube Channel, Uniswap Tutorial for Developers (Solidity

Javascript), https://www.youtube.com/watch?v=0Im5iaYoz1Y&t=918s, Accessed:
2021-09-01.

21

[19] R. Moore, Ethers.js, Ethers Developer Documentation, https://docs.ethers.io/v4/,
Accessed: 2021-08-21.

[20] V. Systems, Medium, V Swap v.s. Uniswap V3: A Brief Comparison, https://medium.
com/vsystems/v-swap-v-s-uniswap-v3-a-brief-comparison-d229657f1f6c, Ac-
cessed: 2021-10-09.

[21] Uniswap, Uniswap Docs, Glossary, https://docs.uniswap.org/protocol/concepts/
V3-overview/glossary, Accessed: 2021-08-27.

[22] ——, Uniswap Docs, How Uniswap works, https://docs.uniswap.org/protocol/V2/
concepts/protocol-overview/how-uniswap-works, Accessed: 2021-09-23.

[23] ——, Uniswap Docs, Pools, https://docs.uniswap.org/protocol/V2/concepts/core-
concepts/pools, Accessed: 2021-09-24.

[24] ——, Uniswap Docs, Swaps, https://docs.uniswap.org/protocol/concepts/V3-
overview/swaps, Accessed: 2021-08-21.

[25] ——, Uniswap Docs, What Is Uniswap? https : / / docs . uniswap . org / protocol /
introduction, Accessed: 2021-08-29.

[26] Uniswap Info, Overview, https://info.uniswap.org/#/, Accessed: 2021-09-24.
[27] Uniswap, Introduction to Version 3, https://uniswap.org/blog/uniswap-v3/, Accessed:

2021-10-09.
[28] Uniswap, SDK V2, https://github.com/Uniswap/v2-sdk, Accessed: 2021-09-24.
[29] Uniswap, Swap Router Contracts, https : / / github . com / Uniswap / swap - router -

contracts/blob/main/contracts/V2SwapRouter.sol, Accessed: 2021-09-24.
[30] Webull, Price ETHUSD, https://www.webull.com/quote/ccc- ethusd, Accessed:

2021-08-27.

22

Erklärung

Erklärung gemäss Art. 30 RSL Phil.-nat. 18

Ich erkläre hiermit, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen entnommen
wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemäss
Artikel 36 Absatz 1 Buchstabe r des Gesetzes vom 5. September 1996 über die Universität zum
Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.

Für die Zwecke der Begutachtung und der Überprüfung der Einhaltung der Selbständigkeitserk-
lärung bzw. der Reglemente betreffend Plagiate erteile ich der Universität Bern das Recht, die
dazu erforderlichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, ins-
besondere die schriftliche Arbeit zu vervielfältigen und dauerhaft in einer Datenbank zu speichern
sowie diese zur Überprüfung von Arbeiten Dritter zu verwenden oder hierzu zur Verfügung zu
stellen.

Ort/Datum Unterschrift

23

Benjamin Helmy
12. November 2021 / Bern

