
Using polynomial systems to decode
binary linear codes

Bachelor Thesis

Annina Katharina Helmy

from
Solothurn, Switzerland

Faculty of Science, University of Bern

18. September 2020

Prof. Christian Cachin
Alex Pellegrini

Cryptology and Data Security Group
Institute of Computer Science
University of Bern, Switzerland

ii

Abstract

The Maximum Likelihood Decoding Problem (MLD) and the Multivariate Quadratic
System Problem (MQ) are both NP-hard. Both problems are well known and used in
various applications in cryptography. The topic of this thesis is finding a reduction
from MLD to MQ and its implementation with SageMath. Given a binary linear
code C with parity check matrix H, a syndrome s and a positive integer t, an error
vector v has to be found such that Hv> = s> and wH(v) ≤ t. This requirement is
implemented and the result then expressed as an instance of MQ. Additionally, the
back-transformation of the solution of the MQ instance to the solution of the MLD
instance is constructed and discussed. Two different approaches for the computation
of the reduction are investigated. The first approach saves all needed polynomials
in different lists and composes them in the end, such that the result is a system of
equations. The second approach in the paper reduces the number of variables by
reusing already computed polynomials. When analysing the results, we can conduct
that the resulting system of equations from the second approach is much easier to
solve with SageMath. Moreover, we can observe that the first approach bases itself
on more variables yet less complex polynomials while the other is built on a system of
more polynomials and fewer variables. It is left open for discussion, which approach
is more time efficient. Nonetheless, the second approach is more applicable when
solving a given instance of a reduction from MLD to MQ in SageMath. A last step
in the thesis shows how the computation works by applying it to given instance of
MLD, where the error vector v is found, when applying it to the [7, 4, 3]-Hamming
Code. The found error vector is the instance solution of the MLD problem by solving
the related systems of equations, so the back-transformation from MQ to MLD is
shown as well. With this, the reduction is completed.

iii

iv

Contents

1 Introduction 1

2 Problems Definition and Applications to Cryptography 3
2.1 Linear Codes Preliminaries . 3
2.2 Maximum Likelihood Decoding Problem . 5
2.3 Multivariate Quadratic System Problem . 5
2.4 Post Quantum Cryptography . 6

3 Complexity Classes P and NP 7
3.1 Turing Machines . 7
3.2 P and NP . 7

4 MLD to MQ Reduction 9
4.1 Implementation: Parity Check Constraint . 9
4.2 Implementation: Weight Constraint . 10

4.2.1 Weight Computation Encoding . 10
4.2.2 Two Implementations - Weight Computations Encoding 13
4.2.3 Weight Constraint Encoding . 18
4.2.4 Two Implementations - Weight Constraint Encoding 20

4.3 Degree Reduction Formula for Polynomials . 22
4.4 MLD to MQ Reduction: Example . 23
4.5 MQ to MLD . 25

5 Conclusion 27

v

vi

Chapter 1

Introduction

Telecommunication involves the transmission of data. Transmission requires:

• a source

• a channel

• a receiver

Often transmissions are successful and the receiver obtains the transmitted data correctly. Some-
times however, interferences may occur, causing a so-called disturbance, also known as noise.
Transmission works as follows: The source starts by sending a message. This message gets trans-
formed into bits and these bits then get transformed into electromagnetic waves. Once these
electromagnetic waves are received, they get converted back into bits and finally, the initial mes-
sage is recovered. An encoder transforms a signal into bits, moreover, the encoder manipulates
them (encodes them), whereas when the bits are received, a decoder has to do the reverse. To
guarantee the safety of a transmission, it should (always) be possible to recover the initial signal
even if during transmission corruption occurred. That is where error correcting codes come into
play. One of the most used decoding techniques is the Maximum Likelihood Decoding, which was
proven by Berlekamp, McEliece and van Tilborg to be an NP-complete [2] problem. The aim of
this thesis is to reduce an instance of the Maximum Likelihood Decoding Problem (MLD) to an
instance of a Multivariate Quadratic Equation System Problem (MQ). It will be attempted to
find not only a solution for these equations but also to back-transform the solution to a solution
of the original MLD instance. This reduction will be implemented in SageMath. By showing
that there is a reduction and this reduction is sufficiently efficient, it follows that the second
problem is at least as difficult as the first problem and subsequently, solving an instance of MLD
is not "harder" to solve than an instance of MQ. Before diving into the technicalities of this
work, preliminaries about linear codes and complexity are given.

1

2

Chapter 2

Problems Definition and Applications
to Cryptography

When data is transmitted, an interference may occur. These are categorised into four different
kinds:

• errors: an error occurs, when a bit is changed during transmission.

• erasures: an erasure happens when one bit of the code was not correctly understood by
the decoder and is therefore unknown.

• insertions: an insertion happens when the decoder adds more bits to the code word than
the originally transmitted number .

• deletions: a deletion happens when the decoder "deletes" bits which were originally trans-
mitted.

The implementations given in Chapter 4 refers to a linear code (the [7, 4, 3]-Hamming code)
which can correct only up to one occurring error in transmission.

2.1 Linear Codes Preliminaries

Before addressing binary linear codes, some basic linear algebra concepts have to be introduced
[12].

Definition 2.1.1. A ring is a set R with two binary operator "+" and "·", called addition and
multiplication, satisfying the following axioms ∀a, b, c ∈ R:

• associativity of addition and multiplication: a+(b+c) = (a+b)+c and a ·(b ·c) = (a ·b) ·c

• commutativity of addition: a+ b = b+ a

• additive and multiplicative identity: there exist different elements 0 and 1 in R such
that: a+ 0 = a and a · 1 = a

• additive inverse: for every a ∈ R there exists an −a ∈ R such that a+ (−a) = 0 and −a
is called the additive inverse of a.

• distributivity: the following must hold: a · (b+ c) = ab+ ac and (a+ b) · c = ac+ bc

Definition 2.1.2. A field is a ring F. Moreover, the following additional axioms must be
satisfied ∀a, b, c ∈ F:

• commutativity of multiplication: a · b = b · a

3

• multiplicative inverse: for every b ∈ F there exists a b−1 ∈ F such that b · b−1 = 1 and
b−1 is called the multiplicative inverse of b.

Remark. A finite field is a field with a finite number of elements, e.g. Fp = Z/pZ.

Definition 2.1.3. A vector space over a field F is a set V with two operations that satisfy the
following axioms. The operations are:

• vector addition + : V × V → V , where two vectors v and w ∈ V are added, where the
sum v + w ∈ V .

• scalar multiplication · : F × V → V takes any scalar a ∈ F and v ∈ V and generates a
new vector av.

Let u, v, w ∈ V be arbitrary vectors and let a, b ∈ F be scalars, then the following axioms
must hold:

• associativity and commutativity of vector addition

• existence of inverse and identity elements of vector addition

• It must hold: a(bv) = (ab)v

• existence of an identity element of scalar multiplication: 1 ·v = v (1 is the multiplicative
identity in F)

• Scalar multiplication is distributive with respect to vector addition: a(u+ v) = au+ av

• Scalar multiplication is distributive with respect to scalar addition: (a+ b)v = av + bv

Definition 2.1.4. Let V be a vector space over the field F and W is a subset of V, then W is
a subspace of V if under the operations of V , W is a vector space over F.

The above definitions will help understanding the following concepts of linear codes.

Definition 2.1.5. Let Fq be a finite field with q elements. Let k, n ∈ N such that k ≤ n. Let C
be a k-dimensional vector subspace of (Fq)

n. We say that C is a Fq linear block code of dimension
k and length n. An element of C is called a word of C.

Remark. In the following, we always assume q = 2. A linear code over F2 is called a binary
code.

Definition 2.1.6. Let (F2)
n be a n-dimensional vector space. For any two vectors x1, x2 ∈ (F2)

n,
we denote with d(x1, x2) the number of coordinates where the two words differ and we call the
integer d(x1, x2) the Hamming distance between x1 and x2. The (Hamming) weight of a
vector x is the number of non-zero coordinates it contains and is denote by wH(x).

Example 1. Let x1 = (1, 0, 1, 1) and x2 = (1, 0, 0, 0). Then the Hamming distance between
x1 and x2 is d(x1, x2) = 2, as they differ in two coordinates.

Example 2. Let x1 = (1, 0, 1, 1). Then wH(x1) = 3 as x1 has three nonzero coordinates.

If C is a linear block code, then the minimum distance between any two different words of
C is called the distance of C. And it follows that a binary [n, k, d] code is a code of length n,
dimension k and distance d with coordinates in F2.

4

Definition 2.1.7. The parity check matrix [9] of an [n, k, d] binary linear code C, is an r×n
matrix H over F2 such that for every c ∈ (F2)

n we have

c ∈ C ⇔ Hc> = 0

Moreover, C is the kernel of H in (F2)
n and we can conclude that:

rank(H) = n− dim (ker(H)) = n− k

Therefore, when we have linearly independent rows in H, we have that r = n− k and moreover,
the parity check matrix is of the size (n− k)× n.
Corollary 2.1.7.1. From the above definition we can conclude that c is a code word in C if and
only if Hc> = 0.

Definition 2.1.8. A matrix G whose rows form a basis of a linear code is called a generator
matrix. The code words are all the linear combinations of the rows of G.
Definition 2.1.9. The dual code of a linear code C ⊂ (F2)

n is the linear code

C⊥ = {x ∈ (F2)
n|〈x, c〉 = 0 ∀c ∈ C}

With the definition of the generator matrix it follows that the parity check matrix H of a
linear code C is the generator matrix of the dual code C⊥.

With the above definitions, we can now define the Maximum Likelihood Decoding Problem
and the Multivariate Quadratic System Problem formally.

2.2 Maximum Likelihood Decoding Problem

The Maximum Likelihood Decoding Problem (MLD) is the standard decoding technique which
allows the correction of as many errors as possible when no re-transmission of a code word is
possible. The following definition of the MLD Problem considers the linearity of the code:

Definition 2.2.1. Let H be a m×n matrix over F2, s ∈ (F2)
m and t a positive integer. Decide

whether there is a vector v ∈ (F2)
n of weight at most t, such that Hv> = s>.

The above definition can be visualized: The received word is compared to all the possible
code words. The one word which is closest (minimal Hamming Distance) to the one received is
likely to be the corrected code word. The weight constraint in the definition above takes care of
the requirement that the compared code word is "closest" to the received. In other words: The
code word x ∈ C which is closest to the received word is then taken to be the corrected code
word. Figure 2.1 shows the idea behind the MLD problem graphically.

2.3 Multivariate Quadratic System Problem

The Multivariate Quadratic System Problem is defined like the following:

Definition 2.3.1. An MQ-System of equations over F2 is a set of m polynomial equations of
degree at most 2 in F2[x1, x2, ..., xn] of the form

S =

f1(x1, ..., xn) = 0

f2(x1, ..., xn) = 0
...

fm(x1, . . . , xn) = 0

(2.1)

The problem consists of the question whether the above stated multivariate quadratic equation
system admits a solution.

The MQ System Problem is known to be NP-hard over any field [4].

5

Figure 2.1. Visualization of
MLD

2.4 Post Quantum Cryptography

Post-quantum cryptography involves cryptographic algorithms which are thought to be safe
against an attack by a quantum computer. Good candidates for post-quantum cryptography are
those cryptosystems, which are immune to attacks using the Shor Algorithm (Polynomial-time
quantum computer algorithm for integer factorization). There are several approaches to finding
a strong algorithm which could hold against a quantum computer. Two such approaches are
related to the main focus of this thesis.

Multivariate Cryptography As the Multivariate Quadratic System Problem is known to
be NP-hard over any field [4], those schemes are often very good candidates for post-quantum
cryptography. Multivariate Cryptograpyh is about low-level cryptographic algorithms based on
multivariate polynomials over a finite field F. If polynomials have degree two, we talk about
multivariate quadratics, solving these equations is proven to be NP-complete and believed to be
hard on average. The security of multivariate schemes is based on the MQ-Problem. Multivariate
Public Key Cryptography (MPKC) [10] relies on the simplicity of the operations and small fields
which makes computations much easier. The main security assumption about MPKC is backed by
the NP-hardness of solving nonlinear equations over finite fields. Some examples for Multivariate
PKCs would be Rainbow [8] or QUARTZ [7].

Code-based Cryptography In code-based cryptography, the underlying one-way function of
the cryptosystem relies on an error correcting code C [11] . The security of such cryptosystems rely
on a variant of MLD. Some well-known code-based cryptosystems would be those from McEliece
[3] or Niederreiter [5]. The McEliece cryptosystem is a candidate for post-quantum cryptography
because of its immunity to attacks using the Shor algorithm. Code-based cryptography allows
the construction of the most important cryptographic primitives (encryption, signature, ...) often
with efficient implementations.

6

Chapter 3

Complexity Classes P and NP

Before diving into what the complexity classes P and NP mean, the idea of complexity in gen-
eral is discussed. In computer sciences there is a branch of computational complexity theory,
where the costs and resources required to solve a given computational problem are analyzed. A
complexity class is the set of all computational problems which can be solved by using the same
amount of certain resources. Furthermore, we call a decision problem any problem to which a
solution can either be yes or no. For example the Traveling Salesman Problem: “Is this a route
that visits all cities under cost c?" [14]. A fundamental part of computational complexity theory
are Turing Machines [6].

3.1 Turing Machines

A Turing Machine (TM) models how computations work on a computer in a simple manner. A
TM is a program or an algorithm which does a computation by step-wise manipulating symbols
or numbers. These symbols then get written or deleted on a tape and can be read by the
machine. The tape is divided into sections ("squares"). Each section can hold a symbol. One
section can be found in the machine, the so called "scanned symbol". The machine remembers
some scanned symbols. The behaviour of the machine is dictated by the scanned symbol and the
configurations, which tell the machine what to do, when a specific symbol is scanned. [1]. One
can differentiate between deterministic and non-deterministic TMs [6]:

• deterministic: the set of rules for a scanned symbol impose at most one action to be
performed for any given situation

• non-deterministic: may have a set of rules which then prescribe one or more actions
which will be performed for a given situation

3.2 P and NP

Definition 3.2.1. NP (Non-deterministic polynomial time)is a complexity class used to classify
decision problems. It is the set of all decision problems of which the validity of any proposed
solution S to an instance I of the problem can be checked efficiently. In other words - the instance
can be checked by a deterministic TM and can be efficiently solved by a non-deterministic TM.
[14]

Definition 3.2.2. A problem is in P, if there exists a deterministic TM which can solve it in
polynomial time. It also is a subset of NP, as NP is the generalization of P. Therefore, this
definition implies: P ⊆ NP. Most experts believe that P is a proper subset of NP, but this still
remains unproven.

7

In the introduction it was stated, that MLD was proven to be NP-complete in 1978 by
Berlekmap, McEliece and van Tilborg in [2]. Before looking at the formal definition of NP-
completeness, the concept of a reduction must be presented:

Reduction Let A and B be two decision problems. The set of all instances of problem A is
called Σ∗ and the corresponding set of B is called Γ∗ (is the set of all the instances of problem
B.) We call a decision problem A reducible to a decision problem B if there exists a function
f : Σ∗ → Γ∗ which can be computed in polynomial time by a deterministic algorithm such that
for all w ∈ Σ∗ it holds that:

w ∈ A⇔ f(w) ∈ B

Now, the formal definition of NP-completeness is given [14]:

Definition 3.2.3. A problem is NP-complete if it is in NP, and every problem in NP reduces
to it in polynomial time (in the size of the input). A problem is NP-hard if an NP-complete
problem reduces to it.

Within in thesis, a reduction from MLD to MQ (and vice-versa) will be implemented. Thus,
we do not only compute a reduction from MLD to MQ, but this reduction should happen in
polynomial time.

8

Chapter 4

MLD to MQ Reduction

In 2.2.1 the MLD problem was introduced. An instance of MLD must fulfill the following
requirements:

1. parity check constraint: the solution v has to fulfill Hv> = s>

2. weight constraint: for the solution v it must hold that wH(v) ≤ t

Denote c as the transmitted vector. During transmission an error e may occur and the word
z = c+ e is received. To check whether the received word contains an error, one conducts a left
multiplication of the word with the parity check matrix. Since

Hz = H(c+ e) = Hc+He = 0 +He = s

it is possible to conclude that the received word contains an error if and only if s is not the zero
(n−k)-vector. The vector s is called the syndrome associated to v. The syndrome only depends
on the error which occurs during transmission and not on the specific word. Once e is known,
it becomes trivial to decode c as c = z − e. By construction, v is the error vector we want to
find.

4.1 Implementation: Parity Check Constraint

The first step in the implementation requires the initial condition which an instance of the MLD
must satisfy: the parity check constraint. A solution v must satisfyHv> = s>. The syndrome
s and the matrix H are given. Therefore, a program must be implemented such that it returns
m (= number of rows of matrix H) linear binary equations which have the coordinates of s,
i.e. s1, ..., sm, are the solutions. This results in a set of m linear equations fi ∈ F2[v1, . . . , vn] of
the form fi =

∑n
j=1 hi,jvj + si. The following listing shows how the above described process is

implemented with SageMath:

1 H = Matrix ([[1,1,0,1,1,0,0], [1,0,1,1,0,1,0], [0,1,1,1,0,0,1]])
2 s = vector ([0,1 ,1])
3 n = H.ncols ()
4 P0 = PolynomialRing(GF(2),n,names="v"); P0
5 P0.inject_variables ()
6 v = P0.gens()
7 (H*vector(P.gen(i) for i in range(n))-s).list()

Listing 4.1. without User Interaction

The above code snippet has the following output:

1 #Output:
2 [v0 + v1 + v3 + v4 , v0 + v2 + v3 + v5 + 1, v1 + v2 + v3 + v6 + 1]

9

In the above code, one firstly defines a polynomial ring in which the computations should run.
Because the definition of a polynomial ring is fundamental for SageMath, the formal definition
of one is given:

Definition 4.1.1. Let R be ring. A polynomial with coefficients in R is a formal expression

∞∑
i=0

aiX
i, ai ∈ R ∀i ≥ 0

and almost all ai are equal to zero (that is, there exists an n such that ai = 0 ∀i ≥ n.) The ai
are called coefficients of the polynomial

∑∞
i=0 aiX

i. The set of all polynomials with coefficients
in R is denoted R[X], it is a ring called the polynomial ring in one indeterminate X over R.

In this scenario, we define R = F2. Therefore, the polynomial ring used is F2[v1, . . . , vn].
The following code snippet returns the equations, when the matrix H is multiplied with the
unknown error vector v, moreover the syndrome s is subtracted so. Consequently, the code
returns polynomials.

1 (H*vector(P.gen(i) for i in range(n))-s).list()

The gen(.) function returns vi which corresponds to the i-th coordinate of the vector v which is
multiplied by H. The function list() returns a list containing the resulting polynomials.

4.2 Implementation: Weight Constraint

The requirement of the weight constraint (the solution v has to satisfy wH(v) ≤ t) is implemented
in two steps:

• weight computation encoding: wH(v) = w

• weight constraint encoding: wH(v) ≤ t

4.2.1 Weight Computation Encoding

Consider the following pseudocode which, given a binary input vector v, computes the weight of
vector v.

Input:binary input vector v Output:weight of vector v Initialize: n = length of vector
v and counter = 0 and i = 0 ;
while i < n do

if v[i] 6= 0 then
counter = counter + 1 ;

else
i

end
= i + 1 ;
return counter;

end

Roughly said, a binary counter is implemented which stores the Hamming weight of the
vector v step-wise until the i-th coordinate (see pseudocode above). Formally, it is required for
the following to be implemented [13]:

Definition 4.2.1. Let v ∈ (F2)
n and l = blog2(n)+1c. Consider the truncation map πi : (F2)

l →
(F2)

l defined as πi : (v1, ..., vl) = (v1, ..., vi, 0, ..., 0). The set of variables a(i)j for i = 0, ..., n and

10

j = 1, ..., l is defined, such that a(i)(v) = (a
(i)
1 (v), ..., a

(i)
l (v)) ∈ (F2)

l can be regarded as the binary
expansion of wH(πi(v)). Set a(0) = (0, ..., 0) while a(i) is defined recursively for i = 1, ..., n by
computing its coefficients a(i)j as

a
(i)
j (v) = a

(i−1)
j + (

j−1∏
h=1

a
(i−1)
h)vi (4.1)

and finally a = a(n) = (a
(n)
1 , ..., a

(n)
l).

Equation 4.1 represents a binary addition of the Hamming Weight of v. In general, the
addition of binary numbers works as follows:

Example 1. Let a = (1, 0, 1). The following example shows how 1 is added to vector a. When
transforming 1 into binary, one has (1)10 = (0, 0, 1)2, therefore:

0 0 1 0 (carry)
1 0 1

+ 0 0 1
1 1 0

(4.2)

The last two bits get added which gives 1 + 1 = 0 in F2, but because (0)2 = (2)10, one has to
carry 1 to the next bit. Proceeding to the second bit, one computes 0 + 1 = 1. This means,
there is no carry and one proceeds to the first bit. Again, the following addition is computed:
0 + 1 = 1. Every time 1 + 1 is added, one has to carry an extra 1 to the next bit.

Remark. For the remainder this thesis, the least significant bit always comes first.

The following example demonstrates how (4.1) works. In a(i) the hamming weight of vector
v gets stored until the i-th coordinate in binary step by step.

Example 2. Let v = (1, 0, 1, 1, 0). So l = blog2(5) + 1c. So j will iterate from j = 1, . . . , 3 and
i = 1, . . . , 5. In the end, one wants to have five vectors a(1), a(2), . . . , a(5) where the Hamming
weight until the i-th coordinate of vector v is stored. Remember, that a is in binary and the
least significant bit comes first. i = 1.

a
(1)
1 (v) = a

(0)
1 + (

0∏
h=1

a
(0)
h)v1 = 0 + 1 = 1

a
(1)
2 (v) = a

(0)
2 + (

1∏
h=1

a
(0)
h)v1 = 0 + 0 = 0

a
(1)
3 (v) = a

(0)
3 + (

2∏
h=1

a
(0)
h)v1 = 0 + 0 = 0

a(1) = (1, 0, 0). This is obviously true, as π1(v) = (1, 0, 0, 0, 0) and the Hamming weight of this
vector is 1. i = 2.

a
(2)
1 (v) = a

(1)
1 + (

0∏
h=1

a
(1)
h)v2 = 1 + 0 = 1

a
(2)
2 (v) = a

(1)
2 + (

1∏
h=1

a
(1)
h)v2 = 0 + 0 = 0

a
(2)
3 (v) = a

(1)
3 + (

2∏
h=1

a
(1)
h)v2 = 0 + 0 = 0

11

And it follows that: a(2) = (1, 0, 0). Also true, as π2(v) = (1, 0, 0, 0, 0).
i = 3. As the example is relatively simple one can easily deduce that in the following equation

a gets incremented.

a
(3)
1 (v) = a

(2)
1 + (

0∏
h=1

a
(2)
h)v3 = 1 + (1 ∗ 1) = 1 + 1 = 0

Above, a(2)1 corresponds (in a long addition) to the last bit of the first addend. (
∏0

h=1 a
(2)
h)v3

will be 1, if v3 is 1. So the last bit will be 0. The carry will be added in the next step:

a
(3)
2 (v) = a

(2)
2 + (

1∏
h=1

a
(2)
h)v3 = a

(2)
2 + a

(2)
1 ∗ v3 = 0 + 1 ∗ 1 = 1

a
(2)
2 corresponds to the next bit of the first Addend. a(2)1 is the carry of the long addition. So

here, the actual increment appears.

a
(3)
3 (v) = a

(2)
3 + (

2∏
h=1

a
(2)
h)v3 = 0 + 0 = 0

a(3) = (0, 1, 0). Here the first difference appears. The Hamming weight is two, which is still true
as π3(v) = (1, 0, 1, 0, 0). i = 4.

a
(4)
1 (v) = a

(3)
1 + (

0∏
h=1

a
(3)
h)v4 = 0 + 1 = 1

a
(4)
2 (v) = a

(3)
2 + (

1∏
h=1

a
(3)
h)v4 = 1 + 0 = 1

a
(4)
3 (v) = a

(3)
3 + (

2∏
h=1

a
(3)
h)v4 = 0 + 0 = 0

And it follows that: a(4) = (1, 1, 0) with π4(v) = (1, 0, 1, 1, 0) and the corresponding Hamming
weight is 3, as displayed in a(4). i = 5.

a
(5)
1 (v) = a

(4)
1 + (

0∏
h=1

a
(4)
h)v5 = 1 + 0 = 1

a
(5)
2 (v) = a

(4)
2 + (

1∏
h=1

a
(4)
h)v5 = 1 + 0 = 1

a
(5)
3 (v) = a

(4)
3 + (

2∏
h=1

a
(4)
h)v5 = 0 + 0 = 0

Lastly, a(5) = (1, 1, 0) which, as an integer is 3. This is exactly the weight of v: wH(v) =
wH(1, 0, 1, 1, 0).

12

4.2.2 Two Implementations - Weight Computations Encoding

In this thesis, the weight computation encoding is implemented in two ways. The first imple-
mentation uses lists. The second implementation works by updating two vectors directly. The
following two listings gives an overview of the complete code and is then followed by an analysis
of the different code snippets:

1 H = Matrix ([[1,1,0,1,1,0,0], [1,0,1,1,0,1,0], [0,1,1,1,0,0,1]])
2 s = vector ([0,1 ,1])
3 n = H.ncols ()
4 P0 = PolynomialRing(GF(2),n,names="v"); P0
5 P0.inject_variables ()
6 v = P0.gens()
7 l = floor(log(n,2)) + 1
8 all = (n*l)
9

10 P1 = PolynomialRing(P0, n+1,l, var_array =(’a’)); P1
11 P1.inject_variables ()
12 a = P1.gens()
13

14 #create list of product - step by step
15 L = []
16 for i in range(l,all+l,l):
17 for h in range(l):
18 L.append(prod(a[k] for k in range(i-l, i-l+h)))
19 print(L)
20

21 #create list of vector v = (v1 , v1 , v1, v2, v2 , v2, ...)
22 V = []
23 for m in range(n):
24 for n in range(l):
25 V.append(P0.gen(m))
26 print(V)
27

28 # create equations
29 EQ = []
30 for j in range(l,all+l):
31 EQ.append(a[j-l] +V[j-l]*L[j-l] + a[j])
32 print(EQ)

Listing 4.2. Implementation 1

1 H = Matrix ([[1,1,0,1,1,0,0], [1,0,1,1,0,1,0], [0,1,1,1,0,0,1]])
2 s = vector ([0,1 ,1])
3

4 n = H.ncols ()
5 l = floor(log(n,2)) + 1
6 all = (n*l)
7

8 P0 = PolynomialRing(GF(2),n,names="v"); P0
9 P0.inject_variables ()

10 v = P0.gens()
11

12 P1 = PolynomialRing(P0, n+1,l, var_array =(’a’)); P1
13 P1.inject_variables ()
14

15 P2 = PolynomialRing(P1, l, names = "b"); P2
16 P2.inject_variables ()
17 b = P2.gens()
18

19 L0 = vector(P2.gen(i) for i in range(l))
20 L1 = vector(P2.gen(i) for i in range(l))
21

22 #product

13

23 for i in range(n):
24 for j in range(l):
25 if j == 0:
26 L0[j] = L0[0]
27 else:
28 L0[j] = L0[j]*L0[j-1]
29 #equations
30 for j in range(l):
31 if j == 0:
32 L1[j] = L0[j] + v[i]
33 else:
34 L1[j] = L0[j]/L0[j-1] + L0[j-1]*v[i]
35 L0 = L1[:]
36

37 for j in range(l):
38 L0[j] = L0[j] + b[j]
39 print(L0)

Listing 4.3. Implementation 2

Both codes start with setting the length of vector v and also defining l (see Definition 4.2.1):
1 n = H.ncols () #numberOfVariables
2 l = floor(log(n,2)) + 1
3 all = (n*l)

Listing 4.4. Length of v and l

Then the polynomial rings, where the resulting set of polynomials will live in, are defined. One
difference between the two implementations is that in Implementation 2 l new variables called
b0, b1, . . . , bl have to be added. The reason for this will become obvious, when talking about
Implementation 2.

1 P0 = PolynomialRing(GF(2),numberOfVariables ,names="v"); P0
2 P0.inject_variables ()
3 v = P.gens()
4

5 #only needed in Implementation 2
6 P1 = PolynomialRing(P0, l, names = "b"); P1
7 P1.inject_variables ()
8 b = P1.gens()
9

10 P2 = PolynomialRing(P1, n+1,l, var_array =(’a’)); P2
11 P2.inject_variables ()
12

13 #Output:
14 Defining v0 , v1, v2 , v3 , v4, v5, v6
15 Defining b0 , b1, b2
16 Defining a00 , a01 , a02 , a10 , a11 , a12 , a20 , a21 , a22 , a30 , a31 , a32 , a40 , a41 ,

a42 , a50 , a51 , a52 , a60 , a61 , a62 , a70 , a71 , a72

Listing 4.5. Defining the variables

A multivariate polynomial ring in v0, v1, v2, v3, v4, v5, v6 (as we have n as a constant)
over F2 is defined. Vector v, vector b and the variables a(i)j have to live in the same polyno-
mial ring, therefore P2 is defined as a multivariate polynomial ring in a00, a01, a02, a10,
a11, a12, a20, a21, a22, a30, a31, a32, a40, a41, a42, a50, a51, a52, a60, a61,
a62, a70, a71, a72 over a multivariate polynomial ring in b0, b1, b2 over a multivariate

polynomial ring in v0, v1, v2, v3, v4, v5, v6 over F2. So this actually means, that the
coefficients of polynomials in P2 are in P1 and coefficients of polynomials in P1 are in P0.
This must be true, as the vectors which are constructed are actual polynomials. After those
preliminaries, the above mentioned code snippets behave differently. Firstly, Implementation 1
is discussed, followed by Implementation 2.

14

Implementation 1

The implementation bases itself on generating lists and composes those in the end as a system
of equations. In the first list L, each component L[j] contains the product

∏j−1
h=1 a

(i−1)
h , for each

j ∈ {1, . . . , l}.
1 #create list of product - step by step
2 L = []
3 for i in range(l,all+l,l):
4 for h in range(l):
5 L.append(prod(a[k] for k in range(i-l, i-l+h)))

Listing 4.6. List L

1 #Output:
2 [1, a00 , a00*a01 , 1, a10 , a10*a11 , 1, a20 , a20*a21 , 1, a30 , a30*a31 , 1, a40 , a40

*a41 , 1, a50 , a50*a51 , 1, a60 , a60*a61]

Listing 4.7. Output L

Next, the list called V is generated. It has to have the same length as L otherwise it wouldn’t be
possible to combine them so easily. V consists of the components of vector v, repeated l-times,
before filling the n ∗ (l + 1)-th spot in the list with the next component of vector v.

1 #create list of vector: (v1, v1, v1 , v2, v2, v2 , ...)
2 V = []
3 for m in range(n):
4 for n in range(l):
5 V.append(P1.gen(m))

Listing 4.8. List V

1 #Output:
2 [v0 , v0 , v0, v1, v1 , v1, v2, v2 , v2, v3, v3 , v3 , v4, v4, v4 , v5, v5, v5 , v6 , v6,

v6]

Listing 4.9. Output V

In the last step of the code, the polynomials with the above defined lists are generated. The
polynomials are saved in list EQ.

1 EQ = []
2 for j in range(l,all):
3 EQ.append(a[j-l] +V[j-l]*L[j-l] + a[j])
4 print(EQ)

Listing 4.10. List EQ

1 #Output:
2 [a00 + a10 + v0 , v0*a00 + a01 + a11 , v0*a00*a01 + a02 + a12 , a10 + a20 + v1, v1*

a10 + a11 + a21 , v1*a10*a11 + a12 + a22 , a20 + a30 + v2 , v2*a20 + a21 + a31 ,
v2*a20*a21 + a22 + a32 , a30 + a40 + v3 , v3*a30 + a31 + a41 , v3*a30*a31 +

a32 + a42 , a40 + a50 + v4 , v4*a40 + a41 + a51 , v4*a40*a41 + a42 + a52 , a50 +
a60 + v5, v5*a50 + a51 + a61 , v5*a50*a51 + a52 + a62 , a60 + a70 + v6 , v6*

a60 + a61 + a71 , v6*a60*a61 + a62 + a72]

Listing 4.11. Output EQ

Implementation 2

The second implementation updates two vectors in every iteration and may be more efficient
in generating the polynomials than the first implementation. Below, every step of the imple-
mentation is discussed in detail. The variables a(i)j and vi are generated as in Implementation
1.

15

In Implementation 2, vectors and not lists are used. The idea behind this is, that one only
needs two vectors, which then get updated in turn throughout the loop in the code. Also, when
analyzing (4.1) one quickly realizes that actually only the variables a00, a01, . . . , a0l are needed,
as all the other variables are defined recursively on top of them. Before analysing the code, the
above statement is illustrated in the following example.

Example 3. Let v = (1, 0, 1). So l = 2 and j = 1, 2 and i = 1, 2, 3. i = 1

a
(1)
1 (v) = a

(0)
1 + (

0∏
h=1

a
(0)
h)v1 = a

(0)
1 + v1 (4.3)

a
(1)
2 (v) = a

(0)
2 + (

1∏
h=1

a
(0)
h)v1 = a

(0)
2 + a01 ∗ v1 (4.4)

i = 2

a
(2)
1 (v) = a

(1)
1 + (

0∏
h=1

a
(1)
h)v2 = a

(1)
1 + v2 = a

(0)
1 + v1 + v2 (4.5)

a
(2)
2 (v) = a

(1)
2 + (

1∏
h=1

a
(1)
h)v2 = a

(1)
2 + a

(1)
1 ∗ v2 = a

(0)
2 + a01 ∗ v1 + (a

(0)
1 + v1) ∗ v2 (4.6)

i = 3

a
(3)
1 (v) = a

(2)
1 + (

0∏
h=1

a
(2)
h)v3 = a

(2)
1 + v3 = a

(0)
1 + v1 + v2 + v3 (4.7)

a
(3)
2 (v) = a

(2)
2 +(

1∏
h=1

a
(2)
h)v3 = a

(2)
2 +a21∗v3 = a

(0)
2 +a01∗v1+(a

(0)
1 +v1)∗v2+(a

(0)
1 +v1+v2)∗v3 (4.8)

The equations acquire greater complexity, however in terms of reusing code it’s very elegant.

To start off, two vectors with length l are defined. Those vectors L0 and L1 will be reused
and updated in the code. The very last vector in the following iterations will contain the binary
representation of the weight of v.

1 L0 = vector(P2.gen(i) for i in range(l))
2 L1 = vector(P2.gen(i) for i in range(l))

Listing 4.12. Definition of two vectors for reuse

The outer loop iterates through the vector of length n. The first inner loop is in range(l) and
generates the product.

1 for j in range(l):
2 if j == 0:
3 L0[j] = L0[0]
4 else:
5 L0[j] = L0[j]*L0[j-1]

Listing 4.13. Product

The output for i = 1 would be:

1 #Output:
2 (a00 , a00*a01 , a00*a01*a02)

Listing 4.14. Output L0 in first loop and i = 1

In the second loop we generate the polynomials we need.

16

1 for j in range(l):
2 if j == 0:
3 L1[j] = L0[j] + v[i]
4 else:
5 L1[j] = L0[j]/L0[j-1] + L0[j-1]*v[i]
6

7 L0 = L1[:]

Listing 4.15. Equations

If j = 0 nothing has to be computed, as the product in (4.1) would just be 1. Therefore, the
first if-clause returns the first component of the vector and saves it in L1.
For the case j 6= 0 the polynomials are computed by doing a division and a multiplication. In L0
the polynomials of the (i−1)-th iteration are stored. Because L0[j] is composed of L0[j]·L0[j−1],
one can divide L0[j] by L0[j − 1] and the result would just be the first variable in the equation,
as there is no remainder.
Then, as the product is stored in L0[j − 1] it gets multiplied with the vector component. This
polynomial will be stored in L1[j]. In the last step, one sets L0 = L1. Therefore, the vector L0
can be reused and the next iteration step is saved in L1.
The equation (4.1) encodes the weight of vector v. At the moment, the weight of the vector
is only stored in L0 - but L0 is needed as a polynomial. The weight computation has to be
a polynomial, which is set to zero and solved in the end. Currently, only the right side of the
equation is saved in L0. But the left side in L0 has to be saved as well such that the whole set
of polynomials is complete when setting those to zero. Otherwise, the weight computation is not
taken into account when solving the set of equations. A small example should show the necessity
of introducing new variables b0,b1,...,bl:

Example 4. Let n = 3, l = 2 and v = (0, 1). In L0 the following is stored:

L0 = [(a0 + v0) + v1, (a1 + a0v0) + (a0 + v0)v1] (4.9)

When trying to solve those polynomials, they have to be set to zero and the output is the
following (let the solution vector be xi = [a0, a1, v0, v1]):

a0 + v0 + v1 = 0 (4.10)
a1 + a0v0 + a0v1 + v0v1 = 0 (4.11)

x1 = [0, 0, 0, 0], x2 = [0, 1, 1, 1], x3 = [1, 0, 1, 0], x4 = [1, 0, 0, 1], x5 = [1, 1, 1, 0], x6 = [1, 1, 0, 1],

The variables a0 = a1 = 0 have to be set to zero, such that the solution x1 is selected, but the
resulting vector v = (0, 0) is not correct. The weight is correctly encoded ([(a0 + v0) + v1, a1 +
a0v0 + a0v1 + v0v1] = [(0 + 0) + 1, 0 + 0 + 0 + 0] = [1, 0]), but when solving those equations,
the encoded weight is nowhere to be found. As already mentioned, the whole equation was not
taken into account, some solutions have been excluded, so one has to introduce new variables.
Let those variables be called b0, b1. And the new set of equations would be:

b0 + a0 + v0 + v1 = 0 (4.12)
b1 + a1 + a0v0 + a0v1 + v0v1 = 0 (4.13)

When setting the variables a0 = a1 = 0, the resulting system is

b0 + v0 + v1 = 0 (4.14)
b1 + v0v1 = 0 (4.15)

The solution vectors of the form xi = [b0, b1, v0, v1] would be:

x1 = [0, 0, 0, 0], x2 = [1, 0, 1, 0], x3 = [1, 0, 0, 1], x4 = [0, 1, 1, 1].

17

It can be seen that in x3 the first two entries are the correctly encoded weight of vector v. So
now the weight is correctly encoded and the constraint is satisfied. So when introducing those
new variables b0, b1, ...bl, L0 is used as a polynomial and not only for storage. So with the

following code snippet, L0 is introduced as a polynomial, with the weight of the vector correctly
encoded:

1 for j in range(l):
2 L0[j] = L0[j] + b[j]

The output of this code would be the following:
1 (a00 + b0 + v0 + v1 + v2 + v3 + v4 + v5 + v6, (v0 + v1 + v2 + v3 + v4 + v5 + v6)

*a00 + a01 + b1 + v0*v1 + v0*v2 + v1*v2 + v0*v3 + v1*v3 + v2*v3 + v0*v4 + v1
*v4 + v2*v4 + v3*v4 + v0*v5 + v1*v5 + v2*v5 + v3*v5 + v4*v5 + v0*v6 + v1*v6
+ v2*v6 + v3*v6 + v4*v6 + v5*v6 , (v0*v1 + v0*v2 + v1*v2 + v0*v3 + v1*v3 + v2
*v3 + v0*v4 + v1*v4 + v2*v4 + v3*v4 + v0*v5 + v1*v5 + v2*v5 + v3*v5 + v4*v5
+ v0*v6 + v1*v6 + v2*v6 + v3*v6 + v4*v6 + v5*v6)*a00^2 + (v0 + v1 + v2 + v3
+ v4 + v5 + v6)*a00*a01 + (v0^2*v1 + v0^2*v2 + v0*v1*v2 + v1^2*v2 + v0^2*v3
+ v0*v1*v3 + v1^2*v3 + v0*v2*v3 + v1*v2*v3 + v2^2*v3 + v0^2*v4 + v0*v1*v4 +
v1^2*v4 + v0*v2*v4 + v1*v2*v4 + v2^2*v4 + v0*v3*v4 + v1*v3*v4 + v2*v3*v4 +
v3^2*v4 + v0^2*v5 + v0*v1*v5 + v1^2*v5 + v0*v2*v5 + v1*v2*v5 + v2^2*v5 + v0*
v3*v5 + [...]

Listing 4.16. Equations

Running the code for v = (1, 0, 1, 1, 0, 0, 0) returns:
1 (a00 + b0 + 1, a00 + a01 + b1 + 1, a00^2 + a00*a01 + a01 + a02 + b2)

Listing 4.17. Binary weight of vector v

And setting a00, a01, a02 to zero (as this is their original value), and solving the equations for
b0, b1, b2 (the bi’s represent the binary weight of vector v) the weight is: (1, 1, 0)2 = (3)10 (which
is true).

4.2.3 Weight Constraint Encoding

In the next step a polynomial is defined which can compare two integers c1, c2 ∈ Z and returns 0
if and only if c1 ≤ c2. When representing an integer in binary, the most significant bit is decisive
for comparison. Let two vectors a, t ∈ (F2)

l be defined and let their most significant bits be al
and tl respectively. To do so, the following procedure is applied, starting from j = l:

• if aj = tj then move to the next bits aj−1 and tj−1.

• if aj 6= tj , output aj

• if all bits are checked, output 0.

Now, a polynomial F ∈ F2[a1, ..., al, t1, ..., tl] is defined such that:

F (a, t) =

{
0 if int(a) ≤ int(t)
1 otherwise

(4.16)

When defining gh(a, t) = (ah+th) ∈ F2[ah, th] for every h = 1, ..., l, one can notice that gh(a, t) =
0 if ah = th (this follows, because if they are equal, it is either 0 + 0 = 0 or 1 + 1 = 0(mod 2)
for every ah, th). In the next part of the implementation for the weight constraint encoding, the
polynomials for j = 1, ..., l are defined:

fj =

 l∏
h=j+1

(gh + 1)

 gj (4.17)

18

where fj ∈ F2[a1, ..., al, t1, ..., tl]. The polynomial fj(a, t) will only be 0 if either the product is 0
or gj(a, t) = 0. Moreover, the polynomial fj(a, t) = 1 for at most one value of j. One has that
fj(a, t) = 1 if a and t differ in the j-th coordinate. This works only if the product is 1 and the
polynomial gj(a, t) = 1. The product is 1 only if all the factors are equal to 1. This is the case,
when ah = th for h = j + 1, ...l. To demonstrate the purpose of the above set of polynomials
which is locating the most significant bit in where a and t differ, another example is shown: Let
a = (1, 0, 1, 0) and t = (1, 1, 1, 0). So l = 4 and:

fj =

 4∏
h=j+1

(gh + 1)

 gj (4.18)

j = 1.

f1 =

(
4∏

h=2

(gh + 1)

)
gj = ((g2 + 1) ∗ (g3 + 1) ∗ (g4 + 1)) ∗ g1

= ((a2 + t2 + 1)(a3 + t3 + 1)(a4 + t4 + 1)) ∗ (a1 + t1)

= (0 + 1 + 1) ∗ (1 + 1 + 1) ∗ (0 + 0 + 1) ∗ (1 + 1) = 0

(4.19)

j = 2.

f2 =

(
4∏

h=3

(gh + 1)

)
gj = ((g3 + 1) ∗ (g4 + 1)) ∗ g2

= ((a3 + t3 + 1)(a4 + t4 + 1)) ∗ (a2 + t2)

= (1 + 1 + 1) ∗ (0 + 0 + 1) ∗ (0 + 1) = 1

(4.20)

j = 3.

f3 =

(
4∏

h=4

(gh + 1)

)
gj = ((g4 + 1)) ∗ g3

= ((a4 + t4 + 1)) ∗ (a3 + t3)

= (0 + 0 + 1) ∗ (1 + 1) = 0

(4.21)

j = 4.

f4 =

(
4∏

h=5

(gh + 1)

)
gj = (1) ∗ g4

= ((1)) ∗ (a4 + t4)

= (1) ∗ (0 + 0) = 0

(4.22)

One can directly see that a and t differ in the second bit, because it is known from the above
computations that f2 = 1. To check whether int(a) ≤ int(t) the polynomial F given in (25) has
to be implemented. Therefore, let

F =
l∑

j=1

fj · (tj + 1) ∈ F2[a1, ..., al, t1, ..., tl] (4.23)

where a and t belong to (F2)
l. Then, F (a, t) = 0 if and only if int(a) ≤ int(t). A product is zero

exactly when one of the factors is zero. Consequently, F (a, t) = 0 only if either

• fj = 0 ∀j ∈ (1, . . . l) or

19

• tj + 1 = 0

Case 1: fj = 0 ∀j ∈ (1, . . . l) This is only true if a = t. Otherwise, there is at most one
value of j for which fj(a, t) = 1. Case 2: tj + 1 = 0 This is only true, when tj = 1. If this is the
case (and assuming fj = 1), then int(a) ≤ int(t). Assuming fj = 1, it can be concluded, that a
and t differ in this bit. Moreover, when tj = 1 it is known that at that bit where a and t differ,
t must be 1 and a must be 0, concluding that a ≤ t.

The above described step is now added to the example:

F =

4∑
j=1

fj · (tj + 1) = f1 · (t1 + 1) + f2 · (t2 + 1) + f3 · (t3 + 1) + f4 · (t4 + 1) = 0 (4.24)

Because F is zero, it can be deduced that a must be smaller than t. In the case of the weight
constraint encoding, two different implementations were computed depending on the ideas of the
weight computation encoding in 4.2.2.

4.2.4 Two Implementations - Weight Constraint Encoding

Implementation 1

The idea of Implementation 1 is based on lists. The constraint encoding pushes this idea further
and the result is the following code:

1 P3 = PolynomialRing(P1, ’t’, l); P3
2 P3.inject_variables ()
3 T = P3.gens()
4 f = []
5 #create f_j
6 for j in range(l):
7 f.append(prod((a[all+h] + T[h] + 1) for h in range (j+1,l)) * (a[all+j] + T[

j]))
8 #create polynomial F
9 F = sum(f[j] * (T[j] + 1) for j in range(0,l))

Listing 4.18. Weight Constraint Encoding

The computed weight which is stored in the last l entries of EQ, should now be compared with an
integer t, therefore one has to define where the variables t1, . . . , tl live. Again, a polynomial ring
over a polynomial ring is defined to represent polynomials in a1, . . . , al, t1, . . . , tl. The variables
t1, . . . , tl are components in the vector T . Moreover, an empty lists f is defined. This list will
contain the polynomials fj . In the following code snippet he polynomials fj are created.

1 #create f_j
2 for j in range(l):
3 f.append(prod((a[all+h] + T[h] + 1) for h in range (j+1,l)) * (a[all+j] + T[

j]))

Listing 4.19. fj

fj gets stored in f . The implementation follows the equation defined in 4.17. The output would
be the following.

1 [t0*t1*t2 + (a72 + 1)*t0*t1 + (a71 + 1)*t0*t2 + a70*t1*t2 + (a71*a72 + a71 + a72
+ 1)*t0 + (a70*a72 + a70)*t1 + (a70*a71 + a70)*t2 + a70*a71*a72 + a70*a71 +
a70*a72 + a70 , t1*t2 + (a72 + 1)*t1 + a71*t2 + a71*a72 + a71 , t2 + a72]

Listing 4.20. Output of fj

Lastly, F gets created.
1 #create polynomial F
2 F = sum(f[j] * (T[j] + 1) for j in range(0,l))

Listing 4.21. Polynomial F

20

F returns 0 if the weight of vector v is smaller or equal to the proposed integer t, 1 otherwise.
The output would look like the following:

1 #Output:
2 t0^2*t1*t2 + (a72 + 1)*t0^2*t1 + (a71 + 1)*t0^2*t2 + (a70 + 1)*t0*t1*t2 + t1

^2*t2 + (a71*a72 + a71 + a72 + 1)*t0^2 + (a70*a72 + a70 + a72 + 1)*t0*t1 + (
a72 + 1)*t1^2 + (a70*a71 + a70 + a71 + 1)*t0*t2 + (a70 + a71 + 1)*t1*t2 + t2
^2 + (a70*a71*a72 + a70*a71 + a70*a72 + a71*a72 + a70 + a71 + a72 + 1)*t0 +
(a70*a72 + a71*a72 + a70 + a71 + a72 + 1)*t1 + (a70*a71 + a70 + a71 + a72 +
1)*t2 + a70*a71*a72 + a70*a71 + a70*a72 + a71*a72 + a70 + a71 + a72

Listing 4.22. Output of F

If one evaluates for an integer t = (1, 0, 0) the result would be the following:
1 #Output:
2 a71*a72 + a71 + a72

The output is quite compact and concise. However, it can already been seen that solving this
polynomial, a lot of variables have to be stored. Moreover, the solution depends on the last
computation. This means, all the other aij′s have to be computed, before the resulting polyno-
mial is given. The next implementation uses fewer variables which makes it easier to solve with
SageMath.

Implementation 2

The second implementation is constructed by updating the vectors step by step. Recall that L0
contains the computed weight.

1 P3 = PolynomialRing(P2, ’t’, l); P3
2 P3.inject_variables ()
3 T = vector(P3.gen(i) for i in range(l))
4 f = []
5

6 #create f_j
7 for j in range(l):
8 f.append(prod((b[h] + T[h] + 1) for h in range (j+1,l)) * (b[j] + T[j]))
9

10 #create polynomial F
11 F = sum(f[j] * (T[j] + 1) for j in range(0,l))
12 print("\n Polynomial F. F is 0 iff weight of a is smaller than t, 1 otherwise: \

n ")
13 print(F)

Listing 4.23. Weight Constraint Encoding Implementation 2

Again, as in Implementation 1, a third polynomial ring P3 is generated over P2. Creating fj for
j in range(j+1,l) the product function of Sage can be used. This is actually the implementation
of the equation defined in 4.17.

1 #create f_j
2 for j in range(l):
3 f[j] = prod((L0[h] + T[h] + 1) for h in range (j+1,l)) * (L0[j] + T[j])
4 print(f)

Listing 4.24. fj

When f is returned, one can observe where L0 and t differ.
1 #Output:
2 [t0*t1*t2 + (b2 + 1)*t0*t1 + (b1 + 1)*t0*t2 + b0*t1*t2 + (b1*b2 + b1 + b2 +

1)*t0 + (b0*b2 + b0)*t1 + (b0*b1 + b0)*t2 + b0*b1*b2 + b0*b1 + b0*b2 + b0,
t1*t2 + (b2 + 1)*t1 + b1*t2 + b1*b2 + b1 , t2 + b2]

Listing 4.25. Output fj

21

The Polynomial F is rather trivially constructed by using the sum function provided by Sage.

1 #create polynomial F
2 F = sum(f[j] * (T[j] + 1) for j in range(0,l))
3 print(F)

Listing 4.26. Polynomial F

F returns 0 if the weight stored in L0 is smaller or equal to the proposed integer t, otherwise it
will return 1. The output of F would look as follows:

1 #Output:
2 t0^2*t1*t2 + (b2 + 1)*t0^2*t1 + (b1 + 1)*t0^2*t2 + (b0 + 1)*t0*t1*t2 + t1^2*

t2 + (b1*b2 + b1 + b2 + 1)*t0^2 + (b0*b2 + b0 + b2 + 1)*t0*t1 + (b2 + 1)*t1
^2 + (b0*b1 + b0 + b1 + 1)*t0*t2 + (b0 + b1 + 1)*t1*t2 + t2^2 + (b0*b1*b2 +
b0*b1 + b0*b2 + b1*b2 + b0 + b1 + b2 + 1)*t0 + (b0*b2 + b1*b2 + b0 + b1 + b2
+ 1)*t1 + (b0*b1 + b0 + b1 + b2 + 1)*t2 + b0*b1*b2 + b0*b1 + b0*b2 + b1*b2

+ b0 + b1 + b2

Listing 4.27. Output F

If evaluating an integer t = (1, 0, 0), the output would be:

1 #Output:
2 b1*b2 + b1 + b2

Note that although the size of the polynomials is way larger in Implementation 1 than in Imple-
mentation 2, fewer variables are needed.

4.3 Degree Reduction Formula for Polynomials

The computed polynomials are not quadratic but are of order l. With the following process
these equations can be transformed into quadratic equations in polynomial time. Let m =
xi1xi2xi3 . . . xil be a monomial with deg(m) = l. A set of l− 2 variables is introduced as follows:

y1 = xi1xi2
y2 = y1xi2
yl−2 = yd−3xil−1

(4.25)

and m can be re-written as m = yl−2xl. A monomial m of degree l is substituted by a set of l−1
quadratic equations by introducing l − 2 new variables. Applying the same argument to every
monomial one obtains a system of quadratic equations as required. In the following example,
the above construction is shown.

Example 1. Let xyz + z = 0 be an equation. The monomial has degree 3 and is therefore
not quadratic. If we introduce a new variable w and set w = xy, then the equation reduces to
wz+ z = 0. So the degree of the equation is reduced by one, despite having to add an additional
variable and equation. The resulting system is an instance of MQ. From the following theorem

it is known that the reduction can be computed in polynomial time.

Theorem 4.3.1. The memory space needed by the reduction is polynomial and bounded by
O(n2log2n+m) where n and m are the dimensions of H ∈ (F2)

(n×m).

Proof. The proof of the above theorem can be looked up in [13].

22

4.4 MLD to MQ Reduction: Example

To demonstrate the correctness of the computations, observe the Hamming Code which encodes
four data bits into seven bits by adding three parity bits. Exactly one error can be detected and
corrected. Let the generator matrix G and parity check matrix H be the following:

G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 ,H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 (4.26)

If the message c = (0, 0, 0, 1, 1, 1, 1) is sent, but the vector z = (1, 0, 0, 1, 1, 1, 1) is received,
the corresponding syndrome is: Hz = s = (1, 1, 0). If the syndrome and the parity check matrix
is added to one of the implementations, the result should be the error vector e = (1, 0, 0, 0, 0, 0, 0)
and one would have: c + e = z. The weight t is set to (1, 0, 0). For the evaluation of the code,
Implementation 2 is used:

1 H = Matrix ([[1,1,0,1,1,0,0], [1,0,1,1,0,1,0], [0,1,1,1,0,0,1]])
2 s = vector ([1,1 ,0])
3 numberOfVariables = H.ncols()
4 P.<v0 ,v1 ,v2,v3,v4,v5,v6 ,a0 ,a1 ,a2, b0,b1,b2 > = PolynomialRing(GF(2));
5 P.inject_variables ()
6 v = [P.gen(i) for i in range (7)]
7 b = [P.gen(i) for i in range (10 ,13)]
8 n = numberOfVariables
9 l = floor(log(n,2)) + 1

10 all = (n*l)
11

12 L0 = vector(P.gen(i) for i in range (7 ,10))
13 L1 = vector(P.gen(i) for i in range (7 ,10))
14

15

16 #product
17 for i in range(n):
18 for j in range(l):
19 if j == 0:
20 L0[j] = L0[0]
21 else:
22 L0[j] = L0[j]*L0[j-1]
23 #equations
24 for j in range(l):
25 if j == 0:
26 L1[j] = L0[j] + v[i]
27 else:
28 L1[j] = L0[j]/L0[j-1] + L0[j-1]*v[i]
29 L0 = L1[:]
30

31 for j in range(l):
32 L0[j] = L0[j] + b[j]
33

34 t = vector ([1,0 ,0])
35 f = []
36

37 #create f_j
38 for j in range(l):
39 f.append(prod((b[h] + t[h] + 1) for h in range (j+1,l)) * (b[j] + t[j]))
40

41 #create polynomial F
42 F = sum((f[j] * (t[j] + 1)) for j in range(0,l))
43

44

45 S = (H*vector(P.gen(i) for i in range(numberOfVariables))-s).list()

23

46 S = S + L0.list()
47 S = S+ [F]
48 for i in range (13):
49 S.append(P.gen(i)^2 + P.gen(i))
50

51 print(S)
52 I = ideal(S)
53 for sol in I.variety ():
54 print(sol[a0],sol[a1],sol[a2],sol[v0],sol[v1],sol[v2],sol[v3],sol[v4],sol[v5

],sol[v6],sol[b0],sol[b1],sol[b2])

The code is completed with the construction of the system of equations S. Moreover, by adding
the for-Loop in Line 48, one rests assure that every variable can only hold the values 0 or 1.
This further ensures, that the set of solutions of the system will be finite. Now consider an ideal
I generated by S. The command variety will compute all the possible solutions of the system.
In this specific case, the solutions of the system will be:

1 0 1 0 0 1 1 1 1 1 1 0 0 0
2 1 1 0 1 1 1 0 1 1 0 0 0 0
3 1 1 0 1 1 1 1 0 0 1 0 0 0
4 1 1 0 1 0 0 1 1 1 1 0 0 0
5 0 0 1 1 0 1 1 1 0 0 0 0 0
6 0 0 1 1 1 0 1 0 1 0 0 0 0
7 0 0 1 1 1 0 0 1 0 1 0 0 0
8 0 0 1 1 0 1 0 0 1 1 0 0 0
9 1 0 1 0 1 0 1 1 0 0 0 0 0

10 1 0 1 0 0 1 1 0 1 0 0 0 0
11 1 0 1 0 0 1 0 1 0 1 0 0 0
12 1 0 1 0 1 0 0 0 1 1 0 0 0
13 0 1 1 0 1 1 0 0 0 0 0 0 0
14 0 1 1 0 0 0 0 1 1 0 0 0 0
15 0 1 1 0 0 0 1 0 0 1 0 0 0
16 1 1 1 1 0 0 0 0 0 0 0 0 0
17 0 0 0 1 0 0 0 0 0 0 1 0 0
18 1 1 0 0 1 1 1 1 1 1 1 0 0
19 0 0 1 1 1 1 0 1 1 0 1 0 0
20 0 0 1 1 1 1 1 0 0 1 1 0 0
21 0 0 1 1 0 0 1 1 1 1 1 0 0
22 1 0 1 1 0 1 1 1 0 0 1 0 0
23 1 0 1 1 1 0 1 0 1 0 1 0 0
24 1 0 1 1 1 0 0 1 0 1 1 0 0
25 1 0 1 1 0 1 0 0 1 1 1 0 0
26 0 1 1 0 1 0 1 1 0 0 1 0 0
27 0 1 1 0 0 1 1 0 1 0 1 0 0
28 0 1 1 0 0 1 0 1 0 1 1 0 0
29 0 1 1 0 1 0 0 0 1 1 1 0 0
30 1 1 1 0 1 1 0 0 0 0 1 0 0
31 1 1 1 0 0 0 0 1 1 0 1 0 0
32 1 1 1 0 0 0 1 0 0 1 1 0 0

Listing 4.28. Solutions of System of Equations

The first three digits are the possible solutions for a0j . Because the variables a0 = a1 = a2 are
set to zero, the only possible solution is found in line 17. The next seven digits is the error
vector e = (1, 0, 0, 0, 0, 0, 0) and the last seven digits is the computed weight stored in b0, b1, b2.
It is known that the error vector has to be e = (1, 0, 0, 0, 0, 0, 0), so the correct solution is
returned. If S = S + [a0,a1,a2] is added to the system of equations, only the correct error
vector gets returned, because all the equations are set to zero. Hence, the possible solution
for a0 = a1 = a2 = 0 is directly filtered. Again, let c = (0, 0, 0, 1, 1, 1, 1) but the vector
z = (1, 0, 0, 1, 1, 1, 1) is received. The syndrome is s = (1, 1, 0). Then the solutions is:

1 0 0 0 1 0 0 0 0 0 0 1 0 0

24

The correct error vector is v = (1, 0, 0, 0, 0, 0, 0) - which is exactly what the found output is. This
means, the implementation for a reduction from MLD to MQ works.

4.5 MQ to MLD

The previous sections have shown a way to reduce an instance of MLD to an instance of MQ.
If the system of equations can be solved, the error vector v is returned, which, in fact, solves
the instance of the MLD problem. The following code snippets directly returns the error vector
after the computing the system of equations S:

1 I = ideal(S)
2 for sol in I.variety ():
3 print(sol[v0],sol[v1],sol[v2],sol[v3],sol[v4],sol[v5],sol[v6])

Listing 4.29. error vector v

So the error vector v is found and it holds that Hv> = s> and v is of weight at most t. This
solves the MLD problem defined in 2.2.1. With this, the reduction is completed.

25

26

Chapter 5

Conclusion

In this thesis a reduction between MLD and MQ was implemented. There is also an efficient way
to construct a reduction from MQ to MLD [13]. If the resulting equations of the reduction from
MLD to MQ can be decoded, each MLD instance may be solved. The implementation of the
reduction does return a solution for the MLD problem, by reducing it to an instance of the MQ
problem - and if an error vector v is found, the MQ instance is solvable as well. Furthermore,
the existing reduction proves that solving an instance of MQ is not "harder" than solving an
instance of MQ. In this thesis two different approaches for the reduction were investigated. It
would also have been interesting to look at whether Implementation 1 or Implementation 2 is
more efficient in computing the reduction. Implementation 1 returns a higher number of variables,
but less complex equations, whereas Implementation 2 returns more complex equations, but only
uses l variables (a01, . . . , a0l). Bench-marking the computations may provide insight into which
implementation is more applicable dependant on efficiency, memory usage and/or computation
time. In conclusion, a reduction between the Maximum Likelihood Decoding Problem and the
Multivariate Quadratic System Problem was found and implemented. When evaluating a specific
example, up to one error was found and corrected. Therefore, the computations may solve
instances of MLD and also of MQ and return correct results for the error vector.

27

28

Bibliography

[1] A. M. Turing, “On computable numbers, with an application to the Entscheidungsprob-
lem,” Proceedings of the London Mathematical Society, vol. 2, no. 42, pp. 230–265, 1936.

[2] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the inherent intractability
of certain coding problems (corresp.),” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 384–
386, 1978.

[3] R. J. McEliece, “A Public-Key Cryptosystem Based On Algebraic Coding Theory,” Deep
Space Network Progress Report, vol. 44, pp. 114–116, Jan. 1978.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[5] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” Prob. Contr.
Inform. Theory, vol. 15, no. 2, pp. 157–166, 1986.

[6] M. Sipser, Introduction to the theory of computation. PWS Publishing Company, 1997.

[7] N. T. Courtois, “Generic attacks and the security of quartz,” in Public Key Cryptography
- PKC 2003, 6th International Workshop on Theory and Practice in Public Key Cryptog-
raphy, Miami, FL, USA, January 6-8, 2003, Proceedings, ser. Lecture Notes in Computer
Science, vol. 2567, Springer, 2003, pp. 351–364.

[8] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial signature scheme,”
in Applied Cryptography and Network Security, J. Ioannidis, A. Keromytis, and M. Yung,
Eds., Springer Berlin Heidelberg, 2005, pp. 164–175.

[9] R. M. Roth, Introduction to coding theory. Cambridge University Press, 2006.

[10] J. Ding and B.-Y. Yang, “Multivariate public key cryptography,” in Post-Quantum Cryp-
tography, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Springer Berlin Heidelberg,
2009, pp. 193–241.

[11] R. Overbeck and N. Sendrier, “Code-based cryptography,” in Post-Quantum Cryptography,
D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 95–145.

[12] G. Fischer, “1 grundbegriffe,” in Lineare Algebra: Eine Einführung für Studienanfänger.
Springer Fachmedien Wiesbaden, 2014, pp. 32–105.

[13] A. P. Alessio Meneghetti and M. Sala, A reduction between MQ and MLD, Unpublished
manuscript, 2020.

[14] S. Hogan, “A gentle introduction to computational complexity theory, and a little bit more,”
Sep. 2020.

29

30

Erklärung

Erklärung gemäss Art. 30 RSL Phil.-nat. 18

Ich erkläre hiermit, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen entnommen
wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemäss
Artikel 36 Absatz 1 Buchstabe r des Gesetzes vom 5. September 1996 über die Universität zum
Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.

Für die Zwecke der Begutachtung und der Überprüfung der Einhaltung der Selbständigkeitserk-
lärung bzw. der Reglemente betreffend Plagiate erteile ich der Universität Bern das Recht, die
dazu erforderlichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, ins-
besondere die schriftliche Arbeit zu vervielfältigen und dauerhaft in einer Datenbank zu speichern
sowie diese zur Überprüfung von Arbeiten Dritter zu verwenden oder hierzu zur Verfügung zu
stellen.

Ort/Datum Unterschrift

31

