
Threshold Cryptography with Tendermint
Core

Powerful & secure software for the decentralized future

Master Thesis

Nathalie Froidevaux

Faculty of Science
at the University of Bern

January 2020

Prof. Dr. Christian Cachin

Cryptology and Data Security Group
Insitute of Computer Science

University of Bern, Switzerland

Abstract

Threshold cryptography provides protocols and techniques for building secure distributed
systems and services that perform cryptographic operations while tolerating multiple faults
and security breaches occurring at the same time. Threshold cryptosystems are operated by
multiple parties which execute the cryptographic operations in collaboration and maintain
privacy, availability and correctness even in the presence of some corrupted parties. The
emergence and rise of blockchain technologies resulted in an increasing interest in threshold
cryptography. PROTECT is an open-source platform for robust threshold cryptography and
implements the most relevant protocols and techniques to maintain threshold cryptosystems.
The software currently uses the BFT-SMaRt library for consensus in order to maintain a
common message log. A more modern and popular implementation of the consensus protocol
is provided by Tendermint, which is the leading consensus engine for building blockchains
today. Tendermint’s modular design allows its implementation over a generic interface
without any restrictions concerning the application’s programming language. This thesis
is motivated by Tendermint’s qualities and examines the requirements for PROTECT to
implement Tendermint’s consensus engine. By modeling and studying the system design and
the involved communication layers of PROTECT this thesis provides a corner stone for the
implementation of Tendermint’s interface to upgrade PROTECT with latest blockchain-based
technology.

i

Contents

1 Introduction 1

2 Background 4
2.1 Threshold cryptography . 4

2.1.1 Secret sharing . 4
2.1.2 Verifiable secret sharing (VSS) . 5
2.1.3 Distributed key generation (DKG) . 5
2.1.4 Proactive security . 5

2.2 Byzantine fault-tolerant state machine replication . 6
2.2.1 Byzantine fault-tolerance . 7
2.2.2 State machine replication . 7
2.2.3 BFT-SMaRt . 8
2.2.4 Tendermint . 9

2.3 PROTECT . 9
2.3.1 Functionalities . 9
2.3.2 Configuration . 9
2.3.3 Tunable fault-tolerance . 10
2.3.4 Further development . 11

3 Design 12
3.1 PROTECT with BFT-SMaRt . 12

3.1.1 Major components . 13
3.1.2 Network configuration . 14

3.2 Tendermint . 15
3.2.1 Tendermint Core and ABCI . 16
3.2.2 Network configuration . 17
3.2.3 Tendermint’s network architecture . 20

3.3 System design . 20

4 Implementation 22
4.1 Examination of BFT-SMaRt’s interface . 22

4.1.1 Broadcasting a message to BFT-SMaRt . 24
4.1.2 Receiving a message from BFT-SMaRt . 24

4.2 Adaption of Tendermint’s interface . 25
4.3 Realization of the interface . 26

4.3.1 Broadcasting a message to Tendermint Core . 27
4.3.2 Receiving a message from Tendermint Core . 27

5 Conclusion and Future Work 28

A DKG request in PROTECT 29

B Testnet with Docker 32

ii

1
Introduction

Information and communication comprise the nerve system of civilization. Consequently, the availability
of reliable methods for the protection of information from intruders and adversaries is essential. Informa-
tion security is the practice of protecting information. The primary concepts in information security are
confidentiality, integrity and availability of data [11]:

Confidentiality guarantees the protection of our data from those who are not authorized to view it.

Integrity refers to the prevention of unauthorized changes or deletion of our data.

Availability is the ability to access our data when we need it.

These concepts can be compromised in various ways, e.g. by the loss of a cell phone, a wrongly addressed
e-mail, a person looking over our shoulder while we type a password, power loss, network attacks, or
other system problems. In past centuries, information security and in particular cryptology was important
mainly for diplomatic and military communication, and mechanisms to protect confidentiality were
invented in the early days of communication, such as the ’Caesar cipher’ 50 B.C. The First World War
encouraged greater use of code making and breaking, and machines were developed to make encryption
more sophisticated. A famous example is the Enigma Machine, an encryption device engineered by the
Germans at the end of the First World War and adopted by Nazi Germany in the Second World War. The
successful reconstruction of the machine’s mechanism implied an exemplary advantage for the Allied
nations and illustrates the historical significance of information security and cryptography. Since the end
of the 20th century, the rapid advancements in telecommunications, computing hardware and software
and the connection of computers through the internet made information security ubiquitous.

Cryptography is the practice and study of techniques for secure communication in the presence of
malicious third parties. Until 1976, the only kind of encryption publicly known was symmetric-key
cryptography, in which both the sender and the receiver hold the same key to encrypt and decrypt a
message. Ideally, a different key is used for each ciphertext exchanged and for each distinct pair of
communicating parties, as well. Hence, the problem of the secure key exchange and the number of keys
required are significant drawbacks in this technique [13]. For instance, the base settings of the Enigma
machine’s rotors and rings were changed every day. This list of settings were documented in a codebook
and copies of it were distributed to each unit operating in the same network. In a paper published in 1976,
Diffie and Hellman [19] proposed the concept of public-key cryptography, also called asymmetric-key
cryptography. In a public-key system each network member calculates two different but mathematically
related keys, a private and a public key. With the knowledge of the public key it is unfeasible to compute
the corresponding private key. Hence, the public key can be freely distributed, while the private key must

1

CHAPTER 1. INTRODUCTION 2

be kept secret. A receiver’s public key can be used by any communication party to encrypt a message
which the receiver can decrypt using its corresponding private key. This technique doesn’t necessitate
any key exchange and the number of required keys in the communication system is reduced to one key
pair per communicating party. One of the first known examples of high-quality public-key algorithms is
RSA (a solution presented by R. Rivest, A. Shamir and L. Adleman), and has been among the most widely
used [28]. Other algorithms include ElGamal encryption and various elliptic-curve techniques. Public-key
cryptography is also used to implement digital signature schemes. By attaching a digital signature to
a message, a sender provides authentication and further guarantees the integrity of the message. In
this context, the sender uses its private key to construct the digital signature, and a receiver uses the
corresponding public key of the sender to verify the digital signature.

However, the most common attacks on cryptographic security mechanisms are “system attacks” where
the cryptographic keys are directly exposed [16] and thus, affect the reliability and availability of the
entire system. A common approach to enhance the security is a periodic refreshment of secrets [16], e.g.
changing passwords and session-keys. Consequently, an attacker is forced to be constantly active, which
increases the risk of its detection and reduces the damage of one leaked secret. Another approach to
enhance the security is the distribution of cryptographic trust [16], where the cryptographic operations,
such as signing or decryption, are performed collaboratively by a group of parties. Every party holds
only a share of the private key and a number of parties (threshold) is required to perform a cryptographic
operation. Since the private key is not held entirely by one single instance, such threshold cryptosystems
can tolerate some faulty parties and hence, have no single point of failure. The combination of a threshold
cryptosystem and the periodic refresh of the secrets results in a proactively secure cryptosystem, where
the shares of the parties are refreshed periodically [14]. Thanks to the rise of cloud services, blockchain
applications and crypto-currencies, all relying on highly available and reliable distributed systems, the
design of proactively secure cryptosystems has received renewed attention.

PROTECT (Platform for Robust Threshold Cryptography) [27] is an open-source software that can
be used to implement proactively secure cryptosystems. It implements the most important threshold-
cryptographic protocols, performs threshold-cryptographic operations and can manage confidential el-
ements durably over long periods. PROTECT facilitates the development of distributed systems and
services that tolerate multiple simultaneous faults and security breaches without loss of privacy, avail-
ability, or correctness. The PROTECT project has been presented at the NIST Threshold Cryptography
Workshop 2019 [26], which was organized by the National Institute of Standards and Technology (NIST)
to define specifications about threshold cryptography and establish consensus on applications. PROTECT
contributed by presenting a platform with robust implementations for building fault-tolerant threshold
cryptosystems in asynchronous networks. This requires a reliable and resilient agreement procedure
among the shareholders, since they need to maintain a common message log. An implementation of
such a consensus protocol is provided by BFT-SMaRt [31], an open-source Java-library that is currently
used by PROTECT as its consensus layer. BFT-SMaRt is a robust and high performing implementation
facilitating decentralized consensus. Compared to earlier implementations, BFT-SMaRt provides a more
modular design and can be used over an interface that offers appropriate methods to perform the message
exchange. In the meantime, more recent implementations of consensus protocols have been developed
using the qualities of blockchain technology. The blockchain data structure, consisting of transactions
that are irreversibly linked to each other using cryptography, represents a secure and efficient way to
provide consensus. Tendermint [7] offers a fault-tolerant consensus engine by a modular and language
agnostic interface. The Tendermint interface is used over a socket protocol and by implementing a suitable
wrapper in the desired programming language, a blockchain application benefits from Tendermint’s
state-of-the-art technology. Furthermore, Tendermint makes use of an efficient broadcast protocol and
enables scalable networks. This is an opportunity for PROTECT to profit by Tendermint’s qualities as an
efficient consensus layer with high scalability. This thesis examines the implementation of Tendermint into
PROTECT by breaking down the relevant communication layers and software components. In order to
implement Tendermint’s interface, the currently used wrapper classes and the relevant code in PROTECT
are identified and used for adapting the requirements according to the projected implementation.

CHAPTER 1. INTRODUCTION 3

The theoretical background of the most important threshold-cryptographic protocols is documented in
Chapter 2. This chapter also provides the background of techniques and tools for the implementation of
distributed systems and details about PROTECTs’ functionalities. Chapter 3 offers explicit descriptions of
PROTECT’s current system design, along with Tendermint’s system design and interface components and
the projected system design of PROTECT running with Tendermint. The examination of the involved
communication layers and the relevant system components for Tendermint’s implementation is given in
Chapter 4 and the conclusion and discussion about future work can be found in Chapter 5.

2
Background

2.1 Threshold cryptography

A threshold cryptosystem is a cryptosystem of n parties, that may correspond to processes or servers, of
which up to f are faulty. Distributed cryptosystems are typically known only for public-key cryptosystems,
that make use of a key pair, consisting of a public and a private key. The basic idea of a threshold
cryptosystem is to split the private key into n parts and distribute them to the n parties, so that every
party holds one share of the private key. In order to use the private key for cryptographic operations,
e.g. signing a message or decrypting a message, f + 1 parties are required to perform cryptographic
operations in collaboration. Therefore, a threshold cryptosystem can tolerate up to f parties to be faulty,
while remaining secure and still being able to perform cryptographic operations.

The following sections concerning threshold cryptography are mainly based on the handouts of the
Security and fault-tolerance in distributed systems lecture at ETHZ by Cachin [14].

2.1.1 Secret sharing

Secret sharing forms the basis of threshold cryptography and its basic idea is that any f +1 points can
define a polynomial of degree f.

In a (f +1)-out-of-n secret sharing scheme, a secret s is shared among n parties such that the cooperation
of a least f +1 parties is needed to recover s. Any group of f or fewer parties should not get any information
about s. The scheme has a set of n parties, {P1, ..., Pn}, and the secret s as an element of a finite
field Fq, where q is the size of the finite field. Additionally, the scheme requires a dealer D, where
D /∈ {P 1, ..., P n}, then:

1. D chooses uniformly at random a polynomial g(X) ∈ Fq[X] of degree f subject to g(0) = s.

More precisely, D samples f random numbers {a1, a2, ..., af} from the same finite field Fq as before,
and q > s, n. Then, D generates the polynomial g(x) = a0 + a1x + a2x2 + ... + afxf, where a0 = s.

2. D generates shares si, where each share is simply one point on the polynomial and can be calculated
as: si = (xi, yi) = (i, g(i) mod q), where i = [1, 2, ..., n]

3. D sends share si to party Pi.

To recover s, any f +1 shares can be used to reconstruct the polynomial g(x), achieved through the Lagrange
polynomial interpolation, a formula for interpolating a polynomial of a degree≤ f that passes through f +1

4

CHAPTER 2. BACKGROUND 5

points. The interpolation polynomial g(x) of f +1 points is the linear combination of the basis polynomials:

g(x) =
f+1∑
j=1

lj(x)yj , (2.1)

where the Lagrange coefficient lj(x) is defined as:

lj(x) :=

f+1∏
k=1
k 6=j

x− xk

xj − xk
=

(x− x0)

(xj − x0)
· ... ·

(x− xj-1)

(xj − xj-1)
·
(x− xj+1)

(xj − xj+1)
· ... · (x− xf+1)

(xj − xf+1)
(2.2)

Once we have this polynomial, it’s easy to retrieve the secret, since

g(0) = a0 = s. (2.3)

The (f +1)-out-of-n secret sharing scheme has perfect security, i.e, the shares held by every group of f or
fewer parties are statistically independent of s (as in a one-time pad) [30].

2.1.2 Verifiable secret sharing (VSS)

For more complex distributed cryptographic protocols we need Verifiable secret sharing (VSS). This
fault-tolerant protocol is used, if the dealer D also may be faulty. The VSS protocol ensures two goals:

• D should distribute consistent shares such that every group of parties qualified to recover the secret
will recover the same value.

• There should be agreement in the sense that if some party terminates the sharing successfully, then
every other correct party eventually also terminates successfully.

VSS is an important building block, for instance, in secure multi-party computation [20].

2.1.3 Distributed key generation (DKG)

In distributed key generation (DKG) protocols we don’t need a trusted third party as a dealer. A threshold
of honest parties contribute to the generation of the public key and the corresponding private key. These
protocols guarantee secrecy in the presence of malicious contribution to the key calculation and ensure
that:

• Corrupted parties cannot bias the selection of the key.

• Corrupted parties cannot learn information about the secret key.

For the common public-key cryptosystems, those based on RSA and discrete logarithms, DKG protocols
have been designed and implemented.

2.1.4 Proactive security

There is a risk, that an attack spreads through an (f + 1)-out-of-n-threshold cryptosystem and over time
affects more than f parties. Consequently, if an adversary combines the knowledge of more than f
infected parties, he can reconstruct the secret and the cryptosystem is not secure anymore. To gain more
resilience and robustness in a threshold cryptosystem, there is a protocol performing a refresh of the
key shares periodically, such that if a share is leaked in one time period, it will be useless in subsequent
periods. Therefore, proactive cryptosystems tolerate up to f corrupted parties during every period [14]. A
period consists of a short refresh phase, during which the refresh protocol is executed by all parties, and a
computation phase, where the operations of the cryptosystem are performed. Note that after a corruption

CHAPTER 2. BACKGROUND 6

has been discovered, an infected party should be rebooted and re-initialized to prevent the corrupted party
of participating in the refresh protocol.

For simplicity, we assume, parties can send private and authenticated point-to-point messages over
secure communication channels. Further, we assume that the parties are synchronized and have access to
a common clock and to a synchronous broadcast channel [14].

Proactive refresh tolerating passive attacks

The following proactive refresh protocol [22] achieves privacy against a passive adversary. A passive
adversary follows the protocol but tries to obtain more information than he is entitled, by leaking secret
information and by combining its knowledge [14].

Consider n = {P1, ..., Pn} parties in a discrete logarithm-based cryptosystem with private key x and
the corresponding public key y = gx. At the begin of the refresh phase, every party P i holds a share of

the private key xi = a(i) =
t∑

k=0

aki
k from the previous period. Compared to the (f + 1)-out-of-n secret

sharing scheme described in 2.1.1, in the proactive refresh protocol, no dealer is required to distribute
values. But similarly, every party P i chooses uniformly at random a polynomial b(i)(X) of degree f
from the same finite field Fq. But in contrast to the (f + 1)-out-of-n secret sharing scheme, the sampled
polynomials are all subject to b(i)(0) = 0. Based on these polynomials, every party generates n shares,
by simply evaluating the polynomials with the n indices. Then, the designated shares are sent to each
other as private point-to-point messages, such that every party eventually holds n newly generated shares
(one share was generated by the party itself, the other n− 1 shares were received from the other parties).
Finally, by adding these n share-values up, the fresh shares of the private key x′i for the subsequent phase
are calculated. To prevent the leakage of used share-values, all variables, except x′i, are erased before a
subsequent phase starts. This loop is the major component of the refresh protocol and can be structured
formally as follows:

1. New shares are generated and distributed:

• Every party P i chooses uniformly at random a polynomial b(i)(X) ∈ Fq[X] of degree f subject
to b(i)(0) = 0.

• Then, it generates shares rij = b(i)(j) for j = 1, ..., n.

• Finally, it sends rij to P j as a private point-to-point message.

2. The shares for the next period are computed. After each party P i received n shares rij , for
j = 1, ..., n:

• P i computes its new share in Zq as x′i = xi +
∑n

j=1 rji.

• Then it erases all variables except x′i.

Note that the private key is not altered during the refresh protocol, since b(i)(0) = 0. Hence, the shares in
the next period refer to the same private key and the corresponding public key remains valid, too.

More robust proactive refresh

In step 1 of the refresh protocol a corrupted party may send inconsistent share values rij or it may send a
value 6= 0. The extensions described by Herzberg et al. [22] and Gennaro et al. [21] use the mechanism of
VSS to prevent this attack [14].

2.2 Byzantine fault-tolerant state machine replication

Combining the properties of Byzantine fault-tolerance (BFT) and the techniques of state machine replica-
tion (SMR) adds up to the implementation of distributed software that needs to reach a consensus and

CHAPTER 2. BACKGROUND 7

guarantees correct operation in presence of less than 1/3 faulty parties, behaving in an arbitrary way.
“Reaching consensus” corresponds to reaching an agreement about a common value among distributed
parties and is one of the most fundamental problems in distributed computing [15]. The ability to reach an
agreement is an essential property of a distributed system to achieve overall system reliability, particularly
in an asynchronous setting, where the communicating parties are not synchronized all the time.

2.2.1 Byzantine fault-tolerance

A reliable computer system must be able to cope with the failure of one or more of its parties. A party
is considered faulty once its behaviour is no longer consistent with its specification. There are various
possibilities of failures, such as a crash, that stops the execution of a process, or an omission of executing
certain steps, or even arbitrary and adversarial behaviour. If a party is behaving maliciously and arbitrarily,
such as sending conflicting information to different parts of a system, we have a Byzantine failure in our
system. The problem of dealing with this type of failure is expressed abstractly as the Byzantine generals
problem and has been discussed in the context of the implementation of reliable computer systems by
Lamport, Shostak and Pease in 1982 [23]. Disseminating inconsistent information to other parties prevent
a computer system from reaching a consensus. Hence, the condition of a computer system to be Byzantine
fault-tolerant, is the ability to operate correctly in the presence of faulty parties, that prevent other parties
from reaching a consensus. In order to guarantee Byzantine fault-tolerance of a computer system, there
is a minimum number of correctly operating parties required. Considering a system with a realistic
asynchronous setting, the bound of correct parties required to reach agreement is n > 3f , where n is the
total number of parties and f the number of Byzantine faulty parties [25].

2.2.2 State machine replication

State machine replication [29] is a general technique for implementing fault-tolerant services in distributed
systems. Distributed software is often structured in terms of services and clients:

Service. A service exports operations and is executed by one or more servers.

Client. A client makes a request in order to invoke the provided operations by the service.

In the context of state machine replication, a service (or a server) is defined as a state machine, consisting
of a state variable and commands. The state variable encode the state of the state machine and commands
will transform the state variable. Each command is implemented by a deterministic program, such that the
same input result in the exact same transformation and/or output. Commands are executed when a client
sends a corresponding request.

Using multiple servers avoids the problem of a single point of failure and improves the fault-tolerance.
To implement a fault-tolerant service in a distributed system, a state machine, that represents the desired
service, is replicated and executed on distinct processors. The set of these replicas form a f fault-tolerant
state machine and satisfies its specifications as long as no more than f replicas become faulty. If each
replica runs on a non-faulty processor, each starts in the same initial state and each executes the same
requests in the same order, consequently, each replica will do the same actions and produce the same
output. The essence for implementing a f fault-tolerant state machine is replica coordination. It must be
guaranteed, that all replicas receive and process the same sequence of requests. This can be split into two
requirements concerning relaying requests [29]:

Agreement. Every non-faulty party receives every request.

Order. Every non-faulty party processes the requests it receives in the same relative order.

The agreement requirement can be satisfied by using any protocol that allows a designated party, called
the transmitter, to disseminate a value to some other party in such a way that:

1. All non-faulty parties agree on the same value.

CHAPTER 2. BACKGROUND 8

2. If the transmitter is non-faulty, then all non-faulty parties use its value as the one on which they
agree.

The order requirement can be satisfied by assigning unique identifiers to requests and then let the parties
process requests according to a total ordering relation on these unique identifiers. Protocols for reaching
consensus satisfies these requirements.

Tolerating faulty output devices

To obtain the output of a f fault-tolerant state machine, the outputs of all parties are combined. To
implement a f fault-tolerant system, there cannot be one single party combining these outputs, due to the
risk, that it might be faulty and prevent the system to produce the correct output. Solutions to this problem
depend on whether the output of the state machine is to be used within the system or outside the system
and are described by Schneider [29].

Tolerating faulty clients

Faults might result in clients making requests that cause the state machine to produce erroneous output or
that corrupt the state machine so that subsequent requests from non-faulty clients are incorrectly processed.
Methods to isolate the state machine from faulty clients, such as replicating the client, are provided by
Schneider [29].

Reconfiguration

To implement a f fault tolerant state machine, it must be possible to remove faulty parties and to add
repaired parties. Similarly, this condition must also be satisfied for copies of clients and output devices.

2.2.3 BFT-SMaRt

BFT-SMaRt [12] is an open-source Java-based library [31] implementing robust Byzantine fault-tolerant
state machine replication. In contrast to earlier implementations of BFT SMR, such as PBFT [17] and
UpRight [18], BFT-SMaRt was the first library that supported reconfiguration of the parties. Furthermore,
BFT-SMaRt is able to tolerate a number of faults that previous implementations cannot. More major
properties of BFT-SMaRt are:

Byzantine fault-tolerance. BFT-SMaRt tolerates up to f < n/3 Byzantine faults, in a system consisting
of n parties.

Performance. By taking advantage of ubiquitous multicore architecture of servers, BFT-SMaRt achieves
improved performance.

Modularity. Compared to earlier implementations, BFT-SMaRt implements a modular SMR protocol,
as well as a reconfiguration and a state transfer module.

Reliability. BFT-SMaRt uses reliable and authenticated channels, using point-to-point communication
implemented over TCP/IP.

BFT-SMaRt provided a safe and efficient implementation of BFT SMR, ready to use for applications using
decentralized consensus. For example, it was in use to implement prototypes of coordination systems,
key-value stores, a transaction processing engine for replicated databases, and more. The library is still
maintained and improved according to new use case scenarios.

CHAPTER 2. BACKGROUND 9

2.2.4 Tendermint

Tendermint [9] features a modern blockchain consensus engine called Tendermint Core, which provides
many valuable properties:

Byzantine fault-tolerance. Tendermint guarantees the secure and consistent replication of an application,
in presence of up to 1/3 arbitrarily failing components.

Blockchain technology. The blockchain technology facilitates a more modern setting of Byzantine fault-
tolerance (BFT) by taking advantage of cryptographic authentication. Transactions are batched in
blocks and each block contains a cryptographic hash of the previous block, making older blocks
immutable.

Speed. Once a transaction is included in a block, it is immediately finalized. There is no need to wait for
confirmations. Tendermint Core can have a block time on the order of 1 second and can handle
thousands of transactions per second.

Modularity. While Tendermint is written in Go, a provided interface called Application Blockchain
Interface (ABCI) enables the usage for applications written in any programming language.

Compared to BFT-SMaRt, which communicates over point-to-point channels implemented over TCP/IP,
Tendermint Core uses a peer-to-peer gossip protocol. This procedure doesn’t require every party to
communicate with each other party and contributes to improved scalability. This property is crucial
for today’s need of agile and high performing distributed software. All this makes Tendermint Core
an attractive and state-of-the-art consensus engine. Furthermore, Tendermint provides a blockchain
framework called Cosmos SDK [2] that uses Tendermint Core for the decentralized consensus. Cosmos
SDK is a popular tool for building blockchain applications and is already in use for several blockchain
applications concerning cryptocurrencies and smart contracts.

2.3 PROTECT

PROTECT [27] is an open-source software written in Java and can be used to build secure cryptographic
services in realistic asynchronous networks. The discussed threshold protocols based on secret shar-
ing, such as DKG and Proactive refresh are implemented and make PROTECT a software for robust
cryptographic operations in distributed networks.

2.3.1 Functionalities

Besides the DKG and the Proactive refresh, PROTECT provides many share management functionalities,
such as storing, reading, deleting, restoring, disabling and enabling key shares of specific shareholders.
PROTECT supports various cryptographic functions, based on elliptic-curve and RSA techniques, for
instance Pseudorandom Functions, Oblivious Pseudorandom Functions, Elliptic-curve Diffie-Hellman
Key Agreement, Signature Generation, Blinded Signature Generation and Decryption. Furthermore,
utilities to encrypt and decrypt text files, to store and retrieve a secret, and to generate a CA certificate, are
provided. Every shareholder is accessible to authenticated users over a web-interface or over a terminal,
to perform the desired functions.

2.3.2 Configuration

In the provided server configuration file, the number of servers to be launched, along with their network
addresses, can be defined. PROTECT comes with a default configuration for a network consisting of five
servers. Furthermore, several thresholds can be configured, such as the BFT threshold.

The client configuration file is a list of all authenticated users and their access permissions. This
allows a fine-grained permission control, such as the ability to initiate a DGK, to sign a message or to

CHAPTER 2. BACKGROUND 10

perform varying share management functionalities. For the correct authentication of these users, their
public keys and the CA certificates must be stored in the designated directories. To demonstrate the user
management, PROTECT is initially equipped with three example clients, having varying permissions to
three different secrets.

PROTECT comes with a set of ready-made certificates and encryption keys for each server and each
example client. They are loaded when a server is launched and facilitate secure communication among
the servers and authenticated clients.

2.3.3 Tunable fault-tolerance

As discussed before, the upper bound of faulty parties in a asynchronous network to hold BFT, is given by
f < n/3, where n is the total number of parties in the network. PROTECT offers a tunable asynchronous
model by separating between a liveness and a safety threshold.

Liveness. The ability of a system to make progress.

Safety. The guaranty for a correctly operating system.

Both properties have to be provided in order to maintain a useful distributed system. Note that it is not
dramatic for a system to lose liveness temporarily, since the security is not necessarily affected. This
separation of a liveness threshold fL and a safety threshold fS enables the following trade-off [10]:

Max fS = n - 2 ·Max fL − 1 (2.4)

The impact of this trade-off is illustrated in Fig. 2.1, where the relation between the number of servers in a
network (n) and the corresponding fault-tolerance is shown. Max f refers to the “classical” threshold, i.e.
Max f < n/3. For instance, a network with n = 7 parties can tolerate Max f = 2 Byzantine faults. On
the other hand, using the trade-off in eq. 2.4 allows a higher fault-tolerance concerning security (Max
fS), compared to the “classical” threshold. Although the fault-tolerance concerning liveness (Max fL) is
sacrificed at the same time, the progression doesn’t fall back substantially. Considering again a network
with n = 7 parties, the fault-tolerance for security can be improved to Max fS = 3 by sacrificing liveness
and setting Max fL = 1.

Figure 2.1: Tunable fault-tolerance [10]

CHAPTER 2. BACKGROUND 11

2.3.4 Further development

In March 2019, the National Institute of Standards and Technology (NIST) organized a workshop [24]
to define specifications about threshold cryptography and establish consensus on applications. At the
NIST Threshold Cryptography Workshop 2019, the PROTECT project has been presented [26] as an
eligible contribution, in terms of software, that provides secure cryptographic operations in asynchronous
networks. PROTECT represents a valuable software that provides important functionalities for secure
communication and data storage in a distributed world.

The implementation of more cryptographic operations is intended [27], such as cryptographic functions
based on Diffie-Hellman over Prime Groups and Bilinear Pairing of Elliptic-Curves. But not only the
development of further functionalities is of eligible interest, also the maintenance of the software itself
is essential to ensure up-to-date and secure operation. On this account, this thesis tackles the update of
PROTECT’s consensus layer. Currently, PROTECT implements the earlier described BFT-SMaRt library,
which performs the consensus among the parties. Due to the rise of modern and modular alternatives,
such as Tendermint, it is appropriate to examine the replacement of BFT-SMaRt by Tendermint. This will
contribute to the maintenance of PROTECT with the purpose to supply PROTECT with latest technology
and preserve PROTECT’s robustness and value.

3
Design

3.1 PROTECT with BFT-SMaRt

The major components of PROTECT are illustrated in the network abstraction in Fig. 3.1 [10]. Note that
only one party (shareholder) is highlighted with the mentioned major components.

Figure 3.1: Major components of PROTECT [10]

12

CHAPTER 3. DESIGN 13

3.1.1 Major components

The following sections provide more details about the major components and their functionalities.

AVSS application

The AVSS application (asynchronous verifiable secret sharing) implements the threshold protocols based
on secret sharing and represents the core component of PROTECT. This component can be found in
Fig. 3.1 on the top right corner. When the AVSS application is triggered to produce a message (e.g.
through the initialization of the DGK protocol by a user), it broadcasts the message to the other parties
by transferring it to the BFT layer. The state of the application is updated only by notifications of the
certified log, which contains the commonly ordered list of certified messages.

BFT layer and BFT log

The BFT layer is the interface for sending and receiving atomic broadcasts of totally ordered messages.
This layer receives messages from the AVSS application and communicates with the other parties over
the nework layer, called Network Links. As long as f < n/3 is satisfied, the BFT-layer ensures, that all
parties agree on the same ordered list of messages. This message log is represented on Fig. 3.1 as BFT
log. This layer is currently implemented with the BFT-SMaRt library.

Fail-safe layer and certified log

The fail-safe layer performs extra validation of the BFT log and maintains the certified log. This log
contains the same messages like the BFT log, but here the messages are certified through the extra
validation step. This extra validation facilitates the tunable fault-tolerance discussed in Sec. 2.3.3 and is
achieved through an additional communication step among the parties. Basically, every party checks the
consistency of the BFT log, compared to the certified log and sends validations to the other parties. More
precisely, whenever a new message mk is appended to location k in the BFT log, the following steps are
performed by the fail-safe layer of every party:

1. Check the consistency of all messages on positions 1 to k − 1 in the BFT log BL and the certified
log CL. Also ensure that the length of CL is k − 1, as illustrated in Fig. 3.2.

2. If these conditions are met, produce a signature for the message mk and its position k.

3. Broadcast the produced signature and the pair (mk, k) over point-to-point links to every other party.

4. Re-broadcast every received signature to all other parties (ensuring eventual delivery of the signed
pair (mk, k)).

5. Collect (n-fL) signatures that are in mutual agreement. This collection of signatures form a
Certificate for (mk, k).

6. Repeat step 1.

7. If the conditions are still satisfied, append mk to the certified message log CL in position k.

8. Notify the AVSS application about the availability of a new message to process.

Note that the point-to-point communication between the parties also goes through the network layer, using
TCP/IP protocols, like shown in Fig. 3.1.

CHAPTER 3. DESIGN 14

1 2 ... k-1

1 2 ... k-1 k

mk

CL

BL

Figure 3.2: Extra validation step in the fail-safe layer

The fail-safe layer and the BFT layer (with the BFT log) together form the tunable BFT unit and
implement the tunable fault-tolerance, as discussed in Sec. 2.3.3. This procedure also illustrates the
complex and intensive communication flow in PROTECT.

3.1.2 Network configuration

The network abstraction in Fig. 3.3 depicts the default configuration of PROTECT. The provided server
configuration file comes with the default setting for a local network consisting of five parties.

Considering a client-server model, PROTECT embodies the server for a client that wants to use
PROTECT’s functionalities, which are provided by the AVSS application. Each PROTECT server is
accessible for client requests over the port 8080+server-index. Additionally, the PROTECT servers
need a channel for point-to-point communication among each other. This is performed over the server
addresses, which are also provided in the server configuration file. In Fig. 3.3 these server addresses
(protect-server-ports 65010, 65020, 65030, 65040 and 65050) are placed on the fail-safe layer and are
used for the extra validation step described in Sec. 3.1.1.

At the same time, PROTECT acts as client of BFT-SMaRt. Accordingly, when PROTECT is launched,
it binds to port address protect-server-port+200, provided by BFT-SMaRt. This channel will be used to
relay messages to the BFT layer. The ports protect-server-port+201 are used by BFT-SMaRt to execute
the consensus protocol with PROTECT’s requested message. The resulting agreement is replied via
PROTECT’s fail-safe layer.

For instance, when PROTECT server 1 is launched, it first opens its port 65010 for server-to-server
communication, secondly, it binds to port 65210, provided by BFT-SMaRt, and finally, it opens port 8081
for client requests. More precisely, the port for client requests is not opened before the network is BFT
ready, e.g. after three PROTECT servers are running.

65
21
0

65
22
0

65
23
0

65
24
0

65
25
0

PROTECT
Server 1

BFT-SMaRt

PROTECT
Server 2

BFT-SMaRt

PROTECT
Server 3

BFT-SMaRt

PROTECT
Server 4

BFT-SMaRt

PROTECT
Server 5

BFT-SMaRt

AVSS AVSS AVSS AVSS AVSS

Fail-Safe Fail-Safe Fail-Safe Fail-SafeFail-Safe

65
21
1

65
22
1

65
23
1

65
24
1

65
25
1

65
01
0

65
02
0

65
03
0

65
04
0

65
05
0

8081 8082 8083 8084 8085

Figure 3.3: Default PROTECT network configuration

CHAPTER 3. DESIGN 15

Note, that every PROTECT client will bind to every launched BFT-SMaRt server. This is due to the
BFT-SMaRt design, where every client request is sent to every BFT-SMaRt party and the client will also
receive a response from every party [12]. After a PROTECT server receives a client request to be executed
by the AVSS application, the appropriate message is sent to the BFT-SMaRT servers. They perform the
consensus protocol and get back to PROTECT via the fail-safe layer. Over point-to-point links, PROTECT
processes the extra validation and certification of the message in the updated BFT log and adapts the
certified log accordingly. Finally, a notification about the availability of the next message is sent to the
AVSS application and updates the state of the application.

The example given in Fig. 3.4 and Fig. 3.5 demonstrates the involved classes and the relevant methods
that are used when a client initializes a DKG. The sequence diagram in Fig. 3.4 shows the method calls
between the initialization of the DKG and the transfer of the appropriate message to the consensus layer.
The transfer is performed by the BftChannelSender by invoking BFT-SMaRt’s ServiceProxy.

PROTECT
server BaseHttpHandler AuthenticatedClientRequestHandler GenerateHandler

/generate handle
(exchange) handleWithException

(exchange) authenticatedClientHandle
(exchange, username)

doDistributedKeyGeneration
(secretName)

broadcastPublicSharing
(0)

ApvssShareholder PublicSharingGenerator ChainBuildingMessageHandler BftChannelSender ServiceProxy

broadcastPublicSharing
(0) shareRandomSecret

(publicKeys)
PublicSharing

send
(publicSharingMessage) broadcast

(signedMessage) invokeOrdered
(serializedMessage)

consensus

Figure 3.4: PROTECT’s method calls after the initialization of a DKG

A message that is coming from the consensus layer is delivered by BFT-SMaRt’s ServiceReplica
via PROTECT’s BftListenerWrapper. The classes shown in Fig. 3.5 handle the received message and
start to perform the extra validation of the message, executed in the fail-safe layer, as described in Sec.
3.1.1.

BftListenerWrapper ChainBuildingMessageHandler MessageDeliveryManagerServiceReplica

executeOrderedFIFO
(request.getContent())

receiveSerializedMessage
(command)

broadcast
(publicMessage) attemptMessageDelivery

(serializedMessage)

consensus

processCommand
(command)

MessageSender

Figure 3.5: PROTECT’s method calls to handle a message delivered by BFT-SMaRt

The code details of the classes in Fig. 3.4 and Fig. 3.5 are available in App. A. Besides, the classes
BftChannelSender and BftListenerWrapper are discussed further in Sec. 4.1, since these two classes
represent the wrapper for BFT-SMaRts interface.

3.2 Tendermint

Tendermint provides a consensus and a networking layer as a generic engine and decouples it from the
details of the application. This design enables the usage of BFT operations in a modular way, without

CHAPTER 3. DESIGN 16

worrying about the consensus process. Furthermore, client applications can be written in any programming
language, since Tendermint’s interface ABCI (Application BlockChain Interface) is implemented as a
socket protocol.

Tendermint implements BFT using blockchain technology. The data structure in a blockchain offers
resistance against modifications, since new transactions (blocks) are stored with a cryptographic hash of
the previous transaction. Consequently, the transactions are linked with each other and cannot be modified,
once they are stored. This property offers the maintenance of a common message log in a consensus
protocol. This modern and modular implementation of a consensus engine offers a technological advantage
for any sort of state machine maintaining a blockchain and is the main motivation of this thesis.

3.2.1 Tendermint Core and ABCI

Tendermint consists of two major technical components:

Tendermint Core. This is the blockchain consensus engine which ensures that the same transactions are
recorded in the same order for every party.

ABCI. This generic Application BlockChain Interface enables the usage of Tendermint Core for client
applications in any programming language. It is implemented as a socket protocol and can be used
with a language-specific wrapper.

In order to receive transactions from Tendermint Core via the ABCI, a client application has to implement
a wrapper, called ABCI application. Except for Tendermint Core, nothing else should communicate with
the ABCI application, to guarantee deterministic results. Tendermint Core and the ABCI application
together form a node, and multiple nodes form a Tendermint peer-to-peer-network, as shown in Fig. 3.6.
A client can send transactions to be processed by Tendermint Core to any node in the network over a
Remote Procedure Call (RPC) [6] protocol, as illustrated in Fig. 3.6. This REST interface can also be
used for stating queries.

ABCI
app

ABCI
app

P
2P

A
B

C
I

Tendermint
Core

ABCI
app

Tendermint
Core

ABCI
app

Tendermint
Core

ABCI
app

Tendermint
Core

ABCI
app

Tendermint
Core

RPC

P
2P

P
2P

P
2P

P
2P

A
B

C
I

A
B

C
I

A
B

C
I

A
B

C
I

RPC RPC RPC RPC

Figure 3.6: Tendermint network

The nodes communicate over a peer-to-peer network among each other, and with their ABCI applica-
tion via a socket protocol, that satisfies the ABCI.

The ABCI consists of three primary messages types, that get delivered from Tendermint Core to the
ABCI application, which replies with a corresponding response message.

CheckTx. Before a transaction is relayed to the other peers, Tendermint Core checks the validity of a
transaction. More precisely, Tendermint Core checks the validity by calling the ABCI application,
which replies with an approval or an error.

DeliverTx. Each transaction in the blockchain is delivered to the ABCI application with a DeliverTx
message. When a transaction with this message is received, the ABCI application has to validate

CHAPTER 3. DESIGN 17

it against the current state of the application, the application protocol, and the cryptographic
credentials of the transaction. A validated transaction will update the application state.

Commit. This message is used to compute a cryptographic commitment to the current application state,
to be placed in the next block.

Tendermint Core creates three ABCI connections to the ABCI application: one for the validation of
transactions, before relaying it to the other peers, one for proposing blocks for the consensus procedure,
and one for querying the application state. After installing Tendermint [8], several tools are provided to
configure a testnet.

3.2.2 Network configuration

To run a Tendermint network, each node participating in the consensus, requires a public and a private key.
Each node maintains a config folder, containing a file priv validator key.json, where the information about
the keys are stored. Further, the public keys have to be listed in a common genesis.json file, to facilitate the
identification among the nodes. The config.toml file contains the address for peer-to-peer-communication
among the nodes and the address for the RPC listener.

Local testnet

A local Tendermint testnet can be initialized with a single command. Per default, a network with four
nodes is created. The following command demonstrates the initialization for a testnet consisting of five
nodes, where the parameter v stands for the number of validators:

$ tendermint testnet --v 5

This command triggers the generation of a directory called mytestnet, containing one folder for each node
(node0, node1, node2, node3, node4). Each node maintains a config-folder, where the information about
the keys, the common genesis.json file and the config.toml file can be found. Per default, all nodes have
the same address configuration specified in the config.toml file:

P2P. Address to listen on for incoming peer-to-peer connections: “tcp://0.0.0.0:26656“

RPC. Address to listen on for remote procedure calls: “tcp://127.0.0.1:26657”

To avoid conflicts, it is required to change these settings by distinctive port numbers, for instance:

node P2P address RPC address

0 26656 26657
1 26659 26660
2 26661 26662
3 26663 26664
4 26665 26666

Then, every node is launched by providing a list of all peers in the network. This list contains the IDs and
addresses of all nodes and the following command demonstrates how the ID of node0 is obtained:

$ tendermint show_node_id --home ./mytestnet/node0

After executing this command for every node, the launch command can be constructed. For example,
to launch node0, the appropriate command is:

$ tendermint node --home ./mytestnet/node0 --proxy_app=kvstore
--p2p.persistent_peers="7793b14e436a37e0d18bb3820546a3aca98e1694@localhost
:26656,36796da0e43680b711c580c032eb10199ad58a4a@localhost:26659,
aa5cc9c62324744f55e80eb2257690cbdd5b5544@localhost:26661,
e957be554edbe0acb36f3888a2f8255ace7614d0@localhost:26663,
f3888a2f8255ace7614d09e57be554edbe0acb36@localhost:26665,"

CHAPTER 3. DESIGN 18

In order to run all other nodes, the same command has to be executed with the corresponding parameters.
After starting up, the nodes will establish connections among each other and to the given example
application kvstore, which is a sample application provided by Tendermint to demonstrate the functionality.
Finally, the Tendermint nodes will be ready to receive transactions to be processed.

Distributed testnet

Tendermint provides the infrastructure to run a network in a virtualized distributed environment. This is
realized with the help of Docker [3], a platform that facilitates a virtualization on the level of the operating
system. This virtualization enables the simulation of a distributed system, more precisely, the usage of
a virtual address space for the Tendermint nodes and the ABCI application. In order to virtualize an
application with Docker, first, an application-specific Dockerfile is required. A Dockerfile is a script
file, containing the instructions how to set up the environment for the application. Secondly, a Docker
image is built, that consists of read-only layers, one per instruction specified in the Dockerfile. Finally,
a Docker container is created by adding a writable layer on top of the image, where all writes to the
container, such as adding, modifying or deleting data, are stored. The Docker image can be used to
create multiple containers, all running with the same application, but all having their own writable layer.
Docker containers are isolated from one other and communicate through well-defined channels. The
process of building a Docker image out of a Dockerfile and running containers, based on the Docker
image, is illustrated in Fig. 3.7. This design makes the shipping and running of applications lightweight
and modular.

Docker container

Dockerfile
Docker image

build

runrun

Docker image

Docker container

Docker image

Figure 3.7: Docker container generation

To facilitate the management of Docker containers, Docker Compose provides a human-readable
configuration file, the docker-compose.yml. In this file, all services of a multi-container application can be
defined and enable the creation and launching of all services with the single command:

$ docker-compose up

This command will create a Docker container for every listed service.
Tendermint provides a docker-compose.yml file with configurations for a four-node-network, more

precisely, with four listed services. This docker-compose.yml is available in App. B, as well as the
relevant part of Tendermint’s Makefile that is used to launch the network by the following command:

$ make localnet-start

Basically, this triggers the execution of the following steps:

CHAPTER 3. DESIGN 19

1. Build the Docker image based on the provided Dockerfile for a Tendermint node.

2. Create folders for each node, containing the information about the keys, the genesis.json and the
config.toml.

3. Execute docker-compose up.

The Dockerfile used in step 1 is also provided in App. B. After a container is running for every node,
they start to establish the communication among each other and to the kvstore example application. This
is specified in the Dockerfile in App. B as default application, to demonstrate the usage of Tendermint
Core. The configurations in the docker-compose.yml file specify an IP-address for every node and the
respective ports, port 26656 for the peer-to-peer-communication, as well as port 26657 for incoming RPC,
as illustrated in Fig. 3.8. Every node establishes a connection to the ABCI application on port 26658.

ABCI
app

26
65

6
26

65
8

Tendermint
Core

ABCI
app

Tendermint
Core

ABCI
app

Tendermint
Core

ABCI
app

Tendermint
Core

26657

26
65

6

26
65

6

26
65

6

26
65

8

26
65

8

26
65

8

26657 26657 26657 192.167.10.5192.167.10.4192.167.10.3192.167.10.2

Figure 3.8: Tendermint testnet with Docker Compose

On the host machine, the nodes bind their RPC servers to ports 26657, 26660, 26662 and 26664,
hence, transactions can be sent to any of these addresses. More precisely, node0 is accessible over port
26657, node1 over port 26660, and so on. Considering the kvstore example application, that stores a key
and a value, a valid transaction, addressed to node2, would be:

$ curl -s 'localhost:26662/broadcast_tx_commit?tx="name=satoshi"'

Inside the Docker environment, the transaction will be relayed to node2’s address (192.167.10.4:26657)
and node2 will initiate the consensus and eventually will reply to the application.

Configuration of a distributed testnet

To configure a Tendermint network with your own client application, you need to:

1. Define your application’s environment with a Dockerfile. Note, that one port (e.g. 26658) has to be
exposed to make it possible for Tendermint Core to establish the communication with your ABCI
application.

2. Add your application in docker-compose.yml, such that there is one application listed for every
node. For instance, if you want to launch a five-node-network, in total ten services have to be listed,
five for the nodes and five for the application. Docker Compose will then create one container for
each service.

3. Finally, to make node-containers establishing a connection with the designated application-container
when starting up, a suitable command in the service specification is required. For example, we want
container node0 to connect with container abci0 when it’s starting up, hence, we add the following
line in node0’s service specifications in the docker-compose.yml file:
command: node --proxy_app=tcp://abci0:26658

CHAPTER 3. DESIGN 20

Running a Tendermint testnet with Docker is a state-of-the-art approach to pack and run software,
and the combination with Docker Compose allows efficient management of multi-container Docker
applications. This motivates the usage of Docker and Docker Compose for PROTECT with the desired
ability to launch multi-container networks running PROTECT and Tendermint Core.

3.2.3 Tendermint’s network architecture

Tendermint provides an appliation architecture guide [9] containing recommendations for the architecture
of a Tendermint blockchain application. The given example in Fig. 3.9 illustrates the Tendermint network
running with the blockchain application Cosmos Voyager. The Tendermint nodes communicate over the
peer-to-peer network and can receive transactions over RPC. Transactions are sent to Tendermint Core by
Cosmos Voyager over a REST interface, which is provided by the Cosmos SDK [2]. The transactions
are then committed by the Tendermint consensus and ultimately processed by the ABCI application,
which is the logic that runs on the blockchain. The ABCI application must be a deterministic result of the
Tendermint consensus and is also provided by the Cosmos SDK.

Figure 3.9: Tendermint’s recommended network architecture [9]

The two components of the Cosmos SDK highlight the usage of Tendermint’s interface. In order to
use Tendermint Core, that offers the consensus and networking protocols, it is required for a blockchain
application to supply the suitable interface wrappers. In particular, they must be able to send transactions to
Tendermint Core’s RPC interface and to process transactions coming from Tendermint Core’s consensus.

3.3 System design

The adapted system design for PROTECT running with Tendermint is shown in Fig. 3.10 and demonstrates
the network model in a Docker environment. The dashed boxes highlight two Docker containers, one
running with PROTECT and one with Tendermint Core. Hence, the model illustrates a Docker environment
with ten containers in total. Tendermint Core receives transactions from PROTECT and is executing
the consensus over the peer-to-peer network, as shown in Fig. 3.9. The ABCI application, which is
part of PROTECT, receives the committed transactions from Tendermint Core and relays them to the
fail-safe layer for the extra validation procedure, as described in Sec. 3.1.1. In contrast to the network
model of PROTECT running with BFT-SMaRt, illustrated in Fig. 3.3, the Docker environment enables a

CHAPTER 3. DESIGN 21

virtualized address space, so that each Docker container has its own IP-address. This is demonstrated in
Fig. 3.10 by the accordingly labeled PROTECT and Tendermint Core boxes. All containers are listed as
services with their designated IP-address in the docker-compose.yml file, as described in Sec. 3.2.2 under
Configuration of a distributed testnet. In order to launch the network with the containers establishing the
desired connections, the different ports have to be configured as follows:

8080. PROTECT’s port for client requests have to be accessible from outside of the Docker environment.
The corresponding mapping of the ports is specified in the docker-compose.yml file.

26658. The port where Tendermint Core will bind on has to be exposed in PROTECT’s Dockerfile.

65000. To enable server-to-server communication, all server addresses (IP-address:65000) have to be
provided in PROTECT’s server configuration file, as described in Sec. 2.3.2.

PROTECT
Server 2

PROTECT
Server 3

PROTECT
Server 4

PROTECT
Server 5

8082 8080 8080 8080

26
65

7

ABCI
app

26
65

8

Fail-Safe

65
00

0

26
65

7
ABCI
app

26
65

8

Fail-Safe

65
00

0

26
65

7

ABCI
app

26
65

8

Fail-Safe
65

00
0

26
65

7

ABCI
app

26
65

8

Fail-Safe

65
00

0

26
65

7

ABCI
app

26
65

6
26

65
8

Tendermint
Core

Tendermint
Core

Tendermint
Core

Tendermint
Core

Tendermint
Core

26
65

6

26
65

6

26
65

6

26
65

6
192.167.10.6192.167.10.5192.167.10.4192.167.10.3192.167.10.2

PROTECT
Server 1

AVSS

Fail-Safe

65
00

0

8080 8080

192.167.10.7
AVSS

192.167.10.8
AVSS

192.167.10.9
AVSS

192.167.10.10
AVSS

192.167.10.11

Figure 3.10: PROTECT with Tendermint in Docker environment

Corresponding to Fig. 3.9, the two arrows, one going from PROTECT to Tendermint Core and the other
from Tendermint Core to the ABCI app, represent the interface between PROTECT and Tendermint Core.

Running PROTECT with Tendermint and utilising Docker and Docker Compose to configure and
launch PROTECT networks, will equip PROTECT with the latest technology. Tendermint provides a
modular and efficient consensus engine and Docker enables a virtualized environment for multi-container
applications, that can efficiently and conveniently managed with Docker Compose.

4
Implementation

To enable the usage of Tendermint’s consensus engine in PROTECT, it is necessary to carefully examine
the currently used communication layers and system design in PROTECT. The Sec. 4.1 provides a detailed
examination of the current implementation, more precisely, of BFT-SMaRt’s interface. The implemented
wrapper classes to send and receive messages are stripped down and are used to specify PROTECT’s
requirements to implement suitable wrappers for the use of Tendermint’s interface, which is documented
in Sec. 4.2. To realize the implementation, Sec. 4.3 provides the core class in PROTECT that represents
the link to the wrapper classes. All this composed knowledge facilitate the actual implementation which
is in progress at that time.

4.1 Examination of BFT-SMaRt’s interface

The BFT-SMaRt interface consists of the following two Java classes:

ServiceProxy. This class represents a proxy for the client side to send messages to the parties which
will perform the consensus.

ServiceReplica. This class replies to the client by delivering messages, after a consensus has been
reached.

Since BFT-SMaRt is a Java-library, PROTECT implements this interface with method calls, executed by
two wrapper classes, one instantiating a ServiceProxy and one a ServiceReplica. Consider the launch
process of a PROTECT server, performed by PROTECTs’ main class ServerApplication:

1. Load configuration

2. Load server keys

3. Load client access control

4. Set up persistent state for message broadcast and processing

5. Wait for messages and begin processing them as they arrive

6. Perform basic benchmark before starting up

7. Create message handler for the certified chain

8. Create message manager to manage messages received over point to point links

22

CHAPTER 4. IMPLEMENTATION 23

9. Create shareholder for each secret to be maintained

10. Load certificates to support TLS

11. Load client authentication keys

12. Start server to process client requests

The BFT-SMaRt interface is created during step 7 and is illustrated in Fig. 4.1. In this step, a
ChainBuildingMessageHandler object is generated and inside its constructor, an instance of a
BftAtomicBroadcastChannel is created. Then, first, the wrapper class BftChannelSender is created,
which instantiates BFT’s ServiceProxy. Secondly, the wrapper class BftListenerWrapper, also instan-
tiated by the BftAtomicBroadcastChannel, triggers the ServiceReplica instance.

ChainBuildingMessageHandler

ServerApplication

BftAtomicBroadcastChannel

BftChannelSender BftListenerWrapper

ServiceProxy ServiceReplica

Figure 4.1: Launching BFT-SMaRt’s interface

When a ServiceProxy is instantiated, PROTECT starts trying to establish the connection to the
BFT-layer. The designated ports are created after a ServiceReplica is instantiated, more precisely,
one port for PROTECT to bind on (protect-server-port+200), and one port for the consensus process
(protect-server-port+201), as described in Sec. 3.1.2 concerning PROTECT’s network configuration,
and illustrated in Fig. 3.3. After the connection between PROTECT and BFT-SMaRt is established,
PROTECT will handle messages to be sent to BFT-SMaRt and the messages it receives from BFT-
SMaRt in the ChainBuildingMessageHandler. The wrapper class BftChannelSender is used to send
a message to BFT-SMaRt over BFT-SMaRt’s interface ServiceProxy. Messages from BFT-SMaRt are
delivered by BFT-SMaRt’s interface ServiceReplica and are processed by PROTECT’s wrapper class
BftListenerWrapper, before they are relayed to the ChainBuildingMessageHandler. Fig. 4.2 shows
the described communication layers.

CHAPTER 4. IMPLEMENTATION 24

ChainBuildingMessageHandler

BftChannelSender BftListenerWrapper

ServiceProxy ServiceReplica

BFT-SMaRt

Figure 4.2: Communication layers between PROTECT and BFT-SMaRt

The wrapper classes BftChannelSender and BftListenerWrapper are described in more detail in
Sec. 4.1.1 and 4.1.2.

4.1.1 Broadcasting a message to BFT-SMaRt

Messages to be sent to the BFT-layer are first signed by the ChainBuildingMessageHandler and then
handed over to the wrapper BftChannelSender using it’s broadcast method. The following code snippet
of BftChannelSender’s broadcast method shows, that first the signed message is serialized to a byte
array and then transmitted to the BFT-layer by calling ServiceProxy’s method
invokeOrdered(serializedMessage).

// BftChannelSender.java

public void broadcast(SignedMessage message) {

// Serialize message to bytes
byte[] serializedMessage = MessageSerializer.serializeSignedMessage(message);

// Send total ordered message
this.serviceProxy.invokeOrdered(serializedMessage);

// Give some time for everyone to process the message
try {

Thread.sleep(1000);
} catch (InterruptedException e) {

throw new RuntimeException("interrupted", e);
}

}

4.1.2 Receiving a message from BFT-SMaRt

To process messages received from BFT-SMaRt, the wrapper class BftListenerWrapper implements
the method executeOrderedFIFO(byte[] command, MessageContext msgCtx, int clientId, int

operationId). This method is provided by the BFT-SMaRt interface FIFOExecutable and facilitates the
delivery of requests in FIFO order to the executable instance. The method is called by the ServiceReplica
that delivers a command as a byte array. The following code snippet shows that the BftListenerWrapper

saves the received command and relays it to the ChainBuildingMessageHandler using it’s method
receiveSerializedMessage(command).

// BftListenerWrapper.java

@Override
public byte[] executeOrderedFIFO(byte[] command, MessageContext msgCtx, int
clientId, int operationId) {

CHAPTER 4. IMPLEMENTATION 25

return processCommand(command);
}

private synchronized byte[] processCommand(byte[] command) {
try {

synchronized (this.state) {
// Save state to support recovery
this.state.addMessage(command);

// Process message
this.listener.receiveSerializedMessage(command);

}
} catch (ClassNotFoundException | BadPaddingException |

IllegalBlockSizeException | IOException e) {
e.printStackTrace();
return null;

}
return command;

}

In order to replace BFT-SMaRt by Tendermint, suitable wrapper classes for broadcasting and receiving
messages have to be implemented. The equivalent communication layers between PROTECT and BFT-
SMaRt and between PROTECT and Tendermint are discussed and compared below in Sec. 4.2 and
illustrated in Fig. 4.3.

4.2 Adaption of Tendermint’s interface

As discussed in Sec. 3.2.1, Tendermint provides the ABCI as a generic interface. The ABCI is intended
to be used for the communication between Tendermint Core and the ABCI application. Additionally,
Tendermint Core can receive transactions over an RPC protocol. These components form Tendermint’s
interface, equivalently to BFT-SMaRt:

RPC. Transactions and queries can be sent to Tendermint Core over a REST interface.

ABCI. This is the interface between Tendermint Core and the ABCI application.

Consider Fig. 4.3, which depicts the communication layers and the message flow between PROTECT
and the consensus layer. On the left part of Fig. 4.3, the communication layers between PROTECT and
BFT-SMaRt are modeled, as described in Sec. 4.1. Equivalently on the right part of Fig. 4.3, the model of
the communication layers between PROTECT and Tendermint are shown. PROTECT sends messages
via Tendermint’s interface RPC, using a suitable wrapper class RPCClient. Tendermint Core replies using
the ABCI to an appropriate interface ABCIListener, provided by PROTECT. The functionalities of the
ChainBuildingMessageHandler, such as the triggering of the message broadcast and the handling of
received messages, remain unchanged.

ChainBuildingMessageHandler

BftChannelSender BftListenerWrapper

ServiceProxy ServiceReplica

RPCClient ABCIListener

RPC ABCI

BFT-SMaRt Tendermint Core

ChainBuildingMessageHandler

Figure 4.3: Corresponding communication layers between PROTECT and consensus layer

CHAPTER 4. IMPLEMENTATION 26

Consequently, the wrapper classes RPCClient and ABCIListener must provide the same functionali-
ties to the ChainBuildingMessageHandler while adapting to Tendermint’s interface, more precisely:

RPCClient. This wrapper requires to broadcast a signed message, received from PROTECT’s
ChainBuildingMessageHandler, to Tendermint Core via RPC. This can be implemented by using
Tendermint’s provided REST interface.

ABCIListener. This wrapper receives messages from Tendermint Core over the ABCI. The received
messages have to be processed and forwarded to PROTECT’s ChainBuildingMessageHandler

as byte arrays. Besides, the message has to be stored to support recovery, similar to the
BftListenerWrapper in Sec. 4.1.2.

The implementation of these wrapper classes, fulfilling the mentioned requirements, enables PROTECT
the use of Tendermint’s interface as consensus layer.

4.3 Realization of the interface

The core class to realize the implementation of the interface wrapper classes in PROTECT is the
BftAtomicBroadcastChannel. As described in Sec. 4.1, the BftAtomicBroadcastChannel triggers
the wrapper classes during the launch of a PROTECT server. Fig. 4.4 shows the corresponding relevant
part of the launch process, where the wrapper classes for Tendermint’s interface are created. More pre-
cisely, the BftAtomicBroadcastChannel instantiates the RPCClient and the ABCIListener. In contrast
to the BftListenerWrapper which triggers BFT-SMaRt’s ServiceReplica, illustrated in Fig. 4.1, the
ABCIListener opens a port and waits for Tendermint Core’s requests over the ABCI.

ChainBuildingMessageHandler

ServerApplication

BftAtomicBroadcastChannel

RPCClient ABCIListener

RPC ABCI

Figure 4.4: Launching Tendermint’s interface

The code of the BftAtomicBroadcastChannel is given below and depicts the exact location in PRO-
TECT, where the wrapper classes are instantiated. After an instance of the BftAtomicBroadcastChannel
is created by the ChainBuildingMessageHandler first, the link method and then the register method
is called and the RPCClient and ABCIListener are generated.

// BftAtomicBroadcastChannel.java
package com.ibm.pross.server.channel.bft;

import com.ibm.pross.server.channel.AtomicBroadcastChannel;
import com.ibm.pross.server.channel.ChannelListener;
import com.ibm.pross.server.channel.ChannelSender;

public class BftAtomicBroadcastChannel implements AtomicBroadcastChannel {

CHAPTER 4. IMPLEMENTATION 27

private volatile ABCIListener wrapper;

@Override
public void register(final ChannelListener listener) throws InterruptedException
{

this.wrapper = new ABCIListener(listener);
}

public boolean isReady() {
return ((this.wrapper != null) && (this.wrapper.isReady()));

}

@Override
public ChannelSender link(final int senderId) {

return new RPCClient(senderId);
}

@Override
public void unregister(final ChannelListener listener) {

throw new RuntimeException("not implemented");
}

}

The wrapper classes itself perform the requirements specified in Sect. 4.2 and undertake the correct
broadcast to Tendermint Core’s RPC, as well as the appropriate request handling and processing from
Tendermint Core’s ABCI.

4.3.1 Broadcasting a message to Tendermint Core

The correct message broadcast by the RPCClient has to serialize a signed message, received from
PROTECT’s ChainBuildingMessageHandler, and then send it to Tendermint Core via RPC. Tendermint
provides a REST interface [6] for broadcasting and stating queries which can be used by PROTECT’s
RPCClient. Inside its broadcast method, the transaction is appropriately constructed and then sent to
Tendermint Core according to the mentioned REST interface specifications.

4.3.2 Receiving a message from Tendermint Core

The wrapper class ABCIListener must implement the ABCI in Java and communicate with Tendermint
Core via a socket protocol. One possibility to implement this Java wrapper is the use of an existing
Java implementation of the ABCI, the jABCI [5]. This open-source library allows for a straightforward
integration into PROTECT’s Java code-base as a Maven [1] dependency and comes with two example
applications that demonstrate the use of the jABCI. Tendermint itself released a guide Creating an
application in Java [9] recently, providing a step-by-step tutorial for building a simple distributed BFT
key-value store in Java with implementing the ABCI. However, this guide uses Gradle [4] for building
and managing the project dependencies. Since PROTECT is originally managed using Maven, the
given manual cannot be adopted one-to-one for implementing the ABCI into PROTECT. In any case,
PROTECT’s ABCIListener has to create a socket that waits for Tendermint Core’s requests and requires
to implement the ABCI’s methods to handle the requests appropriately.

The described system design and the implementation of the wrapper classes are still in development.
The extensive documentation of the software components and the involved communication layers provided
by this thesis, supports the necessary understanding for the ongoing implementation of Tendermint into
PROTECT.

5
Conclusion and Future Work

This thesis tackled the upgrade of PROTECT’s consensus layer. PROTECT is a software to build secure
cryptographic services in realistic asynchronous networks, providing tunable fault-tolerance. While the
theoretical and mathematical background of BFT, SMR and cryptography is known for a long time,
approaches of their implementations and technology are still evolving. The main motivation for this
thesis was the rise of Tendermint Core, a modular, language-agnostic and efficient consensus engine.
Tendermint Core provides an opportunity to any deterministic state machine to perform the consensus
in a scalable environment. Due to Tendermint’s modular design, it is possible to implement to use it in
existing software, using the provided interface, the ABCI. In order to use Tendermint Core for PROTECT,
the existing consensus layer and it’s interface were examined carefully. Currently, PROTECT’s consensus
layer is represented by BFT-SMaRT, a robust implementation of BFT SMR. This thesis documented
not only the theoretical background and the properties of PROTECT, BFT-SMaRt and Tendermint, it
further examined the details of the system architectures. In particular, the identification and examination
of PROTECT’s wrapper classes enabled the formulation of the required adaptions to use Tendermint Core.
The intense study of Tendermint’s documentation and testnet configuration provided further insight about
Tendermint’s functionalities, particularly in combination with Docker and Docker Compose.

This thesis represents an elaborate documentation about PROTECT’s relevant system components
concerning the interface to the consensus layer and the interactions among them. This knowledge will
facilitate the implementation of the appropriate wrappers to use Tendermint’s interface, which is a task for
future work. Finally, it will be of interest to measure PROTECT’s performance, by experimenting with
varying network size.

28

A
DKG request in PROTECT

The example shown in Fig. A.1 illustrates how an incoming request for a DKG is handled by PROTECT.
This request is handled by the GenerateHandler which initiates the DKG via the ApvssShareholder

class. In the figure below the PROTECT instance, handling the incoming request on port 8081, is
highlighted in yellow.

65
21

0

PROTECT
Server 1

BFT-SMaRt

Fail-Safe8081

65
21

1

Shareholder 1

65
01

0

HttpHandler public abstract void handle(HttpExchange arg0)

BaseHttpHandler public abstract void handle(HttpExchange exchange):
this.handleWithExceptions(exchange)

AuthenticatedClientRequestHandler
public void handleWithExceptions(exchange):

this.authenticatedClientHandle(exchange, username)

GenerateHandler public void authenticatedClientHandle(exchange, username):
doDistributedKeyGeneration(secretName)

private void doDistributedKeyGeneration(secretName):
ApvssShareholder shareholder = this.shareholder.get(secretName)
shareholder.broadcastPublicSharing(0)

ApvssShareholder public boolean broadcastPublicSharing(epoch):
PublicSharingGenerator generator = new PublicSharingGenerator(n, k)
PublicSharing publicSharing = generator.shareRandomSecret(publicKeys)
PublicSharingPayload payload = new PublicSharingPayload(publicSharing)
Message publicSharingMessage = new Message(channelName, this.index, payload)
this.channel.send(publicSharingMessage)

ChainBuildingMessageHandler

$ curl --cacert config/ca/ca-cert-server-1.pem --cert config/client/certs/cert-administrator --key
config/client/keys/private-administrator "https://localhost:8081/generate?secretName=prf-secret"

This handler
initiates a
Distributed Key
Generation for a
secret

Send out initial message
containing our Public
Sharing to each
shareholder. This will
start the DKG protocol
based on APVSS.

Figure A.1: Handling of a DKG request

29

APPENDIX A. DKG REQUEST IN PROTECT 30

The initial message for the secret sharing is signed by the ChainBuildingMessageHandler and
serialized by the BftChannelSender, depicted in Fig. A.2. The message is finally sent to all instances of
BFT-SMaRt’s ServiceProxy by calling its method invokeOrdered(serializedMessage).

65
21

0
PROTECT
Server 1

BFT-SMaRt

Fail-Safe8081

65
21

1
Shareholder 1

65
01

0

ServiceProxy
public byte[] invokeOrdered(byte[] request):

return invoke(request, TOMMessageType.ORDERED_REQUEST)
public byte[] invoke(byte[] request, TOMMessageType reqType):

TOMulticast(request, reqId, operationId, reqType)

ChainBuildingMessageHandler
public void send(Message message):

SignedMessage signedMessage = new SignedMessage((Message), message, keyLoader.getSigningKey())
this.sender.broadcast(signedMessage)

BftChannelSender
this.serviceProxy = new ServiceProxy(senderId)
public void broadcast(SignedMessage message):

byte[] serializedMessage = MessageSerializer.serializeSignedMessage(message)
this.serviceProxy.invokeOrdered(serializedMessage)

This method sends a
request to the replicas,
and returns the related
reply.

BftChannelSender

Send total ordered
message

Figure A.2: Passing a message to BFT-SMaRt

PROTECT receives messages from BFT-SMaRt via its ServiceReplica. The BftListenerWrapper

saves the received message and relays it to the ChainBuildingMessageHandler, which starts the extra
validation procedure in the fail-safe layer, as described in Sec. 3.1.1.

65
21

0

PROTECT
Server 1

BFT-SMaRt

Fail-Safe8081

65
21

1

Shareholder 1

65
01

0

ChainBuildingMessageHandler
public synchronized void receiveSerializedMessage(final byte[] serializedMessage):
 final SignedMessage bftMessage = MessageSerializer.deserializeSignedMessage(serializedMessage)
 this.bftChain.put(messagePosition, bftMessage)
 final CertificationPayload certificationPayload = new CertificationPayload(messagePosition, bftMessage)
 final Message publicMessage = new Message(“certification”, this.myIndex, certificationPayload)
 this.messageManager.broadcast(publicMessage)

BftListenerWrapper
this.serviceReplica = new ServiceReplica(listener.getId(), BftListenerWrapper)
public byte[] executeOrderedFIFO(byte[] command, MessageContext msgCtx, int clientId, int operationId):

return processCommand(command)
private synchronized byte[] processCommand(byte[] command):

this.state.addMessage(command)
this.listener.receiveSerializedMessage(command)

ServiceReplica
 public void receiveMessages(int consId[], int regencies[], int leaders[], CertifiedDecision[] cDecs, TOMMessage[][] requests):
 byte[] response = ((FIFOExecutable) executor).executeOrderedFIFO(request.getContent(), msgCtx, request.getSender(),
request.getOperationId())

This is used to deliver the requests to
the application and obtain a reply to
deliver to the clients.

MessageDeliveryManager

ChainBuildingMessageHandler

Handles message
received from the BFT

Figure A.3: Receiving a message from BFT-SMaRt

APPENDIX A. DKG REQUEST IN PROTECT 31

The ChainBuildingMessageHandler first deserializes, validates and adds the message to the BFT
log. Then the broadcast of the signed and certified message and its position in the BFT log is performed
with the help of the MessageDeliveryManager, as illustrated in Fig. A.4.

65
21

0

PROTECT
Server 1

BFT-SMaRt

Fail-Safe8081

65
21

1

Shareholder 1

65
01

0

ChainBuildingMessageHandler
public synchronized void receiveSerializedMessage(final byte[] serializedMessage):
 final SignedMessage bftMessage = MessageSerializer.deserializeSignedMessage(serializedMessage)
 this.bftChain.put(messagePosition, bftMessage)
 final CertificationPayload certificationPayload = new CertificationPayload(messagePosition, bftMessage)
 final Message publicMessage = new Message(“certification”, this.myIndex, certificationPayload)
 this.messageManager.broadcast(publicMessage)

1. Deserialize message
2. Validate signature
3. Add BFT message to the BFT chain
4. Broadcast our signature of the message and its position

MessageDeliveryManager
 public void broadcast(final Message message):

final SignedMessage signedMessage = new SignedMessage(message, keyLoader.getSigningKey())
this.broadcast(signedMessage)

 public void broadcast(final SignedMessage signedMessage):
this.receive(this.myIndex, false, signedMessage)

 private void receive(final int relayerId, final boolean isAcknowledgement, final SignedMessage signedMessage):
 final Set<Integer> unconfirmedRecipients = this.messageStateTracker.determineUnconfirmedWitnesses(signedMessage)
 sendOnce(unconfirmedRecipients, signedMessage)
 private void sendOnce(final Set<Integer> recipients, final SignedMessage signedMessage):

final SignedRelayedMessage signedRelayedMessage = createSignedRelayedMessage(signedMessage, true)
final byte[] messageContent = MessageSerializer.serializeSignedRelayedMessage(signedRelayedMessage)
for (final Integer recipientIndex : recipients)

this.messageSenders.get(recipientsIndex - 1).attemptMessageDelivery(messageContent)

MessageDeliveryManager
Initiate the broadcast of a
signed message

Send to each recipientMessageSender

Figure A.4: Preparing the protocol in the fail-safe layer

B
Testnet with Docker

This docker-compose.yml file is provided by Tendermint [8] and can be used to launch a four-node-testnet
with an in-process example kvstore-application. Furthermore, this file is can be used to add and configure
more nodes in the network. Finally, this file is used to configure a network with an own application.

version: '3'

services:
node0:
container_name: node0
image: "tendermint/localnode"
ports:
- "26656-26657:26656-26657"

environment:
- ID=0
- LOG=${LOG:-tendermint.log}

volumes:
- ./build:/tendermint:Z

networks:
localnet:

ipv4_address: 192.167.10.2

node1:
container_name: node1
image: "tendermint/localnode"
ports:
- "26659-26660:26656-26657"

environment:
- ID=1
- LOG=${LOG:-tendermint.log}

volumes:
- ./build:/tendermint:Z

networks:
localnet:

ipv4_address: 192.167.10.3

node2:
container_name: node2
image: "tendermint/localnode"
environment:
- ID=2
- LOG=${LOG:-tendermint.log}

32

APPENDIX B. TESTNET WITH DOCKER 33

ports:
- "26661-26662:26656-26657"

volumes:
- ./build:/tendermint:Z

networks:
localnet:

ipv4_address: 192.167.10.4

node3:
container_name: node3
image: "tendermint/localnode"
environment:
- ID=3
- LOG=${LOG:-tendermint.log}

ports:
- "26663-26664:26656-26657"

volumes:
- ./build:/tendermint:Z

networks:
localnet:

ipv4_address: 192.167.10.5

networks:
localnet:
driver: bridge
ipam:
driver: default
config:
-

subnet: 192.167.10.0/16

This part of Tendermint’s Makefile is used to launch a testnet with a single command. Note that the
command build-docker-localnode executes another Makefile, that is given below.

Local testnet using docker

Build linux binary on other platforms
build-linux: tools

GOOS=linux GOARCH=amd64 $(MAKE) build

build-docker-localnode:
@cd networks/local && make

Runs `make build_c` from within an Amazon Linux (v2)-based Docker build
container in order to build an Amazon Linux-compatible binary. Produces a
compatible binary at ./build/tendermint
build_c-amazonlinux:

$(MAKE) -C ./DOCKER build_amazonlinux_buildimage
docker run --rm -it -v `pwd`:/tendermint tendermint/tendermint:build_c-
amazonlinux

Run a 4-node testnet locally
localnet-start: localnet-stop build-docker-localnode

@if ! [-f build/node0/config/genesis.json]; then docker run --rm -v $(CURDIR)/
build:/tendermint:Z tendermint/localnode testnet --config /etc/tendermint/config-
template.toml --v 4 --o . --populate-persistent-peers --starting-ip-address
192.167.10.2; fi
docker-compose up

Stop testnet
localnet-stop:

docker-compose down

APPENDIX B. TESTNET WITH DOCKER 34

This Makefile triggers the building of the Docker image for the Tendermint nodes, using the Dockerfile
given in below.

Makefile for the "localnode" docker image.
all:

docker build --tag tendermint/localnode localnode
.PHONY: all

This Dockerfile is used by Tendermint to build the Docker image for the Tendermint nodes.

FROM alpine:3.7
MAINTAINER Greg Szabo <greg@tendermint.com>

RUN apk update && \
apk upgrade && \
apk --no-cache add curl jq file

VOLUME [/tendermint]
WORKDIR /tendermint
EXPOSE 26656 26657
ENTRYPOINT ["/usr/bin/wrapper.sh"]
CMD ["node", "--proxy_app", "kvstore"]
STOPSIGNAL SIGTERM

COPY wrapper.sh /usr/bin/wrapper.sh
COPY config-template.toml /etc/tendermint/config-template.toml

Bibliography

[1] “Apache Maven.” https://maven.apache.org/.

[2] “Cosmos SDK.” https://tendermint.com/sdk/.

[3] “Docker.” https://www.docker.com/.

[4] “Gradle Build Tool.” https://gradle.org/.

[5] “jABCI.” https://github.com/jTendermint/jabci.

[6] “RPC client for Tendermint.” https://docs.tendermint.com/master/rpc/.

[7] “Tendermint.” https://tendermint.com/.

[8] “Tendermint code.” https://github.com/tendermint/tendermint.

[9] “Tendermint core documentation.” https://docs.tendermint.com/.

[10] “Tunable protocols for threshold and proactive cryptography.”.

[11] J. Andress, The basics of information security: understanding the fundamentals of InfoSec in theory
and practice. Syngress, 2014.

[12] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for the masses with bft-smart,”
in 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
pp. 355–362, IEEE, 2014.

[13] R. E. Blahut, Cryptography and secure communication. Cambridge University Press, 2014.

[14] C. Cachin, “Distributed cryptography and proactive security.” https://cachin.com/cc/
sft13/.

[15] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and secure distributed program-
ming. Springer Science & Business Media, 2011.

[16] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, “Proactive security: Long-term protection against
break-ins,” RSA Laboratories CryptoBytes, vol. 3, no. 1, pp. 1–8, 1997.

[17] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM Transac-
tions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[18] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche, “Upright cluster
services,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pp. 277–290, ACM, 2009.

[19] W. Diffie and M. E. Hellman, “Multiuser cryptographic techniques,” in Proceedings of the June 7-10,
1976, national computer conference and exposition, pp. 109–112, ACM, 1976.

[20] D. Evans, V. Kolesnikov, M. Rosulek, et al., “A pragmatic introduction to secure multi-party
computation,” Foundations and Trends® in Privacy and Security, vol. 2, no. 2-3, pp. 70–246, 2018.

35

https://maven.apache.org/
https://tendermint.com/sdk/
https://www.docker.com/
https://gradle.org/
https://github.com/jTendermint/jabci
https://docs.tendermint.com/master/rpc/
https://github.com/tendermint/tendermint
https://docs.tendermint.com/
https://cachin.com/cc/sft13/
https://cachin.com/cc/sft13/

BIBLIOGRAPHY 36

[21] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed key generation for discrete-
log based cryptosystems,” Journal of Cryptology, vol. 20, no. 1, pp. 51–83, 2007.

[22] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret sharing or: How to cope with
perpetual leakage,” in Annual International Cryptology Conference, pp. 339–352, Springer, 1995.

[23] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” in Concurrency: the
Works of Leslie Lamport, pp. 203–226, 2019.

[24] National Institute of Standards and Technology, “Threshold cryptography.” https://csrc.
nist.gov/projects/threshold-cryptography.

[25] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,” Journal of
the ACM (JACM), vol. 27, no. 2, pp. 228–234, 1980.

[26] J. Resch, “Platform for robust threshold cryptography.” https://csrc.nist.gov/
Presentations/2019/Platform-for-Robust-Threshold-Cryptography.

[27] J. Resch, “Protect.” https://github.com/jasonkresch/protect.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key
cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[29] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: A tutorial,”
ACM Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–319, 1990.

[30] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613,
1979.

[31] University of Lisbon, LaSIGE research unit, “BFT-SMaRt.” https://github.com/
bft-smart/library.

https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/Presentations/2019/Platform-for-Robust-Threshold-Cryptography
https://csrc.nist.gov/Presentations/2019/Platform-for-Robust-Threshold-Cryptography
https://github.com/jasonkresch/protect
https://github.com/bft-smart/library
https://github.com/bft-smart/library

Acknowledgments

I would like to thank Prof. Dr. Christian Cachin for the supervision of this thesis and for countless
inspirational discussions. I’m highly thankful for the professional support and the great work atmosphere
provided by him and his research team. Despite a rather busy semester, the team and myself have enjoyed
the outmost attention by our supervisor, for which I’m very grateful for.

In particular, I further like to thank the Cryptology and Data Security Group for being good friends and
motivated and helpful scientists that never hesitated to support me in any situation. A further appreciation
goes to Bettina Choffat for her assistance in all administrative matter.

A big thank you to all my friends and family who supported me during the master thesis.

Erklärung
gemäss Art. 30 RSL Phil.-nat. 1B

NameA"/orname: Froidevaux Nathalie

Matrikelnummer: 12-124-590

Studiengang Computer Science

Bachelor m Master ü

Titel der Arbeit: Threshold Cryptography with Tendermint Core

Leiterln der Arbeit: Prof. Dr. Christian Cachin

lch erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen benutzt habe. AIle Stellen, die wörtlich oder sinngemäss aus Quellen entnommen wurden,

habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemäss Artikel 36

Absatz 1 Buchstabe r des Gesetzes vom 5. September 1996 über die Universität zum Entzug des auf

Grund dieser Arbeit verliehenen Titels berechtigt ist.

Für die Zwecke der Begutachtung und der ÜberprUfung der Einhaltung der Selbständigkeitserklärung

bzw. der Reglemente betreffend Plagiate erteile ich der Universität Bern das Recht, die dazu

erforderlichen Personendaten zu bearbeiten und Nutzungshandlungen vozunehmen, insbesondere die

schriftliche Arbeit zu vervielfältigen und dauerhaft in einer Datenbank zu speichern sowie dlese zur

Überprüfung von Arbeiten Dritter zu venuenden oder hierzu zur Verfügung zu stellen.

Dissertation

ort/Datum ßexr" 2+.O4 .2»2-ö

Unterschrift

	1 Introduction
	2 Background
	2.1 Threshold cryptography
	2.1.1 Secret sharing
	2.1.2 Verifiable secret sharing (VSS)
	2.1.3 Distributed key generation (DKG)
	2.1.4 Proactive security

	2.2 Byzantine fault-tolerant state machine replication
	2.2.1 Byzantine fault-tolerance
	2.2.2 State machine replication
	2.2.3 BFT-SMaRt
	2.2.4 Tendermint

	2.3 PROTECT
	2.3.1 Functionalities
	2.3.2 Configuration
	2.3.3 Tunable fault-tolerance
	2.3.4 Further development

	3 Design
	3.1 PROTECT with BFT-SMaRt
	3.1.1 Major components
	3.1.2 Network configuration

	3.2 Tendermint
	3.2.1 Tendermint Core and ABCI
	3.2.2 Network configuration
	3.2.3 Tendermint's network architecture

	3.3 System design

	4 Implementation
	4.1 Examination of BFT-SMaRt's interface
	4.1.1 Broadcasting a message to BFT-SMaRt
	4.1.2 Receiving a message from BFT-SMaRt

	4.2 Adaption of Tendermint's interface
	4.3 Realization of the interface
	4.3.1 Broadcasting a message to Tendermint Core
	4.3.2 Receiving a message from Tendermint Core

	5 Conclusion and Future Work
	A DKG request in PROTECT
	B Testnet with Docker

