MASTER N
COMPUTER
SCIENCE

Execution of Smart Contracts with
ARM TrustZone

Designing and Implementing a Prototype for Hyperledger Fabric
Chaincode Execution with OP-TEE

Master Thesis

Christina Miiller

Faculty of Science, University of Bern

August 2019

Prof Dr Pascal Felber
Prof Dr Christian Cachin
Dr Valerio Schiavoni
Marcus Brandenburger

b

u 7

b .

UNIVERSITAT UNIVERSITE DE UNIVERSITE DE FRIBOURG
BERN NEUCHATEL UNIVERSITAT FREIBURG

Abstract

Internet of Things (IoT) and smart contracts (traditional contracts translated into program
code) are two current technologies with new opportunities: For example, by using IoT and
smart contracts, we can track assets along the supply chain in a verifiable and efficient way.

Smart contracts are integrated in a blockchain network and hence distributed on many
nodes. Currently, there is no confidentiality guarantee for smart contracts (their logic) and the
processed data. The usage of a Trusted Execution Environment (TEE) - an isolated processing
environment - is one approach to protect sensitive smart contract execution.

We design and implement a prototype called Fabric OP-TEE Chaincode (FOC) for
Hyperledger Fabric (a platform for permissioned blockchain) chaincode (smart contract)
execution with ARM TrustZone (ARM TZ). We use OP-TEE as firmware and software on top
of ARM TZ. Our design is based on Fabric Private Chaincode (FPC) which uses Intel SGX as
underlying TEE technology. ARM TZ and Intel SGX are two well known TEEs.

To demonstrate chaincode execution with FOC, we implement a coffee tracking chaincode
which registers, updates and queries the coffee consumption of different people. By only
running the coffee tracking chaincode inside the secure world (isolated and therefore trusted
part of OP-TEE) and not the whole peer (Hyperledger Fabric node which executes and
validates transactions), we successfully minimize the trusted computing base.

Since there is no native Docker support in the normal world (untrusted part) of OP-TEE,
the peer is decoupled from the ARM TZ node. Communication between a chaincode_wrapper
at the peer (FOC specific wrapper around the actual chaincode) and a chaincode inside the
secure world is enabled via gRPC (framework for remote procedure calls) and through the
API provided by OP-TEE between the normal and secure world.

In contrast to Intel SGX, ARM TZ and OP-TEE do not support remote attestation. Fur-
thermore, hardware support for some security features of OP-TEE is missing. Therefore, FOC
does not have the same guarantees as FPC. To fully protect sensitive smart contracts (their
logic) and the processed data, future work would be necessary.

Performance measurements of the implemented FOC prototype highlight the overhead
(decrease in throughput by factor > 27 for ARM TZ with OP-TEE running on the Raspberry
Pi) by executing the smart contracts in the secure world of OP-TEE compared to the execution
in the normal world.

Supervisors

Prof Dr Pascal Felber, Complex Systems, Computer Science Department (ITUN), Univer-
sity of Neuchatel

Prof Dr Christian Cachin, Cryptology and Data Security Group, Institute of Computer
Science, University of Bern

Advisors

Dr Valerio Schiavoni, Complex Systems, Computer Science Department (ITUN), Univer-
sity of Neuchétel

Marcus Brandenburger, IBM Research Zurich

Acknowledgement

I am grateful to...

Prof Dr Pascal Felber, University of Neuchatel for initiating this master thesis and for his technical
support as supervisor.

Prof Dr Christian Cachin, University of Bern for his technical support as supervisor.

Dr Valerio Schiavoni, University of Neuchatel and Marcus Brandenburg, IBM Research Zurich for
their technical support as advisors.

PhD student Christian Goéttel, University of Neuchétel for his advice regarding OP-TEE and ARM
TZ.

Luca Liechti for proofreading this master thesis.

My family and my boyfriend Pirmin Herger for their mental support.

Thank you!

Contents

Introduction 4
Background 5
2.1 Blockchain 5
2.2 Smart Contract e e e e e e e e e e e 5
2.3 Hyperledger Fabric 6
2.4 Trusted Execution Environment (TEE) 7
2.5 Hyperledger Fabric Private Chaincode (FPC) 8
2.6 Related Work 10
Goals and Motivations 11
Design and Implementation 12
4.1 Architecture e e e e e e e e 12
42 APL . . e 13
43 TImplementationl e e e e e e 14
Rationale 17
5.0 Designo 17
5.2 Implementation e e e e e e 18
Evaluation 21
6.1 Security Evaluation L 21
6.2 ComparisonwithFPC. 24
6.3 Interoperability of FPCand FOCpeers 25
6.4 Performance and Power Measurements 26
Conclusion and Future Work 37
7.1 Future Work e e e e 38
Pointers to Code 44
Performance Measurements 45

Introduction

Internet of Things (IoT) and smart contracts are two current technologies with new opportunities: IoT
enables objects to connect and to exchange collected data, smart contracts can control the behaviour of
these objects [Tit18]. For example, by using IoT and smart contracts, we can track assets along the supply
chain in a verifiable and efficient way [CD16a].

Smart contracts are integrated in a blockchain network [XWS*17]. A blockchain stores blocks of
data in a decentralized way and connects them (“‘chain”) via hashes. Due to the blockchain characteristics,
smart contract applications guarantee the second and the third concept of the CIA (Confidentiality, Integrity,
Auvailability) information security triad [And11]. What we are concerned with is the C: confidentiality of
the smart contract (their logic) and the processed data.

The usage of a Trusted Execution Environment (TEE) [SAB15] is one approach to protect the smart
contract (its logic) and the processed data. A TEE isolates the execution of the smart contract from the
surrounding system.

One project that makes use of a TEE for smart contract execution is Hyperledger Fabric Private Chaincode
(FPC) [BCKS18, fpca]. The underlying TEE technology used in FPC is Intel SGX [CD16b]; smart
contract execution is therefore bound to nodes with Intel processors. Since IoT devices are mostly small,
battery-powered and equipped with low-power processors [Gar14, Dub19, CD16b], FPC cannot be applied
here. In order to guarantee confidentiality of smart contract execution in IoT networks, this thesis ex-
plores the execution of smart contracts with ARM TZ [Lim09] - a TEE solution for embedded systems [aD].

Contribution. We design and implement a prototype for Hyperledger Fabric [Hyp] chaincode execu-
tion with ARM TZ and OP-TEE [Lin] called Fabric OP-TEE Chaincode. The design is based on FPC.

Organization. In Chapter 2, we introduce the concepts and technologies used in this thesis. The goals are
given in Chapter 3. We present the design and implementation of FOC in Chapter 4, the decisions are
justified in Chapter 5. We evaluate security of FOC and performance and energy usage of the implemented
prototype in Chapter 6. In Chapter 7, we conclude this thesis and describe possible future work.

Background

In this Chapter, background knowledge about the principles underlying smart contract execution in TEEs
is given. We cannot completely describe all technologies and concepts but we will focus on the definitions
relevant for the thesis and used in the following Chapters of report.

We also briefly describe some related work.

2.1 Blockchain

A blockchain is a type of distributed ledger [XWST17]. It records data (e.g. transactions) in a decentralized
way. The data is appended in blocks and connected (’chained”) via hashes. Each transaction is signed by
the party it was invoked. Before appending transactions to a blockchain, nodes of the blockchain network
must validate and agree on a unique order of these transactions. The latter can be achieved via a consensus
mechanism. Due to its characteristics, a blockchain guarantees availability, transparency, immutability and
integrity of the stored data. Data privacy and scalability are rather limited in blockchains.

We distinguish between the following two types of blockchains: permissionless (also called public)
and permissioned [CV17]. In a public blockchain (e.g. Bitcoin [bit] and Ethereum [eth]), anyone can
participate in the network (read data from the blockchain, invoke transactions, validate transactions etc.),
whereas in a permissioned blockchain (e.g. Ripple [rip] and Hyperledger Fabric [ABB™18]), the access of
the network is restricted and entities are known.

2.2 Smart Contract

The concept of smart contracts was described by Nick Szabo already in the nineties [Sza94]:

”A smart contract is a computerized transaction protocol that executes the terms of a contract.”
With the emergence of blockchain technology, this idea could be put into practice: A smart contract is an
agreement translated into program code and stored in a blockchain network [RMC*18, Ose18] . It gets
automatically executed when the defined conditions are met. Due to their integration into a blockchain
network, smart contracts guarantee availability, transparency, immutability and integrity [XWS™T17].
Furthermore, they are efficient, reduce cost and save time because they do not involve a third party system.

5

CHAPTER 2. BACKGROUND 6

However, smart contracts can also be challenging, e.g. how to guarantee data privacy, how to avoid bugs
in the contract code or how to prevent attacks (see for example [ABC17] for attacks on Ethereum smart
contracts).

2.3 Hyperledger Fabric

Hyperledger Fabric [ABB™ 18, Hyp] is a permissioned blockchain supporting smart contracts. It belongs
to the Hyperledger [Fou] - an open source, Linux Foundation project which includes different frameworks
and tools related to blockchain technologies.

In Hyperledger Fabric, a smart contract is called chaincode. Currently, three general-purpose program-
ming languages (Go, Java and Node.js) are supported for writing chaincodes.

There exist three types of nodes in a Hyperledger Fabric network: clients, peers and orderers, see
Figure 2.1

Blockehain
Network
/ 2.1 peer invokes chaincode with proposal \
E] Application
1. connect to peer
2. invoke chaincode (proposal) 2.2 chaincode generates Peer
A query or update
3. proposal response proposal response
! 1
H 5. ledger update event Chaincode
_____ y 4.2 peer updates ledger
using transaction blocks
4. request that transaction is ordered 4.1 Transactions sent - Ledger
\ to peers in blocks y
. Orderer

Figure 2.1: Architecture of Hyperledger Fabric.
Source: Figure copied from [Hyp]

Before a chaincode function can get called (invoked), it must be installed (put on the file system) and
instantiated (started in a Docker container) at the peer. Now, a client (application) can send a request
(transaction proposal) to the peers for invoking a chaincode function (see 1. and 2. in Figure 2.1). In a
first phase, called execution or endorsement, the peer executes the called chaincode function (2.1, 2.2)
and sends a response (transaction response / (transaction) proposal response) back to the client (3.). The
transaction response is signed by the peer and contains the execution response message and the readset and
writeset. The readset represents all values of the keys a peer has queried from the ledger via GetState
during the execution. The writeset contains all key-value pair updates a peer has generated via PutState.
When the client has collected enough responses as defined by the so called endorsement policy it sends
them to the orderer (4.). The orderer puts the transaction into blocks and sends the block to the peers (4.1),
this phase is called ordering phase. In the third phase (validation phase), the peers check if the endorsement
policy is satisfied and if there is no read-write conflict between the different transactions. Finally, they put
the transaction on the ledger (4.2). The ledger has two components: a blockchain and a world state. The
world state is a pluggable database. It stores the current values of the keys contained in the blockchain and
therefore enables efficient retrieval of the latest states.

CHAPTER 2. BACKGROUND 7

2.4 Trusted Execution Environment (TEE)

A Trusted Execution Environment (TEE) is a concept for tamper-resistant and confidential execution of
applications [SAB15]. It can be defined as an isolated processing environment on a system. The isolation
from the rest of the system is enabled through hardware, firmware and software mechanisms.

When the TEE gets booted/loaded, a trusted, tamper-resistant hardware module integrity checks the
TEE code and stops the booting/loading in case the TEE has been modified. At runtime, the TEE ensures
integrity and confidentiality of code and data (runtime states). Communication between the TEE and the
rest of the system is enabled through a secure interface (memory isolation etc.).

A TEE may offer secure storage and remote attestation. Secure storage means that data produced and
used by a TEE can be persistently stored with confidentiality, integrity and freshness guarantee. Remote
attestation is used to authenticate a TEE towards a third party.

Intel SGX and ARM TZ are two examples for TEE [SAGT16].

2.4.1 Intel’s Software Guard Extensions (Intel SGX)

Intel’s Software Guard Extensions (SGX) [CD16b] adds necessary hardware and software components to
Intel CPUs (Skylake and onwards') for enabling TEE [SAG™T 16]. With Intel SGX, multiple TEEs - so
called enclaves - can exist per system.

There is a hash check during the initialization of an enclave to ensure integrity of the enclave
code [Sell6]. Special SGX enclave instructions like EENTER and EEXIT are used to enter and leave
an enclave. Code inside the enclave as well as code running outside the enclave has access to all system
resources with exception of the memory [NMB*16]. Each enclave has assigned a memory region - so
called Enclave Page Cache (EPC) pages - to store the enclave code and data. The CPU avoids that any
non-enclave code accesses the EPC. To further avoid data leaking, system calls and service of interrupts or
faults are not possible from inside an enclave since they would require a call to untrusted code [iDZ16].
Therefore, the enclave must first be exited before system calls can be executed and interrupts or faults can
be served.

2.4.2 ARM TrustZone (ARM TZ) and OP-TEE

ARM TrustZone (ARM TZ) [Lim09] provides the hardware components for enabling TEEs on ARM
processors [SAGT16, aD]. There are different TEEs which add firmware and software on top of ARM TZ;
one open source solution is OP-TEE [Lin], currently owned and maintained by Linaro. OP-TEE follows
the TEE architecture and API standardized by GlobalPlatform (GP) [gp-].

ARM TZ. ARM TZ enables a single TEE - called secure world - per system [NMB'16]. The
other part of the system is called normal world. The processor can be in one of two security states: secure
(for the secure world) and non-secure (for the normal world); switching is possible through so called
secure monitor calls. The system resources are strictly separated: The normal world cannot access the
resources (memory, peripherals etc.) reserved for the secure world. During the booting of the secure world,
a chain of trust is established and there is an integrity check of the secure world software images. This
process is called secure boot.

OP-TEE. OP-TEE contains the following components: OP-TEE Client, OP-TEE Linux driver
and OP-TEE OS, see Figure 2.2.

Ihttps://software.intel.com/en-us/forums/intel-software-guard-extensions—-intel-sgx/
topic/606636, last accessed on 17.08.2019

https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/606636
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/606636

CHAPTER 2. BACKGROUND 8

The OS of the normal world is also called Rich Execution Environment (REE). The OP-TEE Linux
driver provides the driver for the normal world. An application running inside the normal world is referred
to as host application. The TEE Client API and the TEE Internal API enable the communication between
a host application and an application of the secure world - called trusted application (TA). Both APIs are
defined by GP [Glo10, Glo14], the TEE Client API is implemented by the OP-TEE Client component, the
TEE Internal API is implemented by the OP-TEE OS.

Before communicating, the host application must establish a connection towards the secure world
with the TEE Client APIs TEEC_InitializeContext and open a session towards the TA by calling
the TEE Client APIs TEEC_ OpenSession with the unique identifier of the TA (UUID) as parameter.
Then, the host application can call functions of the TA with the TEE Client APIs TEEC_InvokeCommand.
TEEC.InvokeCommand provides the option to pass data between the host application and the TA via shared
memory reference or by value.

Once the host application has finished communication with the TA, it needs to close the session
(TEEC_CloseSession) and finalize the context (TEEC_FinalizeContext) to release resources.

normal world secure world
host trgsteq
application application
(TA)
L d T
@ GP TEE
Client OETTEE
APT Client
A e M e \
A ' GP TEE
H Internal
............................... — API T
s Y |
2o OP-TEE (S OP-TEE
20 Linux secure 0s
T driver monitor
N
Q

Figure 2.2: Architecture of OP-TEE. Trusted parts are colored in green.
Source: figure drawn by C.M. based on the figures in [Becl4, Linl6]

For this thesis, the availability of remote attestation is one of the most important difference between Intel
SGX and ARM TZ with OP-TEE: ARM TZ and OP-TEE do not provide any remote attestation whereas
Intel SGX does [Stal8, ogil9c, CD16b].

2.5 Hyperledger Fabric Private Chaincode (FPC)

Hyperledger Fabric Private Chaincode (FPC) [BCKS18, fpca] is a technology based on Hyperledger Fabric
which aims to isolate the chaincode execution from potentially untrusted peers by using the Intel SGX
technology. FPC adds two SGX enclaves to the architecture of Hyperledger Fabric:

* Chaincode enclave. Used to isolate the chaincode execution from the peer.

* Ledger enclave. Used to ensure state continuity, i.e. that the state retrieved by the chaincode enclave
is correct (integrity-protected and consistent).”

2FPC guarantees security up to resets, see [BCKS18, Def. 4.1, Sec. 6]. Rollback attacks in the sense that an attacker sets the
ledger state to any past state and executes one transaction on top of that stale state are still possible [BCKS18, Sec. 4.2]. There is a
concept called barriers, see [BCKS18, Sec. 4.4], to avoid such speculative transaction execution on top of any valid (stale) state.

CHAPTER 2. BACKGROUND 9

r N q
Secure chaincode execution
Chaincode enclave

Peer

| . || Chaincode |
Endorser Chaincode library
Committer validator registry

Ledger

|

|

|

|

|

|

|

: Enclave tx. Enclave
|

|

|

I Ledger enclave
|

Figure 2.3: Architecture of FPC. The dashed box contains the components added by FPC to the Hyperledger Fabric
peer. The SGX enclaves (i.e. chaincode enclave and ledger enclave) are colored in green.
Source: Figure copied from [fpca]

During execution phase, the chaincode enclave is used. This guarantees integrity and confidentiality at
runtime so the peer cannot see nor modify the computations. The ledger enclave stores the hashes of
the latest key-value pairs. Whenever the chaincode enclave queries the ledger state (for example in case
of a GetState), it also fetches the according hashes from the ledger enclave. By comparing these two
information, the chaincode enclave can ensure the correctness of the state.

During validation phase, in addition to the checks of Hyperledger Fabric (endorsement policy and
read-write conflict check), the chaincode enclave signatures are verified by a component called enclave
transaction validator. Furthermore, the ledger enclave cross-checks all decisions and stores a hash of the
key-value pairs.

Additionally, FPC has the following security features:

 Integrity check of the chaincode enclave code at its load time. To ensure that the chaincode has
not been manipulated.

» Remote attestation and signature of the transaction response’ by the chaincode enclave. So the
client can ensure that the transaction proposal gets executed by an authorized chaincode enclave and
the committing peer can verify that the transaction response actually originates from an authorized
unmodified chaincode enclave.

* Encryption of the operation (function and arguments [fpcb]). By the client with the chaincode
enclave’s public key to guarantee confidentiality.

* Optional encryption of the passed states, the execution result and the chaincode. To guarantee
full confidentiality of the chaincode (its logic) and the processed data.

 Trusted state transfer. To securely update the local ledger state of a peer who has been cut off the
blockchain for a while or joins the blockchain for the first time.

3In FPC, the response of the chaincode enclave after transaction execution contains the operation (function and arguments [fpcb]),
the readset and writeset and the execution result [BCKS18, fpcc]. In order to be consistent with the Hyperledger Fabric documenta-
tion [Hyp], we will use the term execution response message instead of execution result.

CHAPTER 2. BACKGROUND 10

2.6 Related Work

In this section, we point to some works which share technologies and concepts we have used.

Smart contract execution with a TEE. Apart from FPC, there are some other works about confi-
dential smart contract execution with a TEE: Confidential Consortium Framework (CCF) [Res],
Ekiden [CZK ™ 18], ShadowEth [YXC™ 18] and Private Data Objects (PDOs) [BMSV18], just to mention
a few recent once. In contrast to FOC, they all use Intel SGX as underlying TEE technology for a
(prototype) implementation. The authors of Ekiden state that their technology may use any TEE which is
similar to Intel SGX and supports attestation.

Confidentiality in context of blockchain and IoT. In FOC, we are concerned with confidentiality
of smart contracts (their logic) and data in context of IoT networks. There are some works which
are concerned with confidentiality of data produced and processed by IoT devices and stored on the
blockchain.

* Trust for data generated by IoT devices. AnyLedger [DP] is a platform for connecting physical
devices to the blockchain. The key feature is an ARM TZ based wallet for IoT devices. The key
generation, the private key storage and the process of signing (smart contract) transactions are all
placed inside the secure world of ARM TZ. Hence, the AnyLedger wallet guarantees that the IoT data
hash/address (linking to the Interplanetary File System IPFS) placed on the blockchain is integrity
protected and authenticated. Furthermore, the data stored on the IPES is encrypted. AnyLedger is
pluggable to any blockchain technology (for example Ethereum or Bitcoin). [SDFT 19] is another
work which equips IoT devices with a TEE to guarantee integrity and confidentiality of the IoT data.

* Confidential computation. BeeKeeper 2.0 [ZWAS18] is a blockchain network for IoT systems; it
consists of IoT devices, servers and validator nodes. It enables IoT devices to share data with each
other. Furthermore, the devices can use the servers for performing homomorphic computations
on encrypted data; the computation result is verified by the validator nodes and recorded on the
blockchain after successful verification. Since homomorphic encryption is used, the confidentiality
of the data sent to and processed by the servers is guaranteed. BeeKeeper 2.0 can be added on top
of any blockchain technology (Hyperledger Fabric, Ethereum etc.); in the paper, the authors use
Hyperledger Fabric for deployment.

ARM TZ and blockchain technology. There are some works which use ARM TZ not for smart contracts
directly but in context of the blockchain technology (which is the underlying technology of smart contracts).

SBLWT (Secure Blockchain Lightweight Wallet) [DDW ' 18] uses ARM TZ to guarantee confiden-
tiality and integrity for the information generated and stored in the Bitcoin wallet (wallet’s private key,
wallet addresses, block headers used for Simplified Payment Verification). The synchronization of the
block headers and the verification process of the transactions is executed in the secure world to avoid
any manipulation by an attacker. The SBLWT is safer than the often used software-wallets but still more
portable than hardware-wallets. An implementation of SBLWT using ARM TZ with OP-TEE has been
deployed on Raspberry Pi 3 Model B. In future work, the authors of SBLWT want to extend their approach
to mobile devices with hardware-based isolation mechanisms other than ARM TZ.

The TrustZone-backed Bitcoin Wallet [GMS17] also uses the ARM TZ technology for protecting
sensitive Bitcoin wallet information.

Other use cases of TEEs. There are other use cases of TEEs in context of blockchain technol-
ogy not mentioned yet. We briefly give two examples. First, Teechain [LNE* 18] and Airtnt [ASKP18]
use Intel SGX for the execution of off-chain transactions. Second, Hybster [BDK17] makes usage of Intel
SGX technology for the implementation of their hybrid state-machine replication protocol.

Goals and Motivations

Hyperledger Fabric chaincode execution is integrated in a permissioned blockchain [Hyp]. The blockchain
network guarantees the second and the third component of the CIA (Confidentiality, Integrity, Availability)
triad [XWS™17, And11]. Furthermore, Hyperledger Fabric offers some privacy features (channels, private
data etc.). Privacy can be seen as part of all three CIA components [Bra02]: controlling who can access
and modify reliable data in what ways. Nevertheless, since the chaincodes and the data are distributed
on the nodes of the network, there is no confidentiality of the chaincode (its logic) and of the processed data.

Executing the chaincode inside a TEE [SAB15] guarantees confidentiality and integrity at run-
time. To fully protect sensitive chaincode and data, we must additionally use encryption techniques (for
the chaincode, the operation, the passed states, the execution response message) at non runtime [BCKS18].
Furthermore, using a TEE for chaincode execution requires the guarantee of state continuity: We must
prevent an attacker from gaining information by passing any ledger state to the chaincode inside the TEE.

FPC demonstrates how Intel SGX can be used in Hyperledger Fabric to guarantee confidential-
ity of the chaincode and the processed data [BCKS18, fpca]. Since chaincodes bring new opportunities in
the context of IoT [Tit18, CD16a], this thesis wants to explore the usage of ARM TZ with OP-TEE for
Hyperledger Fabric chaincode execution.

The main goal is to design and implement a prototype for Hyperledger Fabric chaincode execu-
tion with OP-TEE. To achieve this goal, we want to transform FPC from Intel SGX to ARM TZ with
OP-TEE. The task of this transformation will confront us with multiple challenges: With ARM TZ and
OP-TEE we lose support for remote attestation [Stal8, ogil9¢c, CD16b] and hence, the verification of
chaincode execution by an authorized TEE. Furthermore, not all security features of OP-TEE are complete,
they need hardware support and developer effort to be fully implemented. Two examples: a. Secure boot
which would be used to verify the integrity of OP-TEE is not enabled for the Raspberry Pi [Lin, Sec. 3.2.9].
b. The secure storage key is derived from a stubbed Hardware Unique Key [Lin, Sec. 2.7.2, 2.9]. Hence,
encrypted chaincode storage and the storage of any key for the encryption of the operation, the passed
states and the execution result is not secure. Facing these challenges, we want to implement a chaincode
example running inside the secure world - some confidential guarantees may be left as future work.

11

Design and Implementation

In this Chapter, we first define an architecture and API for Hyperledger Fabric chaincode execution with
OP-TEE. The design is called Fabric OP-TEE Chaincode (FOC). Then, we present the implementation of
FOC.

4.1 Architecture

The design is based on the transformation of FPC from Intel SGX to ARM TZ with OP-TEE. The intuitive
approach would be to run the peer in the normal world of OP-TEE and have a chaincode TA and a ledger
TA in the secure world (analogous to the chaincode enclave and the ledger enclave in FPC). Due to
missing Docker support in the normal word of OP-TEE, we place the peer on a node decoupled from the
ARM TZ / OP-TEE node (see Section 5.1 for a detailed justification). Furthermore, we have faced some
limitations regarding the security features and guarantees of ARM TZ and OP-TEE. Therefore, not all
security guarantees of FPC could be considered in FOC (see Section 6.2 for the differences in security
between FPC and FOC and Section 6.1 for a detailed evaluation of the security in FOC).

Figure 4.1 shows the components of FOC. There are the same type of nodes as Hyperledger Fabric has:
a client, an orderer and a peer. Additionally, there is a node (see right side of the Figure) which supports
ARM TZ with OP-TEE. The chaincode gets executed inside the secure world of OP-TEE.

In FOC, a chaincode needs to be written in C and gets deployed as an application for the secure
world. It is called either chaincode or chaincode TA in the remaining part of the report. For each
chaincode, we have a so called chaincode_wrapper running at the peer. This chaincode_wrapper
is installed and instantiated as Hyperledger Fabric chaincode implemented in the Go programming
language and is used as an interface towards the peer and the ledger. It forwards incoming chaincode
invocations to the chaincode in the secure world, handles the communication towards the ledger and
sends transaction responses back to the peer. After having instantiated the chaincode_wrapper, a
transaction proposal with the UUID of the chaincode must be passed to the chaincode_wrapper so that
the chaincode_wrapper can communicate with the correct chaincode inside the secure world. A C++
application in the normal world called chaincode_proxy acts as intermediary and forwards the calls
between the the chaincode wrapper and the chaincode.

12

CHAPTER 4. DESIGN AND IMPLEMENTATION 13

normal world secure world
ledger -
orderer
chaincode_proxy
A
chaincode_wrapper chaincode
dhn, dhy, o 9RPC LA) = =
o O d
GP
: TEE
1 <
client 1< peer Client
API
A J
0S supporting Fabric OP—TEE driver OP-TEE 0S
Linux
ARM TZ
hardware supporting Fabric (| TTTTTTTTTTTTTTTTTTRTOOT
ARM

Figure 4.1: Architecture of FOC. Trusted parts are colored in green.
Source: Figure drawn by C.M., icons copied from [Hyp, ico]

For the communication between the chaincode_wrapper and the chaincode_proxy, the gRPC
framework is used [gRPb]. The chaincode proxy and the chaincode communicate via the GP TEE
Client API [Glo10] supported by OP-TEE [Lin].

4.2 API

The FOC specific messages used for the communication between the chaincode_wrapper and the
chaincode are displayed in Figure 4.2. Each chaincode transaction invoked by a client is forwarded
by the chaincode_wrapper with an InvocationRequest and terminated by the chaincode with an
InvocationResponse. In between these two messages, the Get States and PutStates required by the
transaction are handled.

[client] [chaincodeiwrapper] [chaincodeiproxy] [chaincode]

: invoke :
e m—

Invocationf{equest

GetStateF{equest

.

) A

GetStateRésponse

PutStateRequest

__;‘"

PutStateRésponse

InvocationResponse

‘‘_

return |

Figure 4.2: API of FOC.
Source: figure drawn by C.M.

CHAPTER 4. DESIGN AND IMPLEMENTATION 14

4.3 Implementation

We have implemented a prototype of FOC with the architecture and API described in Sections 4.1 and 4.2.
To demonstrate the Hyperledger Fabric chaincode execution with OP-TEE, we have programmed a
chaincode which tracks the number of consumed coffees for different people.

The prototype can be found in the master branch of the private github repository
fabric-optee-chaincode.! The structure of the repository and the implemented prototype are de-
scribed in the following Sections.

4.3.1 Repository Structure

The code of the FOC prototype can be found in the following subdirectories of the repository:

* chaincode wrapper. Contains the code needed to deploy the chaincode wrappers. The file
chaincode.go contains the chaincode for the chaincode wrappers.

* chaincode proxy. Contains the code needed to deploy the chaincodeproxy. The
chaincode_proxy.cpp contains the implementation of the chaincode proxy in C++.

» chaincode Contains the code to deploy chaincode TAs running in the secure world.

To demonstrate chaincode execution with OP-TEE, we have implemented an example
chaincode TA (coffee_tracking_chaincode.c) which tracks the consumed coffees of dif-
ferent people. It contains three types of transaction: the create transaction registers a new person
on the ledger with an initial number of consumed coffees. Once a person is registered, the number
of consumed coffees can be queried via the query transaction and updated via the add transaction.
The example is called coffee tracking chaincode.

The generic methods for writing and reading data from and to the shared memory by the
chaincode TA are implemented in a separate file called chaincode_library.c which is in-
cluded via an header file in the cof fee_tracking_chaincode.c. These methods can therefore be
reused when new functions are added to the coffee tracking chaincode or when a completely new
chaincode TA gets implemented.

4.3.2 Used Frameworks and Message Flow

In the following, we will give a detailed description of the communication between the
chaincode_wrapper and the chaincode.

Frameworks and data structures used for communication. As stated in Section 4.1, gRPC is
used for the communication between the chaincode wrapper and the chaincode_proxy. For
structuring and serializing the data, we use Protocol Buffer [Dev] with the proto3 syntax. The structure of
the Protocol Buffer data passed between the chaincode_wrapper in the chaincode _proxy is defined
in the file invocation.proto.? To enable message flow in both direction, we use bidirectional gRPC
streaming with the oneOf Protocol Buffer feature.

The chaincode proxy and the chaincode communicate via the GP TEE Client API supported
by OP-TEE, see Section 4.1. To pass data between the chaincode_proxy and chaincode, we use
three parameters.® The first parameter is a shared memory reference used to pass the function name to

"https://github.com/piachristel/fabric-optee-chaincode, last accessed on 14.08.2019

2https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_wrapper/
proto/invocation.proto, last accessed on 14.08.2019

3https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/
host/chaincode_proxy.cpp#L234-1276, last accessed on 14.08.2019

https://github.com/piachristel/fabric-optee-chaincode
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_wrapper/proto/invocation.proto
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_wrapper/proto/invocation.proto
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/host/chaincode_proxy.cpp#L234-L276
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/host/chaincode_proxy.cpp#L234-L276

CHAPTER 4. DESIGN AND IMPLEMENTATION 15

[client } [chaincodeiwrapperJ [chaincodeiprony

invoke

create gRPC stream

InvocationRequest

TEEC_OpenSession
chaincode

TEEC_InvokeCommand

return stores function
"""""""""""""""""" ~ |name, function
GetStateRequest i |state ana
i |arguments in
chaincode_ctx

GetStateResponse

v

TEEC _InvokeCommand

return

€rmmme e R -
PutStateRequest :

PutStateResponse

TEEC_InvokeCommand

return
Lrmm e -

InvocationResponse
~ TEEC_CloseSession
return
TG e T

Figure 4.3: API of the implemented FOC prototype.
Source: figure drawn by C.M.

the chaincode, the second parameter is a value used to pass the type of message (execution response,
GetState or PutState) from the chaincode to the chaincode_proxy and the third parameter
is a shared memory reference used to transfer the remaining data (arguments, key and value for
GetState/PutState, acknowledgement of PutState, execution response, see?) between the two
components.

Message flow. The API is shown in Figure 4.3. Whenever a transaction proposal arrives at the
chaincode_wrapper, the chaincode_wrapper (gRPC client) sets up a synchronous bidirectional stream
towards the chaincode_proxy (gRPC server). The IP address of the chaincode_proxy is hardcoded in
the chaincode_wrapper.’ The chaincode_proxy is a gRPC server listening to all IP addresses at port
50051. Once the stream is setup, the chaincode wrapper sends an InvocationRequest message with
the chaincode UUID, the function name and the arguments to the chaincode_proxy.

When the chaincode_proxy has received the message, it establishes a context towards the
secure world (TEEC_InitializeContext) and opens a session towards the chaincode by using
TEEC_OpenSession with the chaincode UUID as second parameter. This second parameter is used
to identify the chaincode TA. Then, the chaincode_proxy puts the function name and the arguments
into the shared memory and calls the chaincode by using the TEEC_InvokeCommand of the TEE Client
API with TA_CHAINCODE_CMD_INIT_INVOKE (defined as 0) as second parameter. Inside the chaincode,
the TA_CHAINCODE_CMD_INIT_INVOKE signals that it is an initial call of the function. Therefore the
chaincode resets the chaincode_ctx - a structure used to store the context of a session - and writes the
function name, the arguments and the function state (initially 0) into the chaincode_ctx. The functions
inside the chaincode are divided in subparts, so that the chaincode can continue with the correct part
after a ledger access.

The chaincode then executes the transaction by calling the function just added to the chaincode_ctx.
Whenever the function needs to do a GetState or a PutState, the chaincode has to return. Before

“https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/
host/chaincode_tee_ree_communication.h#L24-#L40, last accessed on 14.08.2019

SIn future work and for a real world application, the IP address should not be hardcoded since this approach is inflexible. The IP
address could for example be passed as parameter in the initial transaction proposal which sets the UUID of the chaincode TA,
see Section 4.1

https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/host/chaincode_tee_ree_communication.h#L24-#L40
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/host/chaincode_tee_ree_communication.h#L24-#L40

CHAPTER 4. DESIGN AND IMPLEMENTATION 16

returning, the chaincode does two things: it stores the key (and value in case of a PutState) in the
shared memory, and the type of request (GET_STATE_REQUEST or PUT_STATE_REQUEST) in the value
parameter and increases the function state of the chaincode_ctx by 1. The chaincode_proxy then
forwards the request to the chaincode_wrapper via a Get StateRequest/PutStateRequest gRPC
message and waits for the answer. Once the chaincode_proxy receives the answer, it will place the value
in case of a Get State or the acknowledgment (in case of a Put State) into the shared memory and call
the chaincode by using the TEEC_InvokeCommand with the value TA_CHAINCODE _CMD_RESUME_INVOKE
(defined a 1) as second parameter. Therefore, the chaincode will not reset its chaincode_ctx but call
the correct subpart of the function state stored in the chaincode_ctx.

Once the chaincode has finished the execution of the function, it stores the execution response
in the shared memory and passes the request type INVOCATION_RESPONSE by parameter. The
chaincode_proxy forwards the execution response via the InvocationResponse gRPC message to
the chaincode_wrapper and then closes the session (TEEC_CloseSession) and finalizes the context
(TEEC_InitializeContext).

Coffee tracking chaincode. The implemented create transaction in the coffee tracking chain-
code uses one GetState and one PutState, the same holds for the add transaction. So both
transactions use the message flow displayed in Figure 4.3. The query transaction only needs one
GetState and no Put State; therefore this transaction uses the message flow of Figure 4.3 but without
the PutStateRequest, the PutStateResponse and the third TEEC_InvokeCommand and return.
With the three implemented transactions (create, add, query), we already have a fully-working
chaincode for demonstration and performance measurements. Therefore, no more transactions are
implemented.

4.3.3 Development Environment

During the master thesis, we have used the machines provided by the Complex Systems and Big Data
Competence Centre of the University of Neuchatel.®

Furthermore, QEMU [QEM] has been used. QEMU is a machine emulator and virtualizer. With
its full system emulation mode, QEMU can imitate an entire system with processors and peripherals.
Instead of using real ARM TZ, one can use OP-TEE together with the QEMU implementation of ARM
TZ [BD14, Bell5]. In order to develop FOC, we have used the gemu_v8.xml’ manifest, which runs
OP-TEE using QEMU ARMVS-A [Lin].

4.3.4 Deploy and Run

To deploy and run FOC, one can consult the Deploy and the Run Sections of the README .md.® There
are guidelines for deploying the chaincode_proxy and the chaincode either on ARM TZ (ARMv8-A)
emulated with QEMU or on the Raspberry Pi 3, Model B.

The used versions for the most important dependencies of the FOC prototype are:

* Hyperledger Fabric v1.4.1
* gRPCv.1.20.0
* OP-TEE v3.5.0

Shttp://ccfs.unine.ch

"https://github.com/OP-TEE/manifest/blob/master/gemu_v8.xml, last accessed on 14.08.2019.

8https://github.com/piachristel/fabric-optee-chaincode/blob/master/README.md, last accessed
on 15.08.2019

http://ccfs.unine.ch
https://github.com/OP-TEE/manifest/blob/master/qemu_v8.xml
https://github.com/piachristel/fabric-optee-chaincode/blob/master/README.md

Rationale

In this Chapter, we justify our decisions for the design of FOC and for the implemented prototype described
in Chapter 4.

5.1 Design

This Section justifies the design of FOC described in Section 4.1 and 4.2. Especially the architecture has
been shaped to a large degree by some limitations of OP-TEE. The decisions are listed in chronological
order, with the oldest decision mentioned first.

* Decoupled peer. The normal world of ARM TZ with OP-TEE is no common Linux distribu-
tion [Lin]. It is rather limited in functionality, for example programs need to be cross-compiled. In a
first approach, we wanted to run the peer in the normal world. Any chaincode invocation would then
be forwarded to the secure world by a wrapper chaincode of the peer. Since chaincodes are running
in Docker containers [Hyp], Docker needs to be installed in the normal world. Adding the available
buildroot Docker packages! has not been sufficient. There have been missing dependencies and
configurations. We therefore have taken into consideration the following two options to pursue the
installation of Hyperledger Fabric in the normal world:

— Adding the patches of OP-TEE to a common Linux distribution (for example Ubuntu) which
supports Hyperledger Fabric.

— Using the approach of https://github.com/chainforce/native-fabric (last
accessed on 14.08.2019) which installs the user chaincode as system chaincodes. Since system
chaincodes are part of the peer process and do not run in an own Docker container [Hyp,
Sec. 4.8.9, 7.9.4, 7.10] we could avoid the dependency on Docker.

The first approach is not trivial. The second approach is a misuse of system chaincodes: If we run
user chaincode as system chaincode, we would have to register and deploy these chaincodes already
when the peer starts up and not later when the peer is already running. This makes Hyperledger

https://git.busybox.net/buildroot/tree/package/, last accessed on 14.08.2019

17

https://github.com/chainforce/native-fabric
https://git.busybox.net/buildroot/tree/package/

CHAPTER 5. RATIONALE 18

Fabric inflexible.

Therefore we have dropped both of the options and decided to go for a decoupled approach where
the peer is running on a node which is separated from ARM TZ and which supports Hyperledger
Fabric. This approach allows us to create a functioning prototype of FOC during the time available
for the master thesis.

* chaincode_proxy in the normal world. With the decoupled approach described above, the most
intuitive design would be a direct communication from a wrapper chaincode at the peer to the
chaincode in the secure world. But such a design would face the following limitations:

— The provided Socket API for network calls towards OP-TEE only supports socket clients,
but no socket servers [Lin]. This means that the chaincode (client) inside the secure world
needs to establish a connection towards a server (a wrapper chaincode or another component)
at the peer before any chaincode invocation can take place. This connection would then
need to be maintained all the time (even when no transaction takes place). This approach
is disadvantageous: In case of a failure, it may not be easy to reestablish the connection.
Furthermore, the memory size of OP-TEE and therefore the number of (chaincode) TAs which
can be loaded in parallel is restricted [0ogil9d, Lin, Sec. 5.2.4].

— There is no official support for any message manager (for communication handling and
serialization) in OP-TEE [ogil19e]. Since not even all standard C libraries are supported by
OP-TEE [ogil6, ogil7], it may not be feasible to add a message manager in the time available
for this master thesis.

Due to these limitations, we have decided to have a proxy in the normal world (called
chaincode_proxy). This proxy acts as a (2RPC) server for the chaincode_wrapper (gRPC
client) at the peer and only loads a chaincode into the secure world (by opening a session) when a
transaction takes place.

* gRPC for communication. We need a message manager for communication handling and data

serialization. We use gRPC to be consistent with Hyperledger Fabric where the clients, the peers
and the orderers communicate via gRPC [ABBT18].
In OP-TEE, the host examples are written in C code.> But gRPC has no official C language
support [gRPb], we therefore went for the official C++ support of the gRPC framework. We
managed to compile gRPC (C++) as static library, to write and run the chaincode_proxy in C++
and to link the gRPC library to the chaincode_proxy.

* chaincode in C. OP-TEE only supports C for writing TAs [Lin]. Therefore, the chaincode
running inside the secure world needs to be implemented in C.

¢ Minimizing the TCB. The trusted computing base (TCB) is the part of the system relevant for
security [Amo11]. The smaller and the less complex a TCB is, the easier we can protect it. In order
to minimize the TCB, we only run the chaincode inside the secure world. A second reason for
minimizing the code running inside the secure world is the limited size of memory available for
OP-TEE [ogil9d, Lin, Sec. 5.2.4].

5.2 Implementation

Below, we justify the most important decisions regarding the implementation of the FOC prototype
described in Section 4.3.

’https://github.com/linaro-swg/optee_examples/, last accessed on 14.08.2019

https://github.com/linaro-swg/optee_examples/

CHAPTER 5. RATIONALE 19

e Synchronous communication. We use synchronous gRPC calls [gRPb] from the
chaincode_wrapper to the chaincode_proxy for reasons of simplicity. Synchronous means
that the gRPC client (chaincode_wrapper) is blocked while waiting for the gRPC message from
the server [Pail6]. The gRPC server (chaincode_proxy) can handle multiple requests simultane-
ously by using a gRPC-managed thread-pool.

* Frameworks used for communication. For structuring and serializing the data passed between the
chaincode_wrapper and chaincode_proxy we use Protocol Buffer because gRPC uses Protocol
Buffer by default [gRPb].

* Data size. Since in OP-TEE, the size of the shared memory and the secure memory (needed to
store the loaded TA) is restricted [0gil19d, Lin, Sec. 5.2.4], the length of the data passed between the
chaincode_proxy and the chaincode is limited, see chaincode_tee_ree_communication.h.?
The restrictions are chosen so that the data for the coffee tracking example fits into the shared
memory. Both the chaincode_proxy and the chaincode ensure that the size of data does not
exceed the defined limits before writing to the shared memory. A transaction failure is returned in
case the limits are exceeded.

 Data types. For consistency reasons and in order to do less conversions, we use the same data type
for passing the key (of GetState/PutState) between the different components of FOC as defined
by the Hyperledger Fabric chaincode API for ledger access (see shim package of go*): Between the
chaincode_wrapper and the chaincode_proxy, we use the string .proto type [Dev] and in
the shared memory of the chaincode proxy and the chaincode, we use a char array.

For the value (of GetState/PutState) as well as for the execution response the type defined by
the shim package would be []byte. We do not go with this type but use the string .proto
type and a char array for the following reasons: a. There is no need to pass the size of the value
and the size of the execution response in an additional field because the string .proto type is
dynamically sized and the char array in C/C++ is terminated by the null character. b. For the
conversion of the value to a numeric type inside the chaincode, we can use the strotul function
supported by OP-TEE.?

Also for reason a., we use the string .proto type and char arrays for passing the function
name and the arguments between the different components.

In case an entity does not exist on the ledger, the Get State method of the shim package will return
nil. Since we cannot pass nil for the field value of the Get StateResponse message (which is of
type string .proto), we convert nil to an empty string. Empty strings are the default values for
the string .proto type. This means that the chaincode will follow from an empty string in
field value of a GetStateResponse message that the entity with the given key in the foregoing
GetStateRequest does not exist. Therefore storing empty strings as values on the ledger will
mistakenly be interpreted as “entity does not exist” and is not allowed by design.

* Number of coffees. The type for the number of coffees received by an add transaction and by a
GetStateResponse is converted to a unsigned long by strotul inside the secure world. The
maximum value is 18446744073709551615. We do not handle any overflow that might happen in
case the value of consumed coffees exceeds 18446744073709551615 (254 — 1) because this is not
realistic.

3https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/
host/chaincode_tee_ree_communication.h, last accessed on 14.08.2019

“https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim, last accessed on
23.07.2019

Shttps://github.com/OP-TEE/optee_os/blob/master/1lib/libutils/isoc/include/stdlib.h, last
accessed on 23.07.2019

https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/host/chaincode_tee_ree_communication.h
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode_proxy/host/chaincode_tee_ree_communication.h
https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim
https://github.com/OP-TEE/optee_os/blob/master/lib/libutils/isoc/include/stdlib.h

CHAPTER 5. RATIONALE 20

* Context and session handling. For each request a separate context and session with the accord-
ing chaincode gets initialized and opened by the chaincode_proxy. We do not use the same
session for multiple requests since the gRPC calls from the chaincode wrapper (client) to the
chaincode_proxy (server) are synchronous, which means that the chaincode_wrapper gets
blocked till the communication has been finished [gRPb, Pail6]. Using the same session for multiple
clients may increase the blocking time.

e Error handling. The chaincode wrapper catches different errors which all close the connec-
tion towards the chaincode_proxy and return a response of status ERROR® to the peer. The
following errors are caught by the chaincode_wrapper: a. failure to open a stream towards the
chaincode_proxy, b. timeout if the gRPC call takes longer than 10 minutes, this value can be
increased for more complex chaincodes which need longer execution time, c. failure to send
or receive messages to/from the chaincode_proxy and d. arrival of a gRPC error status sent by
the chaincode_proxy. Due to security reasons the type of error in case d. is not passed to the
chaincode_wrapper.

Shttps://github.com/hyperledger/fabric/blob/release-1.4/core/chaincode/shim/
response.go#L41-144, last accessed on 23.07.2019

https://github.com/hyperledger/fabric/blob/release-1.4/core/chaincode/shim/response.go#L41-L44
https://github.com/hyperledger/fabric/blob/release-1.4/core/chaincode/shim/response.go#L41-L44

Evaluation

In this Chapter, different aspects of FOC (design and implementation) are evaluated. We describe the
security guarantees and limitations of FOC in Section 6.1 and sketch how the missing features could be
added in order to achieve the initial goal of smart contract (its logic) and data confidentiality in future
work. A comparison of FPC and FOC is given in Section 6.2. In Section 6.3, we describe how FPC and
FOC peers could interoperate in a common network. Section 6.4 summarizes the performance and power
measurements done with the implemented FOC prototype.

6.1 Security Evaluation

The thesis is about untrusted peers. We assume that the other components are trusted. This Section therefore
analyses the security guarantees and lacks of FOC when it comes to untrusted peers. Sections 6.1.1 and
6.1.3 hold for both - the FOC design and the implemented prototype. Section 6.1.2 about TCB size refers
to the implementation only.

6.1.1 Security Guarantees and Limitations

Since in ARM TZ, the hardware and software resources are partitioned between the secure and the
normal world [Lim09], the chaincode TA execution is isolated from the (untrusted) peer and we have
the following security guarantees:

* Confidentiality of chaincode execution. The (untrusted) peer cannot see what happens at runtime,
especially sensitive chaincode logic and processed data is protected.

* Integrity of chaincode execution. The chaincode cannot be accessed and modified by the (un-
trusted) peer and therefore correct execution and correct output is ensured. '

Due to the lack of secure boot, secure integrity check, remote attestation and transaction response signature
in the current implementation of FOC, there is no mechanism for a third party (e.g. the client / committing

I'The integrity check of the chaincode TA at load time is not secure since the private key is part of the OP-TEE source code [Lin,
Sec. 2.7.8], see Section 6.1.3 for more information.

21

CHAPTER 6. EVALUATION 22

peer) to verify the confidentiality and integrity of the chaincode execution. For example, the client cannot
be sure that the transaction actually gets executed by the authorized chaincode TA and the verifying peer
cannot check if the transaction response is actually generated by the supposed chaincode TA inside the
secure world since signatures are missing. In Section 6.1.3.1, we describe what would be necessary to
overcome this lack.

6.1.2 TCB Size

The trusted computing base (TCB) of FOC consists of the chaincode executed inside the TEE (secure
world). The other FOC specific components (chaincode_wrapper and chaincode_proxy) as well as
the components inherited from Hyperledger Fabric (client, orderer, peer etc.) are untrusted.

To count the lines of code of the implemented FOC prototype and of the Hyperledger Fabric peer, we
use the CLOC tool.”

The code of the FOC prototype contains 516 lines of untrusted code® and 356 lines of trusted code in
total, see Table 6.1 for more detailed information.

Go C C++ Protocol total
(with headers) (with headers) Buffer
chaincode wrapper 142 0 0 40 182
chaincode_proxy 0 0 294 40 334
chaincode’® 0 356 0 0 356

Table 6.1: Number of lines of code for the FOC components,
https://github.com/piachristel/fabric-optee-chaincode/,master branch,
commit 21531102d8c1e3438c9f75a8691ef85d6b0271e0, last accessed on 14.08.2019.

The results must be considered carefully since not all necessary security features to fully guarantee
confidentiality of the chaincode (its logic) and the processed data have been implemented, see Section 6.1.3.
The Hyperledger Fabric peer contains between 20’000 and 100’000 lines of code (v1.4.1). By only
executing the chaincode itself inside the TEE and not the entire peer, we can drastically minimize the TCB.

6.1.3 Implementation of Missing Security Features

This Section describes how one could implement the missing security features so that FOC has similar
security guarantees as FPC (see Section 2.5). The implementation of these features is not part of the thesis
since it would require device-specific information and properties which are often kept secret by the vendors
and which are mostly only stubbed by OP-TEE [Lin, Sec. 2.7, 2.9.7].

6.1.3.1 Confidentiality and Integrity of Chaincode Execution

As stated in Section 6.1.1, confidentiality and integrity of the chaincode execution can not be fully
guaranteed and verified. In the following, we describe what would be necessary to overcome this lack.

¢ Secure boot. Secure boot verifies the integrity of OP-TEE [Lim09, Sec. 5.2.2], [Lin, Sec. 2.7.4]. For
the deployment of FOC, we have used QEMU for Armv8-A and the Raspberry Pi, see Section 4.3.4.
In both cases, there is no secure boot enabled [Bec16, Lin, Sec. 3.2.9]. For a productive usage, a
device which supports secure boot must be used. One should consult the manufacturer of the device
to check if and how secure boot can be enabled [Lin, Sec. 2.8.1].

2https://github.com/AlDanial/cloc/, v1.74, last accessed on 14.08.2019
3Without the untrusted dummy host part https : //github.com/piachristel/fabric-optee-chaincode/blob/
master/chaincode/dummy_-main.cpp, last accessed on 14.08.2019, which contains 3 lines of C++ code.

https://github.com/piachristel/fabric-optee-chaincode/, master
https://github.com/AlDanial/cloc/
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode/dummy_main.cpp
https://github.com/piachristel/fabric-optee-chaincode/blob/master/chaincode/dummy_main.cpp

CHAPTER 6. EVALUATION 23

* Integrity of the chaincode. In FOC, the chaincode TA is of type REE filesystem TA and

therefore will be loaded from the normal world and integrity checked in the secure world [Lin,
Sec. 2.10.3, 5.14.8]. This integrity check is possible since all TAs are signed with a private key [Lin,
Sec. 2.7.8]. The private key is part of the OP-TEE source code. If FOC will be used as real product,
the private key must not be stored within the source code but only be accessible by the trusted
chaincode developer (for example by storing the private key on a Hardware Security Module).
An alternative to the integrity check via the development private/public key pair would be to use
so called Early TAs [ogil9b, Lin, Sec. 5.14.8]. In that case, the chaincode TA binary is part of
the OP-TEE firmware binary and already gets verified at the boot process together with the whole
OP-TEE firmware image.

* Remote attestation and signature. Since OP-TEE does not support remote attestation [ogil9c],
the described communication mechanism currently implemented in FOC (see Section 4.3.2) does
not ensure that the chaincode TA is actually executed inside the secure world and that the code
has not been tampered with. In future work, remote attestation could be implemented as follows: the
chaincode TA generates a hash of itself and signs it with the HUK* which uniquely authenticates
the device itself [ogil8]. Then, we would also need a trusted third-party to verify the hash and to
authenticate the HUK.

Similarly as in FPC [BCKS18, Sec. 5.3], the chaincode TA could generate a private/public key
pair and pass the public key together with the hash to the party requesting remote attestation. Like
in FPC [BCKS18, Sec. 3.2, 5.3, 5.4, 5.6], the public key can be used by the the client to encrypt
the operation and therefore to ensure that the transaction proposal gets executed by an authorized
chaincode TA. Furthermore it can be used by the committing peers to verify that the transaction
response originates from an authorized unmodified chaincode TA. In order to avoid that each
client and each committing peer has to redo attestation before invoking or committing, the attestation
result and the public key may be stored on the ledger. FPC has a chaincode called enclave registry
for this purpose [BCKS18, Sec. 5.1, 5.3, 5.4]. FOC may use a similar concept in the future.
Furthermore, the SSL/TLS support of gRPC should be enabled in the future, so that the
chaincode_wrapper can authenticate the chaincode _proxy [gRPa].

* Recovery at reboot. In the current implementation of FOC, the chaincode TA is stateless (e.g. no
private key used), therefore no recovery support is necessary when rebooting OP-TEE. Once there
is a key added to the chaincode TA for signature, we need to securely store this key so that it is
still available after rebooting OP-TEE. One could use the secure storage of OP-TEE [Lin, Sec. 2.9]
for that. In the current implementation of OP-TEE, the key to encrypt/decrypt the secure storage is
derived from a stubbed HUK and therefore not secure* [Lin, Sec. 2.7.2, 2.9].

6.1.3.2 Protection of the Ledger State

Furthermore, to guarantee state continuity and to avoid information leakage by rollback attacks and
speculative execution, we would need to add the following guarantees:

* Guarantee state continuity. In the current design, it is possible to pass any world state to the
chaincode TA. In future work, a mechanism must be added so that the chaincode TA can check
the correctness of the data retrieved from the ledger. In FPC, this issue is solved by the ledger
enclave [BCKS18, Sec. 5.1, 5.5]. In the current implementation of FOC, the peer is running on
hardware supporting plain Hyperledger Fabric (e.g. Intel node), therefore one could reuse the SGX
ledger enclave of FPC to guarantee state continuity. Of course this would need some adaptations as

4In OP-TEE, the Hardware Unique Key (HUK) is stored in the software as zeros [Lin, Sec. 2.7.2]. For a productive usage of
FOC, this HUK must be replaced and must not be stored in software but in hardware.

CHAPTER 6. EVALUATION 24

for example the local attestation between the ledger enclave and the chaincode enclave [BCKS18,
Sec. 5.3] must be replaced by an authentication mechanism between the ledger enclave and the
chaincode TA. Another approach to guarantee state continuity would be the implementation of
a TA - we call it ledger TA - with similar functionality as the ledger enclave. The chaincode TA
could communicate directly with the ledger TA by using the Internal Client API implemented in
OP-TEE [Glo14, Sec. 4.9] and could store its data encrypted in the secure storage of OP-TEE [Lin,
Sec. 2.9]. Here again, we would need to have a secure HUK implementation to derive a key for
encryption/decryption of the secure storage®.

* Avoid information leakage by speculative execution if needed. Due to the execute-order-validate
paradigm used in Hyperledger Fabric, transaction execution by the peer is speculative [BCKS18,
Sec. 4.4]. In future work, we must add a mechanism to avoid information leakage by speculative
execution if required. In FPC, this issue is solved by the adding the concept of barriers. The same
concept could be used in FOC, this would also facilitate the interoperability of FPC and FOC peers.

6.1.3.3 Optional Confidentiality for Chaincode, State and Execution Response Message

The following security features are not part of the current FOC implementation but could be added as
optional security features in the future:

* Chaincode confidentiality. In the current implementation of FOC, the compiled chaincode TAs
are stored unencrypted in the REE filesystem (in the directory
SOPTEE_SRC/out-br/target/lib/optee_armtz/ [Lin, Sec. 5.14.3]). If chaincode confidential-
ity needs to be guaranteed, one could use the secure storage TA type to store the chaincode TA
encrypted in the REE filesystem [Lin, Sec. 2.10.3]. In the current implementation of OP-TEE, the
key to encrypt/decrypt the secure storage TA is derived from a stubbed HUK and therefore not
secure* [Lin, Sec. 2.7.2, 2.9].

« State confidentiality. Similar to the design in FPC [BCKS18, Sec. 5.5], we could add encryption
of the state stored on the ledger and passed by GetState or PutState operation by using either
client-based encryption or encryption per chaincode. Both modes would require a third-party
mechanism to exchange the keys (between the client and the invoked chaincode in the first case, and
between the same chaincodes running on different ARM TZ nodes in the second case).

* Encryption of the execution response message. In the future, FOC could support the encryption
of the execution response message with a key provided by the client. This optional security feature
is already part of FPC [BCKS18, Sec. 5.5].

6.2 Comparison with FPC

The comparison between FPC and FOC given in this Section holds for both - the FOC design and
the implemented prototype. A summary of the differences between FPC and FOC can be found in Table 6.2.

FPC and FOC both aim at isolating the execution of the chaincode from a potentially untrusted
peer. To achieve this goal, FPC makes use of Intel SGX [BCKS18] whereas FOC makes use of ARM TZ
with OP-TEE.

In FPC, the enclaves are located on the peer, whereas in FOC, OP-TEE and the chaincode TAs runon a
node separated from the peer. This decoupled approach is justified in Section 5.1. Another architectural
difference is the number of TEEs: In FPC, we have one enclave per chaincode; in FOC, each chaincode

CHAPTER 6. EVALUATION 25
| feature FPC FOC |
technology Intel SGX ARM TZ with OP-TEE
architecture
* enclaves are on the same * OP-TEE runs on a node
node as the peer decoupled from the peer
* one enclave per chaincode * each chaincode TA gets
loaded and executed in-
side the same TEE
language go/C/C++ go/C/C++

isolation of chaincode execution

isolation of chaincode execution
from the untrusted peer is guar-
anteed and can be verified

isolation of chaincode execution
from untrusted peer is imple-
mented, but cannot be verified

and chaincode confidentiality

state continuity guaranteed not guaranteed

operation confidentiality guaranteed not implemented, but possible w/
extra hardware/firmware support

state, execution response message optionally not implemented, but possible w/

extra hardware/firmware support

Table 6.2: Comparison of the used technologies, architectures, languages and the security features in FPC [BCKS18]
and in FOC.

gets loaded and executed in the same TEE (i.e. secure world).

Both FPC and FOC use go, C and C++ programming languages for implementing and adding
their components to Hyperledger Fabric.

Due to its security features (see Section 2.5), FPC guarantees confidentiality for the chaincode
(its logic) and the processed data. Furthermore, it provides mechanisms to verify that guarantee. In
FOC, we make usage of ARM TZ with OP-TEE to isolate the execution of the chaincode but there is no
mechanism for verifying that this is actually the case and that no manipulation has happened. Furthermore,
state continuity and encryption of the operation, the passed state, the execution response message and the
chaincode itself is not enabled in FOC. In Section 6.1.3, we have discussed which security features must
be added so that the chaincode and data confidentiality could be fully guaranteed and verified.

6.3 Interoperability of FPC and FOC peers

With the emergence of IoT, more and more peers of a Hyperledger Fabric channel® might use a low-power
processor [Dub19, Gar14] and therefore not be able to support Intel SGX and FPC but rather ARM TZ
and FOC. Imagine such a channel where some of the peers run FPC and others FOC. Clients can invoke a
chaincode either on a FPC or on a FOC peer. The validation then takes place on all peers. To make such
an interoperability of FPC and FOC peers work correctly, the following points must be considered:

5Group of peers which share the same chaincodes and ledger [Hyp].

CHAPTER 6. EVALUATION 26

6.3.1 Chaincode Language

In FOC, the chaincode running inside the secure world must be written in C (OP-TEE only supports C for
writing TAs [Lin]). Hence, if we want to use the same programming language for the chaincode in FOC
and in FPC, we have to use C.

6.3.2 Chaincode Logic

In FOC, the chaincode TA interrupts its transaction execution for each required Get State and PutState
with a return to the chaincode_proxy. Therefore, a transaction may be split in different parts. In FPC,
there is no need to return in case of a GetState/PutState [fpca]. Despite this slight change in code
structure between FOC and FPC, one must ensure that the logic for both chaincodes is identical.

6.3.3 Confidentiality Guarantees

FPC has multiple features (see Section 2.5) to guarantee confidentiality of the chaincode (its logic) and data.
The current design and implementation of FOC does not consider all of these features (see Section 6.2).
Interoperability will make sense as soon as a future design of FOC considers these missing features. In
Section 6.1.3, we have sketched how this could be achieved. Once this is done, an interoperability of FPC
and FOC peers must consider the following points (we will not go into detail since the exact design and
implementation of such an interoperability is left for future work):

(a) Attestation result. The attestation result of the chaincode enclave must be verifiable by the
chaincode TA and vica-versa. Also the client must be able to verify those attestation results to
invoke chaincodes on authorized chaincode TEEs (chaincode enclaves and chaincode TAs).

(b) Validation. In order to commit transactions, the FPC peers must be able to verify the transaction
response (its signature) produced by an FOC peer and vica-versa. The attestation result (which
contains a hash of the public key) and the public key of the chaincode TEEs could be stored on the
ledger (as in FPC [BCKS18, Sec. 5.1, 5.3, 5.4]). Hence, both chaincode TEEs would have access to
it and could verify that the transaction response originates from an authorized chaincode TEE in
case (a) is satisfied.

(c) Communication with the client. The client must have access to the public key of both chaincode
TEEs, so that it can encrypt the operation either with the public key of the chaincode enclave or the
chaincode TA, depending on whom it passes the transaction proposal to.

(d) State encryption. If we choose a state encryption per chaincode (as described in [BCKS18,
Sec. 5.1, 5.3, 5.4]), one must ensure that the chaincode enclave and the chaincode TA have access
to the private key, so that the state can be encrypted/decrypted by both chaincode TEEs.

6.4 Performance and Power Measurements

We first describe the setup and methodology used in experiment 1, 2 and 3. Then, we present the
experiments. Experiment 1 and 2 are related to performance. Experiment 3 is about power. Finally, we
describe what could be measured as future work.

CHAPTER 6. EVALUATION 27

6.4.1 General Setup

Code base. Experiment 1 and 2 use the implemented FOC prototype.® Experiment 2 uses some
adaption of the chaincode_wrapper, chaincode_proxy and chaincode in order to measure the latency
breakdown.’

Versions. The used versions for the most important dependencies of FOC are:

* Hyperledger Fabric v1.4.1 with default settings
* gRPCv.1.20.0
* OP-TEE v3.5.0

Hardware and network properties. For the experiments, we use the machines provided by the Complex
Systems and Big Data Competence Centre of the University of Neuchatel.® The chaincode_wrapper
runs on yahoocluster-4.maas.’ The chaincode_proxy and the chaincode run either on a machine (eiger-
8.maas or cervino-4.maas) emulating ARM TZ (ARMvS8-A) with QEMU (using the gemu_v8.xm1'%) or
on the Raspberry Pi. The properties of the used devices can be found in Table 6.3. For the eiger-8.maas, we
disable Hyper-Threading in order to minimize the risk of attacks such as the Spectre vulnerability [Jac19].

Machine (name) CPU model # cores 0oS RAM storage network
band-
width
yahoocluster-4.maas Intel(R) 8@2.5GHz 18.04 8GiB 500 1 Gbit/s
Xeon(R) CPU LTS GB
L5420

cervino-4.maas Intel(R) 32@2.1GHz 18.04 128 480 1 Gbit/s
Xeon(R) CPU LTS GiB GB
E5-2683 v4

eiger-8.maas Intel(R) 4@3.8GHz 18.04 64 GiB 480 1 Gbit/s
Xeon(R) CPU LTS GB
E3-1270 v6

Raspberry Pi3 Model B ARM Cortex 4@1.2GHz OP- 1 GB - 100 Mbit/s
A53 64bit TEE
CPU

Table 6.3: Properties of the machines used for performance and power measurements. Information retrieved from the
machines themselves and from
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/,
https://en.wikipedia.org/wiki/Raspberry_Pi,
https://clusterinfo.unineuchatel.ch/MAAS/#/machines, last accessed on 11.08.2019.

CPU frequency. For all used machines (cervino-4.maas, eiger-8.maas, yahoocluster-4.maas, Raspberry Pi)
and also for the machine (nuc-1.maas) used to interact with the Raspberry Pi, we set the CPUfreq governor
to performance mode. With this mode, the CPU frequency is statically set to the highest frequency [Bro]:

Shttps://github.com/piachristel/fabric-optee-chaincode, master branch, com-
mit f41d2f262e013d824b9bcb1c630fed1cc00d4d63, last accessed on 14.08.2019

Thttps://github.com/piachristel/fabric-optee-chaincode, performance-latency-breakdown
branch, commit 8f50dd321b560f54341343df3bfcd98cb84ca236, last accessed on 14.08.2019

8http: //ccfs.unine.ch, last accessed on 16.08.2019

9The machine names are only relevant for reference within this Chapter.

Onttps://github.com/OP-TEE/manifest/blob/master/gemu.v8.xml, last accessed on 14.08.2019

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://en.wikipedia.org/wiki/Raspberry_Pi
https://clusterinfo.unineuchatel.ch/MAAS/#/machines
https://github.com/piachristel/fabric-optee-chaincode
https://github.com/piachristel/fabric-optee-chaincode
http://ccfs.unine.ch
https://github.com/OP-TEE/manifest/blob/master/qemu_v8.xml

CHAPTER 6. EVALUATION 28

¢ yahoocluster-4.maas: 2.499 GHz
* cervino-4.maas: 3 GHz
* eiger-8.maas: 4.2 GHz
» Raspberry Pi 3 Model B: 1.2 GHz
* nuc-1.maas: 4 GHz
QEMU configurations. For the emulation with QEMU we use the following configurations:
* SMP (Symmetric MultiProcessing): set to 4 or 8'!
o CFG_NUM_THREADS (number of trusted threads [Lin]): set to 4, 8 or 16'2

« CPU: cortex-a531!

6.4.2 Methodology

Each of the three experiments is executed with OP-TEE on a machine using QEMU for ARM TZ emulation
and with OP-TEE running on the Raspberry Pi.

For each of the experiments, we use a Go program to start one or more clients. This Go program runs
on the same machine as the chaincode_wrapper (yahoocluster-4.maas). Each client is implemented as a
goroutine and repeatedly invokes the query transaction of the implemented coffee tracking chaincode (see
Section 4.3.2) during a fixed amount of time. The timespans are adjusted for each experiment in order to
have a reasonable amount of values per client for calculating the results. The invocation is implemented
with the shim.MockStub so the clients directly call (init and invoke) the chaincode_wrapper. There is
no usage of any peer.

In our experiments, a transaction starts when the client calls it and is finished when the client has
received the response of the chaincode_wrapper. We call that timespan execution time (of the query
transaction) in the following three experiments.

A detailed description on how to run the experiments can be found in the private github repository
fabric-optee-chaincode."

To measure the times, we have used the following libraries and functions:
 chaincode_wrapper: Go time package'#, in particular the functions Now and Since.

e chaincode_proxy: cpp std::chrono library!’®, in particular the function
high_resolution_clock: :now().

+ chaincode: The functions TEE GetSystemTime and TEE_TIME_SUB implemented by OP-TEE. !

This value can be changed in the file $ {OPTEE_SRC} /build/gemu_v8.mk.

12This value can be changed in the file $ {OPTEE_SRC} /optee_os/mk/config.mk.

Bhttps://github.com/piachristel/fabric-optee-chaincode/blob/master/
performance_power_measurements/README_performance_power_measurements.md, last accessed on
14.08.2019

Yhttps://golang.org/pkg/time/, last accessed on 28.06.2019

Bnttps://en.cppreference.com/w/cpp/header/chrono, last accessed on 28.06.2019

nttps://github.com/OP-TEE/optee_os/blob/master/lib/libutee/include/tee_api.h, https:
//github.com/OP-TEE/optee_os/blob/master/lib/libutee/include/utee_defines.h, last accessed on
28.06.2019. According to the GP TEE Internal Core API [Glo14], this function returns the current system time of a TA instance.
The counter is monotonic between the return of one TEEC_InvokeCommand and the start of the next TEEC_InvokeCommand.
We have checked and confirmed this behavior in https://github.com/piachristel/fabric-optee-chaincode,
performance-latency-breakdown branch, commit 6df7a8c251118c60d62d6c0eecbfe469dfled2e8, last accessed on
14.08.2019.

https://github.com/piachristel/fabric-optee-chaincode/blob/master/performance_power_measurements/README_performance_power_measurements.md
https://github.com/piachristel/fabric-optee-chaincode/blob/master/performance_power_measurements/README_performance_power_measurements.md
https://golang.org/pkg/time/
https://en.cppreference.com/w/cpp/header/chrono
https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/include/tee_api.h
https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/include/utee_defines.h
https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/include/utee_defines.h
https://github.com/piachristel/fabric-optee-chaincode

CHAPTER 6. EVALUATION 29

To measure the power (experiment 3) on the machine emulating ARM TZ with QEMU, we use a Lindy
IPower Control 2x6 XM and an adaption of the pdu-power-parser.py!'’ script. For the Raspberry Pi,
we use the Alciom PowerSpy2 device together with the powerspy.py'® script.

6.4.3 Experiment 1: Throughput and Latency

Experiment. We measure the latency and throughput for the execution of the query transaction of the
coffee tracking chaincode in FOC. The measurements are done for different numbers of clients (1, 2, 4, 8)
repeatedly invoking the transaction in parallel during (30, 30, 30, 60) seconds.

Expectation. Throughput doubles (or nearly doubles) when doubling the number of clients while latency
stays stable up to the point where the number of clients is equal to the minimum of the number of cores of
all machines.

Pre Result. A first evaluation of this experiment with QEMU has shown that the throughput
only slightly increases (with factor < 1.2) from 1 to 2 clients and then more or less stagnates for 4 and 8
clients. This does not confirm our expectation. We therefore have to refine the experiment.

Refined Experiment and Result. To investigate where the bottleneck comes from, we implement
different modifications of FOC:

(a) Baseline: An adaption of FOC which executes the coffee tracking chaincode in the normal and not
in the secure world - this implementation is our baseline. The measurements are done for (1, 2, 4, 8)
clients repeatedly invoking transactions in parallel during 10 seconds.

(b) Without gRPC: An adaption of FOC, where the clients are placed in the normal world and run as
threads there. Each client thread repeatedly performs the following steps: a. initializing a context, b.
opening a session, c. invoking the coffee tracking chaincode in the secure world, d. waiting for the
transaction to finish, e. closing the session, f. finalizing the context. In this case, we have no gRPC
calls. The measurements are done for (1, 2, 4, 8) clients repeatedly invoking transactions in parallel
during 30 seconds.

(c) Normal world threading: A program where we have (1, 2, 4, 8) threads doing dummy work in the
normal world. This implementation has nothing to do with FOC but is used to test the threading
capacity of the normal world.

(d) Plain Hyperledger Fabric: We have implemented the coffee tracking chaincode as Hyperledger
Fabric chaincode running at the same node as the clients (yahoocluster-4.maas). The measurements
are done for (1, 2, 4, 8, 16) clients repeatedly invoking transactions in parallel during 10 seconds.

The code for the three cases can be found in the folder FOC-modifications of the github repository
fabric-optee-chaincode.!” For the experiments with modifications (a)-(c) and also for the experiments
with the original FOC prototype, ARM TZ emulated with QEMU is used (no Raspberry Pi). We set the
number of processors for QEMU to the maximal possible value (SMP = 8) and use a host machine with 32
cores (cervino-4.maas) to eliminate any bottleneck from the number of CPUs of the (QEMU) host. The
CFG_NUM_THREADS is set to 8 in a first investigation.

Thttps://gist.github.com/gfieni/910d075b7e53a607271c18923047675e, last accessed on 12.08.2019

Bhttps://github.com/patrickmarlier/powerspy.py, last accessed on 12.08.2019

Yhttps://github.com/piachristel/fabric-optee-chaincode/tree/master/
performance_power_measurements/FOC_modifications, last accessed on 14.08.2019

https://gist.github.com/gfieni/910d075b7e53a607271c18923047675e
https://github.com/patrickmarlier/powerspy.py
https://github.com/piachristel/fabric-optee-chaincode/tree/master/performance_power_measurements/FOC_modifications
https://github.com/piachristel/fabric-optee-chaincode/tree/master/performance_power_measurements/FOC_modifications

CHAPTER 6. EVALUATION 30

For each setup, we run the experiment 3 times and take the results of the run for which the maximum
throughput over all clients is the highest. The observations related to the throughput and latency measure-
ments are summarized in the following. Detailed results can be found in the appendix, Table B.1 and in
Figure 6.1.

 The results for the coffee tracking chaincode running as Hyperledger Fabric chaincode (case (d))
are plotted in Figure 6.1. The Figure shows that in this case, throughput and latency behave as
expected: throughput increases (by factor > 1.5) with each doubling of the number of clients and
latency stays stable up to the point where the number of clients is equal to 8 (= number of cores at
yahoocluster-4.maas). Therefore the Go program which starts the clients cannot be the explanation
for the bottleneck.

* Regarding the baseline, we have changed the NUM_CQS, MIN_POLLERS and MAX_POLLERS options
of the gRPC server (at the chaincode proxy).?’ Best results are achieved with NUM_CQS equal to
the number of cores/2 (= 4) and MIN_POLLERS, MAX_POLLERS with the default values: throughput
is increased by factor 1.9 for 2 clients, by 2.5 for 4 clients and 2.8 for 8 clients (all factors in
relation to the throughput for 1 client). These factors are far above the factors for the original FOC
implementation (< 1.2). Furthermore, the factors are even better than the ones achieved by the
normal world threading application (case (c)). We can therefore rule out the gRPC settings as main
reason for the bottleneck.

* Regarding the setting (b), we can increase throughput only by factor 1.3 for 2 clients, with factor 1.4
for 4 clients and with factor 1.5 for 8 clients (all factors in relation to the throughput for 1 client).
These factors are are a bit above the ones from the experiment with the original FOC implementation,
but still far below the factors of the baseline case. We therefore conclude that the bottleneck mainly
originates from the secure world calls. To exactly locate the bottleneck, we have done a latency
breakdown in experiment 2. This experiment shows, that the TEEC_OpenSession makes up 65-75%
of the whole latency time. An investigation of the code shows that at least part of this API is
serialized?! which may explain the observed bottleneck. This serialization is not documented, but
we have become aware to it due to the github issue [ogil9a]. In Section 6.4.6, we describe which
code change may resolve the observed performance bottleneck.

» To explore if performance can be increased by a smaller or larger value for CFG_NUM_THREADS,
we execute case (b) with a value of 4 and 16, see second and third Table of B.1. But since no
improvement of throughput and latency could be achieved by this configuration change, we keep
CFG.NUM_THREADS equal to the value of SMP for further experiments.

* For the original FOC prototype, the throughput and latency for the default NUM_CQS value and for
NUM_CQS equal to SMP are similar. But since we have a higher failure rate with NUM_CQS set equal to
the number of SMP than with the default value, we do further measurements with the default value.

Final Experiment and Result. With the insights from the refined experiment (CFG_NUM_THREADS equal
to number of cores; default value for NUM_CQS, MIN POLLERS, MAX_POLLERS in case of the origi-
nal FOC implementation), the final throughput and latency measurements are done, once running the

20NUM_CQS is the number of queues at the gRPC server which will listen to incoming RPCs. MIN_POLLERS and MAX_POLLERS
define the minimum and maximum number of threads per queue. The default values are: NUM.CQS = 1, MIN_.POLLERS = 1,
MAX_POLLERS = 2. See https://github.com/grpc/grpc/blob/v1.20.x/include/grpcpp/server_builder.h,
last accessed on 11.08.2019.

21The loading of the TA into the secure world is serialized due to a global mutex hold in OP-TEE, see
https://github.com/OP-TEE/optee_os/blob/6ff2e3f10cab2a086ebbl59bdab6ccc497aa50ab/core/
kernel/tee_tamanager.c#L630-1L661, last accessed on 13.08.2019.

https://github.com/grpc/grpc/blob/v1.20.x/include/grpcpp/server_builder.h
https://github.com/OP-TEE/optee_os/blob/6ff2e3f10cab2a086ebb159bdab6ccc497aa50ab/core/kernel/tee_ta_manager.c#L630-L661
https://github.com/OP-TEE/optee_os/blob/6ff2e3f10cab2a086ebb159bdab6ccc497aa50ab/core/kernel/tee_ta_manager.c#L630-L661

CHAPTER 6. EVALUATION 31

Throughput for query transaction of coffee tracking chaincode Latency (mean) for query transaction of coffee tracking chaincode
—————8 . 1
e 0.0050 :’
/
21 0.0045 /.'
o v
- ,’/
7 3 0.0040 § s
X g n /
3 £ /
a = 1 y
£] g 0.0035 7
g /
o H !
E v 3 /
(= rd 0.0030 et
0.0025
219,
L2 0.0020
20 2! 22 23 2 20 2! 22 2 24
#Clients #Clients

Figure 6.1: Throughput and latency for the execution of the coffee tracking chaincode query transaction invoked by
different numbers of clients in parallel. Measurements are done with the coffee tracking chaincode running as plain
Hyperledger Fabric chaincode.

chaincode_proxy and the chaincode on a machine emulating ARM TZ with QEMU and once run-
ning them on the Raspberry Pi. For the emulation with QEMU we chose a host machine with 4 cores
(eiger-8.maas) and set SMP to 4 to simulate the number of cores in the Raspberry Pi.

Again we run each experiment 3 times and take the results of the run for which the maximum throughput
over all clients is the highest.

Throughput for query transaction of coffee tracking chaincode Latency (mean) for query transaction of coffee tracking chaincode
10 o E— X 2% 9 _o original FOC on RaPi o
'_,,4-" e baseline on RaPi B T
2 e 2" v original FOC with QEMU ==
g baseline with QEMU it
> 28 4 A
28 '__,/' e
w 274 St
5 -+- original FOC on RaPi i L =
= 274 £ -
El —%- baseline on RaPi = 204
£ - original FOC with QEMU % S
g 2° baseline with QEMU 2T g
£ s v
PEO 24 4
24 4 z e F
$oeeee R 22 4 S
234 s, e, B SRS . . I
T T T T T T T T
20 2! 22 23 20 2! 22 23
#Clients #Clients.

Figure 6.2: Throughput and latency for the execution of the coffee tracking chaincode query transaction invoked by
different numbers of clients in parallel. Measurements are done for the original FOC implementation and for the
baseline once on the Raspberry Pi (CFG_NUM_THREADS =4) and once with QEMU (SMP=4, CFG_.NUM_THREADS=4,
machine eiger-8.maas). The latency is the mean over the latency of all single transactions in ms.

The detailed results are displayed in Table B.2 in the appendix. We plot the throughput and
latency for the baseline (with the following gRPC configurations: NUM_CQS=2, default values for
MIN_POLLERS, MAX_POLLERS?’) and for the original FOC implementation in Figure 6.2. Our evalu-
ation:

* Considering the original FOC implementation, we can observe that throughput does not increase
with an increasing number of clients in case of the Raspberry Pi. In case of QEMU, there is a slight

CHAPTER 6. EVALUATION 32

increase with about factor 1.2 from 1 to 2 clients. For more clients, throughput stagnates. This is the
bottleneck we have already observed in the refined experiments before.

* In case of the baseline, throughput increases up to 8 clients. With the chaincode proxy and the
chaincode_wrapper running on the Raspberry Pi, we can increase throughput by factor 3.1 for 8
clients compared to 1 client. For QEMU, it is an increase by factor 2.6 from 1 to § clients.

* Considering the experiment on the Raspberry Pi for 1 client, the throughput of the baseline is about
27 times higher than with the original FOC implementation. In case of 8 clients, we even have an
increase with about factor 130. For QEMU, the difference is less extreme: throughput is between 5
to 10 times higher (depending on the number of clients) for the baseline compared to the original
FOC implementation.

The observations show, that the execution of the chaincode inside the secure world comes with its cost in
terms of throughput.

6.4.4 Experiment 2: Latency Breakdown

Experiment. We measure the duration of the different subparts of the coffee tracking chaincode query
transaction executed with the original FOC implementation. The measured timespans are graphically
displayed in Figure 6.3.

[client] [chaincodeiwrapper] chaincode proxy

invoke
create gRPC stream |
{A} >
InvocationRequestiV) _
TEEC_OpenSession
P » chaincode
{B}
TEEC_InvokeCommand(® _
N
Mo)
I return® V| :
{E}
GetStateRequest(1l)
{0}
{G} {F}
GetStateResponse()
{H}
TEEC InvokeCommand !V
{1} U}I
return'
, Ll :
_InvocationResponse(V) '
b TEEC CloseSession
o3 Ly "
return

TG

Figure 6.3: Timespans measured for the query transaction of the implemented coffee tracking chaincode in FOC
are indicated with capital letters. The round-trip times for the colored arrows labelled with roman numerals will be
calculated as differences of the measured timespans, for example round-trip time for (iv) = O - N.

Source: figure drawn by C.M.

CHAPTER 6. EVALUATION 33

A is the initialization phase at the chaincode.wrapper. B is the initialization at the
chaincode_proxy. It includes initializing the context (TEEC_.InitializeContext), opening the ses-
sion (TEEC_OpenSession), allocating the shared memory and passing all message parameters to this
shared memory. D is the preparation of the GetState in the chaincode. E is the time used by the
chaincode_proxy for forwarding this GetState to the chaincode_wrapper via GetStateRequest.
G is the handling of the GetStateRequest at the chaincode wrapper (i.e. call of the ledger).
H is the postprocessing of the GetStateResponse in the chaincode proxy. J is the preparation
of the execution response message in the chaincode. K is the forwarding of this message at the
chaincode_proxy via a InvocationResponse. L is the time used for releasing the resources, for
closing the session (TEEC_CloseSession) and for finalizing the context (TEEC_FinalizeContext) at
the chaincode_proxy. M is the finalization at the chaincode_wrapper. The timespans C, I, N and O
are measured for calculating the round-trip times (arrows i - iv).

The measurements are done once for 1 client repeatedly invoking the query transaction during 30
seconds because with 1 client we have aimed best results in terms of throughput and latency in experiment
1. And once for 2 clients repeatedly invoking the query transactions in parallel during 30 seconds because
we want to investigate the bottleneck observed in experiment 1.

The experiment is executed twice: once running the chaincode proxy and the chaincode on a
machine emulating ARM TZ with QEMU (SMP = 4) and once running them on the Raspberry Pi; with
CFG_NUM_THREADS = 4 in both cases. Regarding the gRPC configuration, we set the default values for
NUM_.CQS, MIN_POLLERS, MAX_POLLERS?.

Result. For each setup we have run the experiment 3 times and taken the results for the run
with the highest throughput. The results are summarized in Table 6.4. An evaluation of the results is given
in the following:

 If we sum up the means of the different parts for one transaction (A, B, D, E, G, H, J, K, M, (i), (ii),
(iii), (iv) = sum without L), we should achieve the mean latency measured in experiment 1. This is
actually the case.

* For both, the setup with QEMU and the Raspberry Pi, phase B makes up 65-75% of the total time (=
sum without L). We can observe that the vast majority of phase B is needed for TEEC_OpenSession.
This knowledge has given us some hints where to locate the throughput bottleneck experienced in
experiment 1.

* Each of the average times for the parts D, E, G, H, J, K, M is smaller than 1 ms and is less then 1 %
of the total latency (sum without L).

* There are some observations related to the timespans in the Raspberry Pi which would require more
research in the future: With the Raspberry Pi, timespan A doubles from 1 to 2 clients whereas in the
setup with QEMU, timespan A stays stable from 1 to 2 clients. Furthermore, on the Raspberry Pi,
the round-trip times for TEEC_InvokeCommand (arrows (i) and (ii)) is less then 1 ms in case of 1
client, but more than 8 ms in case of 2 clients.

CHAPTER 6. EVALUATION 34

eiger-8.maas, QEMU (SMP =4, CFG.NUM_THREADS = 4)

1 client 2 clients
median mean std min max median mean std min max

A 0.888 0929 0.169 0.637 1.828 | 1.006 1.067 0315 0.590 4.896
B 17.732 17788 0.516 16.551 21.822 | 32.834 32.944 2.539 18.687 86.876
thereof

TEEC.OpenSession | 16.815 16.865 0.514 15.662 20.956 | 31.856 31.930 2.492 17.285 84.353
D 0.0 0.234 0424 0.0 1.0 0.0 0.186 0389 0.0s 1.0
E 0.016 0.018 0.011 0.014 0.238 | 0.017 0.020 0.016 0.011 0.293
G 0.002 0.003 0.002 0.002 0.020 | 0.003 0.004 0.003 0.001 0.040
H 0.014 0.017 0.025 0.012 0.505 | 0.011 0.014 0.011 0.008 0.191
J 0.0 0.134 0.341 0.0 1.0 0.0 0.141 0351 0.0 2.0
K 0.018 0.020 0.018 0.017 0.337 | 0.015 0.019 0.037 0.012 0.835
L 8.476 8.682 0.530 7.915 14.001 | 9.431 9.928 3.025 8.071 54.247
M 0.015 0.016 0.009 0.006 0.054 | 0.015 0.017 0.010 0.006 0.108
arrows (i) - 1.410 - - - - 1.662 - - -
arrows (ii) - 1.508 - - - - 1.515 - - -
arrows (iii) - 1.468 - - - - 1.658 - - -
arrows (iv) - 4227 - - - - 7.057 - - -
sum without LL | - 27772 - - - - 46.303 - - -

Raspberry Pi (CEG.NUM_THREADS = 4)
1 client 2 clients
median mean std min max median mean std min max

A 5345 6.163 1915 4.788 10.646 | 10.498 12.009 4.202 4.750 31.487
B 67.245 61.142 6.376 54.582 67.980 | 167.477 165.862 20.218 81.082 224.546
thereof

TEEC.OpenSession | 67.088 60.995 6.372 54.445 67.826 | 167.334 165.719 20.223 80.922 224.381
D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

E 0.008 0.009 0.003 0.006 0.026 | 0.008 0.008 0.004 0.002 0.022
G 0.002 0.003 0.002 0.002 0.014 | 0.002 0.003 0.001 0.001 0.011
H 0.005 0.006 0.005 0.003 0.037 | 0.004 0.005 0.005 0.001 0.053
J 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.104 0.0 1.0

K 0.005 0.006 0.002 0.004 0.029 | 0.006 0.006 0.003 0.002 0.032
L 24.096 19.677 4.592 14.860 24.414 | 56.086 103.365 69.695 23.505 248.155
M 0.008 0.013 0.008 0.006 0.046 | 0.013 0.014 0.008 0.006 0.076
arrows (i) - 0.153 - - - - 16482 - - -
arrows (ii) - 0.964 - - - - 2.536 - - -
arrows (iii) - 0225 - - - - 8.166 - - -
arrows (iv) - 6.985 - - - - 11.248 - - -

sum without L | - 75.667 - - - - 216.350- - -

Table 6.4: Latency breakdown in ms for the query transaction of the coffee tracking chaincode. The experiment was
executed emulated with QEMU and on the Raspberry Pi with different numbers of clients (1, 2) invoking the
transaction in parallel for 30 seconds. Milliseconds are the most accurate time unit we can measure in the secure
world, therefore measured timespan duration in the secure world may be 0.

CHAPTER 6. EVALUATION 35

6.4.5 Experiment 3: Power

Experiment. We measure the power at the machine running OP-TEE (i.e. the chaincode_proxy and the
chaincode TR) during the execution of the coffee tracking chaincode query transaction in FOC. The
measurements are done once with 1 client repeatedly invoking the query transaction during 30 seconds
and once with 2 clients repeatedly invoking the transaction in parallel during 30 seconds.

The experiment is executed twice: once running the chaincode proxy and the chaincode on a
machine emulating ARM TZ with QEMU (SMP = 4) and once running them on the Raspberry Pi; with
CFG.NUM_THREADS = 4 in both cases. Regarding the gRPC configuration, we set default values for
NUM_.CQS, MIN_POLLERS, MAX_POLLERS?.

From the power measurements, we calculate the average consumed energy per transaction.

Expectation. We expect that the execution is slower but needs less energy per transaction when
running OP-TEE on the Raspberry Pi compared to running OP-TEE on a machine (eiger-8.maas)
emulating ARM TZ with QEMU.

Result. For each setup, we run the experiment 3 times and take the results of the run with the
lowest energy consumption per transaction. The results are displayed in Table 6.5. The expectation is
confirmed. The throughput achieved with the Raspberry Pi is about 3 to 5 times lower than the one with
QEMU but the execution of one query transaction on the Raspberry Pi needs only about 1/10 of the
energy used by QEMU.

1 client 2 clients

[J1 #tx [Jitx] | [J] #tx [J/tx]

eiger-8.maas, QEMU (SMP = 4,| 19180 1115 1.72 2181.5 1302 1.68
CFGNUM_THREADS =4)
Raspberry Pi (CFG_NUM_THREADS = 4) 61.66 393 0.16 62.32 268 0.23

Table 6.5: The total energy consumption in Joules of the machine running OP-TEE for the execution of the coffee
tracking query transaction during 30 seconds is displayed in column [J]. The total number of successful transactions
is displayed in column # tx. The column [J/tx] shows the used Joules per transactions in average.

6.4.6 Future Work

We have located the throughput bottleneck faced in experiment 1 and found a potential explanation:
TEEC_OpenSession is at least partly serialized [ogil9a]. To confirm this explanation, we would need
to modify our FOC prototype code and re-execute the performance measurements. Instead of having a
separate session for each InvocationRequest, we could open a fixed number of sessions (all with their
own context) at the startup of the chaincode_proxy and store them in a global pool. The number of
sessions should be equal to the value of CFG_NUM_THREADS for maximal concurrency. For each incoming
InvocationRequest the chaincode_proxy will take one session from the pool (if there is any or
else wait for one) and put it back to the pool once the InvocationRequest has been sent back to the
chaincode_wrapper. With this change in the FOC implementation, we could avoid the serialization due
to the global mutex in the TEEC_OpenSession calls.

The microbenchmarks we have done could be refined and extended. For example, one could investigate
how a change in the transaction size influences the throughput and latency.

In the future, one could measure the throughput and latency for all phases (execution, ordering and
validation) of Hyperledger Fabric and not only for the execution of the transaction itself. In our experiments,

CHAPTER 6. EVALUATION 36

we have directly invoked the chaincode_wrapper without using any peer and orderer (shim.MockStub).
For future macrobenchmarks, one could use Hyperledger Fabric client SDK?? and have a complete
Hyperledger Fabric network with peers and orderers.

One could also compare the performance of FOC and FPC in future work, although such results must
be considered with caution since Intel SGX and ARM TZ with OP-TEE are two different technologies and
do not provide the same features and guarantees.

We have focused on the query transaction of the implemented coffee tracking chaincode in FOC. One
could compare the transaction and latency of the query (only has one GetState) and create (needs one
GetState and one PutState) transaction in future work.

We have mainly varied the number of clients invoking transactions in parallel. There would be
more parameters as for example the network characteristic one could consider in future measurements.
Furthermore, one could investigate if and how asynchronous gRPC communication?? could improve
performance.

2nttps://hyperledger-fabric.readthedocs.io/en/release-1.4/glossary.html#software-
development—-kit-sdk, last accessed on 17.08.2019
Bnttps://grpc.io/docs/tutorials/async/helloasync—cpp/, last accessed on 17.08.2019

https://hyperledger-fabric.readthedocs.io/en/release-1.4/glossary.html#software-development-kit-sdk
https://hyperledger-fabric.readthedocs.io/en/release-1.4/glossary.html#software-development-kit-sdk
https://grpc.io/docs/tutorials/async/helloasync-cpp/

Conclusion and Future Work

The first contribution is the design and implementation of a prototype called FOC for Hyperledger
Fabric chaincode execution with ARM TZ and OP-TEE. With the coffee tracking chaincode, we have
demonstrated a fully working smart contract running inside the secure world. The contribution of the
thesis may be useful in the context of IoT. It ensures confidentiality of the smart contract (its logic) and the
processed data. In contrast to the two other properties of the CIA triad [And11, XWS*17], confidentiality
is not inherently guaranteed by the blockchain network.

The second contribution is the exploration of the limits with ARM TZ and OP-TEE. During the
transfer of FPC from Intel SGX to ARM TZ with OP-TEE, we have faced some challenges: missing
support for remote attestation in ARM TZ and OP-TEE [Stal8, ogil9c, CD16b] and missing hardware
support for some security features of OP-TEE [Lin]. This leads to the following consequences for the
designed and implemented FOC prototype:

* The intuitive approach of running the peer in the normal world of OP-TEE could not be realised due
to missing Docker support. Therefore in FOC, the peer is decoupled from the ARM TZ node.

» FOC lacks features to fully guarantee confidentiality of smart contracts (their logic) and the processed
data: a. Remote attestation of the chaincode TA, b. signature of the transaction response by the
chaincode TA, c. fully secure integrity check of the chaincode TA atits load time, d. guarantee
of state continuity, e. encrypted chaincode TA storage and f. encryption of the operation, the
passed states and the execution response message.

Measuring the performance of the implemented FOC prototype (with ARM TZ and OP-TEE running on
the Raspberry Pi) has shown that the throughput for the execution of the coffee tracking chaincode query
transaction is about 27 - 130 times slower (depending on the number of clients invoking transactions in
parallel) than the execution of the query transaction with our baseline (coffee tracking chaincode placed in
the normal world). This shows that the confidentiality guarantee comes with its cost. Furthermore, we have
faced a bottleneck in performance measurements with the Raspberry Pi: throughput could not be increased
with an increasing number of clients although we had multiple cores and trusted threads available. We
have identified a potential reason for this bottleneck and suggested a code change for future work.

37

CHAPTER 7. CONCLUSION AND FUTURE WORK 38

7.1 Future Work

In the following, we describe possible future work for the design and the potential improvements related to
the implemented prototype.

7.1.1 Design.

¢ Architecture. With the current design, the peer is running decoupled from ARM TZ on a separate
node supporting plain Hyperledger Fabric, see Section 4.1. For a productive system it would be
practical and more efficient to place the peer in the normal world of ARM TZ.

* Confidentiality. In Section 6.1.3 we have described the missing security features of FOC. These
features must be considered in the future design and implementation to fully guarantee confidentiality
for the chaincode and the processed data.

* Interoperability of FPC and FOC. The interoperability of FPC and FOC peers (see Section 6.3)
could be considered in a future design and implementation.

7.1.2 Implementation.

* C, C++ mix. In OP-TEE, the official host examples are written in C!. Since gRPC has no official C
language support [gRPb], we use the C++ support of the gRPC framework for writing the gRPC
server (chaincode_proxy). Therefore, the chaincode_proxy is a C++ program but may contain
C code as well. This mix of C++ and C code should be cleaned up in the future.

* GlobalPlatform compatibility. The chaincode TA code (coffee_tracking.chaincode.c file)
is not fully GlobalPlatform conform. For example the used functions strlen, stroul and
snprintf are implemented by OP-TEE? but not supported by GlobalPlatform [Glo14]. This is not
considered an issue since we just demonstrate the execution of smart contracts with OP-TEE. In the
future, fully GlobalPlatform compatible code could be implemented, so that the chaincode TA can
be transferred to other environments supporting the GlobalPlatform standard.

* Argument check. The functions of the coffee tracking chaincode running inside the secure world
(create, add, query) should check the number and the type of the received arguments; this is not
implemented in the current prototype.

e Argument encryption. Currently, the arguments are passed via the Protocol Buffer bytes .proto
type. When the arguments are encrypted in future work, they should not be passed via this type, but
as one unit to avoid the leaking of the number of arguments.

* Ledger access. The current implementation of chaincode execution with OP-TEE only provides
GetState and PutState to access the ledger. Support of other APIs of the ChaincodeStub? is
left for future work.

* Performance. We have experienced a bottleneck regarding the throughput for the execution of the
coffee tracking chaincode query transaction in FOC. A potential explanation and the necessary
future code changes in order to remove this bottleneck are described in Section 6.4.6. There, we
also describes performance measurements left for future work.

"https://github.com/linaro-swg/optee_examples, last accessed on 14.08.2019

2https://github.com/OP-TEE/optee_os/tree/master/lib/libutils/isoc/include, last accessed on
24.07.2019

3https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub, last
accessed on 23.07.2019

https://github.com/linaro-swg/optee_examples
https://github.com/OP-TEE/optee_os/tree/master/lib/libutils/isoc/include
https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub

[ABB*18]

[ABCI17]

[aD]

[Amol1]
[And11]
[ASKP18]

[BCKS18]

[BD14]

[BDK17]

[Bec14]

[Becl6]

Bibliography

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco,
and Jason Yellick. Hyperledger Fabric: a Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto,
Portugal, April 23-26, 2018, pages 30:1-30:15, 2018.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A Survey of Attacks on Ethereum
Smart Contracts (SoK). In Principles of Security and Trust - 6th International Conference,
POST 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 164—186,
2017.

arm Developer. TrustZone. https://developer.arm.com/ip-products/
security—-ip/trustzone. Last accessed July 9, 2019.

Edward G. Amoroso. Cyber Attacks. Butterworth-Heinemann, Burlington USA, 2011.
Jason Andress. The Basics of Information Security. Syngress Press, Waltham USA, 2011.

Mustafa Al-Bassam, Alberto Sonnino, Michal Krdl, and loannis Psaras. Airtnt: Fair Exchange
Payment for Outsourced Secure Enclave Computations. CoRR, abs/1805.06411, 2018. URL.:
http://arxiv.org/abs/1805.06411,arXiv:1805.06411.

Marcus Brandenburger, Christian Cachin, Riidiger Kapitza, and Alessandro Sorniotti.
Blockchain and Trusted Computing: Problems, Pitfalls, and a Solution for Hyperledger
Fabric. CoRR, abs/1805.08541, 2018. URL: http://arxiv.org/abs/1805.08541,
arXiv:1805.08541.

Greg Bellows and Christoffer Dall. Arm TrustZone in QEMU. https://
www.linaro.org/blog/arm-trustzone—gemu/, September 2014. Last accessed
July 22, 2019.

Johannes Behl, Tobias Distler, and Riidiger Kapitza. Hybrids on Steroids: SGX-Based High
Performance BFT. In Proceedings of the Twelfth European Conference on Computer Systems,
EuroSys 2017, Belgrade, Serbia, April 23-26, 2017, pages 222-237, 2017.

Joakim Bech. OP-TEE, open-source security for the mass-market. https://
www.linaro.org/blog/op-tee-open-source-security-mass—-market/,
September 2014. Last accessed July 29, 2019.

Joakim Bech. TEE Development With No Hardware - Is That Possible?
https://www.linaro.org/blog/tee-development-with—-no-hardware-
is—-that-possible/, November 2016. Last accessed June 22, 2019.

39

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
http://arxiv.org/abs/1805.06411
http://arxiv.org/abs/1805.06411
http://arxiv.org/abs/1805.08541
http://arxiv.org/abs/1805.08541
https://www.linaro.org/blog/arm-trustzone-qemu/
https://www.linaro.org/blog/arm-trustzone-qemu/
https://www.linaro.org/blog/op-tee-open-source-security-mass-market/
https://www.linaro.org/blog/op-tee-open-source-security-mass-market/
https://www.linaro.org/blog/tee-development-with-no-hardware-is-that-possible/
https://www.linaro.org/blog/tee-development-with-no-hardware-is-that-possible/

BIBLIOGRAPHY 40

[Bell5] Greg Bellows. Testing QEMU Arm TrustZone. https://www.linaro.org/blog/
testing-gemu-arm-trustzone/, January 2015. Last accessed July 22, 2019.

[bit] Bitcoin. https://bitcoin.org/en/. Last accessed on August 22, 2019.

[BMSV18] Mic Bowman, Andrea Miele, Michael Steiner, and Bruno Vavala. Private Data Ob-
jects: an Overview. CoRR, abs/1807.05686, 2018. URL: http://arxiv.org/abs/
1807.05686,arxXiv:1807.05686.

[Bra02] Roberta Bragg. CISSP Certified Information Systems Security Professional - Training Guide.
Pearson IT Certification, Hoboken USA, 2002.

[Bro] Dominik Brodowski. Linux CPUFreq - CPUFreq Governors. https://
www.kernel.org/doc/Documentation/cpu-freq/governors.txt. Last ac-
cessed August 11, 2019.

[CD16a] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and Smart Contracts for the
Internet of Things. IEEE Access, 4:2292-2303, 2016.

[CD16b] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology ePrint Archive,
2016:86, 2016. URL: http://eprint.iacr.org/2016/086.

[CV17] Christian Cachin and Marko Vukolic. Blockchain Consensus Protocols in the Wild (Keynote
Talk). In 31st International Symposium on Distributed Computing, DISC 2017, October
16-20, 2017, Vienna, Austria, pages 1:1-1:16, 2017.

[CZK118] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M. Johnson, Ari
Juels, Andrew Miller, and Dawn Song. Ekiden: A Platform for Confidentiality-Preserving,
Trustworthy, and Performant Smart Contract Execution. CoRR, abs/1804.05141, 2018. URL.:
http://arxiv.org/abs/1804.05141,arXiv:1804.05141.

[DDW 18] Weigi Dai, Jun Deng, Qinyuan Wang, Changze Cui, Deqing Zou, and Hai Jin. SBLWT: A
Secure Blockchain Lightweight Wallet Based on Trustzone. IEEE Access, 6:40638—40648,
2018.

[Dev] Google Developers. Protocol Buffers. https://developers.google.com/
protocol-buffers/. Last accessed July 22, 2019.

[DP] Bogdan Djukic and Lorenzo Pieri. AnyLedger: Embedded wallet for decentralized IoT.
Version 0.8.0. http://www.anyledger.io/whitepaperAnyLedger.pdf. Last
accessed on August 19, 2019.

[Dub19] Yetnesh Dubey. CPU Comparison: X86 vs ARM — Will Intel i9 9900K Stay Atop? https:
//fossbytes.com/cpu-comparison-x86-arm-cpu-benchmark/, April 2019.
Last accessed July 9, 2019.

[eth] Ethereum. https://www.ethereum.org/. Last accessed on August 22, 2019.

[Fou] The Linux Foundation. Hyperledger. https://www.hyperledger.org/. Last accessed
July 8, 2019.

[fpca] fabric-private-chaincode github repository. https://github.com/hyperledger—
labs/fabric-private-chaincode. Last accessed July 9, 2019.

https://www.linaro.org/blog/testing-qemu-arm-trustzone/
https://www.linaro.org/blog/testing-qemu-arm-trustzone/
https://bitcoin.org/en/
http://arxiv.org/abs/1807.05686
http://arxiv.org/abs/1807.05686
http://arxiv.org/abs/1807.05686
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://eprint.iacr.org/2016/086
http://arxiv.org/abs/1804.05141
http://arxiv.org/abs/1804.05141
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.anyledger.io/whitepaperAnyLedger.pdf
https://fossbytes.com/cpu-comparison-x86-arm-cpu-benchmark/
https://fossbytes.com/cpu-comparison-x86-arm-cpu-benchmark/
https://www.ethereum.org/
https://www.hyperledger.org/
https://github.com/hyperledger-labs/fabric-private-chaincode
https://github.com/hyperledger-labs/fabric-private-chaincode

BIBLIOGRAPHY 41

[fpcb]

[fpec]

[Gar14]

[Glo10]

[Glo14]

[GMS17]

[gp-]

[gRPa]

[gRPb]

[Hyp]

[ico]

[iDZ16]

[Jac19]

[Lim09]

[Lin]

fabric-private-chaincode github repository, enclave.cpp file, encrypted operation.
https://github.com/hyperledger-labs/fabric-private-chaincode/
blob/master/ecc_enclave/enclave/enclave.cpp#L76—#L130. Last
accessed June 20, 2019.

fabric-private-chaincode github repository, enclave.cpp file, signature. https:
//github.com/hyperledger-labs/fabric-private-chaincode/blob/
master/ecc_enclave/enclave/enclave.cpp#L159-#1197. Last accessed
June 20, 2019.

Paul Garden. The IoT Requires A New Type Of Low-Power Processor.
https://www.electronicdesign.com/communications/iot-requires—
new-type-low-power—processor, April 2014. Last accessed July 9, 2019.

Inc. GlobalPlatform. TEE Client API Specification, Version 1.0. https://
globalplatform.org/specs-library/, July 2010. Last accessed July 22, 2019.

Inc. GlobalPlatform. TEE Internal Core API Specification, Version 1.1. https://
globalplatform.org/specs—1library/, June 2014. Last accessed June 25, 2019.

Miraje Gentilal, Paulo Martins, and Leonel Sousa. TrustZone-backed bitcoin wallet. In
Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems,
CS2@HiPEAC 2017, Stockholm, Sweden, January 24, 2017, pages 25-28, 2017.

GlobalPlatform. https://globalplatform.org/. Last accessed July 12, 2019.

gRPC. gRPC Authentication. https://grpc.io/docs/guides/auth/. Last ac-
cessed July 10, 2019.

gRPC. gRPC framework. https://grpc.io/. Last accessed July 22, 2019.

Hyperledger. Hyperledger Fabric Documentation. https://hyperledger—
fabric.readthedocs.io/en/release-1.4/. Last accessed July 10, 2019.

ICONFINDER. https://www.iconfinder.com. Last accessed July 11, 2019.

intel Developer Zone. What does it implies to disable syscall in Intel SGX.
https://software.intel.com/en-us/forums/intel-software-guard-
extensions-intel-sgx/topic/539803,2015/2016. Last accessed on August 22,
2019.

Joab Jackson. Fresh Spectre Vulnerabilities May Force Cloud Providers to Disable Intel
Hyper-Threading. https://thenewstack.io/fresh-spectre-exploits—
may—-force-cloud-providers—-to-disable-intel-hyper-threading/,
May 2019. Last accessed on August 26, 2019.

ARM Limited. ARM Security Technology Building a Secure Sys-
tem using TrustZone Technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492¢c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2005-2009. Last accessed
July 10, 2019.

Linaro. OP-TEE Documentation. https://optee.readthedocs.io/. Last accessed
July 10, 2019.

https://github.com/hyperledger-labs/fabric-private-chaincode/blob/master/ecc_enclave/enclave/enclave.cpp#L76-#L130
https://github.com/hyperledger-labs/fabric-private-chaincode/blob/master/ecc_enclave/enclave/enclave.cpp#L76-#L130
https://github.com/hyperledger-labs/fabric-private-chaincode/blob/master/ecc_enclave/enclave/enclave.cpp#L159-#L197
https://github.com/hyperledger-labs/fabric-private-chaincode/blob/master/ecc_enclave/enclave/enclave.cpp#L159-#L197
https://github.com/hyperledger-labs/fabric-private-chaincode/blob/master/ecc_enclave/enclave/enclave.cpp#L159-#L197
https://www.electronicdesign.com/communications/iot-requires-new-type-low-power-processor
https://www.electronicdesign.com/communications/iot-requires-new-type-low-power-processor
https://globalplatform.org/specs-library/
https://globalplatform.org/specs-library/
https://globalplatform.org/specs-library/
https://globalplatform.org/specs-library/
https://globalplatform.org/
https://grpc.io/docs/guides/auth/
https://grpc.io/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://www.iconfinder.com
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/539803
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/539803
https://thenewstack.io/fresh-spectre-exploits-may-force-cloud-providers-to-disable-intel-hyper-threading/
https://thenewstack.io/fresh-spectre-exploits-may-force-cloud-providers-to-disable-intel-hyper-threading/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://optee.readthedocs.io/

BIBLIOGRAPHY 42

[Lin16]

[LNET18]

[NMB*16]

[0gil6]

[ogil7]

[0gil8]

[ogil9a]

[ogi19b]

[ogil9c]

[ogi19d]

[ogil9e]

[Osel8]

[Pail6]

[QEM]

Linaro. BKK16-110 A Gentle Introduction to Trusted Execution and OP-
TEE. https://www.slideshare.net/linaroorg/bkkl6110-a-gentle—
introduction-to-trusted-execution-and-optee, 2016. Last accessed July
29, 2019.

Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Peter R. Pietzuch, and Emin Giin Sirer.
Teechain: Reducing Storage Costs on the Blockchain With Offline Payment Channels. In
Proceedings of the 11th ACM International Systems and Storage Conference, SYSTOR 2018,
HAIFA, Israel, June 04-07, 2018, page 125, 2018.

Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah Martin. Trust-
Zone Explained: Architectural Features and Use Cases. In 2nd IEEE International Conference
on Collaboration and Internet Computing, CIC 2016, Pittsburgh, PA, USA, November 1-3,
2016, pages 445-451, 2016.

optee_os github issue. Adding #include<math.h> to a TA. https://github.com/0OP—
TEE/optee_os/issues/1158, 2016. Last accessed July 10, 2019.

optee_os github issue. Include new 3rd party library into TA and call library function in
TA code. https://github.com/OP-TEE/optee_os/issues/1255, 2017. Last
accessed July 10, 2019.

optee_examples github issue. Remote Attestation process/protocol for OP-TEE. https:
//github.com/linaro-swg/optee_examples/issues/26,2018. Last accessed
June 20, 2019.

optee_client github issue. TA calls by multi-threaded host application. https://
github.com/OP-TEE/optee_client/issues/168, August 2019. Last accessed
August 13, 2019.

optee_os github issue. Integrity check & encryption of early TA. https://github.com/
OP-TEE/optee_os/issues/3095, 2019. Last accessed June 23, 2019.

optee_os github issue. remote attestation for OP-TEE. https://github.com/OP-TEE/
optee_os/issues/3057,2019. Last accessed June 20, 2019.

optee_os github issue. (shared) memory: questions. https://github.com/OP-TEE/
optee_os/issues/2964, 2019. Last accessed July 23, 2019.

optee_os github issue. Socket API (TCP): support for serialization and for any messaging
library? https://github.com/OP-TEE/optee_os/issues/2981, 2019. Last
accessed July 23, 2019.

Victor Osetskyi. What Is Smart Contracts Blockchain and Its Use Cases
in Business. https://dzone.com/articles/what-is—-smart—-contracts-
blockchain-and-its—use—cas—1, June 2018. Last accessed July 10, 2019.

Vijay Pai. gRPC Design and Implementation - Stanford Platform Lab Seminar. https:
//platformlab.stanford.edu/Seminar20Talks/gRPC.pdf, April 2016. Last
accessed August 11, 2019.

QEMU. QEMU the FAST! processor emulator. https://www.gemu.org/. Last accessed
July 22, 2019.

https://www.slideshare.net/linaroorg/bkk16110-a-gentle-introduction-to-trusted-execution-and-optee
https://www.slideshare.net/linaroorg/bkk16110-a-gentle-introduction-to-trusted-execution-and-optee
https://github.com/OP-TEE/optee_os/issues/1158
https://github.com/OP-TEE/optee_os/issues/1158
https://github.com/OP-TEE/optee_os/issues/1255
https://github.com/linaro-swg/optee_examples/issues/26
https://github.com/linaro-swg/optee_examples/issues/26
https://github.com/OP-TEE/optee_client/issues/168
https://github.com/OP-TEE/optee_client/issues/168
https://github.com/OP-TEE/optee_os/issues/3095
https://github.com/OP-TEE/optee_os/issues/3095
https://github.com/OP-TEE/optee_os/issues/3057
https://github.com/OP-TEE/optee_os/issues/3057
https://github.com/OP-TEE/optee_os/issues/2964
https://github.com/OP-TEE/optee_os/issues/2964
https://github.com/OP-TEE/optee_os/issues/2981
https://dzone.com/articles/what-is-smart-contracts-blockchain-and-its-use-cas-1
https://dzone.com/articles/what-is-smart-contracts-blockchain-and-its-use-cas-1
https://platformlab.stanford.edu/Seminar20Talks/gRPC.pdf
https://platformlab.stanford.edu/Seminar20Talks/gRPC.pdf
https://www.qemu.org/

BIBLIOGRAPHY 43

[Res]

[rip]
[RMCt18]

[SAB15]

[SAGT16]

[SDFT19]

[Sell6]

[Stal8]

[Sza94]

[Tit18]

[XWSH17]

[YXC+18]

[ZWAS18]

Microsoft Research. CCF’s documentation. https://github.com/Microsoft/CCF.
Last accessed August 19, 2019.

Ripple. https://www.ripple.com/. Last accessed on August 22, 2019.

Ana Reyna, Cristian Martin, Jaime Chen, Enrique Soler, and Manuel Diaz. On blockchain
and its integration with [oT. Challenges and opportunities. Future Generation Comp. Syst.,
88:173-190, 2018.

Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted Execution
Environment: What It is, and What It is Not. In 2015 IEEE TrustCom/BigDataSE/ISPA,
Helsinki, Finland, August 20-22, 2015, Volume 1, pages 57-64, 2015.

Carlton Shepherd, Ghada Arfaoui, lakovos Gurulian, Robert P. Lee, Konstantinos Markanton-
akis, Raja Naeem Akram, Damien Sauveron, and Emmanuel Conchon. Secure and Trusted
Execution: Past, Present, and Future - A Critical Review in the Context of the Internet of
Things and Cyber-Physical Systems. In 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin,
China, August 23-26, 2016, pages 168-177, 2016.

Vasilios A. Siris, Dimitrios Dimopoulos, Nikos Fotiou, Spyros Voulgaris, and George C.
Polyzos. IoT Resource Access utilizing Blockchains and Trusted Execution Environments.
In 2019 Global IoT Summit, GIoTS 2019, Aarhus, Denmark, June 17-21, 2019, pages 1-6,
2019.

Surenthar Selvaraj. Overview of an Intel Software Guard Extensions Enclave Life Cy-
cle. https://software.intel.com/en-us/blogs/2016/12/20/overview-
of-an-intel-software-guard-extensions—enclave-life-cycle, De-
cember 2016. Last accessed July 9, 2019.

StackExchange. Does the ARM TrustZone technology support sealing a private key under
a code hash? https://security.stackexchange.com/questions/56203/
does-the-arm-trustzone-technology-support-sealing-a-private-
key—-under—a-code-has, 2014/2018. Last accessed August 15, 2019.

Nick Szabo. Smart Contracts. http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/
szabo.best.vwh.net/smart.contracts.html, 1994. Last accessed 10 July, 2019.

Daniel Tittlus. Blockchain - Smart Contracts, Smart Cities, Smarte Welt. epubli, Berlin
Germany, 2018.

Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass, Cesare Pautasso,
and Paul Rimba. A Taxonomy of Blockchain-Based Systems for Architecture Design. In
2017 IEEE International Conference on Software Architecture, ICSA 2017, Gothenburg,
Sweden, April 3-7, 2017, pages 243-252, 2017.

Rui Yuan, Yubin Xia, Haibo Chen, Binyu Zang, and Jan Xie. ShadowEth: Private Smart
Contract on Public Blockchain. J. Comput. Sci. Technol., 33(3):542-556, 2018.

Lijing Zhou, Licheng Wang, Tianyi Ai, and Yiru Sun. BeeKeeper 2.0: Confiden-
tial Blockchain-Enabled IoT System with Fully Homomorphic Computation. Sensors,
18(11):3785, 2018.

https://github.com/Microsoft/CCF
https://www.ripple.com/
https://software.intel.com/en-us/blogs/2016/12/20/overview-of-an-intel-software-guard-extensions-enclave-life-cycle
https://software.intel.com/en-us/blogs/2016/12/20/overview-of-an-intel-software-guard-extensions-enclave-life-cycle
https://security.stackexchange.com/questions/56203/does-the-arm-trustzone-technology-support-sealing-a-private-key-under-a-code-has
https://security.stackexchange.com/questions/56203/does-the-arm-trustzone-technology-support-sealing-a-private-key-under-a-code-has
https://security.stackexchange.com/questions/56203/does-the-arm-trustzone-technology-support-sealing-a-private-key-under-a-code-has
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

Pointers to Code

An overview of the code written during the master thesis is given in the following:

Coffee tracking chaincode for Hyperledger Fabric. To get to know Hyperledger Fabric, we
have written a chaincode (in Go programming language) which tracks the consumed coffees of
registered people. Since this chaincode is also used for performance measurements it can be
found in the performance_and_power measurements directory of the private github repository
fabric-optee-chaincode.!

Coffee tracking chaincode for FPC. To get to know FPC, we have written a chaincode in C++
which tracks the coffee consume for registered offices. The chaincode, the README with a detailed
description of the example and the script for running the example can be found in the private
github repository fabric-secure-chaincode-my-example.? The repository itself is a copy of
the official fabric-private-chaincode repository [fpca], only the coffee tracking example is
part of the master thesis.

Implementation of the FOC prototype. The master branch of the private github repository
fabric-optee-chaincode? contains the implemented FOC prototype.

Code for performance and power measurements. The performance_power measurements
directory in the master branch of the private github repository fabric-optee-chaincode* as
well as the performance-latency-breakdown branch contain the code used for performance
and power measurements.

'https://github.com/piachristel/fabric-optee-chaincode/tree/master/
performance_power_measurements/plain-fabric/coffee_tracking.chaincode/, last accessed on
14.08.2019

’https://github.com/piachristel/fabric-secure-chaincode-my-example/tree/master/
ecc_enclave/enclave/coffee_tracking/, last accessed on 14.08.2019,

https://github.com/piachristel/fabric-secure-chaincode-my-example/blob/master/fabric/
sgxconfig/demo/run_sgx_coffee_tracking.sh, last accessed on 14.08.2019

3https://github.com/piachristel/fabric-optee-chaincode/, last accessed on 14.08.2019

“https://github.com/piachristel/fabric-optee-chaincode/tree/master/
performance_power_measurements, last accessed on 14.08.2019

44

https://github.com/piachristel/fabric-optee-chaincode/tree/master/performance_power_measurements/plain-fabric/coffee_tracking_chaincode/
https://github.com/piachristel/fabric-optee-chaincode/tree/master/performance_power_measurements/plain-fabric/coffee_tracking_chaincode/
https://github.com/piachristel/fabric-secure-chaincode-my-example/tree/master/ecc_enclave/enclave/coffee_tracking/
https://github.com/piachristel/fabric-secure-chaincode-my-example/tree/master/ecc_enclave/enclave/coffee_tracking/
https://github.com/piachristel/fabric-secure-chaincode-my-example/blob/master/fabric/sgxconfig/demo/run_sgx_coffee_tracking.sh
https://github.com/piachristel/fabric-secure-chaincode-my-example/blob/master/fabric/sgxconfig/demo/run_sgx_coffee_tracking.sh
https://github.com/piachristel/fabric-optee-chaincode/
https://github.com/piachristel/fabric-optee-chaincode/tree/master/performance_power_measurements
https://github.com/piachristel/fabric-optee-chaincode/tree/master/performance_power_measurements

Performance Measurements

45

46

~d-4 uwnjos ur punoy

9q ued QeI AIN[Iey Ay, - UWIN[0D UT Aouaje] Y} I0J awes Juar[d | JoJ ndySnoIy) oy 0) eanera1 paueyd sey ndySnoxy) oy) yorym Aq J0308J oY) SMOYS J-I, UWNOD AU, "SW UT SUOTjoesues) a[urs

[T® Jo Aouaje] 9y} JOAO UBAW) SI T UWIN[OD UT AOU)R] Y], '], UWIN[OD UI U LIM pue [s/x31] ur painseaur st Indy3noay], “3urpealy) piom [euLiou Awwnp I0j pue DJY3 noynm DOy 10j ‘aurjeseq
Ay 10 ‘vonejuawedwr DO [BUISLIO Ay} JOJ JUOP I8 SJUSWAINSEI[\ "Uondesues) Axsnb apooureyd Sunjors) 99JJ0d Y JO UONNIAXA AY) JOJ JudwaInseaw Aouaje| pue ndy3nory], ;1 g dqeL

APPENDIX B. PERFORMANCE MEASUREMENTS

2000 E¥ET €€0°8C 69%'9 8¥T 67T 0 SSET L9T8T TLY'E SOECI 0 9STI T9T #9L'1 SIST9 0 L98°0T LEV'SE Dd¥U3 moyym
dd AL I J1 T| ¥4 di1 I dJ71 T| ¥4 di1 I J71 T| ¥4 L g
SHURIP 8 SHuRIP SHUI T JuRIp T
(¥ = SAVTIHI WAN DA ‘8 = diS) NINHO ‘Seew 4-OUuIAId
Y000 9I¥'1 S0¢ SI'9 T9T'60T 0 €6¢1 0 €v¥e 6TILIT 0 ISTT €£6'9C SLLT 90509 0 €£S°1T ¥20¥E DS moym
dd AL I d71 T| ¥4 4L I d71 T ¥4 4L I d71 1| ¥4 L g
SHuRIP 8 SHURIP SHUIP T JuaIpP |
(91 = SAVAIHL WAN DD ‘8 = dS) NINHQ ‘Seew-0UIAID
- P6ET - - - - TSI - - - - €691 - - - - - - | Surpeaay) priom [euriou
10000 L9%'1 G'I€ €06'S L9T'TOT 0 6T¥1 L9908 9¥E'€ T9L¥II 0 T19TT L90°'LT #9L'T LOS'09 0 L9Y'IT €¥¢ Dd¥s noym
0 9IST 9¥%8C V¥LI'E +0°8C 0 SLET 989 #89'T 881 0 SL8T TTIT 9901 w6 0 TE€IT 65€8'8 (91=S00 WNN) durpPseq
(I1=S¥ATTOd XY
‘1=S9dTTOd NIW
0 T90T LLTT 188€ SOI'SE 0 99%'T TTLT €T9T 989%I1 0 T106T 660C €SOT STS6 0 ¥011 9%0°6 | ‘8=SOJHAN) aurpaseq
0 ¥'E GS86C SE€ET 8¥L9T 0 6CI'E L¥LT 6LTIT TSS¥I 0 ¥8€CT €£60C 6£8°0 SS6 0 8.8 8¢II (8=S0DWNN) durpseq
(I=S9dTTOd XN
‘I=SYATIOd NIN
0 8¥8C 97TLT LOST 60£6C 0 SL8CT TSLT T6ET ESY¥I 0 E€rI'C 1°S0C €€60 THL6 0 L'S6 Thr ol | ‘$=S00WAN) auraseq
0 I¥8T GTTE 69ST SILYT 0 L¥T €08T 6L¥T +STYI 0 881 +€IT TL6O 99¢6 0 SE€IT ¥96 ($=S00 WNN) durpPseq
0 TL6'T 6'€¥C 9S0F 8EL'TE 0 LSLT €LIT 8LTT 16€8I1 0 IS9T T¥OT TITI 98L6 0 L€TI TLO'S auraseq
P10 00T STET LI9L 195°8TE 0 7Tl 9T 9SS°'€ T8EESI 0 IST'T L999C 8E€L'T TL6YL 0 L9T'ET SET'Eh ($=S00HAN) [BUISIIO
€€0'0 8011 £L99'%CT S9T'L 15S0°0TE 0 86I'T L999C 8¥E'€ LES6VI 0 TILI'T L909C ¥ILT LYPSIL 0 L9TTT L99'Y¥ [eurgLIo
dd AL I d1 T| ¥4 di1 I J1 T| ¥4 di1 I J71 1| ¥4 L T
SUCH O EY SHURIP § SHURIP T JuRIp T
(8 = SAYAIHL WAN DD ‘8 = diS) NINHO ‘Seew{-OUIAId

47

-4 Uwnjod ur punoy

9q ued 91kl AIN[IRY Y, -] UWN[0d ur Aousle] oY) J0J dwes Juald | Joj IndySnoiyy ay) 03 aane[ar pasueyd sey IndySnoyy oY) yorym £q J0308J 94} SMOYS I, UWN[OD Y, 'SW UI SUOOBSUERT) 9[UIS

ITe JO Aouaje[oY) JOAO UBSW 9Y) ST T UWN[OO Ul AOUJE] YL, "], UWIN[OD UL US)ILIM pue [$/X)] ul painseaw st indySnoiy], ‘Surpeaiy) piiom [eutiou Awwnp 10y pue DJYS noyim DO J10J ‘ouraseq
ay 1oy ‘uonejuswardur DO [UISLIO Y} JOJ QUOP dIe SJUSWAINSBIA] "UOTIOBSUERT) AI9nb 9podureyd Sun[ors) 99Jj00 Y} JO UONNIIXS AY) J0j Judwainseaw Aouaje] pue ndySnoIy], :7°g dqeL

Sur
- L69°E - - - - 86E'¢ - - - - 1681 - - - - - - | -peday) ppiom [euriou
0 #6S0 9'8 TS80I 81TT6S 0 8850 S8 STLY 8S8°LST 0 190 L6 +¥0°€ 111991 0 L9Y'+I TLSHS DS moym
0 690¢ €¥901 L09T ¥IS'L 0 9EL'T 88Y6 VT ¥ITY 0 96L1 LTT9 ¥II'T 1T¢ 0 89¥¢ T88T (8=SODMAN) durpPseq
0 L90€ ¥'9L01 609C 8THL 0 6£LT +196 19V 1 6SI'Y 0 LLLT 6€79 STI'T $0T'€E 0 IS¢ L¥8T ($=S0DWNN) durpPseq
0 €L0°¢ T'L80T $09T SSEL 0 8£9CT t'ee6 9IST $8TY 0 T8LT €089 €TI'T ILT'E 0 8¢€SE 6T87T (z=S00HAN) durpPseq
0 #99C +0S6 €00€ €I+'8 0 ISET 88¢8 TOLT L9LY 0 €ELT €819 #SI'T €€TE 0 89s¢ 108C durpseq
0 L£90 SE€8 €¥TI 9€6'LY6 0 9¥9'0 L9¥'8 TI'9 I¥L'99% 0 LL90O L98'8 1S6'T £10°STT 0 T'€l 9T9L [eurgLIo

g4 diL L d71 T ¥4 d1L L d71 T ¥4 d1L L d71 T ¥4 L T

spudIpP 8 SHURIP SHURIP T P |
(¥ = SAYTIHI WAN 94D) Id A1roqdsey

Sur
- EPST - - - - GEST - - - - 9691 - - - - - - | -peday) ppom [euriou
2000 8SE'T 9°0S 80L9 1997l 0 8LET L9C'IS ST¥'e 8EL'L9 0 STI 99y 8LLT 6SI'SE 0 L9T'LE 8LL'6T Dd¥S noym
0 SSST 81Ivb LTI'E 18081 0 $6TT L96E€ €¥L'1 SLOOT 0 vhL'T S10€ LyIT €99 0 67TLI 1I8LS (8=SDDMAN) durpPseq
0 S£9T €¥Sh $E0'€ 68S°LI 0 8LTT LTO6GE 9SL'T LLIOI 0 TLT 996T €91'T +L9 0 vTLL L6LS ($=S0DWNN) dulpseq
0 8£9CT €I¥b TEOE +01°8I 0 €£TT SELE €6LT +0LOT 0 891 T118C 1611 1L 0 €L9T 1L6S (Z=S0DWNN) durseq
0 EPI'T €8VE 6TLE S6'TT 0 LSL'T S'S8T €LTT 166€l 0 TO9T €09C 8YTI1 6L9L 0 ST9I ¥SI°9 durpseq
SI00 vETT Sth 98v'9 €LESLI 0 8STI L9E'SY LYI'E TLELS 0 92CT Tty 1€91 11TSY 0 L909¢ SIL'LT [eur3LIo

¥4 4L L d71 T ¥4 4L L d71 T ¥4 4L L d71 1| ¥4 L 1

SpudIp g SJURIP SJURIP T P |
(¥ = SAVIIHI WAN DD ‘b = diS) NINFO ‘seewrg-19310

APPENDIX B. PERFORMANCE MEASUREMENTS

	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Smart Contract
	2.3 Hyperledger Fabric
	2.4 Trusted Execution Environment (TEE)
	2.5 Hyperledger Fabric Private Chaincode (FPC)
	2.6 Related Work

	3 Goals and Motivations
	4 Design and Implementation
	4.1 Architecture
	4.2 API
	4.3 Implementation

	5 Rationale
	5.1 Design
	5.2 Implementation

	6 Evaluation
	6.1 Security Evaluation
	6.2 Comparison with FPC
	6.3 Interoperability of FPC and FOC peers
	6.4 Performance and Power Measurements

	7 Conclusion and Future Work
	7.1 Future Work

	A Pointers to Code
	B Performance Measurements

