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Abstract

Quorum systems are overlapping sets of servers that ensure the consistency
of systems. They are used to deal with failures in distributed systems. Even
though the theory of Byzantine quorum systems exists for a long time, they
are not really used in real life systems. In this work we show a way to make
them practical. Our aim is to construct a system that tolerates more failures
than n > 3f .
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1
Introduction

In distributed trust, as the name suggests, we do not rely on a single node, instead we
spread the trust amongst a group of nodes. This allows us to have failures and corrup-
tions in a system but still get the right answer. Quorum systems are well known tools
to implement the distributed trust in data repositories [5]. The traditional trust is the
threshold trust, implemented by threshold quorum systems, which ensures the trust by
numbers. In the threshold case we have n nodes in total and f faulty (Byzantine) nodes.
This typically requires n > 3f . The threshold trust is symmetric, all nodes trust equally
and all nodes are equally trusted.

In this paper we focus on Byzantine Quorum Systems. With Byzantine Quorum systems
it is possible to build distributed systems that allow more than this previous n > 3f
failures. This trust is still symmetric, all nodes trust equally but not all nodes are equally
trusted.

In this work we introduce the reader to quorum systems, including the Byzantine quorum
systems. Additionally we want to create an algorithm for a generalized Byzantine broad-
cast protocol to show how Byzantine quorum systems are implemented in programs. The
main purpose of this work is to reduce the amount of correct servers in quorum systems
so that we can deal with more failures at the same time. For this we construct a system
where we use attributes to differentiate servers in the system. With this differentiation
and the rules we use we are able to construct smaller quorums without affecting the
availability or the consistency of a system. In this way we try to create a theoretically
correct system which allows more failures than the threshold case with n > 3f .
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2
Preliminaries

2.1 Quorum Systems
Quorum systems according to Malkhi and Reiter [5] are well-known tools for ensuring
the consistency and the availability of replicated data despite the benign failure of data
repositories. Consistency in this context states that after a transaction in a distributed
system every server should have the same information. Availability states that the servers
should respond in an acceptable amount of time. There are different ways to construct
such quorums. In this work the focus lies on Byzantine quorum systems which are
explained in section 2.2. To work with quorum systems we assume that we have a
universe of servers U . A quorum system then is a set of subsets of U which includes
the individual quorums. According to the definition of quorum systems each of these
quorums intersect.

Definition 1. Let the universe U be a set of servers. A quorum system Q ⊆ 2U is a non-
empty set of subsets of U , every pair of which intersects. EachQ ∈ Q is called a quorum.

2.1.1 Majority Quorum System
In the majority quorum system [1] the majority of the servers are assumed to be correct.
That means that it tolerates f < n

2
faulty servers. A quorum in this case contains n+1

2

servers. It is possible to construct weighted majority by assigning multiple votes to some
servers in the system.

2
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Example 1. Imagine a system with 20 servers, so n = 20. The maximum number of
faulty servers can be calculated as follows

f <
20

2

f < 10

f = 9

2.1.2 Grid Quorum System
In a grid quorum system [1] we have k · k = n servers that are arranged in a square. A
quorum is a full row and one element out of each row below that full row.

Example 2. Imagine a system with k = 5, so n = 5 · 5 = 25 servers. In this example we
have all the servers in the second row and one server in each row below in the quorum,
as it is shaded in figure 2.1. This example works because it doesn’t matter which row we
take as a starting point, when we take a quorum with this specifications it will always
intersect in at least one server from another quorum.

Figure 2.1. A quorum system on n = 25 servers.

2.2 Byzantine Quorum System
To introduce the Byzantine Quorum Systems we will use the construction of the Dissem-
ination quorum systems from Malkhi and Reiter [5]. We assume that we have a universe
U of servers, where |U | = n, and an arbitrary number of clients that are distinct from
the servers. A quorum system Q ⊆ 2U is a non-empty set of subsets of U , every pair of
which intersect. Each Q ∈ Q is called a quorum.

The servers and clients that obey their specifications are correct. The faulty servers
that exist may deviate from it’s specification arbitrarily. A fail-prone system B ⊆ 2U is a
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non-empty set of subsets of U , none of which is contained in another, such that some
B ∈ B contains all the faulty servers [5].

Definition 2. A quorum system Q is a Byzantine quorum system for a fail-prone system
B if the following properties are satisfied [5].

Consistency: ∀Q, Q ∈ Q ∀B ∈ B : Q ∩Q * B

Availability: ∀B ∈ B ∃Q ∈ Q : B ∩Q = ∅

Theorem 1. Let B be a fail-prone system for a universe U. Then there exists a Byzantine
quorum system for B iff (if and only if) Q = {U \ B : B ∈ B is a Byzantine quorum
system for B[5].

Corollary 2. Let B be a fail-prone system for a universe U. Then there exists a Byzantine
quorum system for B iff for all B, B, B ∈ B, U * B ∩B ∩B. In particular (that
would be the threshold Byzantine quorum system) suppose that B = {B ⊆ U : |B| = f}.
Then there exists a Byzantine quorum system for B iff n > 3f [5].

Example 3. Garcia-Perez and Gotsman [4] provided in their work from 2018 an example
of such a Byzantine quorum system with n = 4. Consider the universe U = {1, 2, 3, 4},
the quorum system Q = {{1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}} and a fail-prone system
B = {{2}, {3, 4}}.

Then (Q,B) is a Byzantine quorum system. Consistency holds because all quorums in
Q intersect at 1, which does not belong to any element of B. Availability holds because
both {1, 2} and {1, 3, 4} are the minimal quorums. This can be proved with definition 2
in this chapter.

2.2.1 The threshold Byzantine quorum system
The threshold case for the Byzantine quorum system is that we have a system that tol-
erates n > 3f faulty servers. In the threshold case we can simply calculate how many
faulty servers for each system size can be tolerated. Also we can derive how big the
quorum size has to be and how many servers in a quorum have to be correct ones. We
have 3 properties which have to hold.

Definition 3. Two Byzantine quorums intersect in at least one correct server.

Definition 4. There is at least one quorum with only correct servers.

Definition 5. The majority of a Byzantine quorum has to be correct servers.
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We have a system with n servers and f faulty servers. The number of correct nodes
is therefore n− f . A Byzantine quorum is a set of more than n+f

2
servers.

Example 4. Imagine a system with 7 servers. So we know that n = 7, n > 3f and the
Byzantine quorum has to be greater than n+f

2
.

n > 3f ⇔ f <
n

3

For n = 7, we get

f <
7

3

f = 2

This calculation gives us the number of faulty servers in a system of n = 7. Let us
now calculate how many servers are in a quorum. We need at least

n+ f

2

servers. So for n = 7, f = 2 we get

>
7 + 2

2

>
9

2

= 5

The quorum size in this example therefore is 5. Now we want to calculate how many
servers in a Byzantine quorum are correct ones. For this we can take the number of
servers that are in a Byzantine quorum and subtract the faulty ones.

>
n+ f

2
− f

=
n+ f − 2f

2
=
n− f

2
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>
n− f

2

Now we know that the number of correct servers c in a Byzantine quorum has to be
greater than n−f

2
. In our example this would mean:

c >
n− f

2

For n = 7, f = 2:

c >
7− 2

2

c >
5

2

which gives
c = 3

The number of correct servers in a quorum from this example therefore is 3. In
figure 2.2 we now see an example of two quorums in a system with n = 7. The faulty
servers are marked with a cross. We can see that the quorum size is 5 as calculated, the
number of correct servers in a quorum is 3. When we intersect these two quorums we
also see that there is one correct server in the intersection. We also can take the 5 upper
servers from the figure and create a quorum with only correct servers. This proves all the
definitions above and therefore this example is a working Byzantine quorum system.

Figure 2.2. Quorum Q1 and Q2 of a system with 7 servers.
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Figure 2.3. Quorum Q3 and Q1 ∩Q2 of a system with 7 servers.

2.3 Differentiating Servers by Attributes
In his work that was published in the 2001 International Conference on Dependable
Systems and Networks [2], Cachin constructed an example of a Byzantine quorum
system where he used the location and the operating system of the servers as attributes.
To understand the following example we need to introduce some notation. Let class
denote the name of an attribute and also the set of attribute values. For c ∈ class, let
χc : 2P → {0, 1} be the characteristic function of the attribute on a set of parties, i.e.,
χc(S) = 1 if and only if class(i) = c for some i ∈ S [2]. Θ describes how many out
of how many have to be true. Let class1 = {a, b, c, d} describe the locations and let
class2 = {α, β, γ, δ} describe the operating systems. The distributed system in this
example tolerates the simultaneous failure of all the servers in one location and all the
servers of one operating system. To check if the properties hold we also need to check
the Q3 condition, which states that three sets in B will not cover the universe of servers
U . The arbitrary structure in this case is characterized as follows:

g(S) = Θ4
2(xa, xb, xc, xd) ∨Θ4

2(yα, yβ, yγ, yδ)

where

xv = Θ4
2(χv(S) ∧ χα(S), χv(S) ∧ χβ(S), χv(S) ∧ χγ(S), χv(S) ∧ χδ(S))

for v ∈ class1, and

yν = Θ4
2(χa(S) ∧ χν(S), χb(S) ∧ χν(S), χc(S) ∧ χν(S), χd(S) ∧ χν(S))

for ν ∈ class2.
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This equation explained in words tells us that there are not two out of 4 locations,
where 2 or more operating systems fail at the same time. So there can just be one
location where 2 or more servers fail at the same time. The first Θ of the first equation
states that there cannot be 2 out of 4 operating systems where 2 or more locations
fail. So there can just be one operating system where 2 or more servers at the same
time fail. The quorum would be the negation of the arbitrary structure. This would be
g(S) = Θ4

2(xa, xb, xc, xd) ∨ Θ4
2(yα, yβ, yγ, yδ). All servers that are not in this previous

described arbitrary structure form a quorum.

Example 5. We arrange the servers in a grid where elements class1 states the locations
and elements of class2 states the operating system. In the upper left corner of figure 2.2.
we assume that all the servers in location b (Tokyo) fail, and every operating system beta
(Windows NT). So in this case the fail-prone set is:

{aβ, bα, bβ, bγ, bδ, cβ, dβ}

The quorum in this case is:

{aα, aγ, aδ, cα, cγ, cδ, dα, dγ, dδ}

In the upper right corner of figure 2.2. we crossed every location c (Zurich) out, and
every operating system γ (Linux). So in this case the fail-prone set is:

{aγ, bγ, cα, cβ, cγ, cδ, dγ}

The quorum in this case is:

{aα, aβ, aδ, bα, bβ, bδ, dα, dβ, dδ}

In the lower left corner of figure 2.2. we crossed every location d (Haifa) out, and
every operating system α (AIX). So in this case the fail-prone set is:

{aα, bα, cα, dα, dβ, dγ, dδ}

The quorum in this case is:

{aβ, aγ, aδ, bβ, bγ, bδ, cβ, cγ, cδ}
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Figure 2.4. Three fail-prone sets and three quorums on n = 16 servers and the union of
three fail-prone sets to check the Q3 condition.

The following figure shows these three different quorums and their fail-prone sets
like they are described above. To check the Q3 condition we added the union of these
three fail-prone sets. We can see that there is still a server left that is not included in
this union, therefore the Q3 holds. In chapter 4 of this work, we will also prove the
availability and the consistency for similar examples.



3
A generalized Byzantine broadcast

protocol

3.1 Byzantine Consistent Broadcast
With the system model from Dahlia Malkhi and Michael Reiter [5] here we generalize
an algorithm from the Reliable and Secure Distributed Programming book [3] that was
constructed for the threshold Byzantine quorum system n > 3f . This gives us an idea
how an algorithm constructed with the Byzantine Quorum System works. The algorithm
we present is the adapted Signed Echo Broadcast algorithm 3.17 [3] which uses an
authenticated perfect links abstraction and a cryptographic digital signature scheme.

In this algorithm the sender sends a message m to every server in the system and
then waits for an answer from the receivers of the message. The receivers have to sign the
message and return it to the sender. The sender expects a Byzantine quorum of servers to
witness the message.

On the next page there is the definition we use for this algorithm. The events we
use are the request for the broadcast and the indication for the deliver. Next there are four
properties that have to hold for the Byzantine consistent broadcast. The first property
is the Validity, which states that when a correct process p broadcasts a message m then
every correct process eventually delivers m. Second we have the No duplication property
that states that every correct process delivers not more than one message. Third the

10
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Integrity which states that if some correct process delivers a message m with sender p
and process p is correct, then m was previously broadcast by p. And last we have the
Consistency property which states that if some correct process delivers a message m and
another correct process delivers a message m′, then m = m′ [3].

Module 1 Interface and properties of Byzantine consistent broadcast [3]
Module:

Name: ByzantineConsistentBroadcast, instance bcb, with sender s.

Events:
Request: 〈 bcb, Broadcast | m 〉: Broadcasts a message m to all processes. Executed
only by process s
Indication: 〈 bcb, Deliver | p,m 〉: Delivers a message m broadcast by process p

Properties:
BCB1: Validity: If a correct process p broadcasts a message m, then every correct
process eventually delivers m.

BCB2: No duplication: Every correct process delivers at most one message.

BCB3: Integrity: If some correct process delivers a message m with sender p and
process p is correct, then m was previously broadcast by p.

BCB4: Consistency: If some correct process delivers a message m and another
correct process delivers a message m′, then m = m′.
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Algorithm 1 Generalized Signed Echo Broadcast
Implements:

ByzantineConsistentBroadcast, instance bcb, with sender s.

Users:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bcb, Init 〉 do
sentecho := FALSE;
sentfinal := FALSE;
delivered := FALSE;
echos :=

[
⊥
]N ; Σ :=

[
⊥
]N

upon event 〈 bcb, Broadcast | m 〉 do // only process s
forall q ∈ Π do

trigger send message 〈 al, Send | q,
[
SEND, m

]
〉;

upon receiving message 〈 al,Deliver | p,
[
SEND, m

]
〉 such that p = s and sentecho = FALSE do

sentecho := TRUE;
σ := sign(self, bcb‖self‖ECHO‖m)
trigger send echo 〈 al, Send | s,

[
ECHO, m, σ

]
〉;

upon receiving echo 〈 al, Send | p,
[
ECHO, m, σ

]
〉 do // only process s

if echos[p] = ⊥ ∧ verifysig(p, bcb‖p‖ECHO‖m,σ) then
echos[p] := m; Σ [p] := σ;

upon exists m 6= ⊥ such that {p | echos[p] = m} ∈ Q and sentfinal = FALSE do
sentfinal := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q,
[
FINAL, m, Σ

]
〉;

upon event 〈 al,Deliver | p,
[
FINAL, m, Σ

]
〉 do

if {p | Σ[p] 6= ⊥ ∧ verifysig(p, bcb‖p‖ECHO‖m, Σ[p])} ∈ Q
and delivered = FALSE do

delivered := TRUE;
trigger 〈 bcb, Deliver | s,m〉;



4
Generalized Quorums made practical

4.1 Differentiating servers by location and operating sys-
tem

To construct generalized quorum systems that could actually be used in real word
environments we build on the work of Cachin [2]. There he constructs an example with a
system of 16 servers with two different attributes. The attributes he used are the location
and the operating system. This example can also be found in the preliminaries of this
thesis in chapter 2. The idea of this system is, that when we have servers at each location
with an amount of different operating systems, and all servers of a specific operating
system and all servers in a specific location fail or are corrupted then the other operating
systems and locations should most likely not fail at the same time.

4.1.1 Seven locations and four operating systems
The first step we have done to adapt the theory to a new example is that we created a
system with 28 servers. We also use the location and the operating system as attributes.
In this case we added three new locations to the system. So we still have four operating
systems, but we have seven different locations.

The first question we want to answer about this system is how many simultaneously
faulty servers it tolerates, which means how big a fail-prone set can be. If we look at it
from the threshold perspective we know that f < n

3
[5]. With 28 servers this means that

13
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we could have no more than nine servers in a fail-prone set.

But with the generalization we can have more than these nine servers which fail at the
same time. The system is constructed in the way, that at the same time each server with
one operating system can fail and each server of two different locations. This system
therefore allows 13 servers which fail at the same time.

Example 6. The attributes are arranged in two classes. We have class1 with C1 =
{OS1, OS2, OS3, OS4} with the operating systems Windows Server, Mac OSX Server,
Red Hat Enterprise Linux, and SUSE Linux Enterprise Server. Then we have class2
with C2 = {L1, L2, L3, L4, L5, L6, L7}, which are the locations Virginia (USA), Tokyo
(Japan), Zurich (Switzerland), Haifa (Israel), Hong Kong (China), Dublin (Ireland), and
Sao Paolo (Brazil). Arranged in a grid this looks as follows:

Figure 4.1. Quorum Q1 and the fail-prone set F1 of a system with 28 servers in a grid
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Imagine now we have two other fail-prone sets with two columns and one row crossed
out. When we would add them in the grid, there would still be one server left that isn’t in
the union of these three fail prone systems. So we checked the Q3 condition [2]. We can
also check the consistency by arranging the servers in a tree structure.

Figure 4.2. Quorums Q1, Q2 and the fail-prone sets F1, F2, F3, intersection Q1 ∩Q2 of
a system with 28 servers in a tree.

We now see that Q1 ∩Q2 \ F3 6= ∅. This proves that the consistency is satisfied. The
proof for the availability is even simpler, because for each fail-prone system we have
its associated quorum and they do not intersect with each other. As an example for the
availability we can check Q1 and F1 together.

Now we want to give a mathematical definition of the fail-prone system. The negation
of this definition then will be the quorum system.

Definition 6. The tuple of one attribute from class1 and one attribute from class2 de-
scribe a server at a specific location with a specific operating system.

Let class1 and class2 be:

C1 = {OS1, OS2, OS3, OS4}
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C2 = {L1, L2, L3, L4, L5, L6, L7}

The universe of servers U is the Cartesian product of all attributes from class1 and
class2:

U = C1 × C2

The fail-prone sets can be described as follows:

Fi,j1,2 = {OSi} × C2 ∪ C1 × {Lj1} ∪ C1 × {Lj2}

with OSi ∈ C1 and Lj1,2 ∈ C2 where j1 6= j2

When we now take this definition and the example 6 from this chapter the fail-prone
set F1 would be described as follows:

F1 = {OS2} × C2 ∪ C1 × {L2} ∪ C1 × {L3}

4.1.2 Seven locations and seven operating systems
In the second step we added 3 more operating systems so that we have a system with
49 servers. In this example we have 7 locations and 7 operating systems. Also here the
first question we want to answer is how many servers can fail at the same time. In the
threshold case we know the equation is f < n

3
[5]. In the example with 49 servers this

would mean no more than 16 servers can fail at the same time.

But how does it look with generalization? We constructed the system in the way that
at the same time two locations and two operating systems can fail. This system then
tolerates 28 simultaneous failures.

Example 7. The attributes are arranged in two classes. class1 with the operating systems
Windows Server, Mac OSX Server, Red Hat Enterprise Linux, SUSE Linux Enterprise
Server, Free BSD, Solaris and Sun Cobalt. Then we have class2 with the locations
Virginia (USA), Tokyo (Japan), Zurich (Switzerland), Haifa (Israel), Hong Kong (China),
Dublin (Ireland), and Sao Paolo (Brazil). Arranged in a grid this looks as follows:
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Figure 4.3. Quorum Q1 and fail-prone set F1 of a system with 49 servers in a grid.

Imagine now we have 2 other fail-prone systems with two columns and two lines
crossed out. When we add them in the grid, there would still be one server left that isn’t
in the union of these three fail prone systems. So we checked the Q3 condition [2]. We
can also check the consistency by arranging the servers in a tree structure.
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Figure 4.4. Quorums Q1, Q2 and fail-prone sets F1, F2, F3, intersection Q1 ∩Q2 of a
system with 49 servers in a tree.
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We now see that Q1 ∩ Q2 \ F3 6= ∅. This proves that consistency is satisfied. The
proof for availability is even simpler, because for each fail-prone system we have its
associated quorum and they do not intersect with each other. As an example for the
availability we can just check Q1 and F1

Definition 7. The tuple of one attribute from class1 and one attribute from class2 de-
scribe a server at a specific location with a specific operating system.

Let class1 and class2 be:

C1 = {OS1, OS2, OS3, OS4, OS5, OS6, OS7},

C2 = {L1, L2, L3, L4, L5, L6, L7}

The universe of servers U is the Cartesian product of all attributes from class1 and
class2:

U = C1 × C2

The fail-prone sets can be described as follows:

Fi1,2,j1,2 = {OSi1} × C2 ∪ {OSi2} × C2 ∪ C1 × {Lj1} ∪ C1 × {Lj2}

with OSi1,2 ∈ C1, i1 6= i2 and Lj1,2 ∈ C2 , j1 6= j2

When we now take this definition and the example 7 from this chapter the fail-prone
set F1 would be described as follows:

F1 = {OS2} × C2 ∪ {OS3} × C2 ∪ C1 × {L2} ∪ C1 × {L3}
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4.1.3 Scalability of a system with two attribute classes
We now show two different examples with an distinct number of attributes per class. Can
the system be constructed by rules which work for every amount of different attributes
in these classes? For this we searched a rule how the system can be built that it also
works when we scale it. We know that the Q3 condition [2] can only be satisfied when
we have more than 3 times the amount of rows that are in the fail-prone system and the
same for the columns. Because when we add two other fail-prone sets we must still have
servers that are not in this fail-prone system. The number of the rows in this case would
be the amount of attributes in class1 and the amount of columns would be the amount of
attributes in class2. When we would exactly have 3 times the amount of rows that are in
a fail-prone set the Q3 condition [2] would not hold, because the union of 3 fail-prone
sets would cover all the servers in the system.

We want to formulate this rule mathematically, so that we can just calculate the
number of possible server failures for each system size.

Theorem 3. Imagine a system with n attributes in class1 and m attributes in class2,
where n is the amount of rows and m is the amount of columns.

The number of possible faulty rows x′ can be calculated as follows:

n = 3x+ 1

where x′ = floor(x)

The number of possible faulty columns y′ can be calculated as follows:

m = 3y + 1

where y′ = floor(y)

The size of a fail-prone set f can be calculated as follows:

y′ · n+ x′ ·m− x′ · y′

We produced a table and use this calculations to show a few systems with different
numbers of servers and their quorum and fail-prone set sizes. With this calculation we
could take any amount of attributes in this two classes and we would find a working
Byzantine quorum system.
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class1 class2 servers s faulty rows faulty cols failures f quorum q

n m n ∗m x′ y′ f s− f
4 4 16 1 1 7 9
4 7 28 1 2 13 15
7 7 49 2 2 24 25

10 10 100 3 3 51 49

Table 4.1. Systems with two attribute classes and a various amount of attributes per
class.

4.2 Differentiating servers by cloud provider, location
and operating system

In the next step we added one attribute class more to the system for the 3rd dimension,
the cloud provider. This system we will not present as a grid because with the three
dimensions we could not really analyse it in the grid structure. In this example we have
four cloud providers, four operating systems and four locations. This gives us a total of
64 servers in this system, where one server is a tuple with three attributes, one attribute
from each class. Also the first thing we analyse here is the threshold case where we have
f < n

3
[5] possible failures. In the threshold case we can therefore have 21 failures at the

same time. But when we build the system with generalization then we reach the possible
amount of 37 failures at the same time.

Example 8. The attributes are arranged in three classes. class1 with the Cloud Providers
AWS (Amazon), Azure (Microsoft), Google Cloud (Google), IBM Cloud (IBM). class2
with the operating systems Windows Server, Mac OSX Server. Red Hat Enterprise Linux
and SUSE Linux Enterprise Server. class3 with the locations Virginia (USA), Tokyo
(Japan), Zurich (Switzerland) and Haifa (Israel).

In the tree structure of this system we have one class more and therefore we have
one dimension more in the tree. In this example we have in F1 the Cloud Provider AWS
(Amazon), the operating system Windows Server and the location Virginia (USA) which
all fail at the same time. To construct F1 we always take the nodes from the left branches
in the tree and added these servers in the fail-prone set. For F2 we took all the nodes
from the right branches of every class and added them to the fail-prone set. The quorums
Q1 and Q2 then are U − F1 and U − F2. In F3 all servers from the second branches of
the tree are included.
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Figure 4.5. Quorum Q1, Q2 and fail-prone sets F1, F2, F3, intersection Q1 ∩ Q2 of a
system with 64 servers in a tree.
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Definition 8. The tuple of one attribute from class1, one attribute from class2 and one
attribute from class3 describes a server with a specific cloud provider, a specific operating
system at a specific location.

Let class1, class2 and class3 be:

C1 = {CP1, CP2, CP3, CP4}
C2 = {OS1, OS2, OS3, OS4}

C3 = {L1, L2, L3, L4}

The universe of servers U is the Cartesian product of all attributes from class1, class2
and class3:

U = C1 × C2 × C3

The fail-prone sets can be described as follows:

Fi,j,k = {CPi} × C2 × C3 ∪ C1 × {OSj} × C3 ∪ C1 × C2 × {Lk}

with CPi ∈ C1, and OSj ∈ C2, and Lk ∈ C3

When we now take this definition and the example 8 from this chapter the fail-prone
set F1 would be described as follows:

F1 = {CP1} × C2 × C3 ∪ C1 × {OS1} × C3 ∪ C1 × C2 × {L1}

4.3 General description of the arbitrary structure of the
generalized quorum system

In this section we show the general description to construct such a Byzantine Quorum
System of any size. This means that we can have any number of classes and any number
of attributes inside of these classes.



CHAPTER 4. GENERALIZED QUORUMS MADE PRACTICAL 24

The idea will always be the same for every system size. We can arrange our servers
with the previous used tree structure. As we get more classes, the amount depth of the
tree increases. As we get more attributes per class, the tree grows wider. To construct our
arbitrary structure we always follow the same rules, which change a little bit regarding
the number of attributes per class.

The smallest system size where our construction works is with four attributes per class
and two attribute classes. The idea here is that we decide for each class which branch we
add to our arbitrary structure. Per class the branch must be always the same, because it
has to be the same attribute (For example all the servers with the same operating system
to one fail-prone set). We number our branches from one to four. For the first and second
class we then have four possibilities which branch we add to the arbitrary structure.

Example 9. For two classes with four attributes per class we can construct 16 different
fail-prone sets. We can choose 4 different branches for the first class and then again four
different branches for the second class. This is exactly the number of permutations n ∗m
where n is the number of attributes in class1 and m is the number of elements in class2.

When the number of attributes per class gets higher, we have to check with the
formula from theorem 3, if we can add more than one branch to the arbitrary structure.
As we know, with seven attributes per class we have two branches to add because it is
possible that for example two operating systems fail at the same time and not just one
like in the case with 4 attributes per class. With ten attributes per class we can add three
branches from the tree, and so on.

Example 10. For three classes with four attributes per class we can construct 64 different
fail-prone sets. We can choose 4 different branches for the first class and then again
four different branches for the second and third class. This is exactly the number of
combinations n ∗m ∗ l where n is the number of attributes in class1, m is the number of
elements in class2 and l is the number of attributes in class3.

The system in general would be defined as follows:

First we have the construction of the classes, from class1 to classN :

C1 = {a1, a2, a3, ..., an}, ai ∈ C1

C2 = {b1, b2, b3, ..., bm}, bj ∈ C2

C3 = {c1, c2, c3, ..., cl}, ck ∈ C3

...

CN = {N1, N2, N3, ..., Nz}, Nw ∈ CN
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The arbitrary structure can then be described as follows:

Fi,j,k,...,N ={ai} × C2 × C3 × ...× CN ∪ C1 × {bj} × C3 × ...× CN
∪ C1 × C2 × {ck} × ...× CN ∪ ... ∪ C1 × C2 × C3 × ...× {Nw}

(4.1)

The construction follows from the idea described above. For each class we decide
which branch we add to a fail-prone set. The branches in our case would describe either
a cloud provider, an operating system or a location. But it does not matter with which
kind of attributes the system is built. The construction stays the same.



5
Conclusion

Quorum systems are a well known way to work with replicated data and their consistency
and availability in distributed systems. The goal we had for this work was to generalize
quorum systems, while protecting their consistency and availability, so that we can step
away from the threshold quorum that works by numbers.

We created a system that allows us to deal with more than the threshold case with
n > 3f . For this we build a system where one server is a tuple of different attributes.
This allowed us to construct rules, on which our Byzantine quorum system is build on.
With these rules we are no longer in a system model where all servers are equally trusted.

We defined combinations of servers that can be trusted as a Byzantine quorum. These
Byzantine quorums have to contain fewer correct servers than the threshold quorum
would contain and they still meet all the conditions that are prescribed in the theory of
Byzantine quorum systems.

In a next step a prototype with those specifications can be built and the model can
be tested practically. With such a prototype the advantages such a system would bring us
can be measured.

The research in the field of quorum systems then goes further to the asymmetric quorum
systems, where the servers are not equally trusted, neither they trust equally. Such
research is ongoing at the moment at the University of Bern.
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